sh_cmt.c 16.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
/*
 * SuperH Timer Support - CMT
 *
 *  Copyright (C) 2008 Magnus Damm
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */

#include <linux/init.h>
#include <linux/platform_device.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/ioport.h>
#include <linux/io.h>
#include <linux/clk.h>
#include <linux/irq.h>
#include <linux/err.h>
#include <linux/clocksource.h>
#include <linux/clockchips.h>
#include <linux/sh_cmt.h>

struct sh_cmt_priv {
	void __iomem *mapbase;
	struct clk *clk;
	unsigned long width; /* 16 or 32 bit version of hardware block */
	unsigned long overflow_bit;
	unsigned long clear_bits;
	struct irqaction irqaction;
	struct platform_device *pdev;

	unsigned long flags;
	unsigned long match_value;
	unsigned long next_match_value;
	unsigned long max_match_value;
	unsigned long rate;
	spinlock_t lock;
	struct clock_event_device ced;
49
	struct clocksource cs;
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
	unsigned long total_cycles;
};

static DEFINE_SPINLOCK(sh_cmt_lock);

#define CMSTR -1 /* shared register */
#define CMCSR 0 /* channel register */
#define CMCNT 1 /* channel register */
#define CMCOR 2 /* channel register */

static inline unsigned long sh_cmt_read(struct sh_cmt_priv *p, int reg_nr)
{
	struct sh_cmt_config *cfg = p->pdev->dev.platform_data;
	void __iomem *base = p->mapbase;
	unsigned long offs;

	if (reg_nr == CMSTR) {
		offs = 0;
		base -= cfg->channel_offset;
	} else
		offs = reg_nr;

	if (p->width == 16)
		offs <<= 1;
	else {
		offs <<= 2;
		if ((reg_nr == CMCNT) || (reg_nr == CMCOR))
			return ioread32(base + offs);
	}

	return ioread16(base + offs);
}

static inline void sh_cmt_write(struct sh_cmt_priv *p, int reg_nr,
				unsigned long value)
{
	struct sh_cmt_config *cfg = p->pdev->dev.platform_data;
	void __iomem *base = p->mapbase;
	unsigned long offs;

	if (reg_nr == CMSTR) {
		offs = 0;
		base -= cfg->channel_offset;
	} else
		offs = reg_nr;

	if (p->width == 16)
		offs <<= 1;
	else {
		offs <<= 2;
		if ((reg_nr == CMCNT) || (reg_nr == CMCOR)) {
			iowrite32(value, base + offs);
			return;
		}
	}

	iowrite16(value, base + offs);
}

static unsigned long sh_cmt_get_counter(struct sh_cmt_priv *p,
					int *has_wrapped)
{
	unsigned long v1, v2, v3;
113 114 115
	int o1, o2;

	o1 = sh_cmt_read(p, CMCSR) & p->overflow_bit;
116 117 118

	/* Make sure the timer value is stable. Stolen from acpi_pm.c */
	do {
119
		o2 = o1;
120 121 122
		v1 = sh_cmt_read(p, CMCNT);
		v2 = sh_cmt_read(p, CMCNT);
		v3 = sh_cmt_read(p, CMCNT);
123 124 125
		o1 = sh_cmt_read(p, CMCSR) & p->overflow_bit;
	} while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
			  || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
126

127
	*has_wrapped = o1;
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
	return v2;
}


static void sh_cmt_start_stop_ch(struct sh_cmt_priv *p, int start)
{
	struct sh_cmt_config *cfg = p->pdev->dev.platform_data;
	unsigned long flags, value;

	/* start stop register shared by multiple timer channels */
	spin_lock_irqsave(&sh_cmt_lock, flags);
	value = sh_cmt_read(p, CMSTR);

	if (start)
		value |= 1 << cfg->timer_bit;
	else
		value &= ~(1 << cfg->timer_bit);

	sh_cmt_write(p, CMSTR, value);
	spin_unlock_irqrestore(&sh_cmt_lock, flags);
}

static int sh_cmt_enable(struct sh_cmt_priv *p, unsigned long *rate)
{
	struct sh_cmt_config *cfg = p->pdev->dev.platform_data;
	int ret;

	/* enable clock */
	ret = clk_enable(p->clk);
	if (ret) {
		pr_err("sh_cmt: cannot enable clock \"%s\"\n", cfg->clk);
		return ret;
	}
	*rate = clk_get_rate(p->clk) / 8;

	/* make sure channel is disabled */
	sh_cmt_start_stop_ch(p, 0);

	/* configure channel, periodic mode and maximum timeout */
	if (p->width == 16)
		sh_cmt_write(p, CMCSR, 0);
	else
		sh_cmt_write(p, CMCSR, 0x01a4);

	sh_cmt_write(p, CMCOR, 0xffffffff);
	sh_cmt_write(p, CMCNT, 0);

	/* enable channel */
	sh_cmt_start_stop_ch(p, 1);
	return 0;
}

static void sh_cmt_disable(struct sh_cmt_priv *p)
{
	/* disable channel */
	sh_cmt_start_stop_ch(p, 0);

	/* stop clock */
	clk_disable(p->clk);
}

/* private flags */
#define FLAG_CLOCKEVENT (1 << 0)
#define FLAG_CLOCKSOURCE (1 << 1)
#define FLAG_REPROGRAM (1 << 2)
#define FLAG_SKIPEVENT (1 << 3)
#define FLAG_IRQCONTEXT (1 << 4)

static void sh_cmt_clock_event_program_verify(struct sh_cmt_priv *p,
					      int absolute)
{
	unsigned long new_match;
	unsigned long value = p->next_match_value;
	unsigned long delay = 0;
	unsigned long now = 0;
	int has_wrapped;

	now = sh_cmt_get_counter(p, &has_wrapped);
	p->flags |= FLAG_REPROGRAM; /* force reprogram */

	if (has_wrapped) {
		/* we're competing with the interrupt handler.
		 *  -> let the interrupt handler reprogram the timer.
		 *  -> interrupt number two handles the event.
		 */
		p->flags |= FLAG_SKIPEVENT;
		return;
	}

	if (absolute)
		now = 0;

	do {
		/* reprogram the timer hardware,
		 * but don't save the new match value yet.
		 */
		new_match = now + value + delay;
		if (new_match > p->max_match_value)
			new_match = p->max_match_value;

		sh_cmt_write(p, CMCOR, new_match);

		now = sh_cmt_get_counter(p, &has_wrapped);
		if (has_wrapped && (new_match > p->match_value)) {
			/* we are changing to a greater match value,
			 * so this wrap must be caused by the counter
			 * matching the old value.
			 * -> first interrupt reprograms the timer.
			 * -> interrupt number two handles the event.
			 */
			p->flags |= FLAG_SKIPEVENT;
			break;
		}

		if (has_wrapped) {
			/* we are changing to a smaller match value,
			 * so the wrap must be caused by the counter
			 * matching the new value.
			 * -> save programmed match value.
			 * -> let isr handle the event.
			 */
			p->match_value = new_match;
			break;
		}

		/* be safe: verify hardware settings */
		if (now < new_match) {
			/* timer value is below match value, all good.
			 * this makes sure we won't miss any match events.
			 * -> save programmed match value.
			 * -> let isr handle the event.
			 */
			p->match_value = new_match;
			break;
		}

		/* the counter has reached a value greater
		 * than our new match value. and since the
		 * has_wrapped flag isn't set we must have
		 * programmed a too close event.
		 * -> increase delay and retry.
		 */
		if (delay)
			delay <<= 1;
		else
			delay = 1;

		if (!delay)
			pr_warning("sh_cmt: too long delay\n");

	} while (delay);
}

static void sh_cmt_set_next(struct sh_cmt_priv *p, unsigned long delta)
{
	unsigned long flags;

	if (delta > p->max_match_value)
		pr_warning("sh_cmt: delta out of range\n");

	spin_lock_irqsave(&p->lock, flags);
	p->next_match_value = delta;
	sh_cmt_clock_event_program_verify(p, 0);
	spin_unlock_irqrestore(&p->lock, flags);
}

static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
{
	struct sh_cmt_priv *p = dev_id;

	/* clear flags */
	sh_cmt_write(p, CMCSR, sh_cmt_read(p, CMCSR) & p->clear_bits);

	/* update clock source counter to begin with if enabled
	 * the wrap flag should be cleared by the timer specific
	 * isr before we end up here.
	 */
	if (p->flags & FLAG_CLOCKSOURCE)
		p->total_cycles += p->match_value;

	if (!(p->flags & FLAG_REPROGRAM))
		p->next_match_value = p->max_match_value;

	p->flags |= FLAG_IRQCONTEXT;

	if (p->flags & FLAG_CLOCKEVENT) {
		if (!(p->flags & FLAG_SKIPEVENT)) {
			if (p->ced.mode == CLOCK_EVT_MODE_ONESHOT) {
				p->next_match_value = p->max_match_value;
				p->flags |= FLAG_REPROGRAM;
			}

			p->ced.event_handler(&p->ced);
		}
	}

	p->flags &= ~FLAG_SKIPEVENT;

	if (p->flags & FLAG_REPROGRAM) {
		p->flags &= ~FLAG_REPROGRAM;
		sh_cmt_clock_event_program_verify(p, 1);

		if (p->flags & FLAG_CLOCKEVENT)
			if ((p->ced.mode == CLOCK_EVT_MODE_SHUTDOWN)
			    || (p->match_value == p->next_match_value))
				p->flags &= ~FLAG_REPROGRAM;
	}

	p->flags &= ~FLAG_IRQCONTEXT;

	return IRQ_HANDLED;
}

static int sh_cmt_start(struct sh_cmt_priv *p, unsigned long flag)
{
	int ret = 0;
	unsigned long flags;

	spin_lock_irqsave(&p->lock, flags);

	if (!(p->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
		ret = sh_cmt_enable(p, &p->rate);

	if (ret)
		goto out;
	p->flags |= flag;

	/* setup timeout if no clockevent */
	if ((flag == FLAG_CLOCKSOURCE) && (!(p->flags & FLAG_CLOCKEVENT)))
		sh_cmt_set_next(p, p->max_match_value);
 out:
	spin_unlock_irqrestore(&p->lock, flags);

	return ret;
}

static void sh_cmt_stop(struct sh_cmt_priv *p, unsigned long flag)
{
	unsigned long flags;
	unsigned long f;

	spin_lock_irqsave(&p->lock, flags);

	f = p->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
	p->flags &= ~flag;

	if (f && !(p->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
		sh_cmt_disable(p);

	/* adjust the timeout to maximum if only clocksource left */
	if ((flag == FLAG_CLOCKEVENT) && (p->flags & FLAG_CLOCKSOURCE))
		sh_cmt_set_next(p, p->max_match_value);

	spin_unlock_irqrestore(&p->lock, flags);
}

384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
static struct sh_cmt_priv *cs_to_sh_cmt(struct clocksource *cs)
{
	return container_of(cs, struct sh_cmt_priv, cs);
}

static cycle_t sh_cmt_clocksource_read(struct clocksource *cs)
{
	struct sh_cmt_priv *p = cs_to_sh_cmt(cs);
	unsigned long flags, raw;
	unsigned long value;
	int has_wrapped;

	spin_lock_irqsave(&p->lock, flags);
	value = p->total_cycles;
	raw = sh_cmt_get_counter(p, &has_wrapped);

	if (unlikely(has_wrapped))
401
		raw += p->match_value;
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
	spin_unlock_irqrestore(&p->lock, flags);

	return value + raw;
}

static int sh_cmt_clocksource_enable(struct clocksource *cs)
{
	struct sh_cmt_priv *p = cs_to_sh_cmt(cs);
	int ret;

	p->total_cycles = 0;

	ret = sh_cmt_start(p, FLAG_CLOCKSOURCE);
	if (ret)
		return ret;

	/* TODO: calculate good shift from rate and counter bit width */
	cs->shift = 0;
	cs->mult = clocksource_hz2mult(p->rate, cs->shift);
	return 0;
}

static void sh_cmt_clocksource_disable(struct clocksource *cs)
{
	sh_cmt_stop(cs_to_sh_cmt(cs), FLAG_CLOCKSOURCE);
}

static int sh_cmt_register_clocksource(struct sh_cmt_priv *p,
				       char *name, unsigned long rating)
{
	struct clocksource *cs = &p->cs;

	cs->name = name;
	cs->rating = rating;
	cs->read = sh_cmt_clocksource_read;
	cs->enable = sh_cmt_clocksource_enable;
	cs->disable = sh_cmt_clocksource_disable;
	cs->mask = CLOCKSOURCE_MASK(sizeof(unsigned long) * 8);
	cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
	pr_info("sh_cmt: %s used as clock source\n", cs->name);
	clocksource_register(cs);
	return 0;
}

446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
static struct sh_cmt_priv *ced_to_sh_cmt(struct clock_event_device *ced)
{
	return container_of(ced, struct sh_cmt_priv, ced);
}

static void sh_cmt_clock_event_start(struct sh_cmt_priv *p, int periodic)
{
	struct clock_event_device *ced = &p->ced;

	sh_cmt_start(p, FLAG_CLOCKEVENT);

	/* TODO: calculate good shift from rate and counter bit width */

	ced->shift = 32;
	ced->mult = div_sc(p->rate, NSEC_PER_SEC, ced->shift);
	ced->max_delta_ns = clockevent_delta2ns(p->max_match_value, ced);
	ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);

	if (periodic)
		sh_cmt_set_next(p, (p->rate + HZ/2) / HZ);
	else
		sh_cmt_set_next(p, p->max_match_value);
}

static void sh_cmt_clock_event_mode(enum clock_event_mode mode,
				    struct clock_event_device *ced)
{
	struct sh_cmt_priv *p = ced_to_sh_cmt(ced);

	/* deal with old setting first */
	switch (ced->mode) {
	case CLOCK_EVT_MODE_PERIODIC:
	case CLOCK_EVT_MODE_ONESHOT:
		sh_cmt_stop(p, FLAG_CLOCKEVENT);
		break;
	default:
		break;
	}

	switch (mode) {
	case CLOCK_EVT_MODE_PERIODIC:
		pr_info("sh_cmt: %s used for periodic clock events\n",
			ced->name);
		sh_cmt_clock_event_start(p, 1);
		break;
	case CLOCK_EVT_MODE_ONESHOT:
		pr_info("sh_cmt: %s used for oneshot clock events\n",
			ced->name);
		sh_cmt_clock_event_start(p, 0);
		break;
	case CLOCK_EVT_MODE_SHUTDOWN:
	case CLOCK_EVT_MODE_UNUSED:
		sh_cmt_stop(p, FLAG_CLOCKEVENT);
		break;
	default:
		break;
	}
}

static int sh_cmt_clock_event_next(unsigned long delta,
				   struct clock_event_device *ced)
{
	struct sh_cmt_priv *p = ced_to_sh_cmt(ced);

	BUG_ON(ced->mode != CLOCK_EVT_MODE_ONESHOT);
	if (likely(p->flags & FLAG_IRQCONTEXT))
		p->next_match_value = delta;
	else
		sh_cmt_set_next(p, delta);

	return 0;
}

static void sh_cmt_register_clockevent(struct sh_cmt_priv *p,
				       char *name, unsigned long rating)
{
	struct clock_event_device *ced = &p->ced;

	memset(ced, 0, sizeof(*ced));

	ced->name = name;
	ced->features = CLOCK_EVT_FEAT_PERIODIC;
	ced->features |= CLOCK_EVT_FEAT_ONESHOT;
	ced->rating = rating;
	ced->cpumask = cpumask_of(0);
	ced->set_next_event = sh_cmt_clock_event_next;
	ced->set_mode = sh_cmt_clock_event_mode;

	pr_info("sh_cmt: %s used for clock events\n", ced->name);
	clockevents_register_device(ced);
}

int sh_cmt_register(struct sh_cmt_priv *p, char *name,
		    unsigned long clockevent_rating,
		    unsigned long clocksource_rating)
{
	if (p->width == (sizeof(p->max_match_value) * 8))
		p->max_match_value = ~0;
	else
		p->max_match_value = (1 << p->width) - 1;

	p->match_value = p->max_match_value;
	spin_lock_init(&p->lock);

	if (clockevent_rating)
		sh_cmt_register_clockevent(p, name, clockevent_rating);

553 554 555
	if (clocksource_rating)
		sh_cmt_register_clocksource(p, name, clocksource_rating);

556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
	return 0;
}

static int sh_cmt_setup(struct sh_cmt_priv *p, struct platform_device *pdev)
{
	struct sh_cmt_config *cfg = pdev->dev.platform_data;
	struct resource *res;
	int irq, ret;
	ret = -ENXIO;

	memset(p, 0, sizeof(*p));
	p->pdev = pdev;

	if (!cfg) {
		dev_err(&p->pdev->dev, "missing platform data\n");
		goto err0;
	}

	platform_set_drvdata(pdev, p);

	res = platform_get_resource(p->pdev, IORESOURCE_MEM, 0);
	if (!res) {
		dev_err(&p->pdev->dev, "failed to get I/O memory\n");
		goto err0;
	}

	irq = platform_get_irq(p->pdev, 0);
	if (irq < 0) {
		dev_err(&p->pdev->dev, "failed to get irq\n");
		goto err0;
	}

	/* map memory, let mapbase point to our channel */
	p->mapbase = ioremap_nocache(res->start, resource_size(res));
	if (p->mapbase == NULL) {
		pr_err("sh_cmt: failed to remap I/O memory\n");
		goto err0;
	}

	/* request irq using setup_irq() (too early for request_irq()) */
	p->irqaction.name = cfg->name;
	p->irqaction.handler = sh_cmt_interrupt;
	p->irqaction.dev_id = p;
	p->irqaction.flags = IRQF_DISABLED | IRQF_TIMER | IRQF_IRQPOLL;
	p->irqaction.mask = CPU_MASK_NONE;
	ret = setup_irq(irq, &p->irqaction);
	if (ret) {
		pr_err("sh_cmt: failed to request irq %d\n", irq);
		goto err1;
	}

	/* get hold of clock */
	p->clk = clk_get(&p->pdev->dev, cfg->clk);
	if (IS_ERR(p->clk)) {
		pr_err("sh_cmt: cannot get clock \"%s\"\n", cfg->clk);
		ret = PTR_ERR(p->clk);
		goto err2;
	}

	if (resource_size(res) == 6) {
		p->width = 16;
		p->overflow_bit = 0x80;
		p->clear_bits = ~0xc0;
	} else {
		p->width = 32;
		p->overflow_bit = 0x8000;
		p->clear_bits = ~0xc000;
	}

	return sh_cmt_register(p, cfg->name,
			       cfg->clockevent_rating,
			       cfg->clocksource_rating);
 err2:
629
	remove_irq(irq, &p->irqaction);
630 631 632 633 634 635 636 637 638
 err1:
	iounmap(p->mapbase);
 err0:
	return ret;
}

static int __devinit sh_cmt_probe(struct platform_device *pdev)
{
	struct sh_cmt_priv *p = platform_get_drvdata(pdev);
639
	struct sh_cmt_config *cfg = pdev->dev.platform_data;
640 641
	int ret;

642 643 644 645 646
	if (p) {
		pr_info("sh_cmt: %s kept as earlytimer\n", cfg->name);
		return 0;
	}

647
	p = kmalloc(sizeof(*p), GFP_KERNEL);
648 649 650 651 652 653 654
	if (p == NULL) {
		dev_err(&pdev->dev, "failed to allocate driver data\n");
		return -ENOMEM;
	}

	ret = sh_cmt_setup(p, pdev);
	if (ret) {
655
		kfree(p);
656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
		platform_set_drvdata(pdev, NULL);
	}
	return ret;
}

static int __devexit sh_cmt_remove(struct platform_device *pdev)
{
	return -EBUSY; /* cannot unregister clockevent and clocksource */
}

static struct platform_driver sh_cmt_device_driver = {
	.probe		= sh_cmt_probe,
	.remove		= __devexit_p(sh_cmt_remove),
	.driver		= {
		.name	= "sh_cmt",
	}
};

static int __init sh_cmt_init(void)
{
	return platform_driver_register(&sh_cmt_device_driver);
}

static void __exit sh_cmt_exit(void)
{
	platform_driver_unregister(&sh_cmt_device_driver);
}

684
early_platform_init("earlytimer", &sh_cmt_device_driver);
685 686 687 688 689 690
module_init(sh_cmt_init);
module_exit(sh_cmt_exit);

MODULE_AUTHOR("Magnus Damm");
MODULE_DESCRIPTION("SuperH CMT Timer Driver");
MODULE_LICENSE("GPL v2");