div64.S 1.85 KB
Newer Older
Linus Torvalds's avatar
Linus Torvalds committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 * Divide a 64-bit unsigned number by a 32-bit unsigned number.
 * This routine assumes that the top 32 bits of the dividend are
 * non-zero to start with.
 * On entry, r3 points to the dividend, which get overwritten with
 * the 64-bit quotient, and r4 contains the divisor.
 * On exit, r3 contains the remainder.
 *
 * Copyright (C) 2002 Paul Mackerras, IBM Corp.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */
16
#include "ppc_asm.h"
Linus Torvalds's avatar
Linus Torvalds committed
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58

	.globl __div64_32
__div64_32:
	lwz	r5,0(r3)	# get the dividend into r5/r6
	lwz	r6,4(r3)
	cmplw	r5,r4
	li	r7,0
	li	r8,0
	blt	1f
	divwu	r7,r5,r4	# if dividend.hi >= divisor,
	mullw	r0,r7,r4	# quotient.hi = dividend.hi / divisor
	subf.	r5,r0,r5	# dividend.hi %= divisor
	beq	3f
1:	mr	r11,r5		# here dividend.hi != 0
	andis.	r0,r5,0xc000
	bne	2f
	cntlzw	r0,r5		# we are shifting the dividend right
	li	r10,-1		# to make it < 2^32, and shifting
	srw	r10,r10,r0	# the divisor right the same amount,
	add	r9,r4,r10	# rounding up (so the estimate cannot
	andc	r11,r6,r10	# ever be too large, only too small)
	andc	r9,r9,r10
	or	r11,r5,r11
	rotlw	r9,r9,r0
	rotlw	r11,r11,r0
	divwu	r11,r11,r9	# then we divide the shifted quantities
2:	mullw	r10,r11,r4	# to get an estimate of the quotient,
	mulhwu	r9,r11,r4	# multiply the estimate by the divisor,
	subfc	r6,r10,r6	# take the product from the divisor,
	add	r8,r8,r11	# and add the estimate to the accumulated
	subfe.	r5,r9,r5	# quotient
	bne	1b
3:	cmplw	r6,r4
	blt	4f
	divwu	r0,r6,r4	# perform the remaining 32-bit division
	mullw	r10,r0,r4	# and get the remainder
	add	r8,r8,r0
	subf	r6,r10,r6
4:	stw	r7,0(r3)	# return the quotient in *r3
	stw	r8,4(r3)
	mr	r3,r6		# return the remainder in r3
	blr