Commit 9b5e5d0f authored by Lee Schermerhorn's avatar Lee Schermerhorn Committed by Linus Torvalds

hugetlb: use only nodes with memory for huge pages

Register per node hstate sysfs attributes only for nodes with memory.
Global replacement of 'all online nodes" with "all nodes with memory" in
mm/hugetlb.c.  Suggested by David Rientjes.

A subsequent patch will handle adding/removing of per node hstate sysfs
attributes when nodes transition to/from memoryless state via memory
hotplug.

NOTE: this patch has not been tested with memoryless nodes.
Signed-off-by: default avatarLee Schermerhorn <lee.schermerhorn@hp.com>
Reviewed-by: default avatarAndi Kleen <andi@firstfloor.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Randy Dunlap <randy.dunlap@oracle.com>
Cc: Nishanth Aravamudan <nacc@us.ibm.com>
Acked-by: default avatarDavid Rientjes <rientjes@google.com>
Cc: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@canonical.com>
Cc: Eric Whitney <eric.whitney@hp.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: default avatarAndrew Morton <akpm@linux-foundation.org>
Signed-off-by: default avatarLinus Torvalds <torvalds@linux-foundation.org>
parent 267b4c28
...@@ -90,11 +90,11 @@ huge page pool to 20, allocating or freeing huge pages, as required. ...@@ -90,11 +90,11 @@ huge page pool to 20, allocating or freeing huge pages, as required.
On a NUMA platform, the kernel will attempt to distribute the huge page pool On a NUMA platform, the kernel will attempt to distribute the huge page pool
over all the set of allowed nodes specified by the NUMA memory policy of the over all the set of allowed nodes specified by the NUMA memory policy of the
task that modifies nr_hugepages. The default for the allowed nodes--when the task that modifies nr_hugepages. The default for the allowed nodes--when the
task has default memory policy--is all on-line nodes. Allowed nodes with task has default memory policy--is all on-line nodes with memory. Allowed
insufficient available, contiguous memory for a huge page will be silently nodes with insufficient available, contiguous memory for a huge page will be
skipped when allocating persistent huge pages. See the discussion below of silently skipped when allocating persistent huge pages. See the discussion
the interaction of task memory policy, cpusets and per node attributes with below of the interaction of task memory policy, cpusets and per node attributes
the allocation and freeing of persistent huge pages. with the allocation and freeing of persistent huge pages.
The success or failure of huge page allocation depends on the amount of The success or failure of huge page allocation depends on the amount of
physically contiguous memory that is present in system at the time of the physically contiguous memory that is present in system at the time of the
...@@ -226,7 +226,7 @@ resulting effect on persistent huge page allocation is as follows: ...@@ -226,7 +226,7 @@ resulting effect on persistent huge page allocation is as follows:
without first moving to a cpuset that contains all of the desired nodes. without first moving to a cpuset that contains all of the desired nodes.
5) Boot-time huge page allocation attempts to distribute the requested number 5) Boot-time huge page allocation attempts to distribute the requested number
of huge pages over all on-lines nodes. of huge pages over all on-lines nodes with memory.
Per Node Hugepages Attributes Per Node Hugepages Attributes
......
...@@ -942,14 +942,14 @@ static void return_unused_surplus_pages(struct hstate *h, ...@@ -942,14 +942,14 @@ static void return_unused_surplus_pages(struct hstate *h,
/* /*
* We want to release as many surplus pages as possible, spread * We want to release as many surplus pages as possible, spread
* evenly across all nodes. Iterate across all nodes until we * evenly across all nodes with memory. Iterate across these nodes
* can no longer free unreserved surplus pages. This occurs when * until we can no longer free unreserved surplus pages. This occurs
* the nodes with surplus pages have no free pages. * when the nodes with surplus pages have no free pages.
* free_pool_huge_page() will balance the the frees across the * free_pool_huge_page() will balance the the freed pages across the
* on-line nodes for us and will handle the hstate accounting. * on-line nodes with memory and will handle the hstate accounting.
*/ */
while (nr_pages--) { while (nr_pages--) {
if (!free_pool_huge_page(h, &node_online_map, 1)) if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
break; break;
} }
} }
...@@ -1053,14 +1053,14 @@ static struct page *alloc_huge_page(struct vm_area_struct *vma, ...@@ -1053,14 +1053,14 @@ static struct page *alloc_huge_page(struct vm_area_struct *vma,
int __weak alloc_bootmem_huge_page(struct hstate *h) int __weak alloc_bootmem_huge_page(struct hstate *h)
{ {
struct huge_bootmem_page *m; struct huge_bootmem_page *m;
int nr_nodes = nodes_weight(node_online_map); int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
while (nr_nodes) { while (nr_nodes) {
void *addr; void *addr;
addr = __alloc_bootmem_node_nopanic( addr = __alloc_bootmem_node_nopanic(
NODE_DATA(hstate_next_node_to_alloc(h, NODE_DATA(hstate_next_node_to_alloc(h,
&node_online_map)), &node_states[N_HIGH_MEMORY])),
huge_page_size(h), huge_page_size(h), 0); huge_page_size(h), huge_page_size(h), 0);
if (addr) { if (addr) {
...@@ -1115,7 +1115,8 @@ static void __init hugetlb_hstate_alloc_pages(struct hstate *h) ...@@ -1115,7 +1115,8 @@ static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
if (h->order >= MAX_ORDER) { if (h->order >= MAX_ORDER) {
if (!alloc_bootmem_huge_page(h)) if (!alloc_bootmem_huge_page(h))
break; break;
} else if (!alloc_fresh_huge_page(h, &node_online_map)) } else if (!alloc_fresh_huge_page(h,
&node_states[N_HIGH_MEMORY]))
break; break;
} }
h->max_huge_pages = i; h->max_huge_pages = i;
...@@ -1388,7 +1389,7 @@ static ssize_t nr_hugepages_store_common(bool obey_mempolicy, ...@@ -1388,7 +1389,7 @@ static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed); h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
if (nodes_allowed != &node_online_map) if (nodes_allowed != &node_states[N_HIGH_MEMORY])
NODEMASK_FREE(nodes_allowed); NODEMASK_FREE(nodes_allowed);
return len; return len;
...@@ -1610,7 +1611,7 @@ void hugetlb_unregister_node(struct node *node) ...@@ -1610,7 +1611,7 @@ void hugetlb_unregister_node(struct node *node)
struct node_hstate *nhs = &node_hstates[node->sysdev.id]; struct node_hstate *nhs = &node_hstates[node->sysdev.id];
if (!nhs->hugepages_kobj) if (!nhs->hugepages_kobj)
return; return; /* no hstate attributes */
for_each_hstate(h) for_each_hstate(h)
if (nhs->hstate_kobjs[h - hstates]) { if (nhs->hstate_kobjs[h - hstates]) {
...@@ -1675,15 +1676,15 @@ void hugetlb_register_node(struct node *node) ...@@ -1675,15 +1676,15 @@ void hugetlb_register_node(struct node *node)
} }
/* /*
* hugetlb init time: register hstate attributes for all registered * hugetlb init time: register hstate attributes for all registered node
* node sysdevs. All on-line nodes should have registered their * sysdevs of nodes that have memory. All on-line nodes should have
* associated sysdev by the time the hugetlb module initializes. * registered their associated sysdev by this time.
*/ */
static void hugetlb_register_all_nodes(void) static void hugetlb_register_all_nodes(void)
{ {
int nid; int nid;
for (nid = 0; nid < nr_node_ids; nid++) { for_each_node_state(nid, N_HIGH_MEMORY) {
struct node *node = &node_devices[nid]; struct node *node = &node_devices[nid];
if (node->sysdev.id == nid) if (node->sysdev.id == nid)
hugetlb_register_node(node); hugetlb_register_node(node);
...@@ -1777,8 +1778,8 @@ void __init hugetlb_add_hstate(unsigned order) ...@@ -1777,8 +1778,8 @@ void __init hugetlb_add_hstate(unsigned order)
h->free_huge_pages = 0; h->free_huge_pages = 0;
for (i = 0; i < MAX_NUMNODES; ++i) for (i = 0; i < MAX_NUMNODES; ++i)
INIT_LIST_HEAD(&h->hugepage_freelists[i]); INIT_LIST_HEAD(&h->hugepage_freelists[i]);
h->next_nid_to_alloc = first_node(node_online_map); h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
h->next_nid_to_free = first_node(node_online_map); h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
huge_page_size(h)/1024); huge_page_size(h)/1024);
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment