- 09 Jan, 2006 40 commits
-
-
Tom Zanussi authored
The patch series implementa or fixes 3 things that were specifically requested or suggested by relayfs users: - support for non-relay files (patches 1-6) Currently, the relayfs API only supports the creation of directories (relayfs_create_dir()) and relay files (relay_open()). These patches adds support for non-relay files (relayfs_create_file()). This is so relayfs applications can create 'control files' in relayfs itself rather than in /proc or via a netlink channel, as is currently done in the relay-app examples. Basically what this amounts to is exporting relayfs_create_file() with an additional file_ops param that clients can use to supply file operations for their own special-purpose files in relayfs. - make exported relay file ops useful (patches 7-8) The relayfs relay_file_operations have always been exported, the intent being to make it possible to create relay files in other filesystems such as debugfs. The problem, though, is that currently the file operations are too tightly coupled to relayfs to actually be used for this purpose. This patch fixes that by adding a couple of callback functions that allow a client to hook into relay_open()/close() and supply the files that will be used to represent the channel buffers; the default implementation if no callbacks are defined is to create the files in relayfs. - add an option to create global relay buffer (patches 9-10) The file creation callback also supplies an optional param, is_global, that can be used by clients to create a single global relayfs buffer instead of the default per-cpu buffers. This was suggested as being useful for certain debugging applications where it's more convenient to be able to get all the data from a single channel without having to go to the bother of dealing with per-cpu files. - cleanup, some renaming and Documentation updates (patches 11-12) There were several comments that the use of netlink in the example code was non-intuitive and in fact the whole relay-app business was needlessly confusing. Based on that feedback, the example code has been completely converted over to relayfs control files as supported by this patch, and have also been made completely self-contained. The converted examples along with a couple of new examples that demonstrate using exported relay files can be found in relay-apps tarball: http://prdownloads.sourceforge.net/relayfs/relay-apps-0.9.tar.gz?download This patch: Separate buffer create/destroy from inode create/destroy. We want to be able to associate other data and not just relay buffers with inodes. Buffer create/destroy is moved out of inode.c and into relayfs core code. Signed-off-by: Tom Zanussi <zanussi@us.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Andrew Morton authored
Unobfsucate this struct member Cc: Manfred Spraul <manfred@colorfullife.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Jan Beulich authored
Needed for the Novell kernel debugger and perhaps some per-cpu data on x86_64 in the future. Cc: Andi Kleen <ak@muc.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Nick Piggin authored
Use atomic_inc_not_zero for rcu files instead of special case rcuref. Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: "Paul E. McKenney" <paulmck@us.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Nick Piggin authored
Convert atomic_dec_and_lock to use new atomic primitives. Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: "Paul E. McKenney" <paulmck@us.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Peter Osterlund authored
Use bd_claim() when opening the cdrom device to prevent user space programs such as cdrecord, hald and kded from interfering with the burning process. Signed-off-by: Peter Osterlund <petero2@telia.com> Cc: Christoph Hellwig <hch@lst.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Adrian Bunk authored
This patch contains the following cleanups: - make needlessly global functions static - every file should include the headers containing the prototypes for it's global functions Signed-off-by: Adrian Bunk <bunk@stusta.de> Acked-by: "Paul E. McKenney" <paulmck@us.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Adrian Bunk authored
"extern inline" -> "static inline" Since there's no pullphone() function this patch removes the dead prototype. Signed-off-by: Adrian Bunk <bunk@stusta.de> Acked-by: Karsten Keil <kkeil@suse.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Adrian Bunk authored
This patch moves the rtc_interrupt() prototype to rtc.h and removes the prototypes from C files. It also renames static rtc_interrupt() functions in arch/arm/mach-integrator/time.c and arch/sh64/kernel/time.c to avoid compile problems. Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Paul Gortmaker <p_gortmaker@yahoo.com> Acked-by: Paul Mundt <lethal@linux-sh.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
OGAWA Hirofumi authored
This patch add EXPORT_SYMBOL(filemap_write_and_wait) and use it. See mm/filemap.c: And changes the filemap_write_and_wait() and filemap_write_and_wait_range(). Current filemap_write_and_wait() doesn't wait if filemap_fdatawrite() returns error. However, even if filemap_fdatawrite() returned an error, it may have submitted the partially data pages to the device. (e.g. in the case of -ENOSPC) <quotation> Andrew Morton writes, If filemap_fdatawrite() returns an error, this might be due to some I/O problem: dead disk, unplugged cable, etc. Given the generally crappy quality of the kernel's handling of such exceptions, there's a good chance that the filemap_fdatawait() will get stuck in D state forever. </quotation> So, this patch doesn't wait if filemap_fdatawrite() returns the -EIO. Trond, could you please review the nfs part? Especially I'm not sure, nfs must use the "filemap_fdatawrite(inode->i_mapping) == 0", or not. Acked-by: Trond Myklebust <trond.myklebust@fys.uio.no> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
OGAWA Hirofumi authored
This patch changes generic_cont_expand(), in order to share the code with fatfs. - Use vmtruncate() if ->prepare_write() returns a error. Even if ->prepare_write() returns an error, it may already have added some blocks. So, this truncates blocks outside of ->i_size by vmtruncate(). - Add generic_cont_expand_simple(). The generic_cont_expand_simple() assumes that ->prepare_write() can handle the block boundary. With this, we don't need to care the extra byte. And for expanding a file size by truncate(), fatfs uses the added generic_cont_expand_simple(). Signed-off-by: OGAWA Hirofumi <hirofumi@mail.parknet.co.jp> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
OGAWA Hirofumi authored
This exports/changes the sync_page_range/_nolock(). The fatfs needs sync_page_range/_nolock() for expanding truncate, and changes "size_t count" to "loff_t count". Signed-off-by: OGAWA Hirofumi <hirofumi@mail.parknet.co.jp> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
OGAWA Hirofumi authored
This patch add to support of ->direct_IO() for mostly read. The user of this seems to want to use for streaming read. So, current direct I/O has limitation, it can only overwrite. (For write operation, mainly we need to handle the hole etc..) Signed-off-by: OGAWA Hirofumi <hirofumi@mail.parknet.co.jp> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
OGAWA Hirofumi authored
All EXPORT_SYMBOL of fatfs is only for vfat/msdos. _GPL would be proper. Signed-off-by: OGAWA Hirofumi <hirofumi@mail.parknet.co.jp> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
OGAWA Hirofumi authored
Signed-off-by: OGAWA Hirofumi <hirofumi@mail.parknet.co.jp> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
OGAWA Hirofumi authored
We don't need to allocate buffer for checking the buffer is uptodate. This use sb_find_get_block() instead, and if it returns NULL it's not uptodate. Signed-off-by: OGAWA Hirofumi <hirofumi@mail.parknet.co.jp> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
OGAWA Hirofumi authored
It is overkill to update the FS_INFO whenever modifying prev_free/free_clusters, because those are just a hint. So, this patch uses ->write_super() for updating FS_INFO instead. Signed-off-by: OGAWA Hirofumi <hirofumi@mail.parknet.co.jp> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Russell King authored
Some ARM platforms have the ability to program the interrupt controller to detect various interrupt edges and/or levels. For some platforms, this is critical to setup correctly, particularly those which the setting is dependent on the device. Currently, ARM drivers do (eg) the following: err = request_irq(irq, ...); set_irq_type(irq, IRQT_RISING); However, if the interrupt has previously been programmed to be level sensitive (for whatever reason) then this will cause an interrupt storm. Hence, if we combine set_irq_type() with request_irq(), we can then safely set the type prior to unmasking the interrupt. The unfortunate problem is that in order to support this, these flags need to be visible outside of the ARM architecture - drivers such as smc91x need these flags and they're cross-architecture. Finally, the SA_TRIGGER_* flag passed to request_irq() should reflect the property that the device would like. The IRQ controller code should do its best to select the most appropriate supported mode. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Paul Fulghum authored
New character device driver for the SyncLink GT and SyncLink AC families of synchronous and asynchronous serial adapters Signed-off-by: Paul Fulghum <paulkf@microgate.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Tim Schmielau authored
Include fixes for 2.6.14-git11. Should allow to remove sched.h from module.h on i386, x86_64, arm, ia64, ppc, ppc64, and s390. Probably more to come since I haven't yet checked the other archs. Signed-off-by: Tim Schmielau <tim@physik3.uni-rostock.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Paul Jackson authored
For systems that aren't using cpusets, but have them CONFIG_CPUSET enabled in their kernel (eventually this may be most distribution kernels), this patch removes even the minimal rcu_read_lock() from the memory page allocation path. Actually, it removes that rcu call for any task that is in the root cpuset (top_cpuset), which on systems not actively using cpusets, is all tasks. We don't need the rcu check for tasks in the top_cpuset, because the top_cpuset is statically allocated, so at no risk of being freed out from underneath us. Signed-off-by: Paul Jackson <pj@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Paul Jackson authored
Mark cpuset global 'number_of_cpusets' as __read_mostly. This global is accessed everytime a zone is considered in the zonelist loops beneath __alloc_pages, looking for a free memory page. If number_of_cpusets is just one, then we can short circuit the mems_allowed check. Since this global is read alot on a hot path, and written rarely, it is an excellent candidate for __read_mostly. Thanks to Christoph Lameter for the suggestion. Signed-off-by: Paul Jackson <pj@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Paul Jackson authored
Optimize the cpuset impact on page allocation, the most performance critical cpuset hook in the kernel. On each page allocation, the cpuset hook needs to check for a possible change in the current tasks cpuset. It can now handle the common case, of no change, without taking any spinlock or semaphore, thanks to RCU. Convert a spinlock on the current task to an rcu_read_lock(), saving approximately a memory barrier and an atomic op, depending on architecture. This is done by adding rcu_assign_pointer() and synchronize_rcu() calls to the write side of the task->cpuset pointer, in cpuset.c:attach_task(), to delay freeing up a detached cpuset until after any critical sections referencing that pointer. Thanks to Andi Kleen, Nick Piggin and Eric Dumazet for ideas. Signed-off-by: Paul Jackson <pj@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Paul Jackson authored
Remove a couple of more lines of code from the cpuset hooks in the page allocation code path. There was a check for a NULL cpuset pointer in the routine cpuset_update_task_memory_state() that was only needed during system boot, after the memory subsystem was initialized, before the cpuset subsystem was initialized, to catch a NULL task->cpuset pointer. Add a cpuset_init_early() routine, just before the mem_init() call in init/main.c, that sets up just enough of the init tasks cpuset structure to render cpuset_update_task_memory_state() calls harmless. Signed-off-by: Paul Jackson <pj@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Paul Jackson authored
Given the mechanism in the previous patch to handle rebinding the per-vma mempolicies of all tasks in a cpuset that changes its memory placement, it is now easier to handle the page migration requirements of such tasks at the same time. The previous code didn't actually attempt to migrate the pages of the tasks in a cpuset whose memory placement changed until the next time each such task tried to allocate memory. This was undesirable, as users invoking memory page migration exected to happen when the placement changed, not some unspecified time later when the task needed more memory. It is now trivial to handle the page migration at the same time as the per-vma rebinding is done. The routine cpuset.c:update_nodemask(), which handles changing a cpusets memory placement ('mems') now checks for the special case of being asked to write a placement that is the same as before. It was harmless enough before to just recompute everything again, even though nothing had changed. But page migration is a heavy weight operation - moving pages about. So now it is worth avoiding that if asked to move a cpuset to its current location. Signed-off-by: Paul Jackson <pj@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Paul Jackson authored
Fix more of longstanding bug in cpuset/mempolicy interaction. NUMA mempolicies (mm/mempolicy.c) are constrained by the current tasks cpuset to just the Memory Nodes allowed by that cpuset. The kernel maintains internal state for each mempolicy, tracking what nodes are used for the MPOL_INTERLEAVE, MPOL_BIND or MPOL_PREFERRED policies. When a tasks cpuset memory placement changes, whether because the cpuset changed, or because the task was attached to a different cpuset, then the tasks mempolicies have to be rebound to the new cpuset placement, so as to preserve the cpuset-relative numbering of the nodes in that policy. An earlier fix handled such mempolicy rebinding for mempolicies attached to a task. This fix rebinds mempolicies attached to vma's (address ranges in a tasks address space.) Due to the need to hold the task->mm->mmap_sem semaphore while updating vma's, the rebinding of vma mempolicies has to be done when the cpuset memory placement is changed, at which time mmap_sem can be safely acquired. The tasks mempolicy is rebound later, when the task next attempts to allocate memory and notices that its task->cpuset_mems_generation is out-of-date with its cpusets mems_generation. Because walking the tasklist to find all tasks attached to a changing cpuset requires holding tasklist_lock, a spinlock, one cannot update the vma's of the affected tasks while doing the tasklist scan. In general, one cannot acquire a semaphore (which can sleep) while already holding a spinlock (such as tasklist_lock). So a list of mm references has to be built up during the tasklist scan, then the tasklist lock dropped, then for each mm, its mmap_sem acquired, and the vma's in that mm rebound. Once the tasklist lock is dropped, affected tasks may fork new tasks, before their mm's are rebound. A kernel global 'cpuset_being_rebound' is set to point to the cpuset being rebound (there can only be one; cpuset modifications are done under a global 'manage_sem' semaphore), and the mpol_copy code that is used to copy a tasks mempolicies during fork catches such forking tasks, and ensures their children are also rebound. When a task is moved to a different cpuset, it is easier, as there is only one task involved. It's mm->vma's are scanned, using the same mpol_rebind_policy() as used above. It may happen that both the mpol_copy hook and the update done via the tasklist scan update the same mm twice. This is ok, as the mempolicies of each vma in an mm keep track of what mems_allowed they are relative to, and safely no-op a second request to rebind to the same nodes. Signed-off-by: Paul Jackson <pj@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Paul Jackson authored
Easy little optimization hack to avoid actually having to call cpuset_zone_allowed() and check mems_allowed, in the main page allocation routine, __alloc_pages(). This saves several CPU cycles per page allocation on systems not using cpusets. A counter is updated each time a cpuset is created or removed, and whenever there is only one cpuset in the system, it must be the root cpuset, which contains all CPUs and all Memory Nodes. In that case, when the counter is one, all allocations are allowed. Signed-off-by: Paul Jackson <pj@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Paul Jackson authored
Cleanup, reorganize and make more robust the mempolicy.c code to rebind mempolicies relative to the containing cpuset after a tasks memory placement changes. The real motivator for this cleanup patch is to lay more groundwork for the upcoming patch to correctly rebind NUMA mempolicies that are attached to vma's after the containing cpuset memory placement changes. NUMA mempolicies are constrained by the cpuset their task is a member of. When either (1) a task is moved to a different cpuset, or (2) the 'mems' mems_allowed of a cpuset is changed, then the NUMA mempolicies have embedded node numbers (for MPOL_BIND, MPOL_INTERLEAVE and MPOL_PREFERRED) that need to be recalculated, relative to their new cpuset placement. The old code used an unreliable method of determining what was the old mems_allowed constraining the mempolicy. It just looked at the tasks mems_allowed value. This sort of worked with the present code, that just rebinds the -task- mempolicy, and leaves any -vma- mempolicies broken, referring to the old nodes. But in an upcoming patch, the vma mempolicies will be rebound as well. Then the order in which the various task and vma mempolicies are updated will no longer be deterministic, and one can no longer count on the task->mems_allowed holding the old value for as long as needed. It's not even clear if the current code was guaranteed to work reliably for task mempolicies. So I added a mems_allowed field to each mempolicy, stating exactly what mems_allowed the policy is relative to, and updated synchronously and reliably anytime that the mempolicy is rebound. Also removed a useless wrapper routine, numa_policy_rebind(), and had its caller, cpuset_update_task_memory_state(), call directly to the rewritten policy_rebind() routine, and made that rebind routine extern instead of static, and added a "mpol_" prefix to its name, making it mpol_rebind_policy(). Signed-off-by: Paul Jackson <pj@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Paul Jackson authored
Provide a cpuset_mems_allowed() method, which the sys_migrate_pages() code needed, to obtain the mems_allowed vector of a cpuset, and replaced the workaround in sys_migrate_pages() to call this new method. Signed-off-by: Paul Jackson <pj@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Paul Jackson authored
The important code paths through alloc_pages_current() and alloc_page_vma(), by which most kernel page allocations go, both called cpuset_update_current_mems_allowed(), which in turn called refresh_mems(). -Both- of these latter two routines did a tasklock, got the tasks cpuset pointer, and checked for out of date cpuset->mems_generation. That was a silly duplication of code and waste of CPU cycles on an important code path. Consolidated those two routines into a single routine, called cpuset_update_task_memory_state(), since it updates more than just mems_allowed. Changed all callers of either routine to call the new consolidated routine. Signed-off-by: Paul Jackson <pj@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Paul Jackson authored
Fix obscure, never seen in real life, cpuset fork race. The cpuset_fork() call in fork.c was setting up the correct task->cpuset pointer after the tasklist_lock was dropped, which briefly exposed the newly forked process with an unsafe (copied from parent without locks or usage counter increment) cpuset pointer. In theory, that exposed cpuset pointer could have been pointing at a cpuset that was already freed and removed, and in theory another task that had been sitting on the tasklist_lock waiting to scan the task list could have raced down the entire tasklist, found our new child at the far end, and dereferenced that bogus cpuset pointer. To fix, setup up the correct cpuset pointer in the new child by calling cpuset_fork() before the new task is linked into the tasklist, and with that, add a fork failure case, to dereference that cpuset, if the fork fails along the way, after cpuset_fork() was called. Had to remove a BUG_ON() from cpuset_exit(), because it was no longer valid - the call to cpuset_exit() from a failed fork would not have PF_EXITING set. Signed-off-by: Paul Jackson <pj@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Paul Jackson authored
Restructure code layout of the kernel/cpuset.c update_nodemask() routine, removing embedded returns and nested if's in favor of goto completion labels. This is being done in anticipation of adding more logic to this routine, which will favor the goto style structure. Signed-off-by: Paul Jackson <pj@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Paul Jackson authored
Four trivial cpuset fixes: remove extra spaces, remove useless initializers, mark one __read_mostly. Signed-off-by: Paul Jackson <pj@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Paul Jackson authored
Remove documentation for the cpuset 'marker_pid' feature, that was in the patch "cpuset: change marker for relative numbering" That patch was previously pulled from *-mm at my (pj) request. Signed-off-by: Paul Jackson <pj@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Paul Jackson authored
Document the additional cpuset features: notify_on_release marker_pid memory_pressure memory_pressure_enabled Rearrange and improve formatting of existing documentation for cpu_exclusive and mem_exclusive features. Signed-off-by: Paul Jackson <pj@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Paul Jackson authored
Provide a simple per-cpuset metric of memory pressure, tracking the -rate- that the tasks in a cpuset call try_to_free_pages(), the synchronous (direct) memory reclaim code. This enables batch managers monitoring jobs running in dedicated cpusets to efficiently detect what level of memory pressure that job is causing. This is useful both on tightly managed systems running a wide mix of submitted jobs, which may choose to terminate or reprioritize jobs that are trying to use more memory than allowed on the nodes assigned them, and with tightly coupled, long running, massively parallel scientific computing jobs that will dramatically fail to meet required performance goals if they start to use more memory than allowed to them. This patch just provides a very economical way for the batch manager to monitor a cpuset for signs of memory pressure. It's up to the batch manager or other user code to decide what to do about it and take action. ==> Unless this feature is enabled by writing "1" to the special file /dev/cpuset/memory_pressure_enabled, the hook in the rebalance code of __alloc_pages() for this metric reduces to simply noticing that the cpuset_memory_pressure_enabled flag is zero. So only systems that enable this feature will compute the metric. Why a per-cpuset, running average: Because this meter is per-cpuset, rather than per-task or mm, the system load imposed by a batch scheduler monitoring this metric is sharply reduced on large systems, because a scan of the tasklist can be avoided on each set of queries. Because this meter is a running average, instead of an accumulating counter, a batch scheduler can detect memory pressure with a single read, instead of having to read and accumulate results for a period of time. Because this meter is per-cpuset rather than per-task or mm, the batch scheduler can obtain the key information, memory pressure in a cpuset, with a single read, rather than having to query and accumulate results over all the (dynamically changing) set of tasks in the cpuset. A per-cpuset simple digital filter (requires a spinlock and 3 words of data per-cpuset) is kept, and updated by any task attached to that cpuset, if it enters the synchronous (direct) page reclaim code. A per-cpuset file provides an integer number representing the recent (half-life of 10 seconds) rate of direct page reclaims caused by the tasks in the cpuset, in units of reclaims attempted per second, times 1000. Signed-off-by: Paul Jackson <pj@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Paul Jackson authored
Finish converting mm/mempolicy.c from bitmaps to nodemasks. The previous conversion had left one routine using bitmaps, since it involved a corresponding change to kernel/cpuset.c Fix that interface by replacing with a simple macro that calls nodes_subset(), or if !CONFIG_CPUSET, returns (1). Signed-off-by: Paul Jackson <pj@sgi.com> Cc: Christoph Lameter <christoph@lameter.com> Cc: Andi Kleen <ak@muc.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Paul Jackson authored
Fix the default behaviour for the remap operators in bitmap, cpumask and nodemask. As previously submitted, the pair of masks <A, B> defined a map of the positions of the set bits in A to the corresponding bits in B. This is still true. The issue is how to map the other positions, corresponding to the unset (0) bits in A. As previously submitted, they were all mapped to the first set bit position in B, a constant map. When I tried to code per-vma mempolicy rebinding using these remap operators, I realized this was wrong. This patch changes the default to map all the unset bit positions in A to the same positions in B, the identity map. For example, if A has bits 4-7 set, and B has bits 9-12 set, then the map defined by the pair <A, B> maps each bit position in the first 32 bits as follows: 0 ==> 0 ... 3 ==> 3 4 ==> 9 ... 7 ==> 12 8 ==> 8 9 ==> 9 ... 31 ==> 31 This now corresponds to the typical behaviour desired when migrating pages and policies from one cpuset to another. The pages on nodes within the original cpuset, and the references in memory policies to nodes within the original cpuset, are migrated to the corresponding cpuset-relative nodes in the destination cpuset. Other pages and node references are left untouched. Signed-off-by: Paul Jackson <pj@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Matt Mackall authored
configurable replacement for slab allocator This adds a CONFIG_SLAB option under CONFIG_EMBEDDED. When CONFIG_SLAB is disabled, the kernel falls back to using the 'SLOB' allocator. SLOB is a traditional K&R/UNIX allocator with a SLAB emulation layer, similar to the original Linux kmalloc allocator that SLAB replaced. It's signicantly smaller code and is more memory efficient. But like all similar allocators, it scales poorly and suffers from fragmentation more than SLAB, so it's only appropriate for small systems. It's been tested extensively in the Linux-tiny tree. I've also stress-tested it with make -j 8 compiles on a 3G SMP+PREEMPT box (not recommended). Here's a comparison for otherwise identical builds, showing SLOB saving nearly half a megabyte of RAM: $ size vmlinux* text data bss dec hex filename 3336372 529360 190812 4056544 3de5e0 vmlinux-slab 3323208 527948 190684 4041840 3dac70 vmlinux-slob $ size mm/{slab,slob}.o text data bss dec hex filename 13221 752 48 14021 36c5 mm/slab.o 1896 52 8 1956 7a4 mm/slob.o /proc/meminfo: SLAB SLOB delta MemTotal: 27964 kB 27980 kB +16 kB MemFree: 24596 kB 25092 kB +496 kB Buffers: 36 kB 36 kB 0 kB Cached: 1188 kB 1188 kB 0 kB SwapCached: 0 kB 0 kB 0 kB Active: 608 kB 600 kB -8 kB Inactive: 808 kB 812 kB +4 kB HighTotal: 0 kB 0 kB 0 kB HighFree: 0 kB 0 kB 0 kB LowTotal: 27964 kB 27980 kB +16 kB LowFree: 24596 kB 25092 kB +496 kB SwapTotal: 0 kB 0 kB 0 kB SwapFree: 0 kB 0 kB 0 kB Dirty: 4 kB 12 kB +8 kB Writeback: 0 kB 0 kB 0 kB Mapped: 560 kB 556 kB -4 kB Slab: 1756 kB 0 kB -1756 kB CommitLimit: 13980 kB 13988 kB +8 kB Committed_AS: 4208 kB 4208 kB 0 kB PageTables: 28 kB 28 kB 0 kB VmallocTotal: 1007312 kB 1007312 kB 0 kB VmallocUsed: 48 kB 48 kB 0 kB VmallocChunk: 1007264 kB 1007264 kB 0 kB (this work has been sponsored in part by CELF) From: Ingo Molnar <mingo@elte.hu> Fix 32-bitness bugs in mm/slob.c. Signed-off-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Matt Mackall authored
Add mm/util.c for functions common between SLAB and SLOB. Signed-off-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-