Commit 0c056c50 authored by Linus Torvalds's avatar Linus Torvalds

Merge master.kernel.org:/pub/scm/linux/kernel/git/gregkh/spi-2.6

* master.kernel.org:/pub/scm/linux/kernel/git/gregkh/spi-2.6:
  [PATCH] SPI: spi_bitbang: clocking fixes
  [PATCH] spi: Update to PXA2xx SPI Driver
  [PATCH] SPI: busnum == 0 needs to work
  [PATCH] SPI: devices can require LSB-first encodings
  [PATCH] SPI: Renamed bitbang_transfer_setup to spi_bitbang_setup_transfer and export it
  [PATCH] SPI: Add David as the SPI subsystem maintainer
  [PATCH] SPI: spi bounce buffer has a minimum length
  [PATCH] SPI: spi whitespace fixes
  [PATCH] SPI: add PXA2xx SSP SPI Driver
  [PATCH] SPI: per-transfer overrides for wordsize and clocking
parents 4fbca532 1e316d75
PXA2xx SPI on SSP driver HOWTO
===================================================
This a mini howto on the pxa2xx_spi driver. The driver turns a PXA2xx
synchronous serial port into a SPI master controller
(see Documentation/spi/spi_summary). The driver has the following features
- Support for any PXA2xx SSP
- SSP PIO and SSP DMA data transfers.
- External and Internal (SSPFRM) chip selects.
- Per slave device (chip) configuration.
- Full suspend, freeze, resume support.
The driver is built around a "spi_message" fifo serviced by workqueue and a
tasklet. The workqueue, "pump_messages", drives message fifo and the tasklet
(pump_transfer) is responsible for queuing SPI transactions and setting up and
launching the dma/interrupt driven transfers.
Declaring PXA2xx Master Controllers
-----------------------------------
Typically a SPI master is defined in the arch/.../mach-*/board-*.c as a
"platform device". The master configuration is passed to the driver via a table
found in include/asm-arm/arch-pxa/pxa2xx_spi.h:
struct pxa2xx_spi_master {
enum pxa_ssp_type ssp_type;
u32 clock_enable;
u16 num_chipselect;
u8 enable_dma;
};
The "pxa2xx_spi_master.ssp_type" field must have a value between 1 and 3 and
informs the driver which features a particular SSP supports.
The "pxa2xx_spi_master.clock_enable" field is used to enable/disable the
corresponding SSP peripheral block in the "Clock Enable Register (CKEN"). See
the "PXA2xx Developer Manual" section "Clocks and Power Management".
The "pxa2xx_spi_master.num_chipselect" field is used to determine the number of
slave device (chips) attached to this SPI master.
The "pxa2xx_spi_master.enable_dma" field informs the driver that SSP DMA should
be used. This caused the driver to acquire two DMA channels: rx_channel and
tx_channel. The rx_channel has a higher DMA service priority the tx_channel.
See the "PXA2xx Developer Manual" section "DMA Controller".
NSSP MASTER SAMPLE
------------------
Below is a sample configuration using the PXA255 NSSP.
static struct resource pxa_spi_nssp_resources[] = {
[0] = {
.start = __PREG(SSCR0_P(2)), /* Start address of NSSP */
.end = __PREG(SSCR0_P(2)) + 0x2c, /* Range of registers */
.flags = IORESOURCE_MEM,
},
[1] = {
.start = IRQ_NSSP, /* NSSP IRQ */
.end = IRQ_NSSP,
.flags = IORESOURCE_IRQ,
},
};
static struct pxa2xx_spi_master pxa_nssp_master_info = {
.ssp_type = PXA25x_NSSP, /* Type of SSP */
.clock_enable = CKEN9_NSSP, /* NSSP Peripheral clock */
.num_chipselect = 1, /* Matches the number of chips attached to NSSP */
.enable_dma = 1, /* Enables NSSP DMA */
};
static struct platform_device pxa_spi_nssp = {
.name = "pxa2xx-spi", /* MUST BE THIS VALUE, so device match driver */
.id = 2, /* Bus number, MUST MATCH SSP number 1..n */
.resource = pxa_spi_nssp_resources,
.num_resources = ARRAY_SIZE(pxa_spi_nssp_resources),
.dev = {
.platform_data = &pxa_nssp_master_info, /* Passed to driver */
},
};
static struct platform_device *devices[] __initdata = {
&pxa_spi_nssp,
};
static void __init board_init(void)
{
(void)platform_add_device(devices, ARRAY_SIZE(devices));
}
Declaring Slave Devices
-----------------------
Typically each SPI slave (chip) is defined in the arch/.../mach-*/board-*.c
using the "spi_board_info" structure found in "linux/spi/spi.h". See
"Documentation/spi/spi_summary" for additional information.
Each slave device attached to the PXA must provide slave specific configuration
information via the structure "pxa2xx_spi_chip" found in
"include/asm-arm/arch-pxa/pxa2xx_spi.h". The pxa2xx_spi master controller driver
will uses the configuration whenever the driver communicates with the slave
device.
struct pxa2xx_spi_chip {
u8 tx_threshold;
u8 rx_threshold;
u8 dma_burst_size;
u32 timeout_microsecs;
u8 enable_loopback;
void (*cs_control)(u32 command);
};
The "pxa2xx_spi_chip.tx_threshold" and "pxa2xx_spi_chip.rx_threshold" fields are
used to configure the SSP hardware fifo. These fields are critical to the
performance of pxa2xx_spi driver and misconfiguration will result in rx
fifo overruns (especially in PIO mode transfers). Good default values are
.tx_threshold = 12,
.rx_threshold = 4,
The "pxa2xx_spi_chip.dma_burst_size" field is used to configure PXA2xx DMA
engine and is related the "spi_device.bits_per_word" field. Read and understand
the PXA2xx "Developer Manual" sections on the DMA controller and SSP Controllers
to determine the correct value. An SSP configured for byte-wide transfers would
use a value of 8.
The "pxa2xx_spi_chip.timeout_microsecs" fields is used to efficiently handle
trailing bytes in the SSP receiver fifo. The correct value for this field is
dependent on the SPI bus speed ("spi_board_info.max_speed_hz") and the specific
slave device. Please note the the PXA2xx SSP 1 does not support trailing byte
timeouts and must busy-wait any trailing bytes.
The "pxa2xx_spi_chip.enable_loopback" field is used to place the SSP porting
into internal loopback mode. In this mode the SSP controller internally
connects the SSPTX pin the the SSPRX pin. This is useful for initial setup
testing.
The "pxa2xx_spi_chip.cs_control" field is used to point to a board specific
function for asserting/deasserting a slave device chip select. If the field is
NULL, the pxa2xx_spi master controller driver assumes that the SSP port is
configured to use SSPFRM instead.
NSSP SALVE SAMPLE
-----------------
The pxa2xx_spi_chip structure is passed to the pxa2xx_spi driver in the
"spi_board_info.controller_data" field. Below is a sample configuration using
the PXA255 NSSP.
/* Chip Select control for the CS8415A SPI slave device */
static void cs8415a_cs_control(u32 command)
{
if (command & PXA2XX_CS_ASSERT)
GPCR(2) = GPIO_bit(2);
else
GPSR(2) = GPIO_bit(2);
}
/* Chip Select control for the CS8405A SPI slave device */
static void cs8405a_cs_control(u32 command)
{
if (command & PXA2XX_CS_ASSERT)
GPCR(3) = GPIO_bit(3);
else
GPSR(3) = GPIO_bit(3);
}
static struct pxa2xx_spi_chip cs8415a_chip_info = {
.tx_threshold = 12, /* SSP hardward FIFO threshold */
.rx_threshold = 4, /* SSP hardward FIFO threshold */
.dma_burst_size = 8, /* Byte wide transfers used so 8 byte bursts */
.timeout_microsecs = 64, /* Wait at least 64usec to handle trailing */
.cs_control = cs8415a_cs_control, /* Use external chip select */
};
static struct pxa2xx_spi_chip cs8405a_chip_info = {
.tx_threshold = 12, /* SSP hardward FIFO threshold */
.rx_threshold = 4, /* SSP hardward FIFO threshold */
.dma_burst_size = 8, /* Byte wide transfers used so 8 byte bursts */
.timeout_microsecs = 64, /* Wait at least 64usec to handle trailing */
.cs_control = cs8405a_cs_control, /* Use external chip select */
};
static struct spi_board_info streetracer_spi_board_info[] __initdata = {
{
.modalias = "cs8415a", /* Name of spi_driver for this device */
.max_speed_hz = 3686400, /* Run SSP as fast a possbile */
.bus_num = 2, /* Framework bus number */
.chip_select = 0, /* Framework chip select */
.platform_data = NULL; /* No spi_driver specific config */
.controller_data = &cs8415a_chip_info, /* Master chip config */
.irq = STREETRACER_APCI_IRQ, /* Slave device interrupt */
},
{
.modalias = "cs8405a", /* Name of spi_driver for this device */
.max_speed_hz = 3686400, /* Run SSP as fast a possbile */
.bus_num = 2, /* Framework bus number */
.chip_select = 1, /* Framework chip select */
.controller_data = &cs8405a_chip_info, /* Master chip config */
.irq = STREETRACER_APCI_IRQ, /* Slave device interrupt */
},
};
static void __init streetracer_init(void)
{
spi_register_board_info(streetracer_spi_board_info,
ARRAY_SIZE(streetracer_spi_board_info));
}
DMA and PIO I/O Support
-----------------------
The pxa2xx_spi driver support both DMA and interrupt driven PIO message
transfers. The driver defaults to PIO mode and DMA transfers must enabled by
setting the "enable_dma" flag in the "pxa2xx_spi_master" structure and and
ensuring that the "pxa2xx_spi_chip.dma_burst_size" field is non-zero. The DMA
mode support both coherent and stream based DMA mappings.
The following logic is used to determine the type of I/O to be used on
a per "spi_transfer" basis:
if !enable_dma or dma_burst_size == 0 then
always use PIO transfers
if spi_message.is_dma_mapped and rx_dma_buf != 0 and tx_dma_buf != 0 then
use coherent DMA mode
if rx_buf and tx_buf are aligned on 8 byte boundary then
use streaming DMA mode
otherwise
use PIO transfer
THANKS TO
---------
David Brownell and others for mentoring the development of this driver.
...@@ -414,7 +414,33 @@ to get the driver-private data allocated for that device. ...@@ -414,7 +414,33 @@ to get the driver-private data allocated for that device.
The driver will initialize the fields of that spi_master, including the The driver will initialize the fields of that spi_master, including the
bus number (maybe the same as the platform device ID) and three methods bus number (maybe the same as the platform device ID) and three methods
used to interact with the SPI core and SPI protocol drivers. It will used to interact with the SPI core and SPI protocol drivers. It will
also initialize its own internal state. also initialize its own internal state. (See below about bus numbering
and those methods.)
After you initialize the spi_master, then use spi_register_master() to
publish it to the rest of the system. At that time, device nodes for
the controller and any predeclared spi devices will be made available,
and the driver model core will take care of binding them to drivers.
If you need to remove your SPI controller driver, spi_unregister_master()
will reverse the effect of spi_register_master().
BUS NUMBERING
Bus numbering is important, since that's how Linux identifies a given
SPI bus (shared SCK, MOSI, MISO). Valid bus numbers start at zero. On
SOC systems, the bus numbers should match the numbers defined by the chip
manufacturer. For example, hardware controller SPI2 would be bus number 2,
and spi_board_info for devices connected to it would use that number.
If you don't have such hardware-assigned bus number, and for some reason
you can't just assign them, then provide a negative bus number. That will
then be replaced by a dynamically assigned number. You'd then need to treat
this as a non-static configuration (see above).
SPI MASTER METHODS
master->setup(struct spi_device *spi) master->setup(struct spi_device *spi)
This sets up the device clock rate, SPI mode, and word sizes. This sets up the device clock rate, SPI mode, and word sizes.
...@@ -431,6 +457,9 @@ also initialize its own internal state. ...@@ -431,6 +457,9 @@ also initialize its own internal state.
state it dynamically associates with that device. If you do that, state it dynamically associates with that device. If you do that,
be sure to provide the cleanup() method to free that state. be sure to provide the cleanup() method to free that state.
SPI MESSAGE QUEUE
The bulk of the driver will be managing the I/O queue fed by transfer(). The bulk of the driver will be managing the I/O queue fed by transfer().
That queue could be purely conceptual. For example, a driver used only That queue could be purely conceptual. For example, a driver used only
...@@ -440,6 +469,9 @@ But the queue will probably be very real, using message->queue, PIO, ...@@ -440,6 +469,9 @@ But the queue will probably be very real, using message->queue, PIO,
often DMA (especially if the root filesystem is in SPI flash), and often DMA (especially if the root filesystem is in SPI flash), and
execution contexts like IRQ handlers, tasklets, or workqueues (such execution contexts like IRQ handlers, tasklets, or workqueues (such
as keventd). Your driver can be as fancy, or as simple, as you need. as keventd). Your driver can be as fancy, or as simple, as you need.
Such a transfer() method would normally just add the message to a
queue, and then start some asynchronous transfer engine (unless it's
already running).
THANKS TO THANKS TO
......
...@@ -2518,6 +2518,12 @@ M: perex@suse.cz ...@@ -2518,6 +2518,12 @@ M: perex@suse.cz
L: alsa-devel@alsa-project.org L: alsa-devel@alsa-project.org
S: Maintained S: Maintained
SPI SUBSYSTEM
P: David Brownell
M: dbrownell@users.sourceforge.net
L: spi-devel-general@lists.sourceforge.net
S: Maintained
TPM DEVICE DRIVER TPM DEVICE DRIVER
P: Kylene Hall P: Kylene Hall
M: kjhall@us.ibm.com M: kjhall@us.ibm.com
......
...@@ -75,6 +75,14 @@ config SPI_BUTTERFLY ...@@ -75,6 +75,14 @@ config SPI_BUTTERFLY
inexpensive battery powered microcontroller evaluation board. inexpensive battery powered microcontroller evaluation board.
This same cable can be used to flash new firmware. This same cable can be used to flash new firmware.
config SPI_PXA2XX
tristate "PXA2xx SSP SPI master"
depends on SPI_MASTER && ARCH_PXA && EXPERIMENTAL
help
This enables using a PXA2xx SSP port as a SPI master controller.
The driver can be configured to use any SSP port and additional
documentation can be found a Documentation/spi/pxa2xx.
# #
# Add new SPI master controllers in alphabetical order above this line # Add new SPI master controllers in alphabetical order above this line
# #
......
...@@ -13,6 +13,7 @@ obj-$(CONFIG_SPI_MASTER) += spi.o ...@@ -13,6 +13,7 @@ obj-$(CONFIG_SPI_MASTER) += spi.o
# SPI master controller drivers (bus) # SPI master controller drivers (bus)
obj-$(CONFIG_SPI_BITBANG) += spi_bitbang.o obj-$(CONFIG_SPI_BITBANG) += spi_bitbang.o
obj-$(CONFIG_SPI_BUTTERFLY) += spi_butterfly.o obj-$(CONFIG_SPI_BUTTERFLY) += spi_butterfly.o
obj-$(CONFIG_SPI_PXA2XX) += pxa2xx_spi.o
# ... add above this line ... # ... add above this line ...
# SPI protocol drivers (device/link on bus) # SPI protocol drivers (device/link on bus)
......
This diff is collapsed.
...@@ -395,7 +395,7 @@ EXPORT_SYMBOL_GPL(spi_alloc_master); ...@@ -395,7 +395,7 @@ EXPORT_SYMBOL_GPL(spi_alloc_master);
int __init_or_module int __init_or_module
spi_register_master(struct spi_master *master) spi_register_master(struct spi_master *master)
{ {
static atomic_t dyn_bus_id = ATOMIC_INIT(0); static atomic_t dyn_bus_id = ATOMIC_INIT((1<<16) - 1);
struct device *dev = master->cdev.dev; struct device *dev = master->cdev.dev;
int status = -ENODEV; int status = -ENODEV;
int dynamic = 0; int dynamic = 0;
...@@ -404,7 +404,7 @@ spi_register_master(struct spi_master *master) ...@@ -404,7 +404,7 @@ spi_register_master(struct spi_master *master)
return -ENODEV; return -ENODEV;
/* convention: dynamically assigned bus IDs count down from the max */ /* convention: dynamically assigned bus IDs count down from the max */
if (master->bus_num == 0) { if (master->bus_num < 0) {
master->bus_num = atomic_dec_return(&dyn_bus_id); master->bus_num = atomic_dec_return(&dyn_bus_id);
dynamic = 1; dynamic = 1;
} }
...@@ -522,7 +522,8 @@ int spi_sync(struct spi_device *spi, struct spi_message *message) ...@@ -522,7 +522,8 @@ int spi_sync(struct spi_device *spi, struct spi_message *message)
} }
EXPORT_SYMBOL_GPL(spi_sync); EXPORT_SYMBOL_GPL(spi_sync);
#define SPI_BUFSIZ (SMP_CACHE_BYTES) /* portable code must never pass more than 32 bytes */
#define SPI_BUFSIZ max(32,SMP_CACHE_BYTES)
static u8 *buf; static u8 *buf;
......
...@@ -138,6 +138,45 @@ static unsigned bitbang_txrx_32( ...@@ -138,6 +138,45 @@ static unsigned bitbang_txrx_32(
return t->len - count; return t->len - count;
} }
int spi_bitbang_setup_transfer(struct spi_device *spi, struct spi_transfer *t)
{
struct spi_bitbang_cs *cs = spi->controller_state;
u8 bits_per_word;
u32 hz;
if (t) {
bits_per_word = t->bits_per_word;
hz = t->speed_hz;
} else {
bits_per_word = 0;
hz = 0;
}
/* spi_transfer level calls that work per-word */
if (!bits_per_word)
bits_per_word = spi->bits_per_word;
if (bits_per_word <= 8)
cs->txrx_bufs = bitbang_txrx_8;
else if (bits_per_word <= 16)
cs->txrx_bufs = bitbang_txrx_16;
else if (bits_per_word <= 32)
cs->txrx_bufs = bitbang_txrx_32;
else
return -EINVAL;
/* nsecs = (clock period)/2 */
if (!hz)
hz = spi->max_speed_hz;
if (hz) {
cs->nsecs = (1000000000/2) / hz;
if (cs->nsecs > (MAX_UDELAY_MS * 1000 * 1000))
return -EINVAL;
}
return 0;
}
EXPORT_SYMBOL_GPL(spi_bitbang_setup_transfer);
/** /**
* spi_bitbang_setup - default setup for per-word I/O loops * spi_bitbang_setup - default setup for per-word I/O loops
*/ */
...@@ -145,8 +184,16 @@ int spi_bitbang_setup(struct spi_device *spi) ...@@ -145,8 +184,16 @@ int spi_bitbang_setup(struct spi_device *spi)
{ {
struct spi_bitbang_cs *cs = spi->controller_state; struct spi_bitbang_cs *cs = spi->controller_state;
struct spi_bitbang *bitbang; struct spi_bitbang *bitbang;
int retval;
if (!spi->max_speed_hz) bitbang = spi_master_get_devdata(spi->master);
/* REVISIT: some systems will want to support devices using lsb-first
* bit encodings on the wire. In pure software that would be trivial,
* just bitbang_txrx_le_cphaX() routines shifting the other way, and
* some hardware controllers also have this support.
*/
if ((spi->mode & SPI_LSB_FIRST) != 0)
return -EINVAL; return -EINVAL;
if (!cs) { if (!cs) {
...@@ -155,32 +202,20 @@ int spi_bitbang_setup(struct spi_device *spi) ...@@ -155,32 +202,20 @@ int spi_bitbang_setup(struct spi_device *spi)
return -ENOMEM; return -ENOMEM;
spi->controller_state = cs; spi->controller_state = cs;
} }
bitbang = spi_master_get_devdata(spi->master);
if (!spi->bits_per_word) if (!spi->bits_per_word)
spi->bits_per_word = 8; spi->bits_per_word = 8;
/* spi_transfer level calls that work per-word */
if (spi->bits_per_word <= 8)
cs->txrx_bufs = bitbang_txrx_8;
else if (spi->bits_per_word <= 16)
cs->txrx_bufs = bitbang_txrx_16;
else if (spi->bits_per_word <= 32)
cs->txrx_bufs = bitbang_txrx_32;
else
return -EINVAL;
/* per-word shift register access, in hardware or bitbanging */ /* per-word shift register access, in hardware or bitbanging */
cs->txrx_word = bitbang->txrx_word[spi->mode & (SPI_CPOL|SPI_CPHA)]; cs->txrx_word = bitbang->txrx_word[spi->mode & (SPI_CPOL|SPI_CPHA)];
if (!cs->txrx_word) if (!cs->txrx_word)
return -EINVAL; return -EINVAL;
/* nsecs = (clock period)/2 */ retval = spi_bitbang_setup_transfer(spi, NULL);
cs->nsecs = (1000000000/2) / (spi->max_speed_hz); if (retval < 0)
if (cs->nsecs > MAX_UDELAY_MS * 1000) return retval;
return -EINVAL;
dev_dbg(&spi->dev, "%s, mode %d, %u bits/w, %u nsec\n", dev_dbg(&spi->dev, "%s, mode %d, %u bits/w, %u nsec/bit\n",
__FUNCTION__, spi->mode & (SPI_CPOL | SPI_CPHA), __FUNCTION__, spi->mode & (SPI_CPOL | SPI_CPHA),
spi->bits_per_word, 2 * cs->nsecs); spi->bits_per_word, 2 * cs->nsecs);
...@@ -246,6 +281,8 @@ static void bitbang_work(void *_bitbang) ...@@ -246,6 +281,8 @@ static void bitbang_work(void *_bitbang)
unsigned tmp; unsigned tmp;
unsigned cs_change; unsigned cs_change;
int status; int status;
int (*setup_transfer)(struct spi_device *,
struct spi_transfer *);
m = container_of(bitbang->queue.next, struct spi_message, m = container_of(bitbang->queue.next, struct spi_message,
queue); queue);
...@@ -262,6 +299,7 @@ static void bitbang_work(void *_bitbang) ...@@ -262,6 +299,7 @@ static void bitbang_work(void *_bitbang)
tmp = 0; tmp = 0;
cs_change = 1; cs_change = 1;
status = 0; status = 0;
setup_transfer = NULL;
list_for_each_entry (t, &m->transfers, transfer_list) { list_for_each_entry (t, &m->transfers, transfer_list) {
if (bitbang->shutdown) { if (bitbang->shutdown) {
...@@ -269,6 +307,20 @@ static void bitbang_work(void *_bitbang) ...@@ -269,6 +307,20 @@ static void bitbang_work(void *_bitbang)
break; break;
} }
/* override or restore speed and wordsize */
if (t->speed_hz || t->bits_per_word) {
setup_transfer = bitbang->setup_transfer;
if (!setup_transfer) {
status = -ENOPROTOOPT;
break;
}
}
if (setup_transfer) {
status = setup_transfer(spi, t);
if (status < 0)
break;
}
/* set up default clock polarity, and activate chip; /* set up default clock polarity, and activate chip;
* this implicitly updates clock and spi modes as * this implicitly updates clock and spi modes as
* previously recorded for this device via setup(). * previously recorded for this device via setup().
...@@ -325,6 +377,10 @@ static void bitbang_work(void *_bitbang) ...@@ -325,6 +377,10 @@ static void bitbang_work(void *_bitbang)
m->status = status; m->status = status;
m->complete(m->context); m->complete(m->context);
/* restore speed and wordsize */
if (setup_transfer)
setup_transfer(spi, NULL);
/* normally deactivate chipselect ... unless no error and /* normally deactivate chipselect ... unless no error and
* cs_change has hinted that the next message will probably * cs_change has hinted that the next message will probably
* be for this chip too. * be for this chip too.
...@@ -348,6 +404,7 @@ int spi_bitbang_transfer(struct spi_device *spi, struct spi_message *m) ...@@ -348,6 +404,7 @@ int spi_bitbang_transfer(struct spi_device *spi, struct spi_message *m)
{ {
struct spi_bitbang *bitbang; struct spi_bitbang *bitbang;
unsigned long flags; unsigned long flags;
int status = 0;
m->actual_length = 0; m->actual_length = 0;
m->status = -EINPROGRESS; m->status = -EINPROGRESS;
...@@ -357,11 +414,15 @@ int spi_bitbang_transfer(struct spi_device *spi, struct spi_message *m) ...@@ -357,11 +414,15 @@ int spi_bitbang_transfer(struct spi_device *spi, struct spi_message *m)
return -ESHUTDOWN; return -ESHUTDOWN;
spin_lock_irqsave(&bitbang->lock, flags); spin_lock_irqsave(&bitbang->lock, flags);
list_add_tail(&m->queue, &bitbang->queue); if (!spi->max_speed_hz)
queue_work(bitbang->workqueue, &bitbang->work); status = -ENETDOWN;
else {
list_add_tail(&m->queue, &bitbang->queue);
queue_work(bitbang->workqueue, &bitbang->work);
}
spin_unlock_irqrestore(&bitbang->lock, flags); spin_unlock_irqrestore(&bitbang->lock, flags);
return 0; return status;
} }
EXPORT_SYMBOL_GPL(spi_bitbang_transfer); EXPORT_SYMBOL_GPL(spi_bitbang_transfer);
...@@ -406,6 +467,9 @@ int spi_bitbang_start(struct spi_bitbang *bitbang) ...@@ -406,6 +467,9 @@ int spi_bitbang_start(struct spi_bitbang *bitbang)
bitbang->use_dma = 0; bitbang->use_dma = 0;
bitbang->txrx_bufs = spi_bitbang_bufs; bitbang->txrx_bufs = spi_bitbang_bufs;
if (!bitbang->master->setup) { if (!bitbang->master->setup) {
if (!bitbang->setup_transfer)
bitbang->setup_transfer =
spi_bitbang_setup_transfer;
bitbang->master->setup = spi_bitbang_setup; bitbang->master->setup = spi_bitbang_setup;
bitbang->master->cleanup = spi_bitbang_cleanup; bitbang->master->cleanup = spi_bitbang_cleanup;
} }
......
/*
* Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#ifndef PXA2XX_SPI_H_
#define PXA2XX_SPI_H_
#define PXA2XX_CS_ASSERT (0x01)
#define PXA2XX_CS_DEASSERT (0x02)
#if defined(CONFIG_PXA25x)
#define CLOCK_SPEED_HZ 3686400
#define SSP1_SerClkDiv(x) (((CLOCK_SPEED_HZ/2/(x+1))<<8)&0x0000ff00)
#define SSP2_SerClkDiv(x) (((CLOCK_SPEED_HZ/(x+1))<<8)&0x000fff00)
#define SSP3_SerClkDiv(x) (((CLOCK_SPEED_HZ/(x+1))<<8)&0x000fff00)
#elif defined(CONFIG_PXA27x)
#define CLOCK_SPEED_HZ 13000000
#define SSP1_SerClkDiv(x) (((CLOCK_SPEED_HZ/(x+1))<<8)&0x000fff00)
#define SSP2_SerClkDiv(x) (((CLOCK_SPEED_HZ/(x+1))<<8)&0x000fff00)
#define SSP3_SerClkDiv(x) (((CLOCK_SPEED_HZ/(x+1))<<8)&0x000fff00)
#endif
#define SSP1_VIRT ((void *)(io_p2v(__PREG(SSCR0_P(1)))))
#define SSP2_VIRT ((void *)(io_p2v(__PREG(SSCR0_P(2)))))
#define SSP3_VIRT ((void *)(io_p2v(__PREG(SSCR0_P(3)))))
enum pxa_ssp_type {
SSP_UNDEFINED = 0,
PXA25x_SSP, /* pxa 210, 250, 255, 26x */
PXA25x_NSSP, /* pxa 255, 26x (including ASSP) */
PXA27x_SSP,
};
/* device.platform_data for SSP controller devices */
struct pxa2xx_spi_master {
enum pxa_ssp_type ssp_type;
u32 clock_enable;
u16 num_chipselect;
u8 enable_dma;
};
/* spi_board_info.controller_data for SPI slave devices,
* copied to spi_device.platform_data ... mostly for dma tuning
*/
struct pxa2xx_spi_chip {
u8 tx_threshold;
u8 rx_threshold;
u8 dma_burst_size;
u32 timeout_microsecs;
u8 enable_loopback;
void (*cs_control)(u32 command);
};
#endif /*PXA2XX_SPI_H_*/
...@@ -31,18 +31,23 @@ extern struct bus_type spi_bus_type; ...@@ -31,18 +31,23 @@ extern struct bus_type spi_bus_type;
* @master: SPI controller used with the device. * @master: SPI controller used with the device.
* @max_speed_hz: Maximum clock rate to be used with this chip * @max_speed_hz: Maximum clock rate to be used with this chip
* (on this board); may be changed by the device's driver. * (on this board); may be changed by the device's driver.
* The spi_transfer.speed_hz can override this for each transfer.
* @chip-select: Chipselect, distinguishing chips handled by "master". * @chip-select: Chipselect, distinguishing chips handled by "master".
* @mode: The spi mode defines how data is clocked out and in. * @mode: The spi mode defines how data is clocked out and in.
* This may be changed by the device's driver. * This may be changed by the device's driver.
* The "active low" default for chipselect mode can be overridden,
* as can the "MSB first" default for each word in a transfer.
* @bits_per_word: Data transfers involve one or more words; word sizes * @bits_per_word: Data transfers involve one or more words; word sizes
* like eight or 12 bits are common. In-memory wordsizes are * like eight or 12 bits are common. In-memory wordsizes are
* powers of two bytes (e.g. 20 bit samples use 32 bits). * powers of two bytes (e.g. 20 bit samples use 32 bits).
* This may be changed by the device's driver. * This may be changed by the device's driver, or left at the
* default (0) indicating protocol words are eight bit bytes.
* The spi_transfer.bits_per_word can override this for each transfer.
* @irq: Negative, or the number passed to request_irq() to receive * @irq: Negative, or the number passed to request_irq() to receive
* interrupts from this device. * interrupts from this device.
* @controller_state: Controller's runtime state * @controller_state: Controller's runtime state
* @controller_data: Board-specific definitions for controller, such as * @controller_data: Board-specific definitions for controller, such as
* FIFO initialization parameters; from board_info.controller_data * FIFO initialization parameters; from board_info.controller_data
* *
* An spi_device is used to interchange data between an SPI slave * An spi_device is used to interchange data between an SPI slave
* (usually a discrete chip) and CPU memory. * (usually a discrete chip) and CPU memory.
...@@ -65,6 +70,7 @@ struct spi_device { ...@@ -65,6 +70,7 @@ struct spi_device {
#define SPI_MODE_2 (SPI_CPOL|0) #define SPI_MODE_2 (SPI_CPOL|0)
#define SPI_MODE_3 (SPI_CPOL|SPI_CPHA) #define SPI_MODE_3 (SPI_CPOL|SPI_CPHA)
#define SPI_CS_HIGH 0x04 /* chipselect active high? */ #define SPI_CS_HIGH 0x04 /* chipselect active high? */
#define SPI_LSB_FIRST 0x08 /* per-word bits-on-wire */
u8 bits_per_word; u8 bits_per_word;
int irq; int irq;
void *controller_state; void *controller_state;
...@@ -73,7 +79,6 @@ struct spi_device { ...@@ -73,7 +79,6 @@ struct spi_device {
// likely need more hooks for more protocol options affecting how // likely need more hooks for more protocol options affecting how
// the controller talks to each chip, like: // the controller talks to each chip, like:
// - bit order (default is wordwise msb-first)
// - memory packing (12 bit samples into low bits, others zeroed) // - memory packing (12 bit samples into low bits, others zeroed)
// - priority // - priority
// - drop chipselect after each word // - drop chipselect after each word
...@@ -143,13 +148,13 @@ static inline void spi_unregister_driver(struct spi_driver *sdrv) ...@@ -143,13 +148,13 @@ static inline void spi_unregister_driver(struct spi_driver *sdrv)
* struct spi_master - interface to SPI master controller * struct spi_master - interface to SPI master controller
* @cdev: class interface to this driver * @cdev: class interface to this driver
* @bus_num: board-specific (and often SOC-specific) identifier for a * @bus_num: board-specific (and often SOC-specific) identifier for a
* given SPI controller. * given SPI controller.
* @num_chipselect: chipselects are used to distinguish individual * @num_chipselect: chipselects are used to distinguish individual
* SPI slaves, and are numbered from zero to num_chipselects. * SPI slaves, and are numbered from zero to num_chipselects.
* each slave has a chipselect signal, but it's common that not * each slave has a chipselect signal, but it's common that not
* every chipselect is connected to a slave. * every chipselect is connected to a slave.
* @setup: updates the device mode and clocking records used by a * @setup: updates the device mode and clocking records used by a
* device's SPI controller; protocol code may call this. * device's SPI controller; protocol code may call this.
* @transfer: adds a message to the controller's transfer queue. * @transfer: adds a message to the controller's transfer queue.
* @cleanup: frees controller-specific state * @cleanup: frees controller-specific state
* *
...@@ -167,13 +172,13 @@ static inline void spi_unregister_driver(struct spi_driver *sdrv) ...@@ -167,13 +172,13 @@ static inline void spi_unregister_driver(struct spi_driver *sdrv)
struct spi_master { struct spi_master {
struct class_device cdev; struct class_device cdev;
/* other than zero (== assign one dynamically), bus_num is fully /* other than negative (== assign one dynamically), bus_num is fully
* board-specific. usually that simplifies to being SOC-specific. * board-specific. usually that simplifies to being SOC-specific.
* example: one SOC has three SPI controllers, numbered 1..3, * example: one SOC has three SPI controllers, numbered 0..2,
* and one board's schematics might show it using SPI-2. software * and one board's schematics might show it using SPI-2. software
* would normally use bus_num=2 for that controller. * would normally use bus_num=2 for that controller.
*/ */
u16 bus_num; s16 bus_num;
/* chipselects will be integral to many controllers; some others /* chipselects will be integral to many controllers; some others
* might use board-specific GPIOs. * might use board-specific GPIOs.
...@@ -268,10 +273,14 @@ extern struct spi_master *spi_busnum_to_master(u16 busnum); ...@@ -268,10 +273,14 @@ extern struct spi_master *spi_busnum_to_master(u16 busnum);
* @tx_dma: DMA address of tx_buf, if spi_message.is_dma_mapped * @tx_dma: DMA address of tx_buf, if spi_message.is_dma_mapped
* @rx_dma: DMA address of rx_buf, if spi_message.is_dma_mapped * @rx_dma: DMA address of rx_buf, if spi_message.is_dma_mapped
* @len: size of rx and tx buffers (in bytes) * @len: size of rx and tx buffers (in bytes)
* @speed_hz: Select a speed other then the device default for this
* transfer. If 0 the default (from spi_device) is used.
* @bits_per_word: select a bits_per_word other then the device default
* for this transfer. If 0 the default (from spi_device) is used.
* @cs_change: affects chipselect after this transfer completes * @cs_change: affects chipselect after this transfer completes
* @delay_usecs: microseconds to delay after this transfer before * @delay_usecs: microseconds to delay after this transfer before
* (optionally) changing the chipselect status, then starting * (optionally) changing the chipselect status, then starting
* the next transfer or completing this spi_message. * the next transfer or completing this spi_message.
* @transfer_list: transfers are sequenced through spi_message.transfers * @transfer_list: transfers are sequenced through spi_message.transfers
* *
* SPI transfers always write the same number of bytes as they read. * SPI transfers always write the same number of bytes as they read.
...@@ -322,7 +331,9 @@ struct spi_transfer { ...@@ -322,7 +331,9 @@ struct spi_transfer {
dma_addr_t rx_dma; dma_addr_t rx_dma;
unsigned cs_change:1; unsigned cs_change:1;
u8 bits_per_word;
u16 delay_usecs; u16 delay_usecs;
u32 speed_hz;
struct list_head transfer_list; struct list_head transfer_list;
}; };
...@@ -356,7 +367,7 @@ struct spi_transfer { ...@@ -356,7 +367,7 @@ struct spi_transfer {
* and its transfers, ignore them until its completion callback. * and its transfers, ignore them until its completion callback.
*/ */
struct spi_message { struct spi_message {
struct list_head transfers; struct list_head transfers;
struct spi_device *spi; struct spi_device *spi;
...@@ -374,7 +385,7 @@ struct spi_message { ...@@ -374,7 +385,7 @@ struct spi_message {
*/ */
/* completion is reported through a callback */ /* completion is reported through a callback */
void (*complete)(void *context); void (*complete)(void *context);
void *context; void *context;
unsigned actual_length; unsigned actual_length;
int status; int status;
......
...@@ -30,6 +30,12 @@ struct spi_bitbang { ...@@ -30,6 +30,12 @@ struct spi_bitbang {
struct spi_master *master; struct spi_master *master;
/* setup_transfer() changes clock and/or wordsize to match settings
* for this transfer; zeroes restore defaults from spi_device.
*/
int (*setup_transfer)(struct spi_device *spi,
struct spi_transfer *t);
void (*chipselect)(struct spi_device *spi, int is_on); void (*chipselect)(struct spi_device *spi, int is_on);
#define BITBANG_CS_ACTIVE 1 /* normally nCS, active low */ #define BITBANG_CS_ACTIVE 1 /* normally nCS, active low */
#define BITBANG_CS_INACTIVE 0 #define BITBANG_CS_INACTIVE 0
...@@ -51,6 +57,8 @@ struct spi_bitbang { ...@@ -51,6 +57,8 @@ struct spi_bitbang {
extern int spi_bitbang_setup(struct spi_device *spi); extern int spi_bitbang_setup(struct spi_device *spi);
extern void spi_bitbang_cleanup(const struct spi_device *spi); extern void spi_bitbang_cleanup(const struct spi_device *spi);
extern int spi_bitbang_transfer(struct spi_device *spi, struct spi_message *m); extern int spi_bitbang_transfer(struct spi_device *spi, struct spi_message *m);
extern int spi_bitbang_setup_transfer(struct spi_device *spi,
struct spi_transfer *t);
/* start or stop queue processing */ /* start or stop queue processing */
extern int spi_bitbang_start(struct spi_bitbang *spi); extern int spi_bitbang_start(struct spi_bitbang *spi);
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment