mmu.c 22.6 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 *  linux/arch/arm/mm/mmu.c
 *
 *  Copyright (C) 1995-2005 Russell King
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
10
#include <linux/module.h>
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/bootmem.h>
#include <linux/mman.h>
#include <linux/nodemask.h>

#include <asm/mach-types.h>
#include <asm/setup.h>
#include <asm/sizes.h>
#include <asm/tlb.h>

#include <asm/mach/arch.h>
#include <asm/mach/map.h>

#include "mm.h"

DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);

30
extern void _stext, _etext, __data_start, _end;
31 32 33 34 35 36 37
extern pgd_t swapper_pg_dir[PTRS_PER_PGD];

/*
 * empty_zero_page is a special page that is used for
 * zero-initialized data and COW.
 */
struct page *empty_zero_page;
38
EXPORT_SYMBOL(empty_zero_page);
39 40 41 42 43 44

/*
 * The pmd table for the upper-most set of pages.
 */
pmd_t *top_pmd;

45 46 47 48 49 50 51 52
#define CPOLICY_UNCACHED	0
#define CPOLICY_BUFFERED	1
#define CPOLICY_WRITETHROUGH	2
#define CPOLICY_WRITEBACK	3
#define CPOLICY_WRITEALLOC	4

static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
static unsigned int ecc_mask __initdata = 0;
53
pgprot_t pgprot_user;
54 55
pgprot_t pgprot_kernel;

56
EXPORT_SYMBOL(pgprot_user);
57 58 59 60 61 62 63 64 65 66 67 68 69 70
EXPORT_SYMBOL(pgprot_kernel);

struct cachepolicy {
	const char	policy[16];
	unsigned int	cr_mask;
	unsigned int	pmd;
	unsigned int	pte;
};

static struct cachepolicy cache_policies[] __initdata = {
	{
		.policy		= "uncached",
		.cr_mask	= CR_W|CR_C,
		.pmd		= PMD_SECT_UNCACHED,
71
		.pte		= L_PTE_MT_UNCACHED,
72 73 74 75
	}, {
		.policy		= "buffered",
		.cr_mask	= CR_C,
		.pmd		= PMD_SECT_BUFFERED,
76
		.pte		= L_PTE_MT_BUFFERABLE,
77 78 79 80
	}, {
		.policy		= "writethrough",
		.cr_mask	= 0,
		.pmd		= PMD_SECT_WT,
81
		.pte		= L_PTE_MT_WRITETHROUGH,
82 83 84 85
	}, {
		.policy		= "writeback",
		.cr_mask	= 0,
		.pmd		= PMD_SECT_WB,
86
		.pte		= L_PTE_MT_WRITEBACK,
87 88 89 90
	}, {
		.policy		= "writealloc",
		.cr_mask	= 0,
		.pmd		= PMD_SECT_WBWA,
91
		.pte		= L_PTE_MT_WRITEALLOC,
92 93 94 95
	}
};

/*
Simon Arlott's avatar
Simon Arlott committed
96
 * These are useful for identifying cache coherency
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
 * problems by allowing the cache or the cache and
 * writebuffer to be turned off.  (Note: the write
 * buffer should not be on and the cache off).
 */
static void __init early_cachepolicy(char **p)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
		int len = strlen(cache_policies[i].policy);

		if (memcmp(*p, cache_policies[i].policy, len) == 0) {
			cachepolicy = i;
			cr_alignment &= ~cache_policies[i].cr_mask;
			cr_no_alignment &= ~cache_policies[i].cr_mask;
			*p += len;
			break;
		}
	}
	if (i == ARRAY_SIZE(cache_policies))
		printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
118 119 120 121
	if (cpu_architecture() >= CPU_ARCH_ARMv6) {
		printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
		cachepolicy = CPOLICY_WRITEBACK;
	}
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
	flush_cache_all();
	set_cr(cr_alignment);
}
__early_param("cachepolicy=", early_cachepolicy);

static void __init early_nocache(char **__unused)
{
	char *p = "buffered";
	printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
	early_cachepolicy(&p);
}
__early_param("nocache", early_nocache);

static void __init early_nowrite(char **__unused)
{
	char *p = "uncached";
	printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
	early_cachepolicy(&p);
}
__early_param("nowb", early_nowrite);

static void __init early_ecc(char **p)
{
	if (memcmp(*p, "on", 2) == 0) {
		ecc_mask = PMD_PROTECTION;
		*p += 2;
	} else if (memcmp(*p, "off", 3) == 0) {
		ecc_mask = 0;
		*p += 3;
	}
}
__early_param("ecc=", early_ecc);

static int __init noalign_setup(char *__unused)
{
	cr_alignment &= ~CR_A;
	cr_no_alignment &= ~CR_A;
	set_cr(cr_alignment);
	return 1;
}
__setup("noalign", noalign_setup);

164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
#ifndef CONFIG_SMP
void adjust_cr(unsigned long mask, unsigned long set)
{
	unsigned long flags;

	mask &= ~CR_A;

	set &= mask;

	local_irq_save(flags);

	cr_no_alignment = (cr_no_alignment & ~mask) | set;
	cr_alignment = (cr_alignment & ~mask) | set;

	set_cr((get_cr() & ~mask) | set);

	local_irq_restore(flags);
}
#endif

184 185 186
#define PROT_PTE_DEVICE		L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_WRITE
#define PROT_SECT_DEVICE	PMD_TYPE_SECT|PMD_SECT_XN|PMD_SECT_AP_WRITE

187
static struct mem_type mem_types[] = {
188
	[MT_DEVICE] = {		  /* Strongly ordered / ARMv6 shared device */
189 190
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
				  L_PTE_SHARED,
191 192 193 194 195
		.prot_l1	= PMD_TYPE_TABLE,
		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_UNCACHED,
		.domain		= DOMAIN_IO,
	},
	[MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
196
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
197 198 199 200 201 202
		.prot_pte_ext	= PTE_EXT_TEX(2),
		.prot_l1	= PMD_TYPE_TABLE,
		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_TEX(2),
		.domain		= DOMAIN_IO,
	},
	[MT_DEVICE_CACHED] = {	  /* ioremap_cached */
203
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
204 205 206 207 208
		.prot_l1	= PMD_TYPE_TABLE,
		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_WB,
		.domain		= DOMAIN_IO,
	},	
	[MT_DEVICE_IXP2000] = {	  /* IXP2400 requires XCB=101 for on-chip I/O */
209
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_IXP2000,
210 211 212 213
		.prot_l1	= PMD_TYPE_TABLE,
		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_BUFFERABLE |
				  PMD_SECT_TEX(1),
		.domain		= DOMAIN_IO,
214
	},
215
	[MT_DEVICE_WC] = {	/* ioremap_wc */
216
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
217
		.prot_l1	= PMD_TYPE_TABLE,
218
		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_BUFFERABLE,
219 220
		.domain		= DOMAIN_IO,
	},
221
	[MT_CACHECLEAN] = {
222
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
223 224 225
		.domain    = DOMAIN_KERNEL,
	},
	[MT_MINICLEAN] = {
226
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
		.domain    = DOMAIN_KERNEL,
	},
	[MT_LOW_VECTORS] = {
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
				L_PTE_EXEC,
		.prot_l1   = PMD_TYPE_TABLE,
		.domain    = DOMAIN_USER,
	},
	[MT_HIGH_VECTORS] = {
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
				L_PTE_USER | L_PTE_EXEC,
		.prot_l1   = PMD_TYPE_TABLE,
		.domain    = DOMAIN_USER,
	},
	[MT_MEMORY] = {
242
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
243 244 245
		.domain    = DOMAIN_KERNEL,
	},
	[MT_ROM] = {
246
		.prot_sect = PMD_TYPE_SECT,
247 248 249 250
		.domain    = DOMAIN_KERNEL,
	},
};

251 252 253 254 255
const struct mem_type *get_mem_type(unsigned int type)
{
	return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
}

256 257 258 259 260 261 262
/*
 * Adjust the PMD section entries according to the CPU in use.
 */
static void __init build_mem_type_table(void)
{
	struct cachepolicy *cp;
	unsigned int cr = get_cr();
263
	unsigned int user_pgprot, kern_pgprot, vecs_pgprot;
264 265 266
	int cpu_arch = cpu_architecture();
	int i;

267
	if (cpu_arch < CPU_ARCH_ARMv6) {
268
#if defined(CONFIG_CPU_DCACHE_DISABLE)
269 270
		if (cachepolicy > CPOLICY_BUFFERED)
			cachepolicy = CPOLICY_BUFFERED;
271
#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
272 273
		if (cachepolicy > CPOLICY_WRITETHROUGH)
			cachepolicy = CPOLICY_WRITETHROUGH;
274
#endif
275
	}
276 277 278 279 280
	if (cpu_arch < CPU_ARCH_ARMv5) {
		if (cachepolicy >= CPOLICY_WRITEALLOC)
			cachepolicy = CPOLICY_WRITEBACK;
		ecc_mask = 0;
	}
281 282 283
#ifdef CONFIG_SMP
	cachepolicy = CPOLICY_WRITEALLOC;
#endif
284

285 286 287 288 289 290 291 292
	/*
	 * On non-Xscale3 ARMv5-and-older systems, use CB=01
	 * (Uncached/Buffered) for ioremap_wc() mappings.  On XScale3
	 * and ARMv6+, use TEXCB=00100 mappings (Inner/Outer Uncacheable
	 * in xsc3 parlance, Uncached Normal in ARMv6 parlance).
	 */
	if (cpu_is_xsc3() || cpu_arch >= CPU_ARCH_ARMv6) {
		mem_types[MT_DEVICE_WC].prot_pte_ext |= PTE_EXT_TEX(1);
293
		mem_types[MT_DEVICE_WC].prot_pte &= ~L_PTE_BUFFERABLE;
294
		mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
295
		mem_types[MT_DEVICE_WC].prot_sect &= ~PMD_SECT_BUFFERABLE;
296 297
	}

298
	/*
299 300 301
	 * ARMv5 and lower, bit 4 must be set for page tables.
	 * (was: cache "update-able on write" bit on ARM610)
	 * However, Xscale cores require this bit to be cleared.
302
	 */
303 304
	if (cpu_is_xscale()) {
		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
305
			mem_types[i].prot_sect &= ~PMD_BIT4;
306 307 308 309
			mem_types[i].prot_l1 &= ~PMD_BIT4;
		}
	} else if (cpu_arch < CPU_ARCH_ARMv6) {
		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
310 311
			if (mem_types[i].prot_l1)
				mem_types[i].prot_l1 |= PMD_BIT4;
312 313 314 315
			if (mem_types[i].prot_sect)
				mem_types[i].prot_sect |= PMD_BIT4;
		}
	}
316 317

	cp = &cache_policies[cachepolicy];
318 319 320 321 322 323 324 325 326
	vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;

#ifndef CONFIG_SMP
	/*
	 * Only use write-through for non-SMP systems
	 */
	if (cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
		vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
#endif
327 328 329 330 331 332 333 334

	/*
	 * Enable CPU-specific coherency if supported.
	 * (Only available on XSC3 at the moment.)
	 */
	if (arch_is_coherent()) {
		if (cpu_is_xsc3()) {
			mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
335
			mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
		}
	}

	/*
	 * ARMv6 and above have extended page tables.
	 */
	if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
		/*
		 * Mark cache clean areas and XIP ROM read only
		 * from SVC mode and no access from userspace.
		 */
		mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
		mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;

		/*
		 * Mark the device area as "shared device"
		 */
		mem_types[MT_DEVICE].prot_pte |= L_PTE_BUFFERABLE;
		mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;

#ifdef CONFIG_SMP
		/*
		 * Mark memory with the "shared" attribute for SMP systems
		 */
		user_pgprot |= L_PTE_SHARED;
		kern_pgprot |= L_PTE_SHARED;
363
		vecs_pgprot |= L_PTE_SHARED;
364 365 366 367 368 369
		mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
#endif
	}

	for (i = 0; i < 16; i++) {
		unsigned long v = pgprot_val(protection_map[i]);
370
		protection_map[i] = __pgprot(v | user_pgprot);
371 372
	}

373 374
	mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
	mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
375

376
	if (cpu_arch < CPU_ARCH_ARMv5)
377 378
		mem_types[MT_MINICLEAN].prot_sect &= ~PMD_SECT_TEX(1);

379
	pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
	pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
				 L_PTE_DIRTY | L_PTE_WRITE |
				 L_PTE_EXEC | kern_pgprot);

	mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
	mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
	mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
	mem_types[MT_ROM].prot_sect |= cp->pmd;

	switch (cp->pmd) {
	case PMD_SECT_WT:
		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
		break;
	case PMD_SECT_WB:
	case PMD_SECT_WBWA:
		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
		break;
	}
	printk("Memory policy: ECC %sabled, Data cache %s\n",
		ecc_mask ? "en" : "dis", cp->policy);
400 401 402 403 404 405 406 407

	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
		struct mem_type *t = &mem_types[i];
		if (t->prot_l1)
			t->prot_l1 |= PMD_DOMAIN(t->domain);
		if (t->prot_sect)
			t->prot_sect |= PMD_DOMAIN(t->domain);
	}
408 409 410 411
}

#define vectors_base()	(vectors_high() ? 0xffff0000 : 0)

412 413 414
static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
				  unsigned long end, unsigned long pfn,
				  const struct mem_type *type)
415
{
416
	pte_t *pte;
417

418 419 420 421
	if (pmd_none(*pmd)) {
		pte = alloc_bootmem_low_pages(2 * PTRS_PER_PTE * sizeof(pte_t));
		__pmd_populate(pmd, __pa(pte) | type->prot_l1);
	}
422

423 424
	pte = pte_offset_kernel(pmd, addr);
	do {
425 426
		set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)),
			    type->prot_pte_ext);
427 428
		pfn++;
	} while (pte++, addr += PAGE_SIZE, addr != end);
429 430
}

431 432 433
static void __init alloc_init_section(pgd_t *pgd, unsigned long addr,
				      unsigned long end, unsigned long phys,
				      const struct mem_type *type)
434
{
435
	pmd_t *pmd = pmd_offset(pgd, addr);
436

437 438 439 440 441 442 443 444
	/*
	 * Try a section mapping - end, addr and phys must all be aligned
	 * to a section boundary.  Note that PMDs refer to the individual
	 * L1 entries, whereas PGDs refer to a group of L1 entries making
	 * up one logical pointer to an L2 table.
	 */
	if (((addr | end | phys) & ~SECTION_MASK) == 0) {
		pmd_t *p = pmd;
445

446 447 448 449 450 451 452
		if (addr & SECTION_SIZE)
			pmd++;

		do {
			*pmd = __pmd(phys | type->prot_sect);
			phys += SECTION_SIZE;
		} while (pmd++, addr += SECTION_SIZE, addr != end);
453

454 455 456 457 458 459 460 461
		flush_pmd_entry(p);
	} else {
		/*
		 * No need to loop; pte's aren't interested in the
		 * individual L1 entries.
		 */
		alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
	}
462 463
}

464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
static void __init create_36bit_mapping(struct map_desc *md,
					const struct mem_type *type)
{
	unsigned long phys, addr, length, end;
	pgd_t *pgd;

	addr = md->virtual;
	phys = (unsigned long)__pfn_to_phys(md->pfn);
	length = PAGE_ALIGN(md->length);

	if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
		printk(KERN_ERR "MM: CPU does not support supersection "
		       "mapping for 0x%08llx at 0x%08lx\n",
		       __pfn_to_phys((u64)md->pfn), addr);
		return;
	}

	/* N.B.	ARMv6 supersections are only defined to work with domain 0.
	 *	Since domain assignments can in fact be arbitrary, the
	 *	'domain == 0' check below is required to insure that ARMv6
	 *	supersections are only allocated for domain 0 regardless
	 *	of the actual domain assignments in use.
	 */
	if (type->domain) {
		printk(KERN_ERR "MM: invalid domain in supersection "
		       "mapping for 0x%08llx at 0x%08lx\n",
		       __pfn_to_phys((u64)md->pfn), addr);
		return;
	}

	if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
		printk(KERN_ERR "MM: cannot create mapping for "
		       "0x%08llx at 0x%08lx invalid alignment\n",
		       __pfn_to_phys((u64)md->pfn), addr);
		return;
	}

	/*
	 * Shift bits [35:32] of address into bits [23:20] of PMD
	 * (See ARMv6 spec).
	 */
	phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);

	pgd = pgd_offset_k(addr);
	end = addr + length;
	do {
		pmd_t *pmd = pmd_offset(pgd, addr);
		int i;

		for (i = 0; i < 16; i++)
			*pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);

		addr += SUPERSECTION_SIZE;
		phys += SUPERSECTION_SIZE;
		pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
	} while (addr != end);
}

522 523 524 525 526 527 528 529 530
/*
 * Create the page directory entries and any necessary
 * page tables for the mapping specified by `md'.  We
 * are able to cope here with varying sizes and address
 * offsets, and we take full advantage of sections and
 * supersections.
 */
void __init create_mapping(struct map_desc *md)
{
531
	unsigned long phys, addr, length, end;
532
	const struct mem_type *type;
533
	pgd_t *pgd;
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548

	if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
		printk(KERN_WARNING "BUG: not creating mapping for "
		       "0x%08llx at 0x%08lx in user region\n",
		       __pfn_to_phys((u64)md->pfn), md->virtual);
		return;
	}

	if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
	    md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
		printk(KERN_WARNING "BUG: mapping for 0x%08llx at 0x%08lx "
		       "overlaps vmalloc space\n",
		       __pfn_to_phys((u64)md->pfn), md->virtual);
	}

549
	type = &mem_types[md->type];
550 551 552 553

	/*
	 * Catch 36-bit addresses
	 */
554 555 556
	if (md->pfn >= 0x100000) {
		create_36bit_mapping(md, type);
		return;
557 558
	}

559
	addr = md->virtual & PAGE_MASK;
560
	phys = (unsigned long)__pfn_to_phys(md->pfn);
561
	length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
562

563
	if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
564 565
		printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not "
		       "be mapped using pages, ignoring.\n",
566
		       __pfn_to_phys(md->pfn), addr);
567 568 569
		return;
	}

570 571 572 573
	pgd = pgd_offset_k(addr);
	end = addr + length;
	do {
		unsigned long next = pgd_addr_end(addr, end);
574

575
		alloc_init_section(pgd, addr, next, phys, type);
576

577 578 579
		phys += next - addr;
		addr = next;
	} while (pgd++, addr != end);
580 581 582 583 584 585 586 587 588 589 590 591 592
}

/*
 * Create the architecture specific mappings
 */
void __init iotable_init(struct map_desc *io_desc, int nr)
{
	int i;

	for (i = 0; i < nr; i++)
		create_mapping(io_desc + i);
}

593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
static int __init check_membank_valid(struct membank *mb)
{
	/*
	 * Check whether this memory region has non-zero size.
	 */
	if (mb->size == 0)
		return 0;

	/*
	 * Check whether this memory region would entirely overlap
	 * the vmalloc area.
	 */
	if (phys_to_virt(mb->start) >= VMALLOC_MIN) {
		printk(KERN_NOTICE "Ignoring RAM at %.8lx-%.8lx "
			"(vmalloc region overlap).\n",
			mb->start, mb->start + mb->size - 1);
		return 0;
	}

	/*
	 * Check whether this memory region would partially overlap
	 * the vmalloc area.
	 */
	if (phys_to_virt(mb->start + mb->size) < phys_to_virt(mb->start) ||
	    phys_to_virt(mb->start + mb->size) > VMALLOC_MIN) {
		unsigned long newsize = VMALLOC_MIN - phys_to_virt(mb->start);

		printk(KERN_NOTICE "Truncating RAM at %.8lx-%.8lx "
			"to -%.8lx (vmalloc region overlap).\n",
			mb->start, mb->start + mb->size - 1,
			mb->start + newsize - 1);
		mb->size = newsize;
	}

	return 1;
}

static void __init sanity_check_meminfo(struct meminfo *mi)
{
	int i;
	int j;

	for (i = 0, j = 0; i < mi->nr_banks; i++) {
		if (check_membank_valid(&mi->bank[i]))
			mi->bank[j++] = mi->bank[i];
	}
	mi->nr_banks = j;
}

642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
static inline void prepare_page_table(struct meminfo *mi)
{
	unsigned long addr;

	/*
	 * Clear out all the mappings below the kernel image.
	 */
	for (addr = 0; addr < MODULE_START; addr += PGDIR_SIZE)
		pmd_clear(pmd_off_k(addr));

#ifdef CONFIG_XIP_KERNEL
	/* The XIP kernel is mapped in the module area -- skip over it */
	addr = ((unsigned long)&_etext + PGDIR_SIZE - 1) & PGDIR_MASK;
#endif
	for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
		pmd_clear(pmd_off_k(addr));

	/*
	 * Clear out all the kernel space mappings, except for the first
	 * memory bank, up to the end of the vmalloc region.
	 */
	for (addr = __phys_to_virt(mi->bank[0].start + mi->bank[0].size);
	     addr < VMALLOC_END; addr += PGDIR_SIZE)
		pmd_clear(pmd_off_k(addr));
}

/*
 * Reserve the various regions of node 0
 */
void __init reserve_node_zero(pg_data_t *pgdat)
{
	unsigned long res_size = 0;

	/*
	 * Register the kernel text and data with bootmem.
	 * Note that this can only be in node 0.
	 */
#ifdef CONFIG_XIP_KERNEL
680 681
	reserve_bootmem_node(pgdat, __pa(&__data_start), &_end - &__data_start,
			BOOTMEM_DEFAULT);
682
#else
683 684
	reserve_bootmem_node(pgdat, __pa(&_stext), &_end - &_stext,
			BOOTMEM_DEFAULT);
685 686 687 688 689 690 691
#endif

	/*
	 * Reserve the page tables.  These are already in use,
	 * and can only be in node 0.
	 */
	reserve_bootmem_node(pgdat, __pa(swapper_pg_dir),
692
			     PTRS_PER_PGD * sizeof(pgd_t), BOOTMEM_DEFAULT);
693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711

	/*
	 * Hmm... This should go elsewhere, but we really really need to
	 * stop things allocating the low memory; ideally we need a better
	 * implementation of GFP_DMA which does not assume that DMA-able
	 * memory starts at zero.
	 */
	if (machine_is_integrator() || machine_is_cintegrator())
		res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;

	/*
	 * These should likewise go elsewhere.  They pre-reserve the
	 * screen memory region at the start of main system memory.
	 */
	if (machine_is_edb7211())
		res_size = 0x00020000;
	if (machine_is_p720t())
		res_size = 0x00014000;

712 713 714
	/* H1940 and RX3715 need to reserve this for suspend */

	if (machine_is_h1940() || machine_is_rx3715()) {
715 716 717 718
		reserve_bootmem_node(pgdat, 0x30003000, 0x1000,
				BOOTMEM_DEFAULT);
		reserve_bootmem_node(pgdat, 0x30081000, 0x1000,
				BOOTMEM_DEFAULT);
719 720
	}

721 722 723 724 725 726 727 728
#ifdef CONFIG_SA1111
	/*
	 * Because of the SA1111 DMA bug, we want to preserve our
	 * precious DMA-able memory...
	 */
	res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
#endif
	if (res_size)
729 730
		reserve_bootmem_node(pgdat, PHYS_OFFSET, res_size,
				BOOTMEM_DEFAULT);
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
}

/*
 * Set up device the mappings.  Since we clear out the page tables for all
 * mappings above VMALLOC_END, we will remove any debug device mappings.
 * This means you have to be careful how you debug this function, or any
 * called function.  This means you can't use any function or debugging
 * method which may touch any device, otherwise the kernel _will_ crash.
 */
static void __init devicemaps_init(struct machine_desc *mdesc)
{
	struct map_desc map;
	unsigned long addr;
	void *vectors;

	/*
	 * Allocate the vector page early.
	 */
	vectors = alloc_bootmem_low_pages(PAGE_SIZE);
	BUG_ON(!vectors);

	for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
		pmd_clear(pmd_off_k(addr));

	/*
	 * Map the kernel if it is XIP.
	 * It is always first in the modulearea.
	 */
#ifdef CONFIG_XIP_KERNEL
	map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
	map.virtual = MODULE_START;
	map.length = ((unsigned long)&_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
	map.type = MT_ROM;
	create_mapping(&map);
#endif

	/*
	 * Map the cache flushing regions.
	 */
#ifdef FLUSH_BASE
	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
	map.virtual = FLUSH_BASE;
	map.length = SZ_1M;
	map.type = MT_CACHECLEAN;
	create_mapping(&map);
#endif
#ifdef FLUSH_BASE_MINICACHE
	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
	map.virtual = FLUSH_BASE_MINICACHE;
	map.length = SZ_1M;
	map.type = MT_MINICLEAN;
	create_mapping(&map);
#endif

	/*
	 * Create a mapping for the machine vectors at the high-vectors
	 * location (0xffff0000).  If we aren't using high-vectors, also
	 * create a mapping at the low-vectors virtual address.
	 */
	map.pfn = __phys_to_pfn(virt_to_phys(vectors));
	map.virtual = 0xffff0000;
	map.length = PAGE_SIZE;
	map.type = MT_HIGH_VECTORS;
	create_mapping(&map);

	if (!vectors_high()) {
		map.virtual = 0;
		map.type = MT_LOW_VECTORS;
		create_mapping(&map);
	}

	/*
	 * Ask the machine support to map in the statically mapped devices.
	 */
	if (mdesc->map_io)
		mdesc->map_io();

	/*
	 * Finally flush the caches and tlb to ensure that we're in a
	 * consistent state wrt the writebuffer.  This also ensures that
	 * any write-allocated cache lines in the vector page are written
	 * back.  After this point, we can start to touch devices again.
	 */
	local_flush_tlb_all();
	flush_cache_all();
}

/*
 * paging_init() sets up the page tables, initialises the zone memory
 * maps, and sets up the zero page, bad page and bad page tables.
 */
void __init paging_init(struct meminfo *mi, struct machine_desc *mdesc)
{
	void *zero_page;

	build_mem_type_table();
827
	sanity_check_meminfo(mi);
828 829 830 831 832 833 834 835 836 837 838 839 840 841
	prepare_page_table(mi);
	bootmem_init(mi);
	devicemaps_init(mdesc);

	top_pmd = pmd_off_k(0xffff0000);

	/*
	 * allocate the zero page.  Note that we count on this going ok.
	 */
	zero_page = alloc_bootmem_low_pages(PAGE_SIZE);
	memzero(zero_page, PAGE_SIZE);
	empty_zero_page = virt_to_page(zero_page);
	flush_dcache_page(empty_zero_page);
}
842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872

/*
 * In order to soft-boot, we need to insert a 1:1 mapping in place of
 * the user-mode pages.  This will then ensure that we have predictable
 * results when turning the mmu off
 */
void setup_mm_for_reboot(char mode)
{
	unsigned long base_pmdval;
	pgd_t *pgd;
	int i;

	if (current->mm && current->mm->pgd)
		pgd = current->mm->pgd;
	else
		pgd = init_mm.pgd;

	base_pmdval = PMD_SECT_AP_WRITE | PMD_SECT_AP_READ | PMD_TYPE_SECT;
	if (cpu_architecture() <= CPU_ARCH_ARMv5TEJ && !cpu_is_xscale())
		base_pmdval |= PMD_BIT4;

	for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++, pgd++) {
		unsigned long pmdval = (i << PGDIR_SHIFT) | base_pmdval;
		pmd_t *pmd;

		pmd = pmd_off(pgd, i << PGDIR_SHIFT);
		pmd[0] = __pmd(pmdval);
		pmd[1] = __pmd(pmdval + (1 << (PGDIR_SHIFT - 1)));
		flush_pmd_entry(pmd);
	}
}