Commit e069efb6 authored by Linus Torvalds's avatar Linus Torvalds

Merge git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6

* git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6:
  hwrng: core - Prevent too-small buffer sizes
  hwrng: virtio-rng - Convert to new API
  hwrng: core - Replace u32 in driver API with byte array
  crypto: ansi_cprng - Move FIPS functions under CONFIG_CRYPTO_FIPS
  crypto: testmgr - Add ghash algorithm test before provide to users
  crypto: ghash-clmulni-intel - Put proper .data section in place
  crypto: ghash-clmulni-intel - Use gas macro for PCLMULQDQ-NI and PSHUFB
  crypto: aesni-intel - Use gas macro for AES-NI instructions
  x86: Generate .byte code for some new instructions via gas macro
  crypto: ghash-intel - Fix irq_fpu_usable usage
  crypto: ghash-intel - Add PSHUFB macros
  crypto: ghash-intel - Hard-code pshufb
  crypto: ghash-intel - Fix building failure on x86_32
  crypto: testmgr - Fix warning
  crypto: ansi_cprng - Fix test in get_prng_bytes
  crypto: hash - Remove cra_u.{digest,hash}
  crypto: api - Remove digest case from procfs show handler
  crypto: hash - Remove legacy hash/digest code
  crypto: ansi_cprng - Add FIPS wrapper
  crypto: ghash - Add PCLMULQDQ accelerated implementation
parents 324889b6 eed89d0f
......@@ -12,6 +12,7 @@ obj-$(CONFIG_CRYPTO_AES_X86_64) += aes-x86_64.o
obj-$(CONFIG_CRYPTO_TWOFISH_X86_64) += twofish-x86_64.o
obj-$(CONFIG_CRYPTO_SALSA20_X86_64) += salsa20-x86_64.o
obj-$(CONFIG_CRYPTO_AES_NI_INTEL) += aesni-intel.o
obj-$(CONFIG_CRYPTO_GHASH_CLMUL_NI_INTEL) += ghash-clmulni-intel.o
obj-$(CONFIG_CRYPTO_CRC32C_INTEL) += crc32c-intel.o
......@@ -24,3 +25,5 @@ twofish-x86_64-y := twofish-x86_64-asm_64.o twofish_glue.o
salsa20-x86_64-y := salsa20-x86_64-asm_64.o salsa20_glue.o
aesni-intel-y := aesni-intel_asm.o aesni-intel_glue.o
ghash-clmulni-intel-y := ghash-clmulni-intel_asm.o ghash-clmulni-intel_glue.o
This diff is collapsed.
/*
* Accelerated GHASH implementation with Intel PCLMULQDQ-NI
* instructions. This file contains accelerated part of ghash
* implementation. More information about PCLMULQDQ can be found at:
*
* http://software.intel.com/en-us/articles/carry-less-multiplication-and-its-usage-for-computing-the-gcm-mode/
*
* Copyright (c) 2009 Intel Corp.
* Author: Huang Ying <ying.huang@intel.com>
* Vinodh Gopal
* Erdinc Ozturk
* Deniz Karakoyunlu
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation.
*/
#include <linux/linkage.h>
#include <asm/inst.h>
.data
.align 16
.Lbswap_mask:
.octa 0x000102030405060708090a0b0c0d0e0f
.Lpoly:
.octa 0xc2000000000000000000000000000001
.Ltwo_one:
.octa 0x00000001000000000000000000000001
#define DATA %xmm0
#define SHASH %xmm1
#define T1 %xmm2
#define T2 %xmm3
#define T3 %xmm4
#define BSWAP %xmm5
#define IN1 %xmm6
.text
/*
* __clmul_gf128mul_ble: internal ABI
* input:
* DATA: operand1
* SHASH: operand2, hash_key << 1 mod poly
* output:
* DATA: operand1 * operand2 mod poly
* changed:
* T1
* T2
* T3
*/
__clmul_gf128mul_ble:
movaps DATA, T1
pshufd $0b01001110, DATA, T2
pshufd $0b01001110, SHASH, T3
pxor DATA, T2
pxor SHASH, T3
PCLMULQDQ 0x00 SHASH DATA # DATA = a0 * b0
PCLMULQDQ 0x11 SHASH T1 # T1 = a1 * b1
PCLMULQDQ 0x00 T3 T2 # T2 = (a1 + a0) * (b1 + b0)
pxor DATA, T2
pxor T1, T2 # T2 = a0 * b1 + a1 * b0
movaps T2, T3
pslldq $8, T3
psrldq $8, T2
pxor T3, DATA
pxor T2, T1 # <T1:DATA> is result of
# carry-less multiplication
# first phase of the reduction
movaps DATA, T3
psllq $1, T3
pxor DATA, T3
psllq $5, T3
pxor DATA, T3
psllq $57, T3
movaps T3, T2
pslldq $8, T2
psrldq $8, T3
pxor T2, DATA
pxor T3, T1
# second phase of the reduction
movaps DATA, T2
psrlq $5, T2
pxor DATA, T2
psrlq $1, T2
pxor DATA, T2
psrlq $1, T2
pxor T2, T1
pxor T1, DATA
ret
/* void clmul_ghash_mul(char *dst, const be128 *shash) */
ENTRY(clmul_ghash_mul)
movups (%rdi), DATA
movups (%rsi), SHASH
movaps .Lbswap_mask, BSWAP
PSHUFB_XMM BSWAP DATA
call __clmul_gf128mul_ble
PSHUFB_XMM BSWAP DATA
movups DATA, (%rdi)
ret
/*
* void clmul_ghash_update(char *dst, const char *src, unsigned int srclen,
* const be128 *shash);
*/
ENTRY(clmul_ghash_update)
cmp $16, %rdx
jb .Lupdate_just_ret # check length
movaps .Lbswap_mask, BSWAP
movups (%rdi), DATA
movups (%rcx), SHASH
PSHUFB_XMM BSWAP DATA
.align 4
.Lupdate_loop:
movups (%rsi), IN1
PSHUFB_XMM BSWAP IN1
pxor IN1, DATA
call __clmul_gf128mul_ble
sub $16, %rdx
add $16, %rsi
cmp $16, %rdx
jge .Lupdate_loop
PSHUFB_XMM BSWAP DATA
movups DATA, (%rdi)
.Lupdate_just_ret:
ret
/*
* void clmul_ghash_setkey(be128 *shash, const u8 *key);
*
* Calculate hash_key << 1 mod poly
*/
ENTRY(clmul_ghash_setkey)
movaps .Lbswap_mask, BSWAP
movups (%rsi), %xmm0
PSHUFB_XMM BSWAP %xmm0
movaps %xmm0, %xmm1
psllq $1, %xmm0
psrlq $63, %xmm1
movaps %xmm1, %xmm2
pslldq $8, %xmm1
psrldq $8, %xmm2
por %xmm1, %xmm0
# reduction
pshufd $0b00100100, %xmm2, %xmm1
pcmpeqd .Ltwo_one, %xmm1
pand .Lpoly, %xmm1
pxor %xmm1, %xmm0
movups %xmm0, (%rdi)
ret
/*
* Accelerated GHASH implementation with Intel PCLMULQDQ-NI
* instructions. This file contains glue code.
*
* Copyright (c) 2009 Intel Corp.
* Author: Huang Ying <ying.huang@intel.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/crypto.h>
#include <crypto/algapi.h>
#include <crypto/cryptd.h>
#include <crypto/gf128mul.h>
#include <crypto/internal/hash.h>
#include <asm/i387.h>
#define GHASH_BLOCK_SIZE 16
#define GHASH_DIGEST_SIZE 16
void clmul_ghash_mul(char *dst, const be128 *shash);
void clmul_ghash_update(char *dst, const char *src, unsigned int srclen,
const be128 *shash);
void clmul_ghash_setkey(be128 *shash, const u8 *key);
struct ghash_async_ctx {
struct cryptd_ahash *cryptd_tfm;
};
struct ghash_ctx {
be128 shash;
};
struct ghash_desc_ctx {
u8 buffer[GHASH_BLOCK_SIZE];
u32 bytes;
};
static int ghash_init(struct shash_desc *desc)
{
struct ghash_desc_ctx *dctx = shash_desc_ctx(desc);
memset(dctx, 0, sizeof(*dctx));
return 0;
}
static int ghash_setkey(struct crypto_shash *tfm,
const u8 *key, unsigned int keylen)
{
struct ghash_ctx *ctx = crypto_shash_ctx(tfm);
if (keylen != GHASH_BLOCK_SIZE) {
crypto_shash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
return -EINVAL;
}
clmul_ghash_setkey(&ctx->shash, key);
return 0;
}
static int ghash_update(struct shash_desc *desc,
const u8 *src, unsigned int srclen)
{
struct ghash_desc_ctx *dctx = shash_desc_ctx(desc);
struct ghash_ctx *ctx = crypto_shash_ctx(desc->tfm);
u8 *dst = dctx->buffer;
kernel_fpu_begin();
if (dctx->bytes) {
int n = min(srclen, dctx->bytes);
u8 *pos = dst + (GHASH_BLOCK_SIZE - dctx->bytes);
dctx->bytes -= n;
srclen -= n;
while (n--)
*pos++ ^= *src++;
if (!dctx->bytes)
clmul_ghash_mul(dst, &ctx->shash);
}
clmul_ghash_update(dst, src, srclen, &ctx->shash);
kernel_fpu_end();
if (srclen & 0xf) {
src += srclen - (srclen & 0xf);
srclen &= 0xf;
dctx->bytes = GHASH_BLOCK_SIZE - srclen;
while (srclen--)
*dst++ ^= *src++;
}
return 0;
}
static void ghash_flush(struct ghash_ctx *ctx, struct ghash_desc_ctx *dctx)
{
u8 *dst = dctx->buffer;
if (dctx->bytes) {
u8 *tmp = dst + (GHASH_BLOCK_SIZE - dctx->bytes);
while (dctx->bytes--)
*tmp++ ^= 0;
kernel_fpu_begin();
clmul_ghash_mul(dst, &ctx->shash);
kernel_fpu_end();
}
dctx->bytes = 0;
}
static int ghash_final(struct shash_desc *desc, u8 *dst)
{
struct ghash_desc_ctx *dctx = shash_desc_ctx(desc);
struct ghash_ctx *ctx = crypto_shash_ctx(desc->tfm);
u8 *buf = dctx->buffer;
ghash_flush(ctx, dctx);
memcpy(dst, buf, GHASH_BLOCK_SIZE);
return 0;
}
static struct shash_alg ghash_alg = {
.digestsize = GHASH_DIGEST_SIZE,
.init = ghash_init,
.update = ghash_update,
.final = ghash_final,
.setkey = ghash_setkey,
.descsize = sizeof(struct ghash_desc_ctx),
.base = {
.cra_name = "__ghash",
.cra_driver_name = "__ghash-pclmulqdqni",
.cra_priority = 0,
.cra_flags = CRYPTO_ALG_TYPE_SHASH,
.cra_blocksize = GHASH_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct ghash_ctx),
.cra_module = THIS_MODULE,
.cra_list = LIST_HEAD_INIT(ghash_alg.base.cra_list),
},
};
static int ghash_async_init(struct ahash_request *req)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct ghash_async_ctx *ctx = crypto_ahash_ctx(tfm);
struct ahash_request *cryptd_req = ahash_request_ctx(req);
struct cryptd_ahash *cryptd_tfm = ctx->cryptd_tfm;
if (!irq_fpu_usable()) {
memcpy(cryptd_req, req, sizeof(*req));
ahash_request_set_tfm(cryptd_req, &cryptd_tfm->base);
return crypto_ahash_init(cryptd_req);
} else {
struct shash_desc *desc = cryptd_shash_desc(cryptd_req);
struct crypto_shash *child = cryptd_ahash_child(cryptd_tfm);
desc->tfm = child;
desc->flags = req->base.flags;
return crypto_shash_init(desc);
}
}
static int ghash_async_update(struct ahash_request *req)
{
struct ahash_request *cryptd_req = ahash_request_ctx(req);
if (!irq_fpu_usable()) {
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct ghash_async_ctx *ctx = crypto_ahash_ctx(tfm);
struct cryptd_ahash *cryptd_tfm = ctx->cryptd_tfm;
memcpy(cryptd_req, req, sizeof(*req));
ahash_request_set_tfm(cryptd_req, &cryptd_tfm->base);
return crypto_ahash_update(cryptd_req);
} else {
struct shash_desc *desc = cryptd_shash_desc(cryptd_req);
return shash_ahash_update(req, desc);
}
}
static int ghash_async_final(struct ahash_request *req)
{
struct ahash_request *cryptd_req = ahash_request_ctx(req);
if (!irq_fpu_usable()) {
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct ghash_async_ctx *ctx = crypto_ahash_ctx(tfm);
struct cryptd_ahash *cryptd_tfm = ctx->cryptd_tfm;
memcpy(cryptd_req, req, sizeof(*req));
ahash_request_set_tfm(cryptd_req, &cryptd_tfm->base);
return crypto_ahash_final(cryptd_req);
} else {
struct shash_desc *desc = cryptd_shash_desc(cryptd_req);
return crypto_shash_final(desc, req->result);
}
}
static int ghash_async_digest(struct ahash_request *req)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct ghash_async_ctx *ctx = crypto_ahash_ctx(tfm);
struct ahash_request *cryptd_req = ahash_request_ctx(req);
struct cryptd_ahash *cryptd_tfm = ctx->cryptd_tfm;
if (!irq_fpu_usable()) {
memcpy(cryptd_req, req, sizeof(*req));
ahash_request_set_tfm(cryptd_req, &cryptd_tfm->base);
return crypto_ahash_digest(cryptd_req);
} else {
struct shash_desc *desc = cryptd_shash_desc(cryptd_req);
struct crypto_shash *child = cryptd_ahash_child(cryptd_tfm);
desc->tfm = child;
desc->flags = req->base.flags;
return shash_ahash_digest(req, desc);
}
}
static int ghash_async_setkey(struct crypto_ahash *tfm, const u8 *key,
unsigned int keylen)
{
struct ghash_async_ctx *ctx = crypto_ahash_ctx(tfm);
struct crypto_ahash *child = &ctx->cryptd_tfm->base;
int err;
crypto_ahash_clear_flags(child, CRYPTO_TFM_REQ_MASK);
crypto_ahash_set_flags(child, crypto_ahash_get_flags(tfm)
& CRYPTO_TFM_REQ_MASK);
err = crypto_ahash_setkey(child, key, keylen);
crypto_ahash_set_flags(tfm, crypto_ahash_get_flags(child)
& CRYPTO_TFM_RES_MASK);
return 0;
}
static int ghash_async_init_tfm(struct crypto_tfm *tfm)
{
struct cryptd_ahash *cryptd_tfm;
struct ghash_async_ctx *ctx = crypto_tfm_ctx(tfm);
cryptd_tfm = cryptd_alloc_ahash("__ghash-pclmulqdqni", 0, 0);
if (IS_ERR(cryptd_tfm))
return PTR_ERR(cryptd_tfm);
ctx->cryptd_tfm = cryptd_tfm;
crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
sizeof(struct ahash_request) +
crypto_ahash_reqsize(&cryptd_tfm->base));
return 0;
}
static void ghash_async_exit_tfm(struct crypto_tfm *tfm)
{
struct ghash_async_ctx *ctx = crypto_tfm_ctx(tfm);
cryptd_free_ahash(ctx->cryptd_tfm);
}
static struct ahash_alg ghash_async_alg = {
.init = ghash_async_init,
.update = ghash_async_update,
.final = ghash_async_final,
.setkey = ghash_async_setkey,
.digest = ghash_async_digest,
.halg = {
.digestsize = GHASH_DIGEST_SIZE,
.base = {
.cra_name = "ghash",
.cra_driver_name = "ghash-clmulni",
.cra_priority = 400,
.cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC,
.cra_blocksize = GHASH_BLOCK_SIZE,
.cra_type = &crypto_ahash_type,
.cra_module = THIS_MODULE,
.cra_list = LIST_HEAD_INIT(ghash_async_alg.halg.base.cra_list),
.cra_init = ghash_async_init_tfm,
.cra_exit = ghash_async_exit_tfm,
},
},
};
static int __init ghash_pclmulqdqni_mod_init(void)
{
int err;
if (!cpu_has_pclmulqdq) {
printk(KERN_INFO "Intel PCLMULQDQ-NI instructions are not"
" detected.\n");
return -ENODEV;
}
err = crypto_register_shash(&ghash_alg);
if (err)
goto err_out;
err = crypto_register_ahash(&ghash_async_alg);
if (err)
goto err_shash;
return 0;
err_shash:
crypto_unregister_shash(&ghash_alg);
err_out:
return err;
}
static void __exit ghash_pclmulqdqni_mod_exit(void)
{
crypto_unregister_ahash(&ghash_async_alg);
crypto_unregister_shash(&ghash_alg);
}
module_init(ghash_pclmulqdqni_mod_init);
module_exit(ghash_pclmulqdqni_mod_exit);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("GHASH Message Digest Algorithm, "
"acclerated by PCLMULQDQ-NI");
MODULE_ALIAS("ghash");
......@@ -248,6 +248,7 @@ extern const char * const x86_power_flags[32];
#define cpu_has_x2apic boot_cpu_has(X86_FEATURE_X2APIC)
#define cpu_has_xsave boot_cpu_has(X86_FEATURE_XSAVE)
#define cpu_has_hypervisor boot_cpu_has(X86_FEATURE_HYPERVISOR)
#define cpu_has_pclmulqdq boot_cpu_has(X86_FEATURE_PCLMULQDQ)
#if defined(CONFIG_X86_INVLPG) || defined(CONFIG_X86_64)
# define cpu_has_invlpg 1
......
......@@ -10,6 +10,8 @@
#ifndef _ASM_X86_I387_H
#define _ASM_X86_I387_H
#ifndef __ASSEMBLY__
#include <linux/sched.h>
#include <linux/kernel_stat.h>
#include <linux/regset.h>
......@@ -411,4 +413,9 @@ static inline unsigned short get_fpu_mxcsr(struct task_struct *tsk)
}
}
#endif /* __ASSEMBLY__ */
#define PSHUFB_XMM5_XMM0 .byte 0x66, 0x0f, 0x38, 0x00, 0xc5
#define PSHUFB_XMM5_XMM6 .byte 0x66, 0x0f, 0x38, 0x00, 0xf5
#endif /* _ASM_X86_I387_H */
/*
* Generate .byte code for some instructions not supported by old
* binutils.
*/
#ifndef X86_ASM_INST_H
#define X86_ASM_INST_H
#ifdef __ASSEMBLY__
.macro XMM_NUM opd xmm
.ifc \xmm,%xmm0
\opd = 0
.endif
.ifc \xmm,%xmm1
\opd = 1
.endif
.ifc \xmm,%xmm2
\opd = 2
.endif
.ifc \xmm,%xmm3
\opd = 3
.endif
.ifc \xmm,%xmm4
\opd = 4
.endif
.ifc \xmm,%xmm5
\opd = 5
.endif
.ifc \xmm,%xmm6
\opd = 6
.endif
.ifc \xmm,%xmm7
\opd = 7
.endif
.ifc \xmm,%xmm8
\opd = 8
.endif
.ifc \xmm,%xmm9
\opd = 9
.endif
.ifc \xmm,%xmm10
\opd = 10
.endif
.ifc \xmm,%xmm11
\opd = 11
.endif
.ifc \xmm,%xmm12
\opd = 12
.endif
.ifc \xmm,%xmm13
\opd = 13
.endif
.ifc \xmm,%xmm14
\opd = 14
.endif
.ifc \xmm,%xmm15
\opd = 15
.endif
.endm
.macro PFX_OPD_SIZE
.byte 0x66
.endm
.macro PFX_REX opd1 opd2
.if (\opd1 | \opd2) & 8
.byte 0x40 | ((\opd1 & 8) >> 3) | ((\opd2 & 8) >> 1)
.endif
.endm
.macro MODRM mod opd1 opd2
.byte \mod | (\opd1 & 7) | ((\opd2 & 7) << 3)
.endm
.macro PSHUFB_XMM xmm1 xmm2
XMM_NUM pshufb_opd1 \xmm1
XMM_NUM pshufb_opd2 \xmm2
PFX_OPD_SIZE
PFX_REX pshufb_opd1 pshufb_opd2
.byte 0x0f, 0x38, 0x00
MODRM 0xc0 pshufb_opd1 pshufb_opd2
.endm
.macro PCLMULQDQ imm8 xmm1 xmm2
XMM_NUM clmul_opd1 \xmm1
XMM_NUM clmul_opd2 \xmm2
PFX_OPD_SIZE
PFX_REX clmul_opd1 clmul_opd2
.byte 0x0f, 0x3a, 0x44
MODRM 0xc0 clmul_opd1 clmul_opd2
.byte \imm8
.endm
.macro AESKEYGENASSIST rcon xmm1 xmm2
XMM_NUM aeskeygen_opd1 \xmm1
XMM_NUM aeskeygen_opd2 \xmm2
PFX_OPD_SIZE
PFX_REX aeskeygen_opd1 aeskeygen_opd2
.byte 0x0f, 0x3a, 0xdf
MODRM 0xc0 aeskeygen_opd1 aeskeygen_opd2
.byte \rcon
.endm
.macro AESIMC xmm1 xmm2
XMM_NUM aesimc_opd1 \xmm1
XMM_NUM aesimc_opd2 \xmm2
PFX_OPD_SIZE
PFX_REX aesimc_opd1 aesimc_opd2
.byte 0x0f, 0x38, 0xdb
MODRM 0xc0 aesimc_opd1 aesimc_opd2
.endm
.macro AESENC xmm1 xmm2
XMM_NUM aesenc_opd1 \xmm1
XMM_NUM aesenc_opd2 \xmm2
PFX_OPD_SIZE
PFX_REX aesenc_opd1 aesenc_opd2
.byte 0x0f, 0x38, 0xdc
MODRM 0xc0 aesenc_opd1 aesenc_opd2
.endm
.macro AESENCLAST xmm1 xmm2
XMM_NUM aesenclast_opd1 \xmm1
XMM_NUM aesenclast_opd2 \xmm2
PFX_OPD_SIZE
PFX_REX aesenclast_opd1 aesenclast_opd2
.byte 0x0f, 0x38, 0xdd
MODRM 0xc0 aesenclast_opd1 aesenclast_opd2
.endm
.macro AESDEC xmm1 xmm2
XMM_NUM aesdec_opd1 \xmm1
XMM_NUM aesdec_opd2 \xmm2
PFX_OPD_SIZE
PFX_REX aesdec_opd1 aesdec_opd2
.byte 0x0f, 0x38, 0xde
MODRM 0xc0 aesdec_opd1 aesdec_opd2
.endm
.macro AESDECLAST xmm1 xmm2
XMM_NUM aesdeclast_opd1 \xmm1
XMM_NUM aesdeclast_opd2 \xmm2
PFX_OPD_SIZE
PFX_REX aesdeclast_opd1 aesdeclast_opd2
.byte 0x0f, 0x38, 0xdf
MODRM 0xc0 aesdeclast_opd1 aesdeclast_opd2
.endm
#endif
#endif
......@@ -440,6 +440,15 @@ config CRYPTO_WP512
See also:
<http://planeta.terra.com.br/informatica/paulobarreto/WhirlpoolPage.html>
config CRYPTO_GHASH_CLMUL_NI_INTEL
tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
depends on (X86 || UML_X86) && 64BIT
select CRYPTO_SHASH
select CRYPTO_CRYPTD
help
GHASH is message digest algorithm for GCM (Galois/Counter Mode).
The implementation is accelerated by CLMUL-NI of Intel.
comment "Ciphers"
config CRYPTO_AES
......
......@@ -85,7 +85,7 @@ static void xor_vectors(unsigned char *in1, unsigned char *in2,
* Returns DEFAULT_BLK_SZ bytes of random data per call
* returns 0 if generation succeded, <0 if something went wrong
*/
static int _get_more_prng_bytes(struct prng_context *ctx)
static int _get_more_prng_bytes(struct prng_context *ctx, int cont_test)
{
int i;
unsigned char tmp[DEFAULT_BLK_SZ];
......@@ -132,7 +132,7 @@ static int _get_more_prng_bytes(struct prng_context *ctx)
*/
if (!memcmp(ctx->rand_data, ctx->last_rand_data,
DEFAULT_BLK_SZ)) {
if (fips_enabled) {
if (cont_test) {
panic("cprng %p Failed repetition check!\n",
ctx);
}
......@@ -185,16 +185,14 @@ static int _get_more_prng_bytes(struct prng_context *ctx)
}
/* Our exported functions */
static int get_prng_bytes(char *buf, size_t nbytes, struct prng_context *ctx)
static int get_prng_bytes(char *buf, size_t nbytes, struct prng_context *ctx,
int do_cont_test)
{
unsigned char *ptr = buf;
unsigned int byte_count = (unsigned int)nbytes;
int err;
if (nbytes < 0)
return -EINVAL;
spin_lock_bh(&ctx->prng_lock);
err = -EINVAL;
......@@ -220,7 +218,7 @@ static int get_prng_bytes(char *buf, size_t nbytes, struct prng_context *ctx)
remainder:
if (ctx->rand_data_valid == DEFAULT_BLK_SZ) {
if (_get_more_prng_bytes(ctx) < 0) {
if (_get_more_prng_bytes(ctx, do_cont_test) < 0) {
memset(buf, 0, nbytes);
err = -EINVAL;
goto done;
......@@ -247,7 +245,7 @@ empty_rbuf:
*/
for (; byte_count >= DEFAULT_BLK_SZ; byte_count -= DEFAULT_BLK_SZ) {
if (ctx->rand_data_valid == DEFAULT_BLK_SZ) {
if (_get_more_prng_bytes(ctx) < 0) {
if (_get_more_prng_bytes(ctx, do_cont_test) < 0) {
memset(buf, 0, nbytes);
err = -EINVAL;
goto done;
......@@ -356,7 +354,7 @@ static int cprng_get_random(struct crypto_rng *tfm, u8 *rdata,
{
struct prng_context *prng = crypto_rng_ctx(tfm);
return get_prng_bytes(rdata, dlen, prng);
return get_prng_bytes(rdata, dlen, prng, 0);
}
/*
......@@ -404,19 +402,79 @@ static struct crypto_alg rng_alg = {
}
};
#ifdef CONFIG_CRYPTO_FIPS
static int fips_cprng_get_random(struct crypto_rng *tfm, u8 *rdata,
unsigned int dlen)
{
struct prng_context *prng = crypto_rng_ctx(tfm);
return get_prng_bytes(rdata, dlen, prng, 1);
}
static int fips_cprng_reset(struct crypto_rng *tfm, u8 *seed, unsigned int slen)
{
u8 rdata[DEFAULT_BLK_SZ];
int rc;
struct prng_context *prng = crypto_rng_ctx(tfm);
rc = cprng_reset(tfm, seed, slen);
if (!rc)
goto out;
/* this primes our continuity test */
rc = get_prng_bytes(rdata, DEFAULT_BLK_SZ, prng, 0);
prng->rand_data_valid = DEFAULT_BLK_SZ;
out:
return rc;
}
static struct crypto_alg fips_rng_alg = {
.cra_name = "fips(ansi_cprng)",
.cra_driver_name = "fips_ansi_cprng",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_RNG,
.cra_ctxsize = sizeof(struct prng_context),
.cra_type = &crypto_rng_type,
.cra_module = THIS_MODULE,
.cra_list = LIST_HEAD_INIT(rng_alg.cra_list),
.cra_init = cprng_init,
.cra_exit = cprng_exit,
.cra_u = {
.rng = {
.rng_make_random = fips_cprng_get_random,
.rng_reset = fips_cprng_reset,
.seedsize = DEFAULT_PRNG_KSZ + 2*DEFAULT_BLK_SZ,
}
}
};
#endif
/* Module initalization */
static int __init prng_mod_init(void)
{
if (fips_enabled)
rng_alg.cra_priority += 200;
int rc = 0;
return crypto_register_alg(&rng_alg);
rc = crypto_register_alg(&rng_alg);
#ifdef CONFIG_CRYPTO_FIPS
if (rc)
goto out;
rc = crypto_register_alg(&fips_rng_alg);
out:
#endif
return rc;
}
static void __exit prng_mod_fini(void)
{
crypto_unregister_alg(&rng_alg);
#ifdef CONFIG_CRYPTO_FIPS
crypto_unregister_alg(&fips_rng_alg);
#endif
return;
}
......
......@@ -711,6 +711,13 @@ struct crypto_shash *cryptd_ahash_child(struct cryptd_ahash *tfm)
}
EXPORT_SYMBOL_GPL(cryptd_ahash_child);
struct shash_desc *cryptd_shash_desc(struct ahash_request *req)
{
struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
return &rctx->desc;
}
EXPORT_SYMBOL_GPL(cryptd_shash_desc);
void cryptd_free_ahash(struct cryptd_ahash *tfm)
{
crypto_free_ahash(&tfm->base);
......
/*
* Cryptographic API.
*
* Digest operations.
*
* Copyright (c) 2002 James Morris <jmorris@intercode.com.au>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*
*/
#include <crypto/internal/hash.h>
#include <crypto/scatterwalk.h>
#include <linux/mm.h>
#include <linux/errno.h>
#include <linux/hardirq.h>
#include <linux/highmem.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/scatterlist.h>
#include "internal.h"
static int init(struct hash_desc *desc)
{
struct crypto_tfm *tfm = crypto_hash_tfm(desc->tfm);
tfm->__crt_alg->cra_digest.dia_init(tfm);
return 0;
}
static int update2(struct hash_desc *desc,
struct scatterlist *sg, unsigned int nbytes)
{
struct crypto_tfm *tfm = crypto_hash_tfm(desc->tfm);
unsigned int alignmask = crypto_tfm_alg_alignmask(tfm);
if (!nbytes)
return 0;
for (;;) {
struct page *pg = sg_page(sg);
unsigned int offset = sg->offset;
unsigned int l = sg->length;
if (unlikely(l > nbytes))
l = nbytes;
nbytes -= l;
do {
unsigned int bytes_from_page = min(l, ((unsigned int)
(PAGE_SIZE)) -
offset);
char *src = crypto_kmap(pg, 0);
char *p = src + offset;
if (unlikely(offset & alignmask)) {
unsigned int bytes =
alignmask + 1 - (offset & alignmask);
bytes = min(bytes, bytes_from_page);
tfm->__crt_alg->cra_digest.dia_update(tfm, p,
bytes);
p += bytes;
bytes_from_page -= bytes;
l -= bytes;
}
tfm->__crt_alg->cra_digest.dia_update(tfm, p,
bytes_from_page);
crypto_kunmap(src, 0);
crypto_yield(desc->flags);
offset = 0;
pg++;
l -= bytes_from_page;
} while (l > 0);
if (!nbytes)
break;
sg = scatterwalk_sg_next(sg);
}
return 0;
}
static int update(struct hash_desc *desc,
struct scatterlist *sg, unsigned int nbytes)
{
if (WARN_ON_ONCE(in_irq()))
return -EDEADLK;
return update2(desc, sg, nbytes);
}
static int final(struct hash_desc *desc, u8 *out)
{
struct crypto_tfm *tfm = crypto_hash_tfm(desc->tfm);
unsigned long alignmask = crypto_tfm_alg_alignmask(tfm);
struct digest_alg *digest = &tfm->__crt_alg->cra_digest;
if (unlikely((unsigned long)out & alignmask)) {
unsigned long align = alignmask + 1;
unsigned long addr = (unsigned long)crypto_tfm_ctx(tfm);
u8 *dst = (u8 *)ALIGN(addr, align) +
ALIGN(tfm->__crt_alg->cra_ctxsize, align);
digest->dia_final(tfm, dst);
memcpy(out, dst, digest->dia_digestsize);
} else
digest->dia_final(tfm, out);
return 0;
}
static int nosetkey(struct crypto_hash *tfm, const u8 *key, unsigned int keylen)
{
crypto_hash_clear_flags(tfm, CRYPTO_TFM_RES_MASK);
return -ENOSYS;
}
static int setkey(struct crypto_hash *hash, const u8 *key, unsigned int keylen)
{
struct crypto_tfm *tfm = crypto_hash_tfm(hash);
crypto_hash_clear_flags(hash, CRYPTO_TFM_RES_MASK);
return tfm->__crt_alg->cra_digest.dia_setkey(tfm, key, keylen);
}
static int digest(struct hash_desc *desc,
struct scatterlist *sg, unsigned int nbytes, u8 *out)
{
if (WARN_ON_ONCE(in_irq()))
return -EDEADLK;
init(desc);
update2(desc, sg, nbytes);
return final(desc, out);
}
int crypto_init_digest_ops(struct crypto_tfm *tfm)
{
struct hash_tfm *ops = &tfm->crt_hash;
struct digest_alg *dalg = &tfm->__crt_alg->cra_digest;
if (dalg->dia_digestsize > PAGE_SIZE / 8)
return -EINVAL;
ops->init = init;
ops->update = update;
ops->final = final;
ops->digest = digest;
ops->setkey = dalg->dia_setkey ? setkey : nosetkey;
ops->digestsize = dalg->dia_digestsize;
return 0;
}
void crypto_exit_digest_ops(struct crypto_tfm *tfm)
{
}
static int digest_async_nosetkey(struct crypto_ahash *tfm_async, const u8 *key,
unsigned int keylen)
{
crypto_ahash_clear_flags(tfm_async, CRYPTO_TFM_RES_MASK);
return -ENOSYS;
}
static int digest_async_setkey(struct crypto_ahash *tfm_async, const u8 *key,
unsigned int keylen)
{
struct crypto_tfm *tfm = crypto_ahash_tfm(tfm_async);
struct digest_alg *dalg = &tfm->__crt_alg->cra_digest;
crypto_ahash_clear_flags(tfm_async, CRYPTO_TFM_RES_MASK);
return dalg->dia_setkey(tfm, key, keylen);
}
static int digest_async_init(struct ahash_request *req)
{
struct crypto_tfm *tfm = req->base.tfm;
struct digest_alg *dalg = &tfm->__crt_alg->cra_digest;
dalg->dia_init(tfm);
return 0;
}
static int digest_async_update(struct ahash_request *req)
{
struct crypto_tfm *tfm = req->base.tfm;
struct hash_desc desc = {
.tfm = __crypto_hash_cast(tfm),
.flags = req->base.flags,
};
update(&desc, req->src, req->nbytes);
return 0;
}
static int digest_async_final(struct ahash_request *req)
{
struct crypto_tfm *tfm = req->base.tfm;
struct hash_desc desc = {
.tfm = __crypto_hash_cast(tfm),
.flags = req->base.flags,
};
final(&desc, req->result);
return 0;
}
static int digest_async_digest(struct ahash_request *req)
{
struct crypto_tfm *tfm = req->base.tfm;
struct hash_desc desc = {
.tfm = __crypto_hash_cast(tfm),
.flags = req->base.flags,
};
return digest(&desc, req->src, req->nbytes, req->result);
}
int crypto_init_digest_ops_async(struct crypto_tfm *tfm)
{
struct ahash_tfm *crt = &tfm->crt_ahash;
struct digest_alg *dalg = &tfm->__crt_alg->cra_digest;
if (dalg->dia_digestsize > PAGE_SIZE / 8)
return -EINVAL;
crt->init = digest_async_init;
crt->update = digest_async_update;
crt->final = digest_async_final;
crt->digest = digest_async_digest;
crt->setkey = dalg->dia_setkey ? digest_async_setkey :
digest_async_nosetkey;
crt->digestsize = dalg->dia_digestsize;
return 0;
}
/*
* Cryptographic Hash operations.
*
* Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*/
#include <crypto/internal/hash.h>
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/seq_file.h>
#include "internal.h"
static unsigned int crypto_hash_ctxsize(struct crypto_alg *alg, u32 type,
u32 mask)
{
return alg->cra_ctxsize;
}
static int hash_setkey_unaligned(struct crypto_hash *crt, const u8 *key,
unsigned int keylen)
{
struct crypto_tfm *tfm = crypto_hash_tfm(crt);
struct hash_alg *alg = &tfm->__crt_alg->cra_hash;
unsigned long alignmask = crypto_hash_alignmask(crt);
int ret;
u8 *buffer, *alignbuffer;
unsigned long absize;
absize = keylen + alignmask;
buffer = kmalloc(absize, GFP_ATOMIC);
if (!buffer)
return -ENOMEM;
alignbuffer = (u8 *)ALIGN((unsigned long)buffer, alignmask + 1);
memcpy(alignbuffer, key, keylen);
ret = alg->setkey(crt, alignbuffer, keylen);
memset(alignbuffer, 0, keylen);
kfree(buffer);
return ret;
}
static int hash_setkey(struct crypto_hash *crt, const u8 *key,
unsigned int keylen)
{
struct crypto_tfm *tfm = crypto_hash_tfm(crt);
struct hash_alg *alg = &tfm->__crt_alg->cra_hash;
unsigned long alignmask = crypto_hash_alignmask(crt);
if ((unsigned long)key & alignmask)
return hash_setkey_unaligned(crt, key, keylen);
return alg->setkey(crt, key, keylen);
}
static int hash_async_setkey(struct crypto_ahash *tfm_async, const u8 *key,
unsigned int keylen)
{
struct crypto_tfm *tfm = crypto_ahash_tfm(tfm_async);
struct crypto_hash *tfm_hash = __crypto_hash_cast(tfm);
struct hash_alg *alg = &tfm->__crt_alg->cra_hash;
return alg->setkey(tfm_hash, key, keylen);
}
static int hash_async_init(struct ahash_request *req)
{
struct crypto_tfm *tfm = req->base.tfm;
struct hash_alg *alg = &tfm->__crt_alg->cra_hash;
struct hash_desc desc = {
.tfm = __crypto_hash_cast(tfm),
.flags = req->base.flags,
};
return alg->init(&desc);
}
static int hash_async_update(struct ahash_request *req)
{
struct crypto_tfm *tfm = req->base.tfm;
struct hash_alg *alg = &tfm->__crt_alg->cra_hash;
struct hash_desc desc = {
.tfm = __crypto_hash_cast(tfm),
.flags = req->base.flags,
};
return alg->update(&desc, req->src, req->nbytes);
}
static int hash_async_final(struct ahash_request *req)
{
struct crypto_tfm *tfm = req->base.tfm;
struct hash_alg *alg = &tfm->__crt_alg->cra_hash;
struct hash_desc desc = {
.tfm = __crypto_hash_cast(tfm),
.flags = req->base.flags,
};
return alg->final(&desc, req->result);
}
static int hash_async_digest(struct ahash_request *req)
{
struct crypto_tfm *tfm = req->base.tfm;
struct hash_alg *alg = &tfm->__crt_alg->cra_hash;
struct hash_desc desc = {
.tfm = __crypto_hash_cast(tfm),
.flags = req->base.flags,
};
return alg->digest(&desc, req->src, req->nbytes, req->result);
}
static int crypto_init_hash_ops_async(struct crypto_tfm *tfm)
{
struct ahash_tfm *crt = &tfm->crt_ahash;
struct hash_alg *alg = &tfm->__crt_alg->cra_hash;
crt->init = hash_async_init;
crt->update = hash_async_update;
crt->final = hash_async_final;
crt->digest = hash_async_digest;
crt->setkey = hash_async_setkey;
crt->digestsize = alg->digestsize;
return 0;
}
static int crypto_init_hash_ops_sync(struct crypto_tfm *tfm)
{
struct hash_tfm *crt = &tfm->crt_hash;
struct hash_alg *alg = &tfm->__crt_alg->cra_hash;
crt->init = alg->init;
crt->update = alg->update;
crt->final = alg->final;
crt->digest = alg->digest;
crt->setkey = hash_setkey;
crt->digestsize = alg->digestsize;
return 0;
}
static int crypto_init_hash_ops(struct crypto_tfm *tfm, u32 type, u32 mask)
{
struct hash_alg *alg = &tfm->__crt_alg->cra_hash;
if (alg->digestsize > PAGE_SIZE / 8)
return -EINVAL;
if ((mask & CRYPTO_ALG_TYPE_HASH_MASK) != CRYPTO_ALG_TYPE_HASH_MASK)
return crypto_init_hash_ops_async(tfm);
else
return crypto_init_hash_ops_sync(tfm);
}
static void crypto_hash_show(struct seq_file *m, struct crypto_alg *alg)
__attribute__ ((unused));
static void crypto_hash_show(struct seq_file *m, struct crypto_alg *alg)
{
seq_printf(m, "type : hash\n");
seq_printf(m, "blocksize : %u\n", alg->cra_blocksize);
seq_printf(m, "digestsize : %u\n", alg->cra_hash.digestsize);
}
const struct crypto_type crypto_hash_type = {
.ctxsize = crypto_hash_ctxsize,
.init = crypto_init_hash_ops,
#ifdef CONFIG_PROC_FS
.show = crypto_hash_show,
#endif
};
EXPORT_SYMBOL_GPL(crypto_hash_type);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Generic cryptographic hash type");
......@@ -109,13 +109,6 @@ static int c_show(struct seq_file *m, void *p)
seq_printf(m, "max keysize : %u\n",
alg->cra_cipher.cia_max_keysize);
break;
case CRYPTO_ALG_TYPE_DIGEST:
seq_printf(m, "type : digest\n");
seq_printf(m, "blocksize : %u\n", alg->cra_blocksize);
seq_printf(m, "digestsize : %u\n",
alg->cra_digest.dia_digestsize);
break;
case CRYPTO_ALG_TYPE_COMPRESS:
seq_printf(m, "type : compression\n");
break;
......
......@@ -1201,7 +1201,7 @@ static int test_cprng(struct crypto_rng *tfm, struct cprng_testvec *template,
unsigned int tcount)
{
const char *algo = crypto_tfm_alg_driver_name(crypto_rng_tfm(tfm));
int err, i, j, seedsize;
int err = 0, i, j, seedsize;
u8 *seed;
char result[32];
......@@ -1942,6 +1942,15 @@ static const struct alg_test_desc alg_test_descs[] = {
}
}
}
}, {
.alg = "ghash",
.test = alg_test_hash,
.suite = {
.hash = {
.vecs = ghash_tv_template,
.count = GHASH_TEST_VECTORS
}
}
}, {
.alg = "hmac(md5)",
.test = alg_test_hash,
......
......@@ -1003,6 +1003,21 @@ static struct hash_testvec tgr128_tv_template[] = {
},
};
#define GHASH_TEST_VECTORS 1
static struct hash_testvec ghash_tv_template[] =
{
{
.key = "\xdf\xa6\xbf\x4d\xed\x81\xdb\x03\xff\xca\xff\x95\xf8\x30\xf0\x61",
.ksize = 16,
.plaintext = "\x95\x2b\x2a\x56\xa5\x60\x04a\xc0\xb3\x2b\x66\x56\xa0\x5b\x40\xb6",
.psize = 16,
.digest = "\xda\x53\xeb\x0a\xd2\xc5\x5b\xb6"
"\x4f\xc4\x80\x2c\xc3\xfe\xda\x60",
},
};
/*
* HMAC-MD5 test vectors from RFC2202
* (These need to be fixed to not use strlen).
......
......@@ -52,7 +52,9 @@
static struct hwrng *current_rng;
static LIST_HEAD(rng_list);
static DEFINE_MUTEX(rng_mutex);
static int data_avail;
static u8 rng_buffer[SMP_CACHE_BYTES < 32 ? 32 : SMP_CACHE_BYTES]
__cacheline_aligned;
static inline int hwrng_init(struct hwrng *rng)
{
......@@ -67,19 +69,6 @@ static inline void hwrng_cleanup(struct hwrng *rng)
rng->cleanup(rng);
}
static inline int hwrng_data_present(struct hwrng *rng, int wait)
{
if (!rng->data_present)
return 1;
return rng->data_present(rng, wait);
}
static inline int hwrng_data_read(struct hwrng *rng, u32 *data)
{
return rng->data_read(rng, data);
}
static int rng_dev_open(struct inode *inode, struct file *filp)
{
/* enforce read-only access to this chrdev */
......@@ -91,54 +80,87 @@ static int rng_dev_open(struct inode *inode, struct file *filp)
return 0;
}
static inline int rng_get_data(struct hwrng *rng, u8 *buffer, size_t size,
int wait) {
int present;
if (rng->read)
return rng->read(rng, (void *)buffer, size, wait);
if (rng->data_present)
present = rng->data_present(rng, wait);
else
present = 1;
if (present)
return rng->data_read(rng, (u32 *)buffer);
return 0;
}
static ssize_t rng_dev_read(struct file *filp, char __user *buf,
size_t size, loff_t *offp)
{
u32 data;
ssize_t ret = 0;
int err = 0;
int bytes_read;
int bytes_read, len;
while (size) {
err = -ERESTARTSYS;
if (mutex_lock_interruptible(&rng_mutex))
if (mutex_lock_interruptible(&rng_mutex)) {
err = -ERESTARTSYS;
goto out;
}
if (!current_rng) {
mutex_unlock(&rng_mutex);
err = -ENODEV;
goto out;
goto out_unlock;
}
bytes_read = 0;
if (hwrng_data_present(current_rng,
!(filp->f_flags & O_NONBLOCK)))
bytes_read = hwrng_data_read(current_rng, &data);
mutex_unlock(&rng_mutex);
err = -EAGAIN;
if (!bytes_read && (filp->f_flags & O_NONBLOCK))
goto out;
if (bytes_read < 0) {
err = bytes_read;
goto out;
if (!data_avail) {
bytes_read = rng_get_data(current_rng, rng_buffer,
sizeof(rng_buffer),
!(filp->f_flags & O_NONBLOCK));
if (bytes_read < 0) {
err = bytes_read;
goto out_unlock;
}
data_avail = bytes_read;
}
err = -EFAULT;
while (bytes_read && size) {
if (put_user((u8)data, buf++))
goto out;
size--;
ret++;
bytes_read--;
data >>= 8;
if (!data_avail) {
if (filp->f_flags & O_NONBLOCK) {
err = -EAGAIN;
goto out_unlock;
}
} else {
len = data_avail;
if (len > size)
len = size;
data_avail -= len;
if (copy_to_user(buf + ret, rng_buffer + data_avail,
len)) {
err = -EFAULT;
goto out_unlock;
}
size -= len;
ret += len;
}
mutex_unlock(&rng_mutex);
if (need_resched())
schedule_timeout_interruptible(1);
err = -ERESTARTSYS;
if (signal_pending(current))
if (signal_pending(current)) {
err = -ERESTARTSYS;
goto out;
}
}
out_unlock:
mutex_unlock(&rng_mutex);
out:
return ret ? : err;
}
......@@ -280,7 +302,7 @@ int hwrng_register(struct hwrng *rng)
struct hwrng *old_rng, *tmp;
if (rng->name == NULL ||
rng->data_read == NULL)
(rng->data_read == NULL && rng->read == NULL))
goto out;
mutex_lock(&rng_mutex);
......
......@@ -16,6 +16,7 @@
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <linux/err.h>
#include <linux/hw_random.h>
#include <linux/scatterlist.h>
......@@ -23,78 +24,64 @@
#include <linux/virtio.h>
#include <linux/virtio_rng.h>
/* The host will fill any buffer we give it with sweet, sweet randomness. We
* give it 64 bytes at a time, and the hwrng framework takes it 4 bytes at a
* time. */
#define RANDOM_DATA_SIZE 64
static struct virtqueue *vq;
static u32 *random_data;
static unsigned int data_left;
static unsigned int data_avail;
static DECLARE_COMPLETION(have_data);
static bool busy;
static void random_recv_done(struct virtqueue *vq)
{
unsigned int len;
/* We can get spurious callbacks, e.g. shared IRQs + virtio_pci. */
if (!vq->vq_ops->get_buf(vq, &len))
if (!vq->vq_ops->get_buf(vq, &data_avail))
return;
data_left += len;
complete(&have_data);
}
static void register_buffer(void)
/* The host will fill any buffer we give it with sweet, sweet randomness. */
static void register_buffer(u8 *buf, size_t size)
{
struct scatterlist sg;
sg_init_one(&sg, random_data+data_left, RANDOM_DATA_SIZE-data_left);
sg_init_one(&sg, buf, size);
/* There should always be room for one buffer. */
if (vq->vq_ops->add_buf(vq, &sg, 0, 1, random_data) < 0)
if (vq->vq_ops->add_buf(vq, &sg, 0, 1, buf) < 0)
BUG();
vq->vq_ops->kick(vq);
}
/* At least we don't udelay() in a loop like some other drivers. */
static int virtio_data_present(struct hwrng *rng, int wait)
static int virtio_read(struct hwrng *rng, void *buf, size_t size, bool wait)
{
if (data_left >= sizeof(u32))
return 1;
again:
if (!busy) {
busy = true;
init_completion(&have_data);
register_buffer(buf, size);
}
if (!wait)
return 0;
wait_for_completion(&have_data);
/* Not enough? Re-register. */
if (unlikely(data_left < sizeof(u32))) {
register_buffer();
goto again;
}
busy = false;
return 1;
return data_avail;
}
/* virtio_data_present() must have succeeded before this is called. */
static int virtio_data_read(struct hwrng *rng, u32 *data)
static void virtio_cleanup(struct hwrng *rng)
{
BUG_ON(data_left < sizeof(u32));
data_left -= sizeof(u32);
*data = random_data[data_left / 4];
if (data_left < sizeof(u32)) {
init_completion(&have_data);
register_buffer();
}
return sizeof(*data);
if (busy)
wait_for_completion(&have_data);
}
static struct hwrng virtio_hwrng = {
.name = "virtio",
.data_present = virtio_data_present,
.data_read = virtio_data_read,
.name = "virtio",
.cleanup = virtio_cleanup,
.read = virtio_read,
};
static int virtrng_probe(struct virtio_device *vdev)
......@@ -112,7 +99,6 @@ static int virtrng_probe(struct virtio_device *vdev)
return err;
}
register_buffer();
return 0;
}
......@@ -138,21 +124,11 @@ static struct virtio_driver virtio_rng = {
static int __init init(void)
{
int err;
random_data = kmalloc(RANDOM_DATA_SIZE, GFP_KERNEL);
if (!random_data)
return -ENOMEM;
err = register_virtio_driver(&virtio_rng);
if (err)
kfree(random_data);
return err;
return register_virtio_driver(&virtio_rng);
}
static void __exit fini(void)
{
kfree(random_data);
unregister_virtio_driver(&virtio_rng);
}
module_init(init);
......
......@@ -106,7 +106,6 @@ struct blkcipher_walk {
extern const struct crypto_type crypto_ablkcipher_type;
extern const struct crypto_type crypto_aead_type;
extern const struct crypto_type crypto_blkcipher_type;
extern const struct crypto_type crypto_hash_type;
void crypto_mod_put(struct crypto_alg *alg);
......
......@@ -39,6 +39,7 @@ static inline struct cryptd_ahash *__cryptd_ahash_cast(
struct cryptd_ahash *cryptd_alloc_ahash(const char *alg_name,
u32 type, u32 mask);
struct crypto_shash *cryptd_ahash_child(struct cryptd_ahash *tfm);
struct shash_desc *cryptd_shash_desc(struct ahash_request *req);
void cryptd_free_ahash(struct cryptd_ahash *tfm);
#endif
......@@ -250,29 +250,6 @@ struct cipher_alg {
void (*cia_decrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
};
struct digest_alg {
unsigned int dia_digestsize;
void (*dia_init)(struct crypto_tfm *tfm);
void (*dia_update)(struct crypto_tfm *tfm, const u8 *data,
unsigned int len);
void (*dia_final)(struct crypto_tfm *tfm, u8 *out);
int (*dia_setkey)(struct crypto_tfm *tfm, const u8 *key,
unsigned int keylen);
};
struct hash_alg {
int (*init)(struct hash_desc *desc);
int (*update)(struct hash_desc *desc, struct scatterlist *sg,
unsigned int nbytes);
int (*final)(struct hash_desc *desc, u8 *out);
int (*digest)(struct hash_desc *desc, struct scatterlist *sg,
unsigned int nbytes, u8 *out);
int (*setkey)(struct crypto_hash *tfm, const u8 *key,
unsigned int keylen);
unsigned int digestsize;
};
struct compress_alg {
int (*coa_compress)(struct crypto_tfm *tfm, const u8 *src,
unsigned int slen, u8 *dst, unsigned int *dlen);
......@@ -293,8 +270,6 @@ struct rng_alg {
#define cra_aead cra_u.aead
#define cra_blkcipher cra_u.blkcipher
#define cra_cipher cra_u.cipher
#define cra_digest cra_u.digest
#define cra_hash cra_u.hash
#define cra_compress cra_u.compress
#define cra_rng cra_u.rng
......@@ -320,8 +295,6 @@ struct crypto_alg {
struct aead_alg aead;
struct blkcipher_alg blkcipher;
struct cipher_alg cipher;
struct digest_alg digest;
struct hash_alg hash;
struct compress_alg compress;
struct rng_alg rng;
} cra_u;
......
......@@ -22,10 +22,12 @@
* @cleanup: Cleanup callback (can be NULL).
* @data_present: Callback to determine if data is available
* on the RNG. If NULL, it is assumed that
* there is always data available.
* there is always data available. *OBSOLETE*
* @data_read: Read data from the RNG device.
* Returns the number of lower random bytes in "data".
* Must not be NULL.
* Must not be NULL. *OSOLETE*
* @read: New API. drivers can fill up to max bytes of data
* into the buffer. The buffer is aligned for any type.
* @priv: Private data, for use by the RNG driver.
*/
struct hwrng {
......@@ -34,6 +36,7 @@ struct hwrng {
void (*cleanup)(struct hwrng *rng);
int (*data_present)(struct hwrng *rng, int wait);
int (*data_read)(struct hwrng *rng, u32 *data);
int (*read)(struct hwrng *rng, void *data, size_t max, bool wait);
unsigned long priv;
/* internal. */
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment