Commit 32ee8c3e authored by Dave Jones's avatar Dave Jones

[CPUFREQ] Lots of whitespace & CodingStyle cleanup.

Signed-off-by: default avatarDave Jones <davej@redhat.com>
parent 8ad5496d
......@@ -96,7 +96,6 @@ config X86_POWERNOW_K8_ACPI
config X86_GX_SUSPMOD
tristate "Cyrix MediaGX/NatSemi Geode Suspend Modulation"
depends on PCI
help
This add the CPUFreq driver for NatSemi Geode processors which
support suspend modulation.
......
......@@ -39,7 +39,7 @@ static struct pci_dev *nforce2_chipset_dev;
static int fid = 0;
/* min_fsb, max_fsb:
* minimum and maximum FSB (= FSB at boot time)
* minimum and maximum FSB (= FSB at boot time)
*/
static int min_fsb = 0;
static int max_fsb = 0;
......@@ -57,10 +57,10 @@ MODULE_PARM_DESC(min_fsb,
#define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, "cpufreq-nforce2", msg)
/*
/**
* nforce2_calc_fsb - calculate FSB
* @pll: PLL value
*
*
* Calculates FSB from PLL value
*/
static int nforce2_calc_fsb(int pll)
......@@ -76,10 +76,10 @@ static int nforce2_calc_fsb(int pll)
return 0;
}
/*
/**
* nforce2_calc_pll - calculate PLL value
* @fsb: FSB
*
*
* Calculate PLL value for given FSB
*/
static int nforce2_calc_pll(unsigned int fsb)
......@@ -106,10 +106,10 @@ static int nforce2_calc_pll(unsigned int fsb)
return NFORCE2_PLL(mul, div);
}
/*
/**
* nforce2_write_pll - write PLL value to chipset
* @pll: PLL value
*
*
* Writes new FSB PLL value to chipset
*/
static void nforce2_write_pll(int pll)
......@@ -121,15 +121,13 @@ static void nforce2_write_pll(int pll)
pci_write_config_dword(nforce2_chipset_dev, NFORCE2_PLLADR, temp);
/* Now write the value in all 64 registers */
for (temp = 0; temp <= 0x3f; temp++) {
pci_write_config_dword(nforce2_chipset_dev,
NFORCE2_PLLREG, pll);
}
for (temp = 0; temp <= 0x3f; temp++)
pci_write_config_dword(nforce2_chipset_dev, NFORCE2_PLLREG, pll);
return;
}
/*
/**
* nforce2_fsb_read - Read FSB
*
* Read FSB from chipset
......@@ -140,39 +138,32 @@ static unsigned int nforce2_fsb_read(int bootfsb)
struct pci_dev *nforce2_sub5;
u32 fsb, temp = 0;
/* Get chipset boot FSB from subdevice 5 (FSB at boot-time) */
nforce2_sub5 = pci_get_subsys(PCI_VENDOR_ID_NVIDIA,
0x01EF,
PCI_ANY_ID,
PCI_ANY_ID,
NULL);
0x01EF,PCI_ANY_ID,PCI_ANY_ID,NULL);
if (!nforce2_sub5)
return 0;
pci_read_config_dword(nforce2_sub5, NFORCE2_BOOTFSB, &fsb);
fsb /= 1000000;
/* Check if PLL register is already set */
pci_read_config_byte(nforce2_chipset_dev,
NFORCE2_PLLENABLE, (u8 *)&temp);
pci_read_config_byte(nforce2_chipset_dev,NFORCE2_PLLENABLE, (u8 *)&temp);
if(bootfsb || !temp)
return fsb;
/* Use PLL register FSB value */
pci_read_config_dword(nforce2_chipset_dev,
NFORCE2_PLLREG, &temp);
pci_read_config_dword(nforce2_chipset_dev,NFORCE2_PLLREG, &temp);
fsb = nforce2_calc_fsb(temp);
return fsb;
}
/*
/**
* nforce2_set_fsb - set new FSB
* @fsb: New FSB
*
*
* Sets new FSB
*/
static int nforce2_set_fsb(unsigned int fsb)
......@@ -186,7 +177,7 @@ static int nforce2_set_fsb(unsigned int fsb)
printk(KERN_ERR "cpufreq: FSB %d is out of range!\n", fsb);
return -EINVAL;
}
tfsb = nforce2_fsb_read(0);
if (!tfsb) {
printk(KERN_ERR "cpufreq: Error while reading the FSB\n");
......@@ -194,8 +185,7 @@ static int nforce2_set_fsb(unsigned int fsb)
}
/* First write? Then set actual value */
pci_read_config_byte(nforce2_chipset_dev,
NFORCE2_PLLENABLE, (u8 *)&temp);
pci_read_config_byte(nforce2_chipset_dev,NFORCE2_PLLENABLE, (u8 *)&temp);
if (!temp) {
pll = nforce2_calc_pll(tfsb);
......@@ -223,7 +213,7 @@ static int nforce2_set_fsb(unsigned int fsb)
/* Calculate the PLL reg. value */
if ((pll = nforce2_calc_pll(tfsb)) == -1)
return -EINVAL;
nforce2_write_pll(pll);
#ifdef NFORCE2_DELAY
mdelay(NFORCE2_DELAY);
......@@ -239,7 +229,7 @@ static int nforce2_set_fsb(unsigned int fsb)
/**
* nforce2_get - get the CPU frequency
* @cpu: CPU number
*
*
* Returns the CPU frequency
*/
static unsigned int nforce2_get(unsigned int cpu)
......@@ -354,10 +344,10 @@ static int nforce2_cpu_init(struct cpufreq_policy *policy)
printk(KERN_INFO "cpufreq: FSB currently at %i MHz, FID %d.%d\n", fsb,
fid / 10, fid % 10);
/* Set maximum FSB to FSB at boot time */
max_fsb = nforce2_fsb_read(1);
if(!max_fsb)
return -EIO;
......@@ -398,17 +388,15 @@ static struct cpufreq_driver nforce2_driver = {
* nforce2_detect_chipset - detect the Southbridge which contains FSB PLL logic
*
* Detects nForce2 A2 and C1 stepping
*
*
*/
static unsigned int nforce2_detect_chipset(void)
{
u8 revision;
nforce2_chipset_dev = pci_get_subsys(PCI_VENDOR_ID_NVIDIA,
PCI_DEVICE_ID_NVIDIA_NFORCE2,
PCI_ANY_ID,
PCI_ANY_ID,
NULL);
PCI_DEVICE_ID_NVIDIA_NFORCE2,
PCI_ANY_ID, PCI_ANY_ID, NULL);
if (nforce2_chipset_dev == NULL)
return -ENODEV;
......
/*
* elanfreq: cpufreq driver for the AMD ELAN family
* elanfreq: cpufreq driver for the AMD ELAN family
*
* (c) Copyright 2002 Robert Schwebel <r.schwebel@pengutronix.de>
*
* Parts of this code are (c) Sven Geggus <sven@geggus.net>
* Parts of this code are (c) Sven Geggus <sven@geggus.net>
*
* All Rights Reserved.
* All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
* 2 of the License, or (at your option) any later version.
*
* 2002-02-13: - initial revision for 2.4.18-pre9 by Robert Schwebel
*
......@@ -28,7 +28,7 @@
#include <asm/timex.h>
#include <asm/io.h>
#define REG_CSCIR 0x22 /* Chip Setup and Control Index Register */
#define REG_CSCIR 0x22 /* Chip Setup and Control Index Register */
#define REG_CSCDR 0x23 /* Chip Setup and Control Data Register */
/* Module parameter */
......@@ -41,7 +41,7 @@ struct s_elan_multiplier {
};
/*
* It is important that the frequencies
* It is important that the frequencies
* are listed in ascending order here!
*/
struct s_elan_multiplier elan_multiplier[] = {
......@@ -72,78 +72,79 @@ static struct cpufreq_frequency_table elanfreq_table[] = {
* elanfreq_get_cpu_frequency: determine current cpu speed
*
* Finds out at which frequency the CPU of the Elan SOC runs
* at the moment. Frequencies from 1 to 33 MHz are generated
* at the moment. Frequencies from 1 to 33 MHz are generated
* the normal way, 66 and 99 MHz are called "Hyperspeed Mode"
* and have the rest of the chip running with 33 MHz.
* and have the rest of the chip running with 33 MHz.
*/
static unsigned int elanfreq_get_cpu_frequency(unsigned int cpu)
{
u8 clockspeed_reg; /* Clock Speed Register */
u8 clockspeed_reg; /* Clock Speed Register */
local_irq_disable();
outb_p(0x80,REG_CSCIR);
clockspeed_reg = inb_p(REG_CSCDR);
outb_p(0x80,REG_CSCIR);
clockspeed_reg = inb_p(REG_CSCDR);
local_irq_enable();
if ((clockspeed_reg & 0xE0) == 0xE0) { return 0; }
if ((clockspeed_reg & 0xE0) == 0xE0)
return 0;
/* Are we in CPU clock multiplied mode (66/99 MHz)? */
if ((clockspeed_reg & 0xE0) == 0xC0) {
if ((clockspeed_reg & 0x01) == 0) {
/* Are we in CPU clock multiplied mode (66/99 MHz)? */
if ((clockspeed_reg & 0xE0) == 0xC0) {
if ((clockspeed_reg & 0x01) == 0)
return 66000;
} else {
return 99000;
}
}
else
return 99000;
}
/* 33 MHz is not 32 MHz... */
if ((clockspeed_reg & 0xE0)==0xA0)
return 33000;
return ((1<<((clockspeed_reg & 0xE0) >> 5)) * 1000);
return ((1<<((clockspeed_reg & 0xE0) >> 5)) * 1000);
}
/**
* elanfreq_set_cpu_frequency: Change the CPU core frequency
* @cpu: cpu number
* elanfreq_set_cpu_frequency: Change the CPU core frequency
* @cpu: cpu number
* @freq: frequency in kHz
*
* This function takes a frequency value and changes the CPU frequency
* This function takes a frequency value and changes the CPU frequency
* according to this. Note that the frequency has to be checked by
* elanfreq_validatespeed() for correctness!
*
* There is no return value.
*
* There is no return value.
*/
static void elanfreq_set_cpu_state (unsigned int state) {
static void elanfreq_set_cpu_state (unsigned int state)
{
struct cpufreq_freqs freqs;
freqs.old = elanfreq_get_cpu_frequency(0);
freqs.new = elan_multiplier[state].clock;
freqs.cpu = 0; /* elanfreq.c is UP only driver */
cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
printk(KERN_INFO "elanfreq: attempting to set frequency to %i kHz\n",elan_multiplier[state].clock);
printk(KERN_INFO "elanfreq: attempting to set frequency to %i kHz\n",
elan_multiplier[state].clock);
/*
* Access to the Elan's internal registers is indexed via
* 0x22: Chip Setup & Control Register Index Register (CSCI)
* 0x23: Chip Setup & Control Register Data Register (CSCD)
/*
* Access to the Elan's internal registers is indexed via
* 0x22: Chip Setup & Control Register Index Register (CSCI)
* 0x23: Chip Setup & Control Register Data Register (CSCD)
*
*/
/*
* 0x40 is the Power Management Unit's Force Mode Register.
/*
* 0x40 is the Power Management Unit's Force Mode Register.
* Bit 6 enables Hyperspeed Mode (66/100 MHz core frequency)
*/
local_irq_disable();
outb_p(0x40,REG_CSCIR); /* Disable hyperspeed mode */
outb_p(0x40,REG_CSCIR); /* Disable hyperspeed mode */
outb_p(0x00,REG_CSCDR);
local_irq_enable(); /* wait till internal pipelines and */
udelay(1000); /* buffers have cleaned up */
......@@ -166,10 +167,10 @@ static void elanfreq_set_cpu_state (unsigned int state) {
/**
* elanfreq_validatespeed: test if frequency range is valid
* @policy: the policy to validate
* @policy: the policy to validate
*
* This function checks if a given frequency range in kHz is valid
* for the hardware supported by the driver.
* This function checks if a given frequency range in kHz is valid
* for the hardware supported by the driver.
*/
static int elanfreq_verify (struct cpufreq_policy *policy)
......@@ -177,11 +178,11 @@ static int elanfreq_verify (struct cpufreq_policy *policy)
return cpufreq_frequency_table_verify(policy, &elanfreq_table[0]);
}
static int elanfreq_target (struct cpufreq_policy *policy,
unsigned int target_freq,
static int elanfreq_target (struct cpufreq_policy *policy,
unsigned int target_freq,
unsigned int relation)
{
unsigned int newstate = 0;
unsigned int newstate = 0;
if (cpufreq_frequency_table_target(policy, &elanfreq_table[0], target_freq, relation, &newstate))
return -EINVAL;
......@@ -212,7 +213,7 @@ static int elanfreq_cpu_init(struct cpufreq_policy *policy)
max_freq = elanfreq_get_cpu_frequency(0);
/* table init */
for (i=0; (elanfreq_table[i].frequency != CPUFREQ_TABLE_END); i++) {
for (i=0; (elanfreq_table[i].frequency != CPUFREQ_TABLE_END); i++) {
if (elanfreq_table[i].frequency > max_freq)
elanfreq_table[i].frequency = CPUFREQ_ENTRY_INVALID;
}
......@@ -226,8 +227,7 @@ static int elanfreq_cpu_init(struct cpufreq_policy *policy)
if (result)
return (result);
cpufreq_frequency_table_get_attr(elanfreq_table, policy->cpu);
cpufreq_frequency_table_get_attr(elanfreq_table, policy->cpu);
return 0;
}
......@@ -268,9 +268,9 @@ static struct freq_attr* elanfreq_attr[] = {
static struct cpufreq_driver elanfreq_driver = {
.get = elanfreq_get_cpu_frequency,
.verify = elanfreq_verify,
.target = elanfreq_target,
.get = elanfreq_get_cpu_frequency,
.verify = elanfreq_verify,
.target = elanfreq_target,
.init = elanfreq_cpu_init,
.exit = elanfreq_cpu_exit,
.name = "elanfreq",
......@@ -279,23 +279,21 @@ static struct cpufreq_driver elanfreq_driver = {
};
static int __init elanfreq_init(void)
{
static int __init elanfreq_init(void)
{
struct cpuinfo_x86 *c = cpu_data;
/* Test if we have the right hardware */
if ((c->x86_vendor != X86_VENDOR_AMD) ||
(c->x86 != 4) || (c->x86_model!=10))
{
(c->x86 != 4) || (c->x86_model!=10)) {
printk(KERN_INFO "elanfreq: error: no Elan processor found!\n");
return -ENODEV;
}
return cpufreq_register_driver(&elanfreq_driver);
}
static void __exit elanfreq_exit(void)
static void __exit elanfreq_exit(void)
{
cpufreq_unregister_driver(&elanfreq_driver);
}
......@@ -309,4 +307,3 @@ MODULE_DESCRIPTION("cpufreq driver for AMD's Elan CPUs");
module_init(elanfreq_init);
module_exit(elanfreq_exit);
This diff is collapsed.
......@@ -234,7 +234,7 @@ static int __initdata ezrat_eblcr[32] = {
/*
* VIA C3 Nehemiah */
static int __initdata nehemiah_a_clock_ratio[32] = {
100, /* 0000 -> 10.0x */
160, /* 0001 -> 16.0x */
......@@ -446,7 +446,7 @@ static int __initdata nehemiah_c_eblcr[32] = {
/* end of table */
};
/*
/*
* Voltage scales. Div/Mod by 1000 to get actual voltage.
* Which scale to use depends on the VRM type in use.
*/
......
......@@ -14,7 +14,7 @@
* The author(s) of this software shall not be held liable for damages
* of any nature resulting due to the use of this software. This
* software is provided AS-IS with no warranties.
*
*
* Date Errata Description
* 20020525 N44, O17 12.5% or 25% DC causes lockup
*
......@@ -22,7 +22,7 @@
#include <linux/config.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/smp.h>
#include <linux/cpufreq.h>
......@@ -30,7 +30,7 @@
#include <linux/cpumask.h>
#include <linux/sched.h> /* current / set_cpus_allowed() */
#include <asm/processor.h>
#include <asm/processor.h>
#include <asm/msr.h>
#include <asm/timex.h>
......@@ -79,7 +79,7 @@ static int cpufreq_p4_setdc(unsigned int cpu, unsigned int newstate)
} else {
dprintk("CPU#%d setting duty cycle to %d%%\n",
cpu, ((125 * newstate) / 10));
/* bits 63 - 5 : reserved
/* bits 63 - 5 : reserved
* bit 4 : enable/disable
* bits 3-1 : duty cycle
* bit 0 : reserved
......@@ -132,7 +132,7 @@ static int cpufreq_p4_target(struct cpufreq_policy *policy,
}
/* run on each logical CPU, see section 13.15.3 of IA32 Intel Architecture Software
* Developer's Manual, Volume 3
* Developer's Manual, Volume 3
*/
cpus_allowed = current->cpus_allowed;
......@@ -206,7 +206,7 @@ static unsigned int cpufreq_p4_get_frequency(struct cpuinfo_x86 *c)
return speedstep_get_processor_frequency(SPEEDSTEP_PROCESSOR_P4D);
}
static int cpufreq_p4_cpu_init(struct cpufreq_policy *policy)
{
......@@ -234,7 +234,7 @@ static int cpufreq_p4_cpu_init(struct cpufreq_policy *policy)
dprintk("has errata -- disabling frequencies lower than 2ghz\n");
break;
}
/* get max frequency */
stock_freq = cpufreq_p4_get_frequency(c);
if (!stock_freq)
......@@ -250,7 +250,7 @@ static int cpufreq_p4_cpu_init(struct cpufreq_policy *policy)
p4clockmod_table[i].frequency = (stock_freq * i)/8;
}
cpufreq_frequency_table_get_attr(p4clockmod_table, policy->cpu);
/* cpuinfo and default policy values */
policy->governor = CPUFREQ_DEFAULT_GOVERNOR;
policy->cpuinfo.transition_latency = 1000000; /* assumed */
......@@ -262,7 +262,7 @@ static int cpufreq_p4_cpu_init(struct cpufreq_policy *policy)
static int cpufreq_p4_cpu_exit(struct cpufreq_policy *policy)
{
cpufreq_frequency_table_put_attr(policy->cpu);
cpufreq_frequency_table_put_attr(policy->cpu);
return 0;
}
......@@ -298,7 +298,7 @@ static struct freq_attr* p4clockmod_attr[] = {
};
static struct cpufreq_driver p4clockmod_driver = {
.verify = cpufreq_p4_verify,
.verify = cpufreq_p4_verify,
.target = cpufreq_p4_target,
.init = cpufreq_p4_cpu_init,
.exit = cpufreq_p4_cpu_exit,
......@@ -310,12 +310,12 @@ static struct cpufreq_driver p4clockmod_driver = {
static int __init cpufreq_p4_init(void)
{
{
struct cpuinfo_x86 *c = cpu_data;
int ret;
/*
* THERM_CONTROL is architectural for IA32 now, so
* THERM_CONTROL is architectural for IA32 now, so
* we can rely on the capability checks
*/
if (c->x86_vendor != X86_VENDOR_INTEL)
......
......@@ -8,7 +8,7 @@
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/cpufreq.h>
#include <linux/ioport.h>
......@@ -50,7 +50,7 @@ static int powernow_k6_get_cpu_multiplier(void)
{
u64 invalue = 0;
u32 msrval;
msrval = POWERNOW_IOPORT + 0x1;
wrmsr(MSR_K6_EPMR, msrval, 0); /* enable the PowerNow port */
invalue=inl(POWERNOW_IOPORT + 0x8);
......@@ -81,7 +81,7 @@ static void powernow_k6_set_state (unsigned int best_i)
freqs.old = busfreq * powernow_k6_get_cpu_multiplier();
freqs.new = busfreq * clock_ratio[best_i].index;
freqs.cpu = 0; /* powernow-k6.c is UP only driver */
cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
/* we now need to transform best_i to the BVC format, see AMD#23446 */
......@@ -152,7 +152,7 @@ static int powernow_k6_cpu_init(struct cpufreq_policy *policy)
busfreq = cpu_khz / max_multiplier;
/* table init */
for (i=0; (clock_ratio[i].frequency != CPUFREQ_TABLE_END); i++) {
for (i=0; (clock_ratio[i].frequency != CPUFREQ_TABLE_END); i++) {
if (clock_ratio[i].index > max_multiplier)
clock_ratio[i].frequency = CPUFREQ_ENTRY_INVALID;
else
......@@ -182,7 +182,7 @@ static int powernow_k6_cpu_exit(struct cpufreq_policy *policy)
powernow_k6_set_state(i);
}
cpufreq_frequency_table_put_attr(policy->cpu);
return 0;
return 0;
}
static unsigned int powernow_k6_get(unsigned int cpu)
......@@ -196,8 +196,8 @@ static struct freq_attr* powernow_k6_attr[] = {
};
static struct cpufreq_driver powernow_k6_driver = {
.verify = powernow_k6_verify,
.target = powernow_k6_target,
.verify = powernow_k6_verify,
.target = powernow_k6_target,
.init = powernow_k6_cpu_init,
.exit = powernow_k6_cpu_exit,
.get = powernow_k6_get,
......@@ -215,7 +215,7 @@ static struct cpufreq_driver powernow_k6_driver = {
* on success.
*/
static int __init powernow_k6_init(void)
{
{
struct cpuinfo_x86 *c = cpu_data;
if ((c->x86_vendor != X86_VENDOR_AMD) || (c->x86 != 5) ||
......
......@@ -199,8 +199,8 @@ static int get_ranges (unsigned char *pst)
powernow_table[j].index |= (vid << 8); /* upper 8 bits */
dprintk (" FID: 0x%x (%d.%dx [%dMHz]) "
"VID: 0x%x (%d.%03dV)\n", fid, fid_codes[fid] / 10,
fid_codes[fid] % 10, speed/1000, vid,
"VID: 0x%x (%d.%03dV)\n", fid, fid_codes[fid] / 10,
fid_codes[fid] % 10, speed/1000, vid,
mobile_vid_table[vid]/1000,
mobile_vid_table[vid]%1000);
}
......@@ -368,8 +368,8 @@ static int powernow_acpi_init(void)
}
dprintk (" FID: 0x%x (%d.%dx [%dMHz]) "
"VID: 0x%x (%d.%03dV)\n", fid, fid_codes[fid] / 10,
fid_codes[fid] % 10, speed/1000, vid,
"VID: 0x%x (%d.%03dV)\n", fid, fid_codes[fid] / 10,
fid_codes[fid] % 10, speed/1000, vid,
mobile_vid_table[vid]/1000,
mobile_vid_table[vid]%1000);
......@@ -460,7 +460,7 @@ static int powernow_decode_bios (int maxfid, int startvid)
(maxfid==pst->maxfid) && (startvid==pst->startvid))
{
dprintk ("PST:%d (@%p)\n", i, pst);
dprintk (" cpuid: 0x%x fsb: %d maxFID: 0x%x startvid: 0x%x\n",
dprintk (" cpuid: 0x%x fsb: %d maxFID: 0x%x startvid: 0x%x\n",
pst->cpuid, pst->fsbspeed, pst->maxfid, pst->startvid);
ret = get_ranges ((char *) pst + sizeof (struct pst_s));
......
......@@ -83,11 +83,10 @@ static u32 find_millivolts_from_vid(struct powernow_k8_data *data, u32 vid)
*/
static u32 convert_fid_to_vco_fid(u32 fid)
{
if (fid < HI_FID_TABLE_BOTTOM) {
if (fid < HI_FID_TABLE_BOTTOM)
return 8 + (2 * fid);
} else {
else
return fid;
}
}
/*
......@@ -177,7 +176,7 @@ static int write_new_fid(struct powernow_k8_data *data, u32 fid)
if (i++ > 100) {
printk(KERN_ERR PFX "internal error - pending bit very stuck - no further pstate changes possible\n");
return 1;
}
}
} while (query_current_values_with_pending_wait(data));
count_off_irt(data);
......@@ -782,9 +781,7 @@ static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data)
/* verify only 1 entry from the lo frequency table */
if (fid < HI_FID_TABLE_BOTTOM) {
if (cntlofreq) {
/* if both entries are the same, ignore this
* one...
*/
/* if both entries are the same, ignore this one ... */
if ((powernow_table[i].frequency != powernow_table[cntlofreq].frequency) ||
(powernow_table[i].index != powernow_table[cntlofreq].index)) {
printk(KERN_ERR PFX "Too many lo freq table entries\n");
......@@ -856,7 +853,7 @@ static int transition_frequency(struct powernow_k8_data *data, unsigned int inde
dprintk("cpu %d transition to index %u\n", smp_processor_id(), index);
/* fid are the lower 8 bits of the index we stored into
* the cpufreq frequency table in find_psb_table, vid are
* the cpufreq frequency table in find_psb_table, vid are
* the upper 8 bits.
*/
......@@ -1050,7 +1047,7 @@ static int __cpuinit powernowk8_cpu_init(struct cpufreq_policy *pol)
pol->governor = CPUFREQ_DEFAULT_GOVERNOR;
pol->cpus = cpu_core_map[pol->cpu];
/* Take a crude guess here.
/* Take a crude guess here.
* That guess was in microseconds, so multiply with 1000 */
pol->cpuinfo.transition_latency = (((data->rvo + 8) * data->vstable * VST_UNITS_20US)
+ (3 * (1 << data->irt) * 10)) * 1000;
......
......@@ -63,7 +63,7 @@ struct powernow_k8_data {
#define MSR_C_LO_VID_SHIFT 8
/* Field definitions within the FID VID High Control MSR : */
#define MSR_C_HI_STP_GNT_TO 0x000fffff
#define MSR_C_HI_STP_GNT_TO 0x000fffff
/* Field definitions within the FID VID Low Status MSR : */
#define MSR_S_LO_CHANGE_PENDING 0x80000000 /* cleared when completed */
......@@ -123,7 +123,7 @@ struct powernow_k8_data {
* Most values of interest are enocoded in a single field of the _PSS
* entries: the "control" value.
*/
#define IRT_SHIFT 30
#define RVO_SHIFT 28
#define EXT_TYPE_SHIFT 27
......@@ -185,7 +185,7 @@ static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data, unsigned
#ifndef for_each_cpu_mask
#define for_each_cpu_mask(i,mask) for (i=0;i<1;i++)
#endif
#ifdef CONFIG_SMP
static inline void define_siblings(int cpu, cpumask_t cpu_sharedcore_mask[])
{
......
......@@ -9,7 +9,7 @@
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/cpufreq.h>
......@@ -36,8 +36,8 @@ static unsigned int pentium3_get_frequency (unsigned int processor)
/* See table 14 of p3_ds.pdf and table 22 of 29834003.pdf */
struct {
unsigned int ratio; /* Frequency Multiplier (x10) */
u8 bitmap; /* power on configuration bits
[27, 25:22] (in MSR 0x2a) */
u8 bitmap; /* power on configuration bits
[27, 25:22] (in MSR 0x2a) */
} msr_decode_mult [] = {
{ 30, 0x01 },
{ 35, 0x05 },
......@@ -58,9 +58,9 @@ static unsigned int pentium3_get_frequency (unsigned int processor)
/* PIII(-M) FSB settings: see table b1-b of 24547206.pdf */
struct {
unsigned int value; /* Front Side Bus speed in MHz */
u8 bitmap; /* power on configuration bits [18: 19]
(in MSR 0x2a) */
unsigned int value; /* Front Side Bus speed in MHz */
u8 bitmap; /* power on configuration bits [18: 19]
(in MSR 0x2a) */
} msr_decode_fsb [] = {
{ 66, 0x0 },
{ 100, 0x2 },
......@@ -68,8 +68,8 @@ static unsigned int pentium3_get_frequency (unsigned int processor)
{ 0, 0xff}
};
u32 msr_lo, msr_tmp;
int i = 0, j = 0;
u32 msr_lo, msr_tmp;
int i = 0, j = 0;
/* read MSR 0x2a - we only need the low 32 bits */
rdmsr(MSR_IA32_EBL_CR_POWERON, msr_lo, msr_tmp);
......@@ -106,7 +106,7 @@ static unsigned int pentium3_get_frequency (unsigned int processor)
static unsigned int pentiumM_get_frequency(void)
{
u32 msr_lo, msr_tmp;
u32 msr_lo, msr_tmp;
rdmsr(MSR_IA32_EBL_CR_POWERON, msr_lo, msr_tmp);
dprintk("PM - MSR_IA32_EBL_CR_POWERON: 0x%x 0x%x\n", msr_lo, msr_tmp);
......@@ -134,7 +134,7 @@ static unsigned int pentium4_get_frequency(void)
dprintk("P4 - MSR_EBC_FREQUENCY_ID: 0x%x 0x%x\n", msr_lo, msr_hi);
/* decode the FSB: see IA-32 Intel (C) Architecture Software
/* decode the FSB: see IA-32 Intel (C) Architecture Software
* Developer's Manual, Volume 3: System Prgramming Guide,
* revision #12 in Table B-1: MSRs in the Pentium 4 and
* Intel Xeon Processors, on page B-4 and B-5.
......@@ -170,7 +170,7 @@ static unsigned int pentium4_get_frequency(void)
return (fsb * mult);
}
unsigned int speedstep_get_processor_frequency(unsigned int processor)
{
switch (processor) {
......@@ -198,11 +198,11 @@ EXPORT_SYMBOL_GPL(speedstep_get_processor_frequency);
unsigned int speedstep_detect_processor (void)
{
struct cpuinfo_x86 *c = cpu_data;
u32 ebx, msr_lo, msr_hi;
u32 ebx, msr_lo, msr_hi;
dprintk("x86: %x, model: %x\n", c->x86, c->x86_model);
if ((c->x86_vendor != X86_VENDOR_INTEL) ||
if ((c->x86_vendor != X86_VENDOR_INTEL) ||
((c->x86 != 6) && (c->x86 != 0xF)))
return 0;
......@@ -218,15 +218,15 @@ unsigned int speedstep_detect_processor (void)
dprintk("ebx value is %x, x86_mask is %x\n", ebx, c->x86_mask);
switch (c->x86_mask) {
case 4:
case 4:
/*
* B-stepping [M-P4-M]
* B-stepping [M-P4-M]
* sample has ebx = 0x0f, production has 0x0e.
*/
if ((ebx == 0x0e) || (ebx == 0x0f))
return SPEEDSTEP_PROCESSOR_P4M;
break;
case 7:
case 7:
/*
* C-stepping [M-P4-M]
* needs to have ebx=0x0e, else it's a celeron:
......@@ -253,7 +253,7 @@ unsigned int speedstep_detect_processor (void)
* also, M-P4M HTs have ebx=0x8, too
* For now, they are distinguished by the model_id string
*/
if ((ebx == 0x0e) || (strstr(c->x86_model_id,"Mobile Intel(R) Pentium(R) 4") != NULL))
if ((ebx == 0x0e) || (strstr(c->x86_model_id,"Mobile Intel(R) Pentium(R) 4") != NULL))
return SPEEDSTEP_PROCESSOR_P4M;
break;
default:
......@@ -264,8 +264,7 @@ unsigned int speedstep_detect_processor (void)
switch (c->x86_model) {
case 0x0B: /* Intel PIII [Tualatin] */
/* cpuid_ebx(1) is 0x04 for desktop PIII,
0x06 for mobile PIII-M */
/* cpuid_ebx(1) is 0x04 for desktop PIII, 0x06 for mobile PIII-M */
ebx = cpuid_ebx(0x00000001);
dprintk("ebx is %x\n", ebx);
......@@ -275,9 +274,8 @@ unsigned int speedstep_detect_processor (void)
return 0;
/* So far all PIII-M processors support SpeedStep. See
* Intel's 24540640.pdf of June 2003
* Intel's 24540640.pdf of June 2003
*/
return SPEEDSTEP_PROCESSOR_PIII_T;
case 0x08: /* Intel PIII [Coppermine] */
......@@ -399,7 +397,7 @@ unsigned int speedstep_get_freqs(unsigned int processor,
}
}
out:
out:
local_irq_restore(flags);
return (ret);
}
......
......@@ -14,7 +14,7 @@
#define SPEEDSTEP_PROCESSOR_PIII_C_EARLY 0x00000001 /* Coppermine core */
#define SPEEDSTEP_PROCESSOR_PIII_C 0x00000002 /* Coppermine core */
#define SPEEDSTEP_PROCESSOR_PIII_T 0x00000003 /* Tualatin core */
#define SPEEDSTEP_PROCESSOR_PIII_T 0x00000003 /* Tualatin core */
#define SPEEDSTEP_PROCESSOR_P4M 0x00000004 /* P4-M */
/* the following processors are not speedstep-capable and are not auto-detected
......@@ -25,8 +25,8 @@
/* speedstep states -- only two of them */
#define SPEEDSTEP_HIGH 0x00000000
#define SPEEDSTEP_LOW 0x00000001
#define SPEEDSTEP_HIGH 0x00000000
#define SPEEDSTEP_LOW 0x00000001
/* detect a speedstep-capable processor */
......@@ -36,13 +36,13 @@ extern unsigned int speedstep_detect_processor (void);
extern unsigned int speedstep_get_processor_frequency(unsigned int processor);
/* detect the low and high speeds of the processor. The callback
* set_state"'s first argument is either SPEEDSTEP_HIGH or
* SPEEDSTEP_LOW; the second argument is zero so that no
/* detect the low and high speeds of the processor. The callback
* set_state"'s first argument is either SPEEDSTEP_HIGH or
* SPEEDSTEP_LOW; the second argument is zero so that no
* cpufreq_notify_transition calls are initiated.
*/
extern unsigned int speedstep_get_freqs(unsigned int processor,
unsigned int *low_speed,
unsigned int *high_speed,
unsigned int *transition_latency,
void (*set_state) (unsigned int state));
unsigned int *low_speed,
unsigned int *high_speed,
unsigned int *transition_latency,
void (*set_state) (unsigned int state));
......@@ -13,8 +13,8 @@
*********************************************************************/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/cpufreq.h>
#include <linux/pci.h>
......@@ -28,21 +28,21 @@
*
* These parameters are got from IST-SMI BIOS call.
* If user gives it, these are used.
*
*
*/
static int smi_port = 0;
static int smi_cmd = 0;
static unsigned int smi_sig = 0;
static int smi_port = 0;
static int smi_cmd = 0;
static unsigned int smi_sig = 0;
/* info about the processor */
static unsigned int speedstep_processor = 0;
static unsigned int speedstep_processor = 0;
/*
* There are only two frequency states for each processor. Values
/*
* There are only two frequency states for each processor. Values
* are in kHz for the time being.
*/
static struct cpufreq_frequency_table speedstep_freqs[] = {
{SPEEDSTEP_HIGH, 0},
{SPEEDSTEP_HIGH, 0},
{SPEEDSTEP_LOW, 0},
{0, CPUFREQ_TABLE_END},
};
......@@ -123,7 +123,7 @@ static int speedstep_smi_get_freqs (unsigned int *low, unsigned int *high)
*low = low_mhz * 1000;
return result;
}
}
/**
* speedstep_get_state - set the SpeedStep state
......@@ -204,7 +204,7 @@ static void speedstep_set_state (unsigned int state)
* speedstep_target - set a new CPUFreq policy
* @policy: new policy
* @target_freq: new freq
* @relation:
* @relation:
*
* Sets a new CPUFreq policy/freq.
*/
......@@ -283,7 +283,7 @@ static int speedstep_cpu_init(struct cpufreq_policy *policy)
state = speedstep_get_state();
speed = speedstep_freqs[state].frequency;
dprintk("currently at %s speed setting - %i MHz\n",
dprintk("currently at %s speed setting - %i MHz\n",
(speed == speedstep_freqs[SPEEDSTEP_LOW].frequency) ? "low" : "high",
(speed / 1000));
......@@ -296,7 +296,7 @@ static int speedstep_cpu_init(struct cpufreq_policy *policy)
if (result)
return (result);
cpufreq_frequency_table_get_attr(speedstep_freqs, policy->cpu);
cpufreq_frequency_table_get_attr(speedstep_freqs, policy->cpu);
return 0;
}
......@@ -332,8 +332,8 @@ static struct freq_attr* speedstep_attr[] = {
static struct cpufreq_driver speedstep_driver = {
.name = "speedstep-smi",
.verify = speedstep_verify,
.target = speedstep_target,
.verify = speedstep_verify,
.target = speedstep_target,
.init = speedstep_cpu_init,
.exit = speedstep_cpu_exit,
.get = speedstep_get,
......@@ -370,13 +370,12 @@ static int __init speedstep_init(void)
return -ENODEV;
}
dprintk("signature:0x%.8lx, command:0x%.8lx, event:0x%.8lx, perf_level:0x%.8lx.\n",
dprintk("signature:0x%.8lx, command:0x%.8lx, event:0x%.8lx, perf_level:0x%.8lx.\n",
ist_info.signature, ist_info.command, ist_info.event, ist_info.perf_level);
/* Error if no IST-SMI BIOS or no PARM
/* Error if no IST-SMI BIOS or no PARM
sig= 'ISGE' aka 'Intel Speedstep Gate E' */
if ((ist_info.signature != 0x47534943) && (
if ((ist_info.signature != 0x47534943) && (
(smi_port == 0) || (smi_cmd == 0)))
return -ENODEV;
......@@ -386,17 +385,15 @@ static int __init speedstep_init(void)
smi_sig = ist_info.signature;
/* setup smi_port from MODLULE_PARM or BIOS */
if ((smi_port > 0xff) || (smi_port < 0)) {
if ((smi_port > 0xff) || (smi_port < 0))
return -EINVAL;
} else if (smi_port == 0) {
else if (smi_port == 0)
smi_port = ist_info.command & 0xff;
}
if ((smi_cmd > 0xff) || (smi_cmd < 0)) {
if ((smi_cmd > 0xff) || (smi_cmd < 0))
return -EINVAL;
} else if (smi_cmd == 0) {
else if (smi_cmd == 0)
smi_cmd = (ist_info.command >> 16) & 0xff;
}
return cpufreq_register_driver(&speedstep_driver);
}
......
......@@ -5,7 +5,7 @@
* (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
*
* Oct 2005 - Ashok Raj <ashok.raj@intel.com>
* Added handling for CPU hotplug
* Added handling for CPU hotplug
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
......@@ -44,8 +44,8 @@ static int __cpufreq_governor(struct cpufreq_policy *policy, unsigned int event)
static void handle_update(void *data);
/**
* Two notifier lists: the "policy" list is involved in the
* validation process for a new CPU frequency policy; the
* Two notifier lists: the "policy" list is involved in the
* validation process for a new CPU frequency policy; the
* "transition" list for kernel code that needs to handle
* changes to devices when the CPU clock speed changes.
* The mutex locks both lists.
......@@ -151,7 +151,7 @@ void cpufreq_debug_printk(unsigned int type, const char *prefix, const char *fmt
va_list args;
unsigned int len;
unsigned long flags;
WARN_ON(!prefix);
if (type & debug) {
spin_lock_irqsave(&disable_ratelimit_lock, flags);
......@@ -198,7 +198,7 @@ static inline void cpufreq_debug_disable_ratelimit(void) { return; }
*
* This function alters the system "loops_per_jiffy" for the clock
* speed change. Note that loops_per_jiffy cannot be updated on SMP
* systems as each CPU might be scaled differently. So, use the arch
* systems as each CPU might be scaled differently. So, use the arch
* per-CPU loops_per_jiffy value wherever possible.
*/
#ifndef CONFIG_SMP
......@@ -233,7 +233,7 @@ static inline void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci) {
*
* This function calls the transition notifiers and the "adjust_jiffies"
* function. It is called twice on all CPU frequency changes that have
* external effects.
* external effects.
*/
void cpufreq_notify_transition(struct cpufreq_freqs *freqs, unsigned int state)
{
......@@ -251,7 +251,7 @@ void cpufreq_notify_transition(struct cpufreq_freqs *freqs, unsigned int state)
switch (state) {
case CPUFREQ_PRECHANGE:
/* detect if the driver reported a value as "old frequency"
/* detect if the driver reported a value as "old frequency"
* which is not equal to what the cpufreq core thinks is
* "old frequency".
*/
......@@ -335,11 +335,11 @@ extern struct sysdev_class cpu_sysdev_class;
* "unsigned int".
*/
#define show_one(file_name, object) \
static ssize_t show_##file_name \
(struct cpufreq_policy * policy, char *buf) \
{ \
return sprintf (buf, "%u\n", policy->object); \
#define show_one(file_name, object) \
static ssize_t show_##file_name \
(struct cpufreq_policy * policy, char *buf) \
{ \
return sprintf (buf, "%u\n", policy->object); \
}
show_one(cpuinfo_min_freq, cpuinfo.min_freq);
......@@ -404,8 +404,8 @@ static ssize_t show_scaling_governor (struct cpufreq_policy * policy, char *buf)
/**
* store_scaling_governor - store policy for the specified CPU
*/
static ssize_t store_scaling_governor (struct cpufreq_policy * policy,
const char *buf, size_t count)
static ssize_t store_scaling_governor (struct cpufreq_policy * policy,
const char *buf, size_t count)
{
unsigned int ret = -EINVAL;
char str_governor[16];
......@@ -528,7 +528,7 @@ static ssize_t show(struct kobject * kobj, struct attribute * attr ,char * buf)
return ret;
}
static ssize_t store(struct kobject * kobj, struct attribute * attr,
static ssize_t store(struct kobject * kobj, struct attribute * attr,
const char * buf, size_t count)
{
struct cpufreq_policy * policy = to_policy(kobj);
......@@ -564,7 +564,7 @@ static struct kobj_type ktype_cpufreq = {
/**
* cpufreq_add_dev - add a CPU device
*
* Adds the cpufreq interface for a CPU device.
* Adds the cpufreq interface for a CPU device.
*/
static int cpufreq_add_dev (struct sys_device * sys_dev)
{
......@@ -724,7 +724,7 @@ static int cpufreq_remove_dev (struct sys_device * sys_dev)
#ifdef CONFIG_SMP
/* if this isn't the CPU which is the parent of the kobj, we
* only need to unlink, put and exit
* only need to unlink, put and exit
*/
if (unlikely(cpu != data->cpu)) {
dprintk("removing link\n");
......@@ -740,7 +740,7 @@ static int cpufreq_remove_dev (struct sys_device * sys_dev)
if (!kobject_get(&data->kobj)) {
spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
cpufreq_debug_enable_ratelimit();
return -EFAULT;
return -EFAULT;
}
#ifdef CONFIG_SMP
......@@ -783,7 +783,7 @@ static int cpufreq_remove_dev (struct sys_device * sys_dev)
kobject_put(&data->kobj);
/* we need to make sure that the underlying kobj is actually
* not referenced anymore by anybody before we proceed with
* not referenced anymore by anybody before we proceed with
* unloading.
*/
dprintk("waiting for dropping of refcount\n");
......@@ -831,7 +831,7 @@ static void cpufreq_out_of_sync(unsigned int cpu, unsigned int old_freq, unsigne
}
/**
/**
* cpufreq_quick_get - get the CPU frequency (in kHz) frpm policy->cur
* @cpu: CPU number
*
......@@ -855,7 +855,7 @@ unsigned int cpufreq_quick_get(unsigned int cpu)
EXPORT_SYMBOL(cpufreq_quick_get);
/**
/**
* cpufreq_get - get the current CPU frequency (in kHz)
* @cpu: CPU number
*
......@@ -1072,7 +1072,7 @@ static struct sysdev_driver cpufreq_sysdev_driver = {
* @nb: notifier function to register
* @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
*
* Add a driver to one of two lists: either a list of drivers that
* Add a driver to one of two lists: either a list of drivers that
* are notified about clock rate changes (once before and once after
* the transition), or a list of drivers that are notified about
* changes in cpufreq policy.
......@@ -1225,7 +1225,7 @@ int cpufreq_register_governor(struct cpufreq_governor *governor)
return -EINVAL;
mutex_lock(&cpufreq_governor_mutex);
list_for_each_entry(t, &cpufreq_governor_list, governor_list) {
if (!strnicmp(governor->name,t->name,CPUFREQ_NAME_LEN)) {
mutex_unlock(&cpufreq_governor_mutex);
......@@ -1234,7 +1234,7 @@ int cpufreq_register_governor(struct cpufreq_governor *governor)
}
list_add(&governor->governor_list, &cpufreq_governor_list);
mutex_unlock(&cpufreq_governor_mutex);
mutex_unlock(&cpufreq_governor_mutex);
return 0;
}
EXPORT_SYMBOL_GPL(cpufreq_register_governor);
......@@ -1497,9 +1497,9 @@ static struct notifier_block cpufreq_cpu_notifier =
* @driver_data: A struct cpufreq_driver containing the values#
* submitted by the CPU Frequency driver.
*
* Registers a CPU Frequency driver to this core code. This code
* Registers a CPU Frequency driver to this core code. This code
* returns zero on success, -EBUSY when another driver got here first
* (and isn't unregistered in the meantime).
* (and isn't unregistered in the meantime).
*
*/
int cpufreq_register_driver(struct cpufreq_driver *driver_data)
......@@ -1560,7 +1560,7 @@ EXPORT_SYMBOL_GPL(cpufreq_register_driver);
/**
* cpufreq_unregister_driver - unregister the current CPUFreq driver
*
* Unregister the current CPUFreq driver. Only call this if you have
* Unregister the current CPUFreq driver. Only call this if you have
* the right to do so, i.e. if you have succeeded in initialising before!
* Returns zero if successful, and -EINVAL if the cpufreq_driver is
* currently not initialised.
......
......@@ -38,17 +38,17 @@
#define MIN_FREQUENCY_UP_THRESHOLD (11)
#define MAX_FREQUENCY_UP_THRESHOLD (100)
/*
* The polling frequency of this governor depends on the capability of
/*
* The polling frequency of this governor depends on the capability of
* the processor. Default polling frequency is 1000 times the transition
* latency of the processor. The governor will work on any processor with
* transition latency <= 10mS, using appropriate sampling
* latency of the processor. The governor will work on any processor with
* transition latency <= 10mS, using appropriate sampling
* rate.
* For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
* this governor will not work.
* All times here are in uS.
*/
static unsigned int def_sampling_rate;
static unsigned int def_sampling_rate;
#define MIN_SAMPLING_RATE_RATIO (2)
/* for correct statistics, we need at least 10 ticks between each measure */
#define MIN_STAT_SAMPLING_RATE (MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10))
......@@ -62,28 +62,28 @@ static unsigned int def_sampling_rate;
static void do_dbs_timer(void *data);
struct cpu_dbs_info_s {
struct cpufreq_policy *cur_policy;
unsigned int prev_cpu_idle_up;
unsigned int prev_cpu_idle_down;
unsigned int enable;
struct cpufreq_policy *cur_policy;
unsigned int prev_cpu_idle_up;
unsigned int prev_cpu_idle_down;
unsigned int enable;
};
static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
static unsigned int dbs_enable; /* number of CPUs using this policy */
static DEFINE_MUTEX (dbs_mutex);
static DEFINE_MUTEX (dbs_mutex);
static DECLARE_WORK (dbs_work, do_dbs_timer, NULL);
struct dbs_tuners {
unsigned int sampling_rate;
unsigned int sampling_down_factor;
unsigned int up_threshold;
unsigned int ignore_nice;
unsigned int sampling_rate;
unsigned int sampling_down_factor;
unsigned int up_threshold;
unsigned int ignore_nice;
};
static struct dbs_tuners dbs_tuners_ins = {
.up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
.sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
.up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
.sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
};
static inline unsigned int get_cpu_idle_time(unsigned int cpu)
......@@ -106,8 +106,8 @@ static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
return sprintf (buf, "%u\n", MIN_SAMPLING_RATE);
}
#define define_one_ro(_name) \
static struct freq_attr _name = \
#define define_one_ro(_name) \
static struct freq_attr _name = \
__ATTR(_name, 0444, show_##_name, NULL)
define_one_ro(sampling_rate_max);
......@@ -125,7 +125,7 @@ show_one(sampling_down_factor, sampling_down_factor);
show_one(up_threshold, up_threshold);
show_one(ignore_nice_load, ignore_nice);
static ssize_t store_sampling_down_factor(struct cpufreq_policy *unused,
static ssize_t store_sampling_down_factor(struct cpufreq_policy *unused,
const char *buf, size_t count)
{
unsigned int input;
......@@ -144,7 +144,7 @@ static ssize_t store_sampling_down_factor(struct cpufreq_policy *unused,
return count;
}
static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
const char *buf, size_t count)
{
unsigned int input;
......@@ -163,7 +163,7 @@ static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
return count;
}
static ssize_t store_up_threshold(struct cpufreq_policy *unused,
static ssize_t store_up_threshold(struct cpufreq_policy *unused,
const char *buf, size_t count)
{
unsigned int input;
......@@ -171,7 +171,7 @@ static ssize_t store_up_threshold(struct cpufreq_policy *unused,
ret = sscanf (buf, "%u", &input);
mutex_lock(&dbs_mutex);
if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
input < MIN_FREQUENCY_UP_THRESHOLD) {
mutex_unlock(&dbs_mutex);
return -EINVAL;
......@@ -190,14 +190,14 @@ static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
int ret;
unsigned int j;
ret = sscanf (buf, "%u", &input);
if ( ret != 1 )
return -EINVAL;
if ( input > 1 )
input = 1;
mutex_lock(&dbs_mutex);
if ( input == dbs_tuners_ins.ignore_nice ) { /* nothing to do */
mutex_unlock(&dbs_mutex);
......@@ -259,16 +259,16 @@ static void dbs_check_cpu(int cpu)
return;
policy = this_dbs_info->cur_policy;
/*
/*
* Every sampling_rate, we check, if current idle time is less
* than 20% (default), then we try to increase frequency
* Every sampling_rate*sampling_down_factor, we look for a the lowest
* frequency which can sustain the load while keeping idle time over
* 30%. If such a frequency exist, we try to decrease to this frequency.
*
* Any frequency increase takes it to the maximum frequency.
* Frequency reduction happens at minimum steps of
* 5% (default) of current frequency
* Any frequency increase takes it to the maximum frequency.
* Frequency reduction happens at minimum steps of
* 5% (default) of current frequency
*/
/* Check for frequency increase */
......@@ -298,14 +298,14 @@ static void dbs_check_cpu(int cpu)
struct cpu_dbs_info_s *j_dbs_info;
j_dbs_info = &per_cpu(cpu_dbs_info, j);
j_dbs_info->prev_cpu_idle_down =
j_dbs_info->prev_cpu_idle_down =
j_dbs_info->prev_cpu_idle_up;
}
/* if we are already at full speed then break out early */
if (policy->cur == policy->max)
return;
__cpufreq_driver_target(policy, policy->max,
__cpufreq_driver_target(policy, policy->max,
CPUFREQ_RELATION_H);
return;
}
......@@ -347,7 +347,7 @@ static void dbs_check_cpu(int cpu)
* policy. To be safe, we focus 10 points under the threshold.
*/
freq_next = ((total_ticks - idle_ticks) * 100) / total_ticks;
freq_next = (freq_next * policy->cur) /
freq_next = (freq_next * policy->cur) /
(dbs_tuners_ins.up_threshold - 10);
if (freq_next <= ((policy->cur * 95) / 100))
......@@ -355,15 +355,15 @@ static void dbs_check_cpu(int cpu)
}
static void do_dbs_timer(void *data)
{
{
int i;
mutex_lock(&dbs_mutex);
for_each_online_cpu(i)
dbs_check_cpu(i);
schedule_delayed_work(&dbs_work,
schedule_delayed_work(&dbs_work,
usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
mutex_unlock(&dbs_mutex);
}
}
static inline void dbs_timer_init(void)
{
......@@ -390,7 +390,7 @@ static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
switch (event) {
case CPUFREQ_GOV_START:
if ((!cpu_online(cpu)) ||
if ((!cpu_online(cpu)) ||
(!policy->cur))
return -EINVAL;
......@@ -399,13 +399,13 @@ static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
return -EINVAL;
if (this_dbs_info->enable) /* Already enabled */
break;
mutex_lock(&dbs_mutex);
for_each_cpu_mask(j, policy->cpus) {
struct cpu_dbs_info_s *j_dbs_info;
j_dbs_info = &per_cpu(cpu_dbs_info, j);
j_dbs_info->cur_policy = policy;
j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(j);
j_dbs_info->prev_cpu_idle_down
= j_dbs_info->prev_cpu_idle_up;
......@@ -435,7 +435,7 @@ static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
dbs_timer_init();
}
mutex_unlock(&dbs_mutex);
break;
......@@ -448,9 +448,9 @@ static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
* Stop the timerschedule work, when this governor
* is used for first time
*/
if (dbs_enable == 0)
if (dbs_enable == 0)
dbs_timer_exit();
mutex_unlock(&dbs_mutex);
break;
......@@ -460,11 +460,11 @@ static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
if (policy->max < this_dbs_info->cur_policy->cur)
__cpufreq_driver_target(
this_dbs_info->cur_policy,
policy->max, CPUFREQ_RELATION_H);
policy->max, CPUFREQ_RELATION_H);
else if (policy->min > this_dbs_info->cur_policy->cur)
__cpufreq_driver_target(
this_dbs_info->cur_policy,
policy->min, CPUFREQ_RELATION_L);
policy->min, CPUFREQ_RELATION_L);
mutex_unlock(&dbs_mutex);
break;
}
......
......@@ -32,7 +32,7 @@ static int cpufreq_governor_performance(struct cpufreq_policy *policy,
}
return 0;
}
struct cpufreq_governor cpufreq_gov_performance = {
.name = "performance",
.governor = cpufreq_governor_performance,
......
......@@ -31,7 +31,7 @@ static int cpufreq_governor_powersave(struct cpufreq_policy *policy,
}
return 0;
}
static struct cpufreq_governor cpufreq_gov_powersave = {
.name = "powersave",
.governor = cpufreq_governor_powersave,
......
......@@ -2,7 +2,7 @@
* drivers/cpufreq/cpufreq_stats.c
*
* Copyright (C) 2003-2004 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
* (C) 2004 Zou Nan hai <nanhai.zou@intel.com>.
* (C) 2004 Zou Nan hai <nanhai.zou@intel.com>.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
......@@ -90,7 +90,7 @@ show_time_in_state(struct cpufreq_policy *policy, char *buf)
return 0;
cpufreq_stats_update(stat->cpu);
for (i = 0; i < stat->state_num; i++) {
len += sprintf(buf + len, "%u %llu\n", stat->freq_table[i],
len += sprintf(buf + len, "%u %llu\n", stat->freq_table[i],
(unsigned long long)cputime64_to_clock_t(stat->time_in_state[i]));
}
return len;
......@@ -171,7 +171,7 @@ cpufreq_stats_free_table (unsigned int cpu)
{
struct cpufreq_stats *stat = cpufreq_stats_table[cpu];
struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
if (policy && policy->cpu == cpu)
if (policy && policy->cpu == cpu)
sysfs_remove_group(&policy->kobj, &stats_attr_group);
if (stat) {
kfree(stat->time_in_state);
......
......@@ -41,7 +41,7 @@ static DEFINE_MUTEX (userspace_mutex);
#define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_GOVERNOR, "userspace", msg)
/* keep track of frequency transitions */
static int
static int
userspace_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
void *data)
{
......@@ -58,7 +58,7 @@ static struct notifier_block userspace_cpufreq_notifier_block = {
};
/**
/**
* cpufreq_set - set the CPU frequency
* @freq: target frequency in kHz
* @cpu: CPU for which the frequency is to be set
......@@ -103,8 +103,8 @@ static ssize_t show_speed (struct cpufreq_policy *policy, char *buf)
return sprintf (buf, "%u\n", cpu_cur_freq[policy->cpu]);
}
static ssize_t
store_speed (struct cpufreq_policy *policy, const char *buf, size_t count)
static ssize_t
store_speed (struct cpufreq_policy *policy, const char *buf, size_t count)
{
unsigned int freq = 0;
unsigned int ret;
......@@ -118,7 +118,7 @@ store_speed (struct cpufreq_policy *policy, const char *buf, size_t count)
return count;
}
static struct freq_attr freq_attr_scaling_setspeed =
static struct freq_attr freq_attr_scaling_setspeed =
{
.attr = { .name = "scaling_setspeed", .mode = 0644, .owner = THIS_MODULE },
.show = show_speed,
......@@ -135,7 +135,7 @@ static int cpufreq_governor_userspace(struct cpufreq_policy *policy,
return -EINVAL;
BUG_ON(!policy->cur);
mutex_lock(&userspace_mutex);
cpu_is_managed[cpu] = 1;
cpu_is_managed[cpu] = 1;
cpu_min_freq[cpu] = policy->min;
cpu_max_freq[cpu] = policy->max;
cpu_cur_freq[cpu] = policy->cur;
......
......@@ -59,9 +59,8 @@ int cpufreq_frequency_table_verify(struct cpufreq_policy *policy,
if (!cpu_online(policy->cpu))
return -EINVAL;
cpufreq_verify_within_limits(policy,
policy->cpuinfo.min_freq,
policy->cpuinfo.max_freq);
cpufreq_verify_within_limits(policy,
policy->cpuinfo.min_freq, policy->cpuinfo.max_freq);
for (i=0; (table[i].frequency != CPUFREQ_TABLE_END); i++) {
unsigned int freq = table[i].frequency;
......@@ -76,9 +75,8 @@ int cpufreq_frequency_table_verify(struct cpufreq_policy *policy,
if (!count)
policy->max = next_larger;
cpufreq_verify_within_limits(policy,
policy->cpuinfo.min_freq,
policy->cpuinfo.max_freq);
cpufreq_verify_within_limits(policy,
policy->cpuinfo.min_freq, policy->cpuinfo.max_freq);
dprintk("verification lead to (%u - %u kHz) for cpu %u\n", policy->min, policy->max, policy->cpu);
......@@ -199,7 +197,7 @@ EXPORT_SYMBOL_GPL(cpufreq_freq_attr_scaling_available_freqs);
* if you use these, you must assure that the frequency table is valid
* all the time between get_attr and put_attr!
*/
void cpufreq_frequency_table_get_attr(struct cpufreq_frequency_table *table,
void cpufreq_frequency_table_get_attr(struct cpufreq_frequency_table *table,
unsigned int cpu)
{
dprintk("setting show_table for cpu %u to %p\n", cpu, table);
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment