snow.txt 11.4 KB
Newer Older
michael's avatar
michael committed
1 2 3 4
=============================================
SNOW Video Codec Specification Draft 20070103
=============================================

michael's avatar
intro  
michael committed
5 6 7 8 9 10 11 12 13 14
Intro:
======
This Specification describes the snow syntax and semmantics as well as
how to decode snow.
The decoding process is precissely described and any compliant decoder
MUST produce the exactly same output for a spec conformant snow stream.
For encoding though any process which generates a stream compliant to
the syntactical and semmantical requirements and which is decodeable by
the process described in this spec shall be considered a conformant
snow encoder.
michael's avatar
michael committed
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174

Definitions:
============

MUST    the specific part must be done to conform to this standard
SHOULD  it is recommended to be done that way, but not strictly required

ilog2(x) is the rounded down logarithm of x with basis 2
ilog2(0) = 0

Type definitions:
=================

b   1-bit range coded
u   unsigned scalar value range coded
s   signed scalar value range coded


Bitstream syntax:
=================

frame:
    header
    prediction
    residual

header:
    keyframe                            b   MID_STATE
    if(keyframe || always_reset)
        reset_contexts
    if(keyframe){
        version                         u   header_state
        always_reset                    b   header_state
        temporal_decomposition_type     u   header_state
        temporal_decomposition_count    u   header_state
        spatial_decomposition_count     u   header_state
        colorspace_type                 u   header_state
        chroma_h_shift                  u   header_state
        chroma_v_shift                  u   header_state
        spatial_scalability             b   header_state
        max_ref_frames-1                u   header_state
        qlogs
    }

    spatial_decomposition_type          s   header_state
    qlog                                s   header_state
    mv_scale                            s   header_state
    qbias                               s   header_state
    block_max_depth                     s   header_state

qlogs:
    for(plane=0; plane<2; plane++){
        quant_table[plane][0][0]        s   header_state
        for(level=0; level < spatial_decomposition_count; level++){
            quant_table[plane][level][1]s   header_state
            quant_table[plane][level][3]s   header_state
        }
    }

reset_contexts
    *_state[*]= MID_STATE

prediction:
    for(y=0; y<block_count_vertical; y++)
        for(x=0; x<block_count_horizontal; x++)
            block(0)

block(level):
    if(keyframe){
        intra=1
        y_diff=cb_diff=cr_diff=0
    }else{
        if(level!=max_block_depth){
            s_context= 2*left->level + 2*top->level + topleft->level + topright->level
            leaf                        b   block_state[4 + s_context]
        }
        if(level==max_block_depth || leaf){
            intra                       b   block_state[1 + left->intra + top->intra]
            if(intra){
                y_diff                  s   block_state[32]
                cb_diff                 s   block_state[64]
                cr_diff                 s   block_state[96]
            }else{
                ref_context= ilog2(2*left->ref) + ilog2(2*top->ref)
                if(ref_frames > 1)
                    ref                 u   block_state[128 + 1024 + 32*ref_context]
                mx_context= ilog2(2*abs(left->mx - top->mx))
                my_context= ilog2(2*abs(left->my - top->my))
                mvx_diff                s   block_state[128 + 32*(mx_context + 16*!!ref)]
                mvy_diff                s   block_state[128 + 32*(my_context + 16*!!ref)]
            }
        }else{
            block(level+1)
            block(level+1)
            block(level+1)
            block(level+1)
        }
    }


residual:
    FIXME



Tag description:
----------------

version
    0
    this MUST NOT change within a bitstream

always_reset
    if 1 then the range coder contexts will be reset after each frame

temporal_decomposition_type
    0

temporal_decomposition_count
    0

spatial_decomposition_count
    FIXME

colorspace_type
    0
    this MUST NOT change within a bitstream

chroma_h_shift
    log2(luma.width / chroma.width)
    this MUST NOT change within a bitstream

chroma_v_shift
    log2(luma.height / chroma.height)
    this MUST NOT change within a bitstream

spatial_scalability
    0

max_ref_frames
    maximum number of reference frames
    this MUST NOT change within a bitstream

ref_frames
    minimum of the number of available reference frames and max_ref_frames
    for example the first frame after a key frame always has ref_frames=1

spatial_decomposition_type
    wavelet type
    0 is a 9/7 symmetric compact integer wavelet
    1 is a 5/3 symmetric compact integer wavelet
    others are reserved
    stored as delta from last, last is reset to 0 if always_reset || keyframe

qlog
    quality (logarthmic quantizer scale)
    stored as delta from last, last is reset to 0 if always_reset || keyframe

mv_scale
    stored as delta from last, last is reset to 0 if always_reset || keyframe
lu_zero's avatar
lu_zero committed
175
    FIXME check that everything works fine if this changes between frames
michael's avatar
michael committed
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196

qbias
    dequantization bias
    stored as delta from last, last is reset to 0 if always_reset || keyframe

block_max_depth
    maximum depth of the block tree
    stored as delta from last, last is reset to 0 if always_reset || keyframe

quant_table
    quantiztation table

Range Coder:
============
FIXME

Neighboring Blocks:
===================
left and top are set to the respective blocks unless they are outside of
the image in which case they are set to the Null block

diego's avatar
diego committed
197
top-left is set to the top left block unless it is outside of the image in
michael's avatar
michael committed
198 199
which case it is set to the left block

diego's avatar
diego committed
200
if this block has no larger parent block or it is at the left side of its
michael's avatar
michael committed
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
parent block and the top right block is not outside of the image then the
top right block is used for top-right else the top-left block is used

Null block
y,cb,cr are 128
level, ref, mx and my are 0


Motion Vector Prediction:
=========================
1. the motion vectors of all the neighboring blocks are scaled to
compensate for the difference of reference frames

scaled_mv= (mv * (256 * (current_reference+1) / (mv.reference+1)) + 128)>>8

2. the median of the scaled left, top and top-right vectors is used as
motion vector prediction

3. the used motion vector is the sum of the predictor and
   (mvx_diff, mvy_diff)*mv_scale


Intra DC Predicton:
======================
the luma and chroma values of the left block are used as predictors

the used luma and chroma is the sum of the predictor and y_diff, cb_diff, cr_diff
228 229 230 231 232
to reverse this in the decoder apply the following:
block[y][x].dc[0] += block[y][x-1].dc[0];
block[y][x].dc[1] += block[y][x-1].dc[1];
block[y][x].dc[2] += block[y][x-1].dc[2];
block[*][-1].dc[*]= 128;
michael's avatar
michael committed
233 234 235 236 237 238 239 240


Motion Compensation:
====================
FIXME

LL band prediction:
===================
michael's avatar
michael committed
241 242 243 244 245 246 247 248 249 250 251 252 253 254
Each sample in the LL0 subband is predicted by the median of the left, top and
left+top-topleft samples, samples outside the subband shall be considered to
be 0. To reverse this prediction in the decoder apply the following.
for(y=0; y<height; y++){
    for(x=0; x<width; x++){
        sample[y][x] += median(sample[y-1][x],
                               sample[y][x-1],
                               sample[y-1][x]+sample[y][x-1]-sample[y-1][x-1]);
    }
}
sample[-1][*]=sample[*][-1]= 0;
width,height here are the width and height of the LL0 subband not of the final
video

michael's avatar
michael committed
255 256 257 258 259 260 261

Dequantizaton:
==============
FIXME

Wavelet Transform:
==================
michael's avatar
michael committed
262 263 264 265 266

Snow supports 2 wavelet transforms, the symmetric biorthogonal 5/3 integer
transform and a integer approximation of the symmetric biorthogonal 9/7
daubechies wavelet.

michael's avatar
michael committed
267 268 269 270 271 272 273 274 275
2D IDWT (inverse discrete wavelet transform)
--------------------------------------------
The 2D IDWT applies a 2D filter recursively, each time combining the
4 lowest frequency subbands into a single subband until only 1 subband
remains.
The 2D filter is done by first applying a 1D filter in the vertical direction
and then applying it in the horizontal one.
 ---------------    ---------------    ---------------    ---------------
|LL0|HL0|       |  |   |   |       |  |       |       |  |       |       |
michael's avatar
typo  
michael committed
276
|---+---|  HL1  |  | L0|H0 |  HL1  |  |  LL1  |  HL1  |  |       |       |
michael's avatar
michael committed
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
|LH0|HH0|       |  |   |   |       |  |       |       |  |       |       |
|-------+-------|->|-------+-------|->|-------+-------|->|   L1  |  H1   |->...
|       |       |  |       |       |  |       |       |  |       |       |
|  LH1  |  HH1  |  |  LH1  |  HH1  |  |  LH1  |  HH1  |  |       |       |
|       |       |  |       |       |  |       |       |  |       |       |
 ---------------    ---------------    ---------------    ---------------


1D Filter:
----------
1. interleave the samples of the low and high frequency subbands like
s={L0, H0, L1, H1, L2, H2, L3, H3, ... }
note, this can end with a L or a H, the number of elements shall be w
s[-1] shall be considered equivalent to s[1  ]
s[w ] shall be considered equivalent to s[w-2]

2. perform the lifting steps in order as described below

5/3 Integer filter:
1. s[i] -= (s[i-1] + s[i+1] + 2)>>2; for all even i < w
2. s[i] += (s[i-1] + s[i+1]    )>>1; for all odd  i < w

\ | /|\ | /|\ | /|\ | /|\
 \|/ | \|/ | \|/ | \|/ |
  +  |  +  |  +  |  +  |   -1/4
 /|\ | /|\ | /|\ | /|\ |
/ | \|/ | \|/ | \|/ | \|/
  |  +  |  +  |  +  |  +   +1/2


snows 9/7 Integer filter:
1. s[i] -= (3*(s[i-1] + s[i+1])         + 4)>>3; for all even i < w
2. s[i] -=     s[i-1] + s[i+1]                 ; for all odd  i < w
3. s[i] += (   s[i-1] + s[i+1] + 4*s[i] + 8)>>4; for all even i < w
4. s[i] += (3*(s[i-1] + s[i+1])            )>>1; for all odd  i < w

\ | /|\ | /|\ | /|\ | /|\
 \|/ | \|/ | \|/ | \|/ |
  +  |  +  |  +  |  +  |   -3/8
 /|\ | /|\ | /|\ | /|\ |
/ | \|/ | \|/ | \|/ | \|/
 (|  + (|  + (|  + (|  +   -1
\ + /|\ + /|\ + /|\ + /|\  +1/4
 \|/ | \|/ | \|/ | \|/ |
  +  |  +  |  +  |  +  |   +1/16
 /|\ | /|\ | /|\ | /|\ |
/ | \|/ | \|/ | \|/ | \|/
  |  +  |  +  |  +  |  +   +3/2
michael's avatar
michael committed
325

michael's avatar
michael committed
326 327 328 329
optimization tips:
following are exactly identical
(3a)>>1 == a + (a>>1)
(a + 4b + 8)>>4 == ((a>>2) + b + 2)>>2
michael's avatar
michael committed
330

michael's avatar
michael committed
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
16bit implementation note:
The IDWT can be implemented with 16bits, but this requires some care to
prevent overflows, the following list, lists the minimum number of bits needed
for some terms
1. lifting step
A= s[i-1] + s[i+1]                              16bit
3*A + 4                                         18bit
A + (A>>1) + 2                                  17bit

3. lifting step
s[i-1] + s[i+1]                                 17bit

4. lifiting step
3*(s[i-1] + s[i+1])                             17bit


michael's avatar
michael committed
347 348 349 350 351 352 353 354 355 356
TODO:
=====
Important:
finetune initial contexts
spatial_decomposition_count per frame?
flip wavelet?
try to use the wavelet transformed predicted image (motion compensated image) as context for coding the residual coefficients
try the MV length as context for coding the residual coefficients
use extradata for stuff which is in the keyframes now?
the MV median predictor is patented IIRC
michael's avatar
michael committed
357 358 359
change MC so per picture halfpel interpolation can be done and finish the implementation of it
compare the 6 tap and 8 tap hpel filters (psnr/bitrate and subjective quality)
try different range coder state transition tables for different contexts
michael's avatar
michael committed
360 361 362 363 364 365 366 367 368 369 370 371 372 373

Not Important:
spatial_scalability b vs u (!= 0 breaks syntax anyway so we can add a u later)


Credits:
========
Michael Niedermayer
Loren Merritt


Copyright:
==========
GPL + GFDL + whatever is needed to make this a RFC