s2io.c 177 KB
Newer Older
Linus Torvalds's avatar
Linus Torvalds committed
1
/************************************************************************
2
 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
Linus Torvalds's avatar
Linus Torvalds committed
3 4 5 6 7 8 9 10 11 12 13
 * Copyright(c) 2002-2005 Neterion Inc.

 * This software may be used and distributed according to the terms of
 * the GNU General Public License (GPL), incorporated herein by reference.
 * Drivers based on or derived from this code fall under the GPL and must
 * retain the authorship, copyright and license notice.  This file is not
 * a complete program and may only be used when the entire operating
 * system is licensed under the GPL.
 * See the file COPYING in this distribution for more information.
 *
 * Credits:
14 15 16 17
 * Jeff Garzik		: For pointing out the improper error condition
 *			  check in the s2io_xmit routine and also some
 *			  issues in the Tx watch dog function. Also for
 *			  patiently answering all those innumerable
Linus Torvalds's avatar
Linus Torvalds committed
18 19 20
 *			  questions regaring the 2.6 porting issues.
 * Stephen Hemminger	: Providing proper 2.6 porting mechanism for some
 *			  macros available only in 2.6 Kernel.
21
 * Francois Romieu	: For pointing out all code part that were
Linus Torvalds's avatar
Linus Torvalds committed
22
 *			  deprecated and also styling related comments.
23
 * Grant Grundler	: For helping me get rid of some Architecture
Linus Torvalds's avatar
Linus Torvalds committed
24 25
 *			  dependent code.
 * Christopher Hellwig	: Some more 2.6 specific issues in the driver.
26
 *
Linus Torvalds's avatar
Linus Torvalds committed
27 28
 * The module loadable parameters that are supported by the driver and a brief
 * explaination of all the variables.
29 30
 * rx_ring_num : This can be used to program the number of receive rings used
 * in the driver.
31
 * rx_ring_sz: This defines the number of descriptors each ring can have. This
Linus Torvalds's avatar
Linus Torvalds committed
32
 * is also an array of size 8.
33 34
 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
 *		values are 1, 2 and 3.
Linus Torvalds's avatar
Linus Torvalds committed
35
 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
36
 * tx_fifo_len: This too is an array of 8. Each element defines the number of
Linus Torvalds's avatar
Linus Torvalds committed
37 38 39 40 41 42 43 44 45
 * Tx descriptors that can be associated with each corresponding FIFO.
 ************************************************************************/

#include <linux/config.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/pci.h>
46
#include <linux/dma-mapping.h>
Linus Torvalds's avatar
Linus Torvalds committed
47 48 49 50 51 52 53 54 55 56 57 58 59
#include <linux/kernel.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/stddef.h>
#include <linux/ioctl.h>
#include <linux/timex.h>
#include <linux/sched.h>
#include <linux/ethtool.h>
#include <linux/version.h>
#include <linux/workqueue.h>
60
#include <linux/if_vlan.h>
Linus Torvalds's avatar
Linus Torvalds committed
61 62 63

#include <asm/system.h>
#include <asm/uaccess.h>
64
#include <asm/io.h>
Linus Torvalds's avatar
Linus Torvalds committed
65 66 67 68 69

/* local include */
#include "s2io.h"
#include "s2io-regs.h"

70
#define DRV_VERSION "Version 2.0.9.3"
71

Linus Torvalds's avatar
Linus Torvalds committed
72
/* S2io Driver name & version. */
73
static char s2io_driver_name[] = "Neterion";
74
static char s2io_driver_version[] = DRV_VERSION;
Linus Torvalds's avatar
Linus Torvalds committed
75

76 77 78
int rxd_size[4] = {32,48,48,64};
int rxd_count[4] = {127,85,85,63};

79 80 81 82 83 84 85 86 87 88
static inline int RXD_IS_UP2DT(RxD_t *rxdp)
{
	int ret;

	ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
		(GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));

	return ret;
}

89
/*
Linus Torvalds's avatar
Linus Torvalds committed
90 91 92 93
 * Cards with following subsystem_id have a link state indication
 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
 * macro below identifies these cards given the subsystem_id.
 */
94 95 96 97
#define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
	(dev_type == XFRAME_I_DEVICE) ?			\
		((((subid >= 0x600B) && (subid <= 0x600D)) || \
		 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
Linus Torvalds's avatar
Linus Torvalds committed
98 99 100 101 102 103 104 105 106

#define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
				      ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
#define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
#define PANIC	1
#define LOW	2
static inline int rx_buffer_level(nic_t * sp, int rxb_size, int ring)
{
	int level = 0;
107 108 109 110
	mac_info_t *mac_control;

	mac_control = &sp->mac_control;
	if ((mac_control->rings[ring].pkt_cnt - rxb_size) > 16) {
Linus Torvalds's avatar
Linus Torvalds committed
111
		level = LOW;
112
		if (rxb_size <= rxd_count[sp->rxd_mode]) {
Linus Torvalds's avatar
Linus Torvalds committed
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
			level = PANIC;
		}
	}

	return level;
}

/* Ethtool related variables and Macros. */
static char s2io_gstrings[][ETH_GSTRING_LEN] = {
	"Register test\t(offline)",
	"Eeprom test\t(offline)",
	"Link test\t(online)",
	"RLDRAM test\t(offline)",
	"BIST Test\t(offline)"
};

static char ethtool_stats_keys[][ETH_GSTRING_LEN] = {
	{"tmac_frms"},
	{"tmac_data_octets"},
	{"tmac_drop_frms"},
	{"tmac_mcst_frms"},
	{"tmac_bcst_frms"},
	{"tmac_pause_ctrl_frms"},
	{"tmac_any_err_frms"},
	{"tmac_vld_ip_octets"},
	{"tmac_vld_ip"},
	{"tmac_drop_ip"},
	{"tmac_icmp"},
	{"tmac_rst_tcp"},
	{"tmac_tcp"},
	{"tmac_udp"},
	{"rmac_vld_frms"},
	{"rmac_data_octets"},
	{"rmac_fcs_err_frms"},
	{"rmac_drop_frms"},
	{"rmac_vld_mcst_frms"},
	{"rmac_vld_bcst_frms"},
	{"rmac_in_rng_len_err_frms"},
	{"rmac_long_frms"},
	{"rmac_pause_ctrl_frms"},
	{"rmac_discarded_frms"},
	{"rmac_usized_frms"},
	{"rmac_osized_frms"},
	{"rmac_frag_frms"},
	{"rmac_jabber_frms"},
	{"rmac_ip"},
	{"rmac_ip_octets"},
	{"rmac_hdr_err_ip"},
	{"rmac_drop_ip"},
	{"rmac_icmp"},
	{"rmac_tcp"},
	{"rmac_udp"},
	{"rmac_err_drp_udp"},
	{"rmac_pause_cnt"},
	{"rmac_accepted_ip"},
	{"rmac_err_tcp"},
169 170 171
	{"\n DRIVER STATISTICS"},
	{"single_bit_ecc_errs"},
	{"double_bit_ecc_errs"},
Linus Torvalds's avatar
Linus Torvalds committed
172 173 174 175 176 177 178 179
};

#define S2IO_STAT_LEN sizeof(ethtool_stats_keys)/ ETH_GSTRING_LEN
#define S2IO_STAT_STRINGS_LEN S2IO_STAT_LEN * ETH_GSTRING_LEN

#define S2IO_TEST_LEN	sizeof(s2io_gstrings) / ETH_GSTRING_LEN
#define S2IO_STRINGS_LEN	S2IO_TEST_LEN * ETH_GSTRING_LEN

180 181 182 183 184 185
#define S2IO_TIMER_CONF(timer, handle, arg, exp)		\
			init_timer(&timer);			\
			timer.function = handle;		\
			timer.data = (unsigned long) arg;	\
			mod_timer(&timer, (jiffies + exp))	\

186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
/* Add the vlan */
static void s2io_vlan_rx_register(struct net_device *dev,
					struct vlan_group *grp)
{
	nic_t *nic = dev->priv;
	unsigned long flags;

	spin_lock_irqsave(&nic->tx_lock, flags);
	nic->vlgrp = grp;
	spin_unlock_irqrestore(&nic->tx_lock, flags);
}

/* Unregister the vlan */
static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned long vid)
{
	nic_t *nic = dev->priv;
	unsigned long flags;

	spin_lock_irqsave(&nic->tx_lock, flags);
	if (nic->vlgrp)
		nic->vlgrp->vlan_devices[vid] = NULL;
	spin_unlock_irqrestore(&nic->tx_lock, flags);
}

210
/*
Linus Torvalds's avatar
Linus Torvalds committed
211 212 213 214 215 216 217
 * Constants to be programmed into the Xena's registers, to configure
 * the XAUI.
 */

#define SWITCH_SIGN	0xA5A5A5A5A5A5A5A5ULL
#define	END_SIGN	0x0

218 219
static u64 herc_act_dtx_cfg[] = {
	/* Set address */
220
	0x8000051536750000ULL, 0x80000515367500E0ULL,
221
	/* Write data */
222
	0x8000051536750004ULL, 0x80000515367500E4ULL,
223 224 225 226 227
	/* Set address */
	0x80010515003F0000ULL, 0x80010515003F00E0ULL,
	/* Write data */
	0x80010515003F0004ULL, 0x80010515003F00E4ULL,
	/* Set address */
228 229 230 231
	0x801205150D440000ULL, 0x801205150D4400E0ULL,
	/* Write data */
	0x801205150D440004ULL, 0x801205150D4400E4ULL,
	/* Set address */
232 233 234 235 236 237 238 239
	0x80020515F2100000ULL, 0x80020515F21000E0ULL,
	/* Write data */
	0x80020515F2100004ULL, 0x80020515F21000E4ULL,
	/* Done */
	END_SIGN
};

static u64 xena_mdio_cfg[] = {
Linus Torvalds's avatar
Linus Torvalds committed
240 241 242 243 244 245 246 247 248
	/* Reset PMA PLL */
	0xC001010000000000ULL, 0xC0010100000000E0ULL,
	0xC0010100008000E4ULL,
	/* Remove Reset from PMA PLL */
	0xC001010000000000ULL, 0xC0010100000000E0ULL,
	0xC0010100000000E4ULL,
	END_SIGN
};

249
static u64 xena_dtx_cfg[] = {
Linus Torvalds's avatar
Linus Torvalds committed
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
	0x8000051500000000ULL, 0x80000515000000E0ULL,
	0x80000515D93500E4ULL, 0x8001051500000000ULL,
	0x80010515000000E0ULL, 0x80010515001E00E4ULL,
	0x8002051500000000ULL, 0x80020515000000E0ULL,
	0x80020515F21000E4ULL,
	/* Set PADLOOPBACKN */
	0x8002051500000000ULL, 0x80020515000000E0ULL,
	0x80020515B20000E4ULL, 0x8003051500000000ULL,
	0x80030515000000E0ULL, 0x80030515B20000E4ULL,
	0x8004051500000000ULL, 0x80040515000000E0ULL,
	0x80040515B20000E4ULL, 0x8005051500000000ULL,
	0x80050515000000E0ULL, 0x80050515B20000E4ULL,
	SWITCH_SIGN,
	/* Remove PADLOOPBACKN */
	0x8002051500000000ULL, 0x80020515000000E0ULL,
	0x80020515F20000E4ULL, 0x8003051500000000ULL,
	0x80030515000000E0ULL, 0x80030515F20000E4ULL,
	0x8004051500000000ULL, 0x80040515000000E0ULL,
	0x80040515F20000E4ULL, 0x8005051500000000ULL,
	0x80050515000000E0ULL, 0x80050515F20000E4ULL,
	END_SIGN
};

273
/*
Linus Torvalds's avatar
Linus Torvalds committed
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
 * Constants for Fixing the MacAddress problem seen mostly on
 * Alpha machines.
 */
static u64 fix_mac[] = {
	0x0060000000000000ULL, 0x0060600000000000ULL,
	0x0040600000000000ULL, 0x0000600000000000ULL,
	0x0020600000000000ULL, 0x0060600000000000ULL,
	0x0020600000000000ULL, 0x0060600000000000ULL,
	0x0020600000000000ULL, 0x0060600000000000ULL,
	0x0020600000000000ULL, 0x0060600000000000ULL,
	0x0020600000000000ULL, 0x0060600000000000ULL,
	0x0020600000000000ULL, 0x0060600000000000ULL,
	0x0020600000000000ULL, 0x0060600000000000ULL,
	0x0020600000000000ULL, 0x0060600000000000ULL,
	0x0020600000000000ULL, 0x0060600000000000ULL,
	0x0020600000000000ULL, 0x0060600000000000ULL,
	0x0020600000000000ULL, 0x0000600000000000ULL,
	0x0040600000000000ULL, 0x0060600000000000ULL,
	END_SIGN
};

/* Module Loadable parameters. */
static unsigned int tx_fifo_num = 1;
static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
    {[0 ...(MAX_TX_FIFOS - 1)] = 0 };
static unsigned int rx_ring_num = 1;
static unsigned int rx_ring_sz[MAX_RX_RINGS] =
    {[0 ...(MAX_RX_RINGS - 1)] = 0 };
302 303
static unsigned int rts_frm_len[MAX_RX_RINGS] =
    {[0 ...(MAX_RX_RINGS - 1)] = 0 };
304
static unsigned int rx_ring_mode = 1;
305
static unsigned int use_continuous_tx_intrs = 1;
Linus Torvalds's avatar
Linus Torvalds committed
306 307 308 309 310 311
static unsigned int rmac_pause_time = 65535;
static unsigned int mc_pause_threshold_q0q3 = 187;
static unsigned int mc_pause_threshold_q4q7 = 187;
static unsigned int shared_splits;
static unsigned int tmac_util_period = 5;
static unsigned int rmac_util_period = 5;
312
static unsigned int bimodal = 0;
313
static unsigned int l3l4hdr_size = 128;
Linus Torvalds's avatar
Linus Torvalds committed
314 315 316
#ifndef CONFIG_S2IO_NAPI
static unsigned int indicate_max_pkts;
#endif
317 318
/* Frequency of Rx desc syncs expressed as power of 2 */
static unsigned int rxsync_frequency = 3;
319 320
/* Interrupt type. Values can be 0(INTA), 1(MSI), 2(MSI_X) */
static unsigned int intr_type = 0;
Linus Torvalds's avatar
Linus Torvalds committed
321

322
/*
Linus Torvalds's avatar
Linus Torvalds committed
323
 * S2IO device table.
324
 * This table lists all the devices that this driver supports.
Linus Torvalds's avatar
Linus Torvalds committed
325 326 327 328 329 330 331
 */
static struct pci_device_id s2io_tbl[] __devinitdata = {
	{PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
	 PCI_ANY_ID, PCI_ANY_ID},
	{PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
	 PCI_ANY_ID, PCI_ANY_ID},
	{PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
332 333 334
         PCI_ANY_ID, PCI_ANY_ID},
        {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
         PCI_ANY_ID, PCI_ANY_ID},
Linus Torvalds's avatar
Linus Torvalds committed
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
	{0,}
};

MODULE_DEVICE_TABLE(pci, s2io_tbl);

static struct pci_driver s2io_driver = {
      .name = "S2IO",
      .id_table = s2io_tbl,
      .probe = s2io_init_nic,
      .remove = __devexit_p(s2io_rem_nic),
};

/* A simplifier macro used both by init and free shared_mem Fns(). */
#define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)

/**
 * init_shared_mem - Allocation and Initialization of Memory
 * @nic: Device private variable.
353 354
 * Description: The function allocates all the memory areas shared
 * between the NIC and the driver. This includes Tx descriptors,
Linus Torvalds's avatar
Linus Torvalds committed
355 356 357 358 359 360 361 362 363
 * Rx descriptors and the statistics block.
 */

static int init_shared_mem(struct s2io_nic *nic)
{
	u32 size;
	void *tmp_v_addr, *tmp_v_addr_next;
	dma_addr_t tmp_p_addr, tmp_p_addr_next;
	RxD_block_t *pre_rxd_blk = NULL;
364
	int i, j, blk_cnt, rx_sz, tx_sz;
Linus Torvalds's avatar
Linus Torvalds committed
365 366
	int lst_size, lst_per_page;
	struct net_device *dev = nic->dev;
367
	unsigned long tmp;
Linus Torvalds's avatar
Linus Torvalds committed
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
	buffAdd_t *ba;

	mac_info_t *mac_control;
	struct config_param *config;

	mac_control = &nic->mac_control;
	config = &nic->config;


	/* Allocation and initialization of TXDLs in FIOFs */
	size = 0;
	for (i = 0; i < config->tx_fifo_num; i++) {
		size += config->tx_cfg[i].fifo_len;
	}
	if (size > MAX_AVAILABLE_TXDS) {
383 384 385
		DBG_PRINT(ERR_DBG, "%s: Requested TxDs too high, ",
			  __FUNCTION__);
		DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
Linus Torvalds's avatar
Linus Torvalds committed
386 387 388 389
		return FAILURE;
	}

	lst_size = (sizeof(TxD_t) * config->max_txds);
390
	tx_sz = lst_size * size;
Linus Torvalds's avatar
Linus Torvalds committed
391 392 393 394 395
	lst_per_page = PAGE_SIZE / lst_size;

	for (i = 0; i < config->tx_fifo_num; i++) {
		int fifo_len = config->tx_cfg[i].fifo_len;
		int list_holder_size = fifo_len * sizeof(list_info_hold_t);
396 397 398
		mac_control->fifos[i].list_info = kmalloc(list_holder_size,
							  GFP_KERNEL);
		if (!mac_control->fifos[i].list_info) {
Linus Torvalds's avatar
Linus Torvalds committed
399 400 401 402
			DBG_PRINT(ERR_DBG,
				  "Malloc failed for list_info\n");
			return -ENOMEM;
		}
403
		memset(mac_control->fifos[i].list_info, 0, list_holder_size);
Linus Torvalds's avatar
Linus Torvalds committed
404 405 406 407
	}
	for (i = 0; i < config->tx_fifo_num; i++) {
		int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
						lst_per_page);
408 409
		mac_control->fifos[i].tx_curr_put_info.offset = 0;
		mac_control->fifos[i].tx_curr_put_info.fifo_len =
Linus Torvalds's avatar
Linus Torvalds committed
410
		    config->tx_cfg[i].fifo_len - 1;
411 412
		mac_control->fifos[i].tx_curr_get_info.offset = 0;
		mac_control->fifos[i].tx_curr_get_info.fifo_len =
Linus Torvalds's avatar
Linus Torvalds committed
413
		    config->tx_cfg[i].fifo_len - 1;
414 415
		mac_control->fifos[i].fifo_no = i;
		mac_control->fifos[i].nic = nic;
416
		mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 1;
417

Linus Torvalds's avatar
Linus Torvalds committed
418 419 420 421 422 423 424 425 426 427 428 429
		for (j = 0; j < page_num; j++) {
			int k = 0;
			dma_addr_t tmp_p;
			void *tmp_v;
			tmp_v = pci_alloc_consistent(nic->pdev,
						     PAGE_SIZE, &tmp_p);
			if (!tmp_v) {
				DBG_PRINT(ERR_DBG,
					  "pci_alloc_consistent ");
				DBG_PRINT(ERR_DBG, "failed for TxDL\n");
				return -ENOMEM;
			}
430 431 432 433 434 435 436 437 438 439
			/* If we got a zero DMA address(can happen on
			 * certain platforms like PPC), reallocate.
			 * Store virtual address of page we don't want,
			 * to be freed later.
			 */
			if (!tmp_p) {
				mac_control->zerodma_virt_addr = tmp_v;
				DBG_PRINT(INIT_DBG, 
				"%s: Zero DMA address for TxDL. ", dev->name);
				DBG_PRINT(INIT_DBG, 
Andrew Morton's avatar
Andrew Morton committed
440
				"Virtual address %p\n", tmp_v);
441 442 443 444 445 446 447 448 449
				tmp_v = pci_alloc_consistent(nic->pdev,
						     PAGE_SIZE, &tmp_p);
				if (!tmp_v) {
					DBG_PRINT(ERR_DBG,
					  "pci_alloc_consistent ");
					DBG_PRINT(ERR_DBG, "failed for TxDL\n");
					return -ENOMEM;
				}
			}
Linus Torvalds's avatar
Linus Torvalds committed
450 451 452
			while (k < lst_per_page) {
				int l = (j * lst_per_page) + k;
				if (l == config->tx_cfg[i].fifo_len)
453 454
					break;
				mac_control->fifos[i].list_info[l].list_virt_addr =
Linus Torvalds's avatar
Linus Torvalds committed
455
				    tmp_v + (k * lst_size);
456
				mac_control->fifos[i].list_info[l].list_phy_addr =
Linus Torvalds's avatar
Linus Torvalds committed
457 458 459 460 461 462 463 464 465
				    tmp_p + (k * lst_size);
				k++;
			}
		}
	}

	/* Allocation and initialization of RXDs in Rings */
	size = 0;
	for (i = 0; i < config->rx_ring_num; i++) {
466 467
		if (config->rx_cfg[i].num_rxd %
		    (rxd_count[nic->rxd_mode] + 1)) {
Linus Torvalds's avatar
Linus Torvalds committed
468 469 470 471 472 473 474
			DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
			DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
				  i);
			DBG_PRINT(ERR_DBG, "RxDs per Block");
			return FAILURE;
		}
		size += config->rx_cfg[i].num_rxd;
475
		mac_control->rings[i].block_count =
476 477 478 479
			config->rx_cfg[i].num_rxd /
			(rxd_count[nic->rxd_mode] + 1 );
		mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
			mac_control->rings[i].block_count;
Linus Torvalds's avatar
Linus Torvalds committed
480
	}
481 482 483 484
	if (nic->rxd_mode == RXD_MODE_1)
		size = (size * (sizeof(RxD1_t)));
	else
		size = (size * (sizeof(RxD3_t)));
485
	rx_sz = size;
Linus Torvalds's avatar
Linus Torvalds committed
486 487

	for (i = 0; i < config->rx_ring_num; i++) {
488 489 490
		mac_control->rings[i].rx_curr_get_info.block_index = 0;
		mac_control->rings[i].rx_curr_get_info.offset = 0;
		mac_control->rings[i].rx_curr_get_info.ring_len =
Linus Torvalds's avatar
Linus Torvalds committed
491
		    config->rx_cfg[i].num_rxd - 1;
492 493 494
		mac_control->rings[i].rx_curr_put_info.block_index = 0;
		mac_control->rings[i].rx_curr_put_info.offset = 0;
		mac_control->rings[i].rx_curr_put_info.ring_len =
Linus Torvalds's avatar
Linus Torvalds committed
495
		    config->rx_cfg[i].num_rxd - 1;
496 497 498
		mac_control->rings[i].nic = nic;
		mac_control->rings[i].ring_no = i;

499 500
		blk_cnt = config->rx_cfg[i].num_rxd /
				(rxd_count[nic->rxd_mode] + 1);
Linus Torvalds's avatar
Linus Torvalds committed
501 502
		/*  Allocating all the Rx blocks */
		for (j = 0; j < blk_cnt; j++) {
503 504 505 506 507
			rx_block_info_t *rx_blocks;
			int l;

			rx_blocks = &mac_control->rings[i].rx_blocks[j];
			size = SIZE_OF_BLOCK; //size is always page size
Linus Torvalds's avatar
Linus Torvalds committed
508 509 510 511
			tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
							  &tmp_p_addr);
			if (tmp_v_addr == NULL) {
				/*
512 513 514
				 * In case of failure, free_shared_mem()
				 * is called, which should free any
				 * memory that was alloced till the
Linus Torvalds's avatar
Linus Torvalds committed
515 516
				 * failure happened.
				 */
517
				rx_blocks->block_virt_addr = tmp_v_addr;
Linus Torvalds's avatar
Linus Torvalds committed
518 519 520
				return -ENOMEM;
			}
			memset(tmp_v_addr, 0, size);
521 522 523 524 525 526 527 528 529 530 531 532 533 534
			rx_blocks->block_virt_addr = tmp_v_addr;
			rx_blocks->block_dma_addr = tmp_p_addr;
			rx_blocks->rxds = kmalloc(sizeof(rxd_info_t)*
						  rxd_count[nic->rxd_mode],
						  GFP_KERNEL);
			for (l=0; l<rxd_count[nic->rxd_mode];l++) {
				rx_blocks->rxds[l].virt_addr =
					rx_blocks->block_virt_addr +
					(rxd_size[nic->rxd_mode] * l);
				rx_blocks->rxds[l].dma_addr =
					rx_blocks->block_dma_addr +
					(rxd_size[nic->rxd_mode] * l);
			}

535 536 537 538
			mac_control->rings[i].rx_blocks[j].block_virt_addr =
				tmp_v_addr;
			mac_control->rings[i].rx_blocks[j].block_dma_addr =
				tmp_p_addr;
Linus Torvalds's avatar
Linus Torvalds committed
539 540 541
		}
		/* Interlinking all Rx Blocks */
		for (j = 0; j < blk_cnt; j++) {
542 543
			tmp_v_addr =
				mac_control->rings[i].rx_blocks[j].block_virt_addr;
Linus Torvalds's avatar
Linus Torvalds committed
544
			tmp_v_addr_next =
545
				mac_control->rings[i].rx_blocks[(j + 1) %
Linus Torvalds's avatar
Linus Torvalds committed
546
					      blk_cnt].block_virt_addr;
547 548
			tmp_p_addr =
				mac_control->rings[i].rx_blocks[j].block_dma_addr;
Linus Torvalds's avatar
Linus Torvalds committed
549
			tmp_p_addr_next =
550
				mac_control->rings[i].rx_blocks[(j + 1) %
Linus Torvalds's avatar
Linus Torvalds committed
551 552 553 554 555 556 557 558 559
					      blk_cnt].block_dma_addr;

			pre_rxd_blk = (RxD_block_t *) tmp_v_addr;
			pre_rxd_blk->reserved_2_pNext_RxD_block =
			    (unsigned long) tmp_v_addr_next;
			pre_rxd_blk->pNext_RxD_Blk_physical =
			    (u64) tmp_p_addr_next;
		}
	}
560 561 562 563 564 565 566 567 568 569
	if (nic->rxd_mode >= RXD_MODE_3A) {
		/*
		 * Allocation of Storages for buffer addresses in 2BUFF mode
		 * and the buffers as well.
		 */
		for (i = 0; i < config->rx_ring_num; i++) {
			blk_cnt = config->rx_cfg[i].num_rxd /
			   (rxd_count[nic->rxd_mode]+ 1);
			mac_control->rings[i].ba =
				kmalloc((sizeof(buffAdd_t *) * blk_cnt),
Linus Torvalds's avatar
Linus Torvalds committed
570
				     GFP_KERNEL);
571
			if (!mac_control->rings[i].ba)
Linus Torvalds's avatar
Linus Torvalds committed
572
				return -ENOMEM;
573 574 575 576 577 578 579
			for (j = 0; j < blk_cnt; j++) {
				int k = 0;
				mac_control->rings[i].ba[j] =
					kmalloc((sizeof(buffAdd_t) *
						(rxd_count[nic->rxd_mode] + 1)),
						GFP_KERNEL);
				if (!mac_control->rings[i].ba[j])
Linus Torvalds's avatar
Linus Torvalds committed
580
					return -ENOMEM;
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
				while (k != rxd_count[nic->rxd_mode]) {
					ba = &mac_control->rings[i].ba[j][k];

					ba->ba_0_org = (void *) kmalloc
					    (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
					if (!ba->ba_0_org)
						return -ENOMEM;
					tmp = (unsigned long)ba->ba_0_org;
					tmp += ALIGN_SIZE;
					tmp &= ~((unsigned long) ALIGN_SIZE);
					ba->ba_0 = (void *) tmp;

					ba->ba_1_org = (void *) kmalloc
					    (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
					if (!ba->ba_1_org)
						return -ENOMEM;
					tmp = (unsigned long) ba->ba_1_org;
					tmp += ALIGN_SIZE;
					tmp &= ~((unsigned long) ALIGN_SIZE);
					ba->ba_1 = (void *) tmp;
					k++;
				}
Linus Torvalds's avatar
Linus Torvalds committed
603 604 605 606 607 608 609 610 611 612
			}
		}
	}

	/* Allocation and initialization of Statistics block */
	size = sizeof(StatInfo_t);
	mac_control->stats_mem = pci_alloc_consistent
	    (nic->pdev, size, &mac_control->stats_mem_phy);

	if (!mac_control->stats_mem) {
613 614 615
		/*
		 * In case of failure, free_shared_mem() is called, which
		 * should free any memory that was alloced till the
Linus Torvalds's avatar
Linus Torvalds committed
616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
		 * failure happened.
		 */
		return -ENOMEM;
	}
	mac_control->stats_mem_sz = size;

	tmp_v_addr = mac_control->stats_mem;
	mac_control->stats_info = (StatInfo_t *) tmp_v_addr;
	memset(tmp_v_addr, 0, size);
	DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
		  (unsigned long long) tmp_p_addr);

	return SUCCESS;
}

631 632
/**
 * free_shared_mem - Free the allocated Memory
Linus Torvalds's avatar
Linus Torvalds committed
633 634 635 636 637 638 639 640 641 642 643 644 645
 * @nic:  Device private variable.
 * Description: This function is to free all memory locations allocated by
 * the init_shared_mem() function and return it to the kernel.
 */

static void free_shared_mem(struct s2io_nic *nic)
{
	int i, j, blk_cnt, size;
	void *tmp_v_addr;
	dma_addr_t tmp_p_addr;
	mac_info_t *mac_control;
	struct config_param *config;
	int lst_size, lst_per_page;
646
	struct net_device *dev = nic->dev;
Linus Torvalds's avatar
Linus Torvalds committed
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661

	if (!nic)
		return;

	mac_control = &nic->mac_control;
	config = &nic->config;

	lst_size = (sizeof(TxD_t) * config->max_txds);
	lst_per_page = PAGE_SIZE / lst_size;

	for (i = 0; i < config->tx_fifo_num; i++) {
		int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
						lst_per_page);
		for (j = 0; j < page_num; j++) {
			int mem_blks = (j * lst_per_page);
662 663 664 665
			if (!mac_control->fifos[i].list_info)
				return;	
			if (!mac_control->fifos[i].list_info[mem_blks].
				 list_virt_addr)
Linus Torvalds's avatar
Linus Torvalds committed
666 667
				break;
			pci_free_consistent(nic->pdev, PAGE_SIZE,
668 669
					    mac_control->fifos[i].
					    list_info[mem_blks].
Linus Torvalds's avatar
Linus Torvalds committed
670
					    list_virt_addr,
671 672
					    mac_control->fifos[i].
					    list_info[mem_blks].
Linus Torvalds's avatar
Linus Torvalds committed
673 674
					    list_phy_addr);
		}
675 676 677 678 679 680 681 682
		/* If we got a zero DMA address during allocation,
		 * free the page now
		 */
		if (mac_control->zerodma_virt_addr) {
			pci_free_consistent(nic->pdev, PAGE_SIZE,
					    mac_control->zerodma_virt_addr,
					    (dma_addr_t)0);
			DBG_PRINT(INIT_DBG, 
Andrew Morton's avatar
Andrew Morton committed
683 684 685 686
			  	"%s: Freeing TxDL with zero DMA addr. ",
				dev->name);
			DBG_PRINT(INIT_DBG, "Virtual address %p\n",
				mac_control->zerodma_virt_addr);
687
		}
688
		kfree(mac_control->fifos[i].list_info);
Linus Torvalds's avatar
Linus Torvalds committed
689 690 691 692
	}

	size = SIZE_OF_BLOCK;
	for (i = 0; i < config->rx_ring_num; i++) {
693
		blk_cnt = mac_control->rings[i].block_count;
Linus Torvalds's avatar
Linus Torvalds committed
694
		for (j = 0; j < blk_cnt; j++) {
695 696 697 698
			tmp_v_addr = mac_control->rings[i].rx_blocks[j].
				block_virt_addr;
			tmp_p_addr = mac_control->rings[i].rx_blocks[j].
				block_dma_addr;
Linus Torvalds's avatar
Linus Torvalds committed
699 700 701 702
			if (tmp_v_addr == NULL)
				break;
			pci_free_consistent(nic->pdev, size,
					    tmp_v_addr, tmp_p_addr);
703
			kfree(mac_control->rings[i].rx_blocks[j].rxds);
Linus Torvalds's avatar
Linus Torvalds committed
704 705 706
		}
	}

707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
	if (nic->rxd_mode >= RXD_MODE_3A) {
		/* Freeing buffer storage addresses in 2BUFF mode. */
		for (i = 0; i < config->rx_ring_num; i++) {
			blk_cnt = config->rx_cfg[i].num_rxd /
			    (rxd_count[nic->rxd_mode] + 1);
			for (j = 0; j < blk_cnt; j++) {
				int k = 0;
				if (!mac_control->rings[i].ba[j])
					continue;
				while (k != rxd_count[nic->rxd_mode]) {
					buffAdd_t *ba =
						&mac_control->rings[i].ba[j][k];
					kfree(ba->ba_0_org);
					kfree(ba->ba_1_org);
					k++;
				}
				kfree(mac_control->rings[i].ba[j]);
Linus Torvalds's avatar
Linus Torvalds committed
724
			}
725
			kfree(mac_control->rings[i].ba);
Linus Torvalds's avatar
Linus Torvalds committed
726 727 728 729 730 731 732 733 734 735 736
		}
	}

	if (mac_control->stats_mem) {
		pci_free_consistent(nic->pdev,
				    mac_control->stats_mem_sz,
				    mac_control->stats_mem,
				    mac_control->stats_mem_phy);
	}
}

737 738 739 740 741 742
/**
 * s2io_verify_pci_mode -
 */

static int s2io_verify_pci_mode(nic_t *nic)
{
743
	XENA_dev_config_t __iomem *bar0 = nic->bar0;
744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
	register u64 val64 = 0;
	int     mode;

	val64 = readq(&bar0->pci_mode);
	mode = (u8)GET_PCI_MODE(val64);

	if ( val64 & PCI_MODE_UNKNOWN_MODE)
		return -1;      /* Unknown PCI mode */
	return mode;
}


/**
 * s2io_print_pci_mode -
 */
static int s2io_print_pci_mode(nic_t *nic)
{
761
	XENA_dev_config_t __iomem *bar0 = nic->bar0;
762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
	register u64 val64 = 0;
	int	mode;
	struct config_param *config = &nic->config;

	val64 = readq(&bar0->pci_mode);
	mode = (u8)GET_PCI_MODE(val64);

	if ( val64 & PCI_MODE_UNKNOWN_MODE)
		return -1;	/* Unknown PCI mode */

	if (val64 & PCI_MODE_32_BITS) {
		DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
	} else {
		DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
	}

	switch(mode) {
		case PCI_MODE_PCI_33:
			DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
			config->bus_speed = 33;
			break;
		case PCI_MODE_PCI_66:
			DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
			config->bus_speed = 133;
			break;
		case PCI_MODE_PCIX_M1_66:
			DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
			config->bus_speed = 133; /* Herc doubles the clock rate */
			break;
		case PCI_MODE_PCIX_M1_100:
			DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
			config->bus_speed = 200;
			break;
		case PCI_MODE_PCIX_M1_133:
			DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
			config->bus_speed = 266;
			break;
		case PCI_MODE_PCIX_M2_66:
			DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
			config->bus_speed = 133;
			break;
		case PCI_MODE_PCIX_M2_100:
			DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
			config->bus_speed = 200;
			break;
		case PCI_MODE_PCIX_M2_133:
			DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
			config->bus_speed = 266;
			break;
		default:
			return -1;	/* Unsupported bus speed */
	}

	return mode;
}

818 819
/**
 *  init_nic - Initialization of hardware
Linus Torvalds's avatar
Linus Torvalds committed
820
 *  @nic: device peivate variable
821 822 823
 *  Description: The function sequentially configures every block
 *  of the H/W from their reset values.
 *  Return Value:  SUCCESS on success and
Linus Torvalds's avatar
Linus Torvalds committed
824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
 *  '-1' on failure (endian settings incorrect).
 */

static int init_nic(struct s2io_nic *nic)
{
	XENA_dev_config_t __iomem *bar0 = nic->bar0;
	struct net_device *dev = nic->dev;
	register u64 val64 = 0;
	void __iomem *add;
	u32 time;
	int i, j;
	mac_info_t *mac_control;
	struct config_param *config;
	int mdio_cnt = 0, dtx_cnt = 0;
	unsigned long long mem_share;
839
	int mem_size;
Linus Torvalds's avatar
Linus Torvalds committed
840 841 842 843

	mac_control = &nic->mac_control;
	config = &nic->config;

844
	/* to set the swapper controle on the card */
845
	if(s2io_set_swapper(nic)) {
Linus Torvalds's avatar
Linus Torvalds committed
846 847 848 849
		DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
		return -1;
	}

850 851 852 853 854 855 856 857 858 859
	/*
	 * Herc requires EOI to be removed from reset before XGXS, so..
	 */
	if (nic->device_type & XFRAME_II_DEVICE) {
		val64 = 0xA500000000ULL;
		writeq(val64, &bar0->sw_reset);
		msleep(500);
		val64 = readq(&bar0->sw_reset);
	}

Linus Torvalds's avatar
Linus Torvalds committed
860 861 862 863
	/* Remove XGXS from reset state */
	val64 = 0;
	writeq(val64, &bar0->sw_reset);
	msleep(500);
864
	val64 = readq(&bar0->sw_reset);
Linus Torvalds's avatar
Linus Torvalds committed
865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883

	/*  Enable Receiving broadcasts */
	add = &bar0->mac_cfg;
	val64 = readq(&bar0->mac_cfg);
	val64 |= MAC_RMAC_BCAST_ENABLE;
	writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
	writel((u32) val64, add);
	writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
	writel((u32) (val64 >> 32), (add + 4));

	/* Read registers in all blocks */
	val64 = readq(&bar0->mac_int_mask);
	val64 = readq(&bar0->mc_int_mask);
	val64 = readq(&bar0->xgxs_int_mask);

	/*  Set MTU */
	val64 = dev->mtu;
	writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);

884 885
	/*
	 * Configuring the XAUI Interface of Xena.
Linus Torvalds's avatar
Linus Torvalds committed
886
	 * ***************************************
887 888 889 890
	 * To Configure the Xena's XAUI, one has to write a series
	 * of 64 bit values into two registers in a particular
	 * sequence. Hence a macro 'SWITCH_SIGN' has been defined
	 * which will be defined in the array of configuration values
891
	 * (xena_dtx_cfg & xena_mdio_cfg) at appropriate places
892
	 * to switch writing from one regsiter to another. We continue
Linus Torvalds's avatar
Linus Torvalds committed
893
	 * writing these values until we encounter the 'END_SIGN' macro.
894 895
	 * For example, After making a series of 21 writes into
	 * dtx_control register the 'SWITCH_SIGN' appears and hence we
Linus Torvalds's avatar
Linus Torvalds committed
896 897
	 * start writing into mdio_control until we encounter END_SIGN.
	 */
898 899
	if (nic->device_type & XFRAME_II_DEVICE) {
		while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
900
			SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
Linus Torvalds's avatar
Linus Torvalds committed
901
					  &bar0->dtx_control, UF);
902 903
			if (dtx_cnt & 0x1)
				msleep(1); /* Necessary!! */
Linus Torvalds's avatar
Linus Torvalds committed
904 905
			dtx_cnt++;
		}
906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
	} else {
		while (1) {
		      dtx_cfg:
			while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
				if (xena_dtx_cfg[dtx_cnt] == SWITCH_SIGN) {
					dtx_cnt++;
					goto mdio_cfg;
				}
				SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
						  &bar0->dtx_control, UF);
				val64 = readq(&bar0->dtx_control);
				dtx_cnt++;
			}
		      mdio_cfg:
			while (xena_mdio_cfg[mdio_cnt] != END_SIGN) {
				if (xena_mdio_cfg[mdio_cnt] == SWITCH_SIGN) {
					mdio_cnt++;
					goto dtx_cfg;
				}
				SPECIAL_REG_WRITE(xena_mdio_cfg[mdio_cnt],
						  &bar0->mdio_control, UF);
				val64 = readq(&bar0->mdio_control);
Linus Torvalds's avatar
Linus Torvalds committed
928
				mdio_cnt++;
929 930 931 932 933
			}
			if ((xena_dtx_cfg[dtx_cnt] == END_SIGN) &&
			    (xena_mdio_cfg[mdio_cnt] == END_SIGN)) {
				break;
			} else {
Linus Torvalds's avatar
Linus Torvalds committed
934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
				goto dtx_cfg;
			}
		}
	}

	/*  Tx DMA Initialization */
	val64 = 0;
	writeq(val64, &bar0->tx_fifo_partition_0);
	writeq(val64, &bar0->tx_fifo_partition_1);
	writeq(val64, &bar0->tx_fifo_partition_2);
	writeq(val64, &bar0->tx_fifo_partition_3);


	for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
		val64 |=
		    vBIT(config->tx_cfg[i].fifo_len - 1, ((i * 32) + 19),
			 13) | vBIT(config->tx_cfg[i].fifo_priority,
				    ((i * 32) + 5), 3);

		if (i == (config->tx_fifo_num - 1)) {
			if (i % 2 == 0)
				i++;
		}

		switch (i) {
		case 1:
			writeq(val64, &bar0->tx_fifo_partition_0);
			val64 = 0;
			break;
		case 3:
			writeq(val64, &bar0->tx_fifo_partition_1);
			val64 = 0;
			break;
		case 5:
			writeq(val64, &bar0->tx_fifo_partition_2);
			val64 = 0;
			break;
		case 7:
			writeq(val64, &bar0->tx_fifo_partition_3);
			break;
		}
	}

	/* Enable Tx FIFO partition 0. */
	val64 = readq(&bar0->tx_fifo_partition_0);
	val64 |= BIT(0);	/* To enable the FIFO partition. */
	writeq(val64, &bar0->tx_fifo_partition_0);

982 983 984 985
	/*
	 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
	 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
	 */
986 987
	if ((nic->device_type == XFRAME_I_DEVICE) &&
		(get_xena_rev_id(nic->pdev) < 4))
988 989
		writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);

Linus Torvalds's avatar
Linus Torvalds committed
990 991 992 993
	val64 = readq(&bar0->tx_fifo_partition_0);
	DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
		  &bar0->tx_fifo_partition_0, (unsigned long long) val64);

994 995
	/*
	 * Initialization of Tx_PA_CONFIG register to ignore packet
Linus Torvalds's avatar
Linus Torvalds committed
996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
	 * integrity checking.
	 */
	val64 = readq(&bar0->tx_pa_cfg);
	val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
	    TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
	writeq(val64, &bar0->tx_pa_cfg);

	/* Rx DMA intialization. */
	val64 = 0;
	for (i = 0; i < config->rx_ring_num; i++) {
		val64 |=
		    vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
			 3);
	}
	writeq(val64, &bar0->rx_queue_priority);

1012 1013
	/*
	 * Allocating equal share of memory to all the
Linus Torvalds's avatar
Linus Torvalds committed
1014 1015 1016
	 * configured Rings.
	 */
	val64 = 0;
1017 1018 1019 1020 1021
	if (nic->device_type & XFRAME_II_DEVICE)
		mem_size = 32;
	else
		mem_size = 64;

Linus Torvalds's avatar
Linus Torvalds committed
1022 1023 1024
	for (i = 0; i < config->rx_ring_num; i++) {
		switch (i) {
		case 0:
1025 1026
			mem_share = (mem_size / config->rx_ring_num +
				     mem_size % config->rx_ring_num);
Linus Torvalds's avatar
Linus Torvalds committed
1027 1028 1029
			val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
			continue;
		case 1:
1030
			mem_share = (mem_size / config->rx_ring_num);
Linus Torvalds's avatar
Linus Torvalds committed
1031 1032 1033
			val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
			continue;
		case 2:
1034
			mem_share = (mem_size / config->rx_ring_num);
Linus Torvalds's avatar
Linus Torvalds committed
1035 1036 1037
			val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
			continue;
		case 3:
1038
			mem_share = (mem_size / config->rx_ring_num);
Linus Torvalds's avatar
Linus Torvalds committed
1039 1040 1041
			val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
			continue;
		case 4:
1042
			mem_share = (mem_size / config->rx_ring_num);
Linus Torvalds's avatar
Linus Torvalds committed
1043 1044 1045
			val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
			continue;
		case 5:
1046
			mem_share = (mem_size / config->rx_ring_num);
Linus Torvalds's avatar
Linus Torvalds committed
1047 1048 1049
			val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
			continue;
		case 6:
1050
			mem_share = (mem_size / config->rx_ring_num);
Linus Torvalds's avatar
Linus Torvalds committed
1051 1052 1053
			val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
			continue;
		case 7:
1054
			mem_share = (mem_size / config->rx_ring_num);
Linus Torvalds's avatar
Linus Torvalds committed
1055 1056 1057 1058 1059 1060
			val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
			continue;
		}
	}
	writeq(val64, &bar0->rx_queue_cfg);

1061
	/*
1062 1063
	 * Filling Tx round robin registers
	 * as per the number of FIFOs
Linus Torvalds's avatar
Linus Torvalds committed
1064
	 */
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
	switch (config->tx_fifo_num) {
	case 1:
		val64 = 0x0000000000000000ULL;
		writeq(val64, &bar0->tx_w_round_robin_0);
		writeq(val64, &bar0->tx_w_round_robin_1);
		writeq(val64, &bar0->tx_w_round_robin_2);
		writeq(val64, &bar0->tx_w_round_robin_3);
		writeq(val64, &bar0->tx_w_round_robin_4);
		break;
	case 2:
		val64 = 0x0000010000010000ULL;
		writeq(val64, &bar0->tx_w_round_robin_0);
		val64 = 0x0100000100000100ULL;
		writeq(val64, &bar0->tx_w_round_robin_1);
		val64 = 0x0001000001000001ULL;
		writeq(val64, &bar0->tx_w_round_robin_2);
		val64 = 0x0000010000010000ULL;
		writeq(val64, &bar0->tx_w_round_robin_3);
		val64 = 0x0100000000000000ULL;
		writeq(val64, &bar0->tx_w_round_robin_4);
		break;
	case 3:
		val64 = 0x0001000102000001ULL;
		writeq(val64, &bar0->tx_w_round_robin_0);
		val64 = 0x0001020000010001ULL;
		writeq(val64, &bar0->tx_w_round_robin_1);
		val64 = 0x0200000100010200ULL;
		writeq(val64, &bar0->tx_w_round_robin_2);
		val64 = 0x0001000102000001ULL;
		writeq(val64, &bar0->tx_w_round_robin_3);
		val64 = 0x0001020000000000ULL;
		writeq(val64, &bar0->tx_w_round_robin_4);
		break;
	case 4:
		val64 = 0x0001020300010200ULL;
		writeq(val64, &bar0->tx_w_round_robin_0);
		val64 = 0x0100000102030001ULL;
		writeq(val64, &bar0->tx_w_round_robin_1);
		val64 = 0x0200010000010203ULL;
		writeq(val64, &bar0->tx_w_round_robin_2);
		val64 = 0x0001020001000001ULL;
		writeq(val64, &bar0->tx_w_round_robin_3);
		val64 = 0x0203000100000000ULL;
		writeq(val64, &bar0->tx_w_round_robin_4);
		break;
	case 5:
		val64 = 0x0001000203000102ULL;
		writeq(val64, &bar0->tx_w_round_robin_0);
		val64 = 0x0001020001030004ULL;
		writeq(val64, &bar0->tx_w_round_robin_1);
		val64 = 0x0001000203000102ULL;
		writeq(val64, &bar0->tx_w_round_robin_2);
		val64 = 0x0001020001030004ULL;
		writeq(val64, &bar0->tx_w_round_robin_3);
		val64 = 0x0001000000000000ULL;
		writeq(val64, &bar0->tx_w_round_robin_4);
		break;
	case 6:
		val64 = 0x0001020304000102ULL;
		writeq(val64, &bar0->tx_w_round_robin_0);
		val64 = 0x0304050001020001ULL;
		writeq(val64, &bar0->tx_w_round_robin_1);
		val64 = 0x0203000100000102ULL;
		writeq(val64, &bar0->tx_w_round_robin_2);
		val64 = 0x0304000102030405ULL;
		writeq(val64, &bar0->tx_w_round_robin_3);
		val64 = 0x0001000200000000ULL;
		writeq(val64, &bar0->tx_w_round_robin_4);
		break;
	case 7:
		val64 = 0x0001020001020300ULL;
		writeq(val64, &bar0->tx_w_round_robin_0);
		val64 = 0x0102030400010203ULL;
		writeq(val64, &bar0->tx_w_round_robin_1);
		val64 = 0x0405060001020001ULL;
		writeq(val64, &bar0->tx_w_round_robin_2);
		val64 = 0x0304050000010200ULL;
		writeq(val64, &bar0->tx_w_round_robin_3);
		val64 = 0x0102030000000000ULL;
		writeq(val64, &bar0->tx_w_round_robin_4);
		break;
	case 8:
		val64 = 0x0001020300040105ULL;
		writeq(val64, &bar0->tx_w_round_robin_0);
		val64 = 0x0200030106000204ULL;
		writeq(val64, &bar0->tx_w_round_robin_1);
		val64 = 0x0103000502010007ULL;
		writeq(val64, &bar0->tx_w_round_robin_2);
		val64 = 0x0304010002060500ULL;
		writeq(val64, &bar0->tx_w_round_robin_3);
		val64 = 0x0103020400000000ULL;
		writeq(val64, &bar0->tx_w_round_robin_4);
		break;
	}

	/* Filling the Rx round robin registers as per the
	 * number of Rings and steering based on QoS.
         */
	switch (config->rx_ring_num) {
	case 1:
		val64 = 0x8080808080808080ULL;
		writeq(val64, &bar0->rts_qos_steering);
		break;
	case 2:
		val64 = 0x0000010000010000ULL;
		writeq(val64, &bar0->rx_w_round_robin_0);
		val64 = 0x0100000100000100ULL;
		writeq(val64, &bar0->rx_w_round_robin_1);
		val64 = 0x0001000001000001ULL;
		writeq(val64, &bar0->rx_w_round_robin_2);
		val64 = 0x0000010000010000ULL;
		writeq(val64, &bar0->rx_w_round_robin_3);
		val64 = 0x0100000000000000ULL;
		writeq(val64, &bar0->rx_w_round_robin_4);

		val64 = 0x8080808040404040ULL;
		writeq(val64, &bar0->rts_qos_steering);
		break;
	case 3:
		val64 = 0x0001000102000001ULL;
		writeq(val64, &bar0->rx_w_round_robin_0);
		val64 = 0x0001020000010001ULL;
		writeq(val64, &bar0->rx_w_round_robin_1);
		val64 = 0x0200000100010200ULL;
		writeq(val64, &bar0->rx_w_round_robin_2);
		val64 = 0x0001000102000001ULL;
		writeq(val64, &bar0->rx_w_round_robin_3);
		val64 = 0x0001020000000000ULL;
		writeq(val64, &bar0->rx_w_round_robin_4);

		val64 = 0x8080804040402020ULL;
		writeq(val64, &bar0->rts_qos_steering);
		break;
	case 4:
		val64 = 0x0001020300010200ULL;
		writeq(val64, &bar0->rx_w_round_robin_0);
		val64 = 0x0100000102030001ULL;
		writeq(val64, &bar0->rx_w_round_robin_1);
		val64 = 0x0200010000010203ULL;
		writeq(val64, &bar0->rx_w_round_robin_2);
		val64 = 0x0001020001000001ULL;	
		writeq(val64, &bar0->rx_w_round_robin_3);
		val64 = 0x0203000100000000ULL;
		writeq(val64, &bar0->rx_w_round_robin_4);

		val64 = 0x8080404020201010ULL;
		writeq(val64, &bar0->rts_qos_steering);
		break;
	case 5:
		val64 = 0x0001000203000102ULL;
		writeq(val64, &bar0->rx_w_round_robin_0);
		val64 = 0x0001020001030004ULL;
		writeq(val64, &bar0->rx_w_round_robin_1);
		val64 = 0x0001000203000102ULL;
		writeq(val64, &bar0->rx_w_round_robin_2);
		val64 = 0x0001020001030004ULL;
		writeq(val64, &bar0->rx_w_round_robin_3);
		val64 = 0x0001000000000000ULL;
		writeq(val64, &bar0->rx_w_round_robin_4);

		val64 = 0x8080404020201008ULL;
		writeq(val64, &bar0->rts_qos_steering);
		break;
	case 6:
		val64 = 0x0001020304000102ULL;
		writeq(val64, &bar0->rx_w_round_robin_0);
		val64 = 0x0304050001020001ULL;
		writeq(val64, &bar0->rx_w_round_robin_1);
		val64 = 0x0203000100000102ULL;
		writeq(val64, &bar0->rx_w_round_robin_2);
		val64 = 0x0304000102030405ULL;
		writeq(val64, &bar0->rx_w_round_robin_3);
		val64 = 0x0001000200000000ULL;
		writeq(val64, &bar0->rx_w_round_robin_4);

		val64 = 0x8080404020100804ULL;
		writeq(val64, &bar0->rts_qos_steering);
		break;
	case 7:
		val64 = 0x0001020001020300ULL;
		writeq(val64, &bar0->rx_w_round_robin_0);
		val64 = 0x0102030400010203ULL;
		writeq(val64, &bar0->rx_w_round_robin_1);
		val64 = 0x0405060001020001ULL;
		writeq(val64, &bar0->rx_w_round_robin_2);
		val64 = 0x0304050000010200ULL;
		writeq(val64, &bar0->rx_w_round_robin_3);
		val64 = 0x0102030000000000ULL;
		writeq(val64, &bar0->rx_w_round_robin_4);

		val64 = 0x8080402010080402ULL;
		writeq(val64, &bar0->rts_qos_steering);
		break;
	case 8:
		val64 = 0x0001020300040105ULL;
		writeq(val64, &bar0->rx_w_round_robin_0);
		val64 = 0x0200030106000204ULL;
		writeq(val64, &bar0->rx_w_round_robin_1);
		val64 = 0x0103000502010007ULL;
		writeq(val64, &bar0->rx_w_round_robin_2);
		val64 = 0x0304010002060500ULL;
		writeq(val64, &bar0->rx_w_round_robin_3);
		val64 = 0x0103020400000000ULL;
		writeq(val64, &bar0->rx_w_round_robin_4);

		val64 = 0x8040201008040201ULL;
		writeq(val64, &bar0->rts_qos_steering);
		break;
	}
Linus Torvalds's avatar
Linus Torvalds committed
1274 1275 1276

	/* UDP Fix */
	val64 = 0;
1277
	for (i = 0; i < 8; i++)
Linus Torvalds's avatar
Linus Torvalds committed
1278 1279
		writeq(val64, &bar0->rts_frm_len_n[i]);

1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
	/* Set the default rts frame length for the rings configured */
	val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
	for (i = 0 ; i < config->rx_ring_num ; i++)
		writeq(val64, &bar0->rts_frm_len_n[i]);

	/* Set the frame length for the configured rings
	 * desired by the user
	 */
	for (i = 0; i < config->rx_ring_num; i++) {
		/* If rts_frm_len[i] == 0 then it is assumed that user not
		 * specified frame length steering.
		 * If the user provides the frame length then program
		 * the rts_frm_len register for those values or else
		 * leave it as it is.
		 */
		if (rts_frm_len[i] != 0) {
			writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
				&bar0->rts_frm_len_n[i]);
		}
	}
Linus Torvalds's avatar
Linus Torvalds committed
1300

1301
	/* Program statistics memory */
Linus Torvalds's avatar
Linus Torvalds committed
1302 1303
	writeq(mac_control->stats_mem_phy, &bar0->stat_addr);

1304 1305 1306 1307 1308
	if (nic->device_type == XFRAME_II_DEVICE) {
		val64 = STAT_BC(0x320);
		writeq(val64, &bar0->stat_byte_cnt);
	}

1309
	/*
Linus Torvalds's avatar
Linus Torvalds committed
1310 1311 1312 1313 1314 1315 1316 1317
	 * Initializing the sampling rate for the device to calculate the
	 * bandwidth utilization.
	 */
	val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
	    MAC_RX_LINK_UTIL_VAL(rmac_util_period);
	writeq(val64, &bar0->mac_link_util);


1318 1319
	/*
	 * Initializing the Transmit and Receive Traffic Interrupt
Linus Torvalds's avatar
Linus Torvalds committed
1320 1321
	 * Scheme.
	 */
1322 1323
	/*
	 * TTI Initialization. Default Tx timer gets us about
Linus Torvalds's avatar
Linus Torvalds committed
1324 1325 1326
	 * 250 interrupts per sec. Continuous interrupts are enabled
	 * by default.
	 */
1327 1328 1329 1330 1331 1332 1333 1334
	if (nic->device_type == XFRAME_II_DEVICE) {
		int count = (nic->config.bus_speed * 125)/2;
		val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
	} else {

		val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
	}
	val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
Linus Torvalds's avatar
Linus Torvalds committed
1335
	    TTI_DATA1_MEM_TX_URNG_B(0x10) |
1336
	    TTI_DATA1_MEM_TX_URNG_C(0x30) | TTI_DATA1_MEM_TX_TIMER_AC_EN;
1337 1338
		if (use_continuous_tx_intrs)
			val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
Linus Torvalds's avatar
Linus Torvalds committed
1339 1340 1341 1342
	writeq(val64, &bar0->tti_data1_mem);

	val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
	    TTI_DATA2_MEM_TX_UFC_B(0x20) |
1343
	    TTI_DATA2_MEM_TX_UFC_C(0x70) | TTI_DATA2_MEM_TX_UFC_D(0x80);
Linus Torvalds's avatar
Linus Torvalds committed
1344 1345 1346 1347 1348
	writeq(val64, &bar0->tti_data2_mem);

	val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
	writeq(val64, &bar0->tti_command_mem);

1349
	/*
Linus Torvalds's avatar
Linus Torvalds committed
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
	 * Once the operation completes, the Strobe bit of the command
	 * register will be reset. We poll for this particular condition
	 * We wait for a maximum of 500ms for the operation to complete,
	 * if it's not complete by then we return error.
	 */
	time = 0;
	while (TRUE) {
		val64 = readq(&bar0->tti_command_mem);
		if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
			break;
		}
		if (time > 10) {
			DBG_PRINT(ERR_DBG, "%s: TTI init Failed\n",
				  dev->name);
			return -1;
		}
		msleep(50);
		time++;
	}

1370 1371 1372 1373 1374 1375
	if (nic->config.bimodal) {
		int k = 0;
		for (k = 0; k < config->rx_ring_num; k++) {
			val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
			val64 |= TTI_CMD_MEM_OFFSET(0x38+k);
			writeq(val64, &bar0->tti_command_mem);
1376 1377

		/*
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
		 * Once the operation completes, the Strobe bit of the command
		 * register will be reset. We poll for this particular condition
		 * We wait for a maximum of 500ms for the operation to complete,
		 * if it's not complete by then we return error.
		*/
			time = 0;
			while (TRUE) {
				val64 = readq(&bar0->tti_command_mem);
				if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
					break;
				}
				if (time > 10) {
					DBG_PRINT(ERR_DBG,
						"%s: TTI init Failed\n",
					dev->name);
					return -1;
				}
				time++;
				msleep(50);
			}
		}
1399
	} else {
Linus Torvalds's avatar
Linus Torvalds committed
1400

1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
		/* RTI Initialization */
		if (nic->device_type == XFRAME_II_DEVICE) {
			/*
			 * Programmed to generate Apprx 500 Intrs per
			 * second
			 */
			int count = (nic->config.bus_speed * 125)/4;
			val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
		} else {
			val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
		}
		val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
		    RTI_DATA1_MEM_RX_URNG_B(0x10) |
		    RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
Linus Torvalds's avatar
Linus Torvalds committed
1415

1416
		writeq(val64, &bar0->rti_data1_mem);
Linus Torvalds's avatar
Linus Torvalds committed
1417

1418
		val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1419 1420 1421 1422 1423 1424 1425
		    RTI_DATA2_MEM_RX_UFC_B(0x2) ;
		if (nic->intr_type == MSI_X)
		    val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
				RTI_DATA2_MEM_RX_UFC_D(0x40));
		else
		    val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
				RTI_DATA2_MEM_RX_UFC_D(0x80));
1426
		writeq(val64, &bar0->rti_data2_mem);
Linus Torvalds's avatar
Linus Torvalds committed
1427

1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
		for (i = 0; i < config->rx_ring_num; i++) {
			val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
					| RTI_CMD_MEM_OFFSET(i);
			writeq(val64, &bar0->rti_command_mem);

			/*
			 * Once the operation completes, the Strobe bit of the
			 * command register will be reset. We poll for this
			 * particular condition. We wait for a maximum of 500ms
			 * for the operation to complete, if it's not complete
			 * by then we return error.
			 */
			time = 0;
			while (TRUE) {
				val64 = readq(&bar0->rti_command_mem);
				if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD)) {
					break;
				}
				if (time > 10) {
					DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
						  dev->name);
					return -1;
				}
				time++;
				msleep(50);
			}
Linus Torvalds's avatar
Linus Torvalds committed
1454 1455 1456
		}
	}

1457 1458
	/*
	 * Initializing proper values as Pause threshold into all
Linus Torvalds's avatar
Linus Torvalds committed
1459 1460 1461 1462 1463 1464
	 * the 8 Queues on Rx side.
	 */
	writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
	writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);

	/* Disable RMAC PAD STRIPPING */
1465
	add = &bar0->mac_cfg;
Linus Torvalds's avatar
Linus Torvalds committed
1466 1467 1468 1469 1470 1471 1472 1473
	val64 = readq(&bar0->mac_cfg);
	val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
	writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
	writel((u32) (val64), add);
	writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
	writel((u32) (val64 >> 32), (add + 4));
	val64 = readq(&bar0->mac_cfg);

1474 1475
	/*
	 * Set the time value to be inserted in the pause frame
Linus Torvalds's avatar
Linus Torvalds committed
1476 1477 1478 1479 1480 1481 1482
	 * generated by xena.
	 */
	val64 = readq(&bar0->rmac_pause_cfg);
	val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
	val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
	writeq(val64, &bar0->rmac_pause_cfg);

1483
	/*
Linus Torvalds's avatar
Linus Torvalds committed
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
	 * Set the Threshold Limit for Generating the pause frame
	 * If the amount of data in any Queue exceeds ratio of
	 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
	 * pause frame is generated
	 */
	val64 = 0;
	for (i = 0; i < 4; i++) {
		val64 |=
		    (((u64) 0xFF00 | nic->mac_control.
		      mc_pause_threshold_q0q3)
		     << (i * 2 * 8));
	}
	writeq(val64, &bar0->mc_pause_thresh_q0q3);

	val64 = 0;
	for (i = 0; i < 4; i++) {
		val64 |=
		    (((u64) 0xFF00 | nic->mac_control.
		      mc_pause_threshold_q4q7)
		     << (i * 2 * 8));
	}
	writeq(val64, &bar0->mc_pause_thresh_q4q7);

1507 1508
	/*
	 * TxDMA will stop Read request if the number of read split has
Linus Torvalds's avatar
Linus Torvalds committed
1509 1510 1511 1512 1513 1514
	 * exceeded the limit pointed by shared_splits
	 */
	val64 = readq(&bar0->pic_control);
	val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
	writeq(val64, &bar0->pic_control);

1515 1516 1517 1518 1519 1520 1521 1522 1523
	/*
	 * Programming the Herc to split every write transaction
	 * that does not start on an ADB to reduce disconnects.
	 */
	if (nic->device_type == XFRAME_II_DEVICE) {
		val64 = WREQ_SPLIT_MASK_SET_MASK(255);
		writeq(val64, &bar0->wreq_split_mask);
	}

1524 1525 1526 1527 1528 1529
	/* Setting Link stability period to 64 ms */ 
	if (nic->device_type == XFRAME_II_DEVICE) {
		val64 = MISC_LINK_STABILITY_PRD(3);
		writeq(val64, &bar0->misc_control);
	}

Linus Torvalds's avatar
Linus Torvalds committed
1530 1531
	return SUCCESS;
}
1532 1533 1534 1535 1536
#define LINK_UP_DOWN_INTERRUPT		1
#define MAC_RMAC_ERR_TIMER		2

int s2io_link_fault_indication(nic_t *nic)
{
1537 1538
	if (nic->intr_type != INTA)
		return MAC_RMAC_ERR_TIMER;
1539 1540 1541 1542 1543
	if (nic->device_type == XFRAME_II_DEVICE)
		return LINK_UP_DOWN_INTERRUPT;
	else
		return MAC_RMAC_ERR_TIMER;
}
Linus Torvalds's avatar
Linus Torvalds committed
1544

1545 1546
/**
 *  en_dis_able_nic_intrs - Enable or Disable the interrupts
Linus Torvalds's avatar
Linus Torvalds committed
1547 1548 1549 1550
 *  @nic: device private variable,
 *  @mask: A mask indicating which Intr block must be modified and,
 *  @flag: A flag indicating whether to enable or disable the Intrs.
 *  Description: This function will either disable or enable the interrupts
1551 1552
 *  depending on the flag argument. The mask argument can be used to
 *  enable/disable any Intr block.
Linus Torvalds's avatar
Linus Torvalds committed
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569
 *  Return Value: NONE.
 */

static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
{
	XENA_dev_config_t __iomem *bar0 = nic->bar0;
	register u64 val64 = 0, temp64 = 0;

	/*  Top level interrupt classification */
	/*  PIC Interrupts */
	if ((mask & (TX_PIC_INTR | RX_PIC_INTR))) {
		/*  Enable PIC Intrs in the general intr mask register */
		val64 = TXPIC_INT_M | PIC_RX_INT_M;
		if (flag == ENABLE_INTRS) {
			temp64 = readq(&bar0->general_int_mask);
			temp64 &= ~((u64) val64);
			writeq(temp64, &bar0->general_int_mask);
1570
			/*
1571 1572
			 * If Hercules adapter enable GPIO otherwise
			 * disabled all PCIX, Flash, MDIO, IIC and GPIO
1573 1574
			 * interrupts for now.
			 * TODO
Linus Torvalds's avatar
Linus Torvalds committed
1575
			 */
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
			if (s2io_link_fault_indication(nic) ==
					LINK_UP_DOWN_INTERRUPT ) {
				temp64 = readq(&bar0->pic_int_mask);
				temp64 &= ~((u64) PIC_INT_GPIO);
				writeq(temp64, &bar0->pic_int_mask);
				temp64 = readq(&bar0->gpio_int_mask);
				temp64 &= ~((u64) GPIO_INT_MASK_LINK_UP);
				writeq(temp64, &bar0->gpio_int_mask);
			} else {
				writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
			}
1587
			/*
Linus Torvalds's avatar
Linus Torvalds committed
1588 1589 1590 1591
			 * No MSI Support is available presently, so TTI and
			 * RTI interrupts are also disabled.
			 */
		} else if (flag == DISABLE_INTRS) {
1592 1593 1594
			/*
			 * Disable PIC Intrs in the general
			 * intr mask register
Linus Torvalds's avatar
Linus Torvalds committed
1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
			 */
			writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
			temp64 = readq(&bar0->general_int_mask);
			val64 |= temp64;
			writeq(val64, &bar0->general_int_mask);
		}
	}

	/*  DMA Interrupts */
	/*  Enabling/Disabling Tx DMA interrupts */
	if (mask & TX_DMA_INTR) {
		/* Enable TxDMA Intrs in the general intr mask register */
		val64 = TXDMA_INT_M;
		if (flag == ENABLE_INTRS) {
			temp64 = readq(&bar0->general_int_mask);
			temp64 &= ~((u64) val64);
			writeq(temp64, &bar0->general_int_mask);
1612 1613
			/*
			 * Keep all interrupts other than PFC interrupt
Linus Torvalds's avatar
Linus Torvalds committed
1614 1615 1616 1617 1618
			 * and PCC interrupt disabled in DMA level.
			 */
			val64 = DISABLE_ALL_INTRS & ~(TXDMA_PFC_INT_M |
						      TXDMA_PCC_INT_M);
			writeq(val64, &bar0->txdma_int_mask);
1619 1620
			/*
			 * Enable only the MISC error 1 interrupt in PFC block
Linus Torvalds's avatar
Linus Torvalds committed
1621 1622 1623
			 */
			val64 = DISABLE_ALL_INTRS & (~PFC_MISC_ERR_1);
			writeq(val64, &bar0->pfc_err_mask);
1624 1625
			/*
			 * Enable only the FB_ECC error interrupt in PCC block
Linus Torvalds's avatar
Linus Torvalds committed
1626 1627 1628 1629
			 */
			val64 = DISABLE_ALL_INTRS & (~PCC_FB_ECC_ERR);
			writeq(val64, &bar0->pcc_err_mask);
		} else if (flag == DISABLE_INTRS) {
1630 1631 1632
			/*
			 * Disable TxDMA Intrs in the general intr mask
			 * register
Linus Torvalds's avatar
Linus Torvalds committed
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
			 */
			writeq(DISABLE_ALL_INTRS, &bar0->txdma_int_mask);
			writeq(DISABLE_ALL_INTRS, &bar0->pfc_err_mask);
			temp64 = readq(&bar0->general_int_mask);
			val64 |= temp64;
			writeq(val64, &bar0->general_int_mask);
		}
	}

	/*  Enabling/Disabling Rx DMA interrupts */
	if (mask & RX_DMA_INTR) {
		/*  Enable RxDMA Intrs in the general intr mask register */
		val64 = RXDMA_INT_M;
		if (flag == ENABLE_INTRS) {
			temp64 = readq(&bar0->general_int_mask);
			temp64 &= ~((u64) val64);
			writeq(temp64, &bar0->general_int_mask);
1650 1651 1652
			/*
			 * All RxDMA block interrupts are disabled for now
			 * TODO
Linus Torvalds's avatar
Linus Torvalds committed
1653 1654 1655
			 */
			writeq(DISABLE_ALL_INTRS, &bar0->rxdma_int_mask);
		} else if (flag == DISABLE_INTRS) {
1656 1657 1658
			/*
			 * Disable RxDMA Intrs in the general intr mask
			 * register
Linus Torvalds's avatar
Linus Torvalds committed
1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
			 */
			writeq(DISABLE_ALL_INTRS, &bar0->rxdma_int_mask);
			temp64 = readq(&bar0->general_int_mask);
			val64 |= temp64;
			writeq(val64, &bar0->general_int_mask);
		}
	}

	/*  MAC Interrupts */
	/*  Enabling/Disabling MAC interrupts */
	if (mask & (TX_MAC_INTR | RX_MAC_INTR)) {
		val64 = TXMAC_INT_M | RXMAC_INT_M;
		if (flag == ENABLE_INTRS) {
			temp64 = readq(&bar0->general_int_mask);
			temp64 &= ~((u64) val64);
			writeq(temp64, &bar0->general_int_mask);
1675 1676
			/*
			 * All MAC block error interrupts are disabled for now
Linus Torvalds's avatar
Linus Torvalds committed
1677 1678 1679
			 * TODO
			 */
		} else if (flag == DISABLE_INTRS) {
1680 1681
			/*
			 * Disable MAC Intrs in the general intr mask register
Linus Torvalds's avatar
Linus Torvalds committed
1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
			 */
			writeq(DISABLE_ALL_INTRS, &bar0->mac_int_mask);
			writeq(DISABLE_ALL_INTRS,
			       &bar0->mac_rmac_err_mask);

			temp64 = readq(&bar0->general_int_mask);
			val64 |= temp64;
			writeq(val64, &bar0->general_int_mask);
		}
	}

	/*  XGXS Interrupts */
	if (mask & (TX_XGXS_INTR | RX_XGXS_INTR)) {
		val64 = TXXGXS_INT_M | RXXGXS_INT_M;
		if (flag == ENABLE_INTRS) {
			temp64 = readq(&bar0->general_int_mask);
			temp64 &= ~((u64) val64);
			writeq(temp64, &bar0->general_int_mask);
1700
			/*
Linus Torvalds's avatar
Linus Torvalds committed
1701
			 * All XGXS block error interrupts are disabled for now
1702
			 * TODO
Linus Torvalds's avatar
Linus Torvalds committed
1703 1704 1705
			 */
			writeq(DISABLE_ALL_INTRS, &bar0->xgxs_int_mask);
		} else if (flag == DISABLE_INTRS) {
1706 1707
			/*
			 * Disable MC Intrs in the general intr mask register
Linus Torvalds's avatar
Linus Torvalds committed
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
			 */
			writeq(DISABLE_ALL_INTRS, &bar0->xgxs_int_mask);
			temp64 = readq(&bar0->general_int_mask);
			val64 |= temp64;
			writeq(val64, &bar0->general_int_mask);
		}
	}

	/*  Memory Controller(MC) interrupts */
	if (mask & MC_INTR) {
		val64 = MC_INT_M;
		if (flag == ENABLE_INTRS) {
			temp64 = readq(&bar0->general_int_mask);
			temp64 &= ~((u64) val64);
			writeq(temp64, &bar0->general_int_mask);
1723
			/*
1724
			 * Enable all MC Intrs.
Linus Torvalds's avatar
Linus Torvalds committed
1725
			 */
1726 1727
			writeq(0x0, &bar0->mc_int_mask);
			writeq(0x0, &bar0->mc_err_mask);
Linus Torvalds's avatar
Linus Torvalds committed
1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
		} else if (flag == DISABLE_INTRS) {
			/*
			 * Disable MC Intrs in the general intr mask register
			 */
			writeq(DISABLE_ALL_INTRS, &bar0->mc_int_mask);
			temp64 = readq(&bar0->general_int_mask);
			val64 |= temp64;
			writeq(val64, &bar0->general_int_mask);
		}
	}


	/*  Tx traffic interrupts */
	if (mask & TX_TRAFFIC_INTR) {
		val64 = TXTRAFFIC_INT_M;
		if (flag == ENABLE_INTRS) {
			temp64 = readq(&bar0->general_int_mask);
			temp64 &= ~((u64) val64);
			writeq(temp64, &bar0->general_int_mask);
1747
			/*
Linus Torvalds's avatar
Linus Torvalds committed
1748
			 * Enable all the Tx side interrupts
1749
			 * writing 0 Enables all 64 TX interrupt levels
Linus Torvalds's avatar
Linus Torvalds committed
1750 1751 1752
			 */
			writeq(0x0, &bar0->tx_traffic_mask);
		} else if (flag == DISABLE_INTRS) {
1753 1754
			/*
			 * Disable Tx Traffic Intrs in the general intr mask
Linus Torvalds's avatar
Linus Torvalds committed
1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773
			 * register.
			 */
			writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
			temp64 = readq(&bar0->general_int_mask);
			val64 |= temp64;
			writeq(val64, &bar0->general_int_mask);
		}
	}

	/*  Rx traffic interrupts */
	if (mask & RX_TRAFFIC_INTR) {
		val64 = RXTRAFFIC_INT_M;
		if (flag == ENABLE_INTRS) {
			temp64 = readq(&bar0->general_int_mask);
			temp64 &= ~((u64) val64);
			writeq(temp64, &bar0->general_int_mask);
			/* writing 0 Enables all 8 RX interrupt levels */
			writeq(0x0, &bar0->rx_traffic_mask);
		} else if (flag == DISABLE_INTRS) {
1774 1775
			/*
			 * Disable Rx Traffic Intrs in the general intr mask
Linus Torvalds's avatar
Linus Torvalds committed
1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
			 * register.
			 */
			writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
			temp64 = readq(&bar0->general_int_mask);
			val64 |= temp64;
			writeq(val64, &bar0->general_int_mask);
		}
	}
}

1786
static int check_prc_pcc_state(u64 val64, int flag, int rev_id, int herc)
1787 1788 1789 1790
{
	int ret = 0;

	if (flag == FALSE) {
1791
		if ((!herc && (rev_id >= 4)) || herc) {
1792 1793 1794 1795 1796
			if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) &&
			    ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
			     ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
				ret = 1;
			}
1797
		}else {
1798 1799 1800 1801 1802
			if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) &&
			    ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
			     ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
				ret = 1;
			}
1803 1804
		}
	} else {
1805
		if ((!herc && (rev_id >= 4)) || herc) {
1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
			if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
			     ADAPTER_STATUS_RMAC_PCC_IDLE) &&
			    (!(val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ||
			     ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
			      ADAPTER_STATUS_RC_PRC_QUIESCENT))) {
				ret = 1;
			}
		} else {
			if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
			     ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) &&
			    (!(val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ||
			     ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
			      ADAPTER_STATUS_RC_PRC_QUIESCENT))) {
				ret = 1;
			}
1821 1822 1823 1824 1825 1826 1827
		}
	}

	return ret;
}
/**
 *  verify_xena_quiescence - Checks whether the H/W is ready
Linus Torvalds's avatar
Linus Torvalds committed
1828 1829 1830 1831
 *  @val64 :  Value read from adapter status register.
 *  @flag : indicates if the adapter enable bit was ever written once
 *  before.
 *  Description: Returns whether the H/W is ready to go or not. Depending
1832
 *  on whether adapter enable bit was written or not the comparison
Linus Torvalds's avatar
Linus Torvalds committed
1833 1834
 *  differs and the calling function passes the input argument flag to
 *  indicate this.
1835
 *  Return: 1 If xena is quiescence
Linus Torvalds's avatar
Linus Torvalds committed
1836 1837 1838
 *          0 If Xena is not quiescence
 */

1839
static int verify_xena_quiescence(nic_t *sp, u64 val64, int flag)
Linus Torvalds's avatar
Linus Torvalds committed
1840
{
1841
	int ret = 0, herc;
Linus Torvalds's avatar
Linus Torvalds committed
1842
	u64 tmp64 = ~((u64) val64);
1843
	int rev_id = get_xena_rev_id(sp->pdev);
Linus Torvalds's avatar
Linus Torvalds committed
1844

1845
	herc = (sp->device_type == XFRAME_II_DEVICE);
Linus Torvalds's avatar
Linus Torvalds committed
1846 1847 1848 1849 1850 1851 1852
	if (!
	    (tmp64 &
	     (ADAPTER_STATUS_TDMA_READY | ADAPTER_STATUS_RDMA_READY |
	      ADAPTER_STATUS_PFC_READY | ADAPTER_STATUS_TMAC_BUF_EMPTY |
	      ADAPTER_STATUS_PIC_QUIESCENT | ADAPTER_STATUS_MC_DRAM_READY |
	      ADAPTER_STATUS_MC_QUEUES_READY | ADAPTER_STATUS_M_PLL_LOCK |
	      ADAPTER_STATUS_P_PLL_LOCK))) {
1853
		ret = check_prc_pcc_state(val64, flag, rev_id, herc);
Linus Torvalds's avatar
Linus Torvalds committed
1854 1855 1856 1857 1858 1859 1860 1861
	}

	return ret;
}

/**
 * fix_mac_address -  Fix for Mac addr problem on Alpha platforms
 * @sp: Pointer to device specifc structure
1862
 * Description :
Linus Torvalds's avatar
Linus Torvalds committed
1863 1864 1865 1866
 * New procedure to clear mac address reading  problems on Alpha platforms
 *
 */

1867
void fix_mac_address(nic_t * sp)
Linus Torvalds's avatar
Linus Torvalds committed
1868 1869 1870 1871 1872 1873 1874
{
	XENA_dev_config_t __iomem *bar0 = sp->bar0;
	u64 val64;
	int i = 0;

	while (fix_mac[i] != END_SIGN) {
		writeq(fix_mac[i++], &bar0->gpio_control);
1875
		udelay(10);
Linus Torvalds's avatar
Linus Torvalds committed
1876 1877 1878 1879 1880
		val64 = readq(&bar0->gpio_control);
	}
}

/**
1881
 *  start_nic - Turns the device on
Linus Torvalds's avatar
Linus Torvalds committed
1882
 *  @nic : device private variable.
1883 1884 1885 1886
 *  Description:
 *  This function actually turns the device on. Before this  function is
 *  called,all Registers are configured from their reset states
 *  and shared memory is allocated but the NIC is still quiescent. On
Linus Torvalds's avatar
Linus Torvalds committed
1887 1888
 *  calling this function, the device interrupts are cleared and the NIC is
 *  literally switched on by writing into the adapter control register.
1889
 *  Return Value:
Linus Torvalds's avatar
Linus Torvalds committed
1890 1891 1892 1893 1894 1895 1896 1897
 *  SUCCESS on success and -1 on failure.
 */

static int start_nic(struct s2io_nic *nic)
{
	XENA_dev_config_t __iomem *bar0 = nic->bar0;
	struct net_device *dev = nic->dev;
	register u64 val64 = 0;
1898 1899
	u16 interruptible;
	u16 subid, i;
Linus Torvalds's avatar
Linus Torvalds committed
1900 1901 1902 1903 1904 1905 1906 1907
	mac_info_t *mac_control;
	struct config_param *config;

	mac_control = &nic->mac_control;
	config = &nic->config;

	/*  PRC Initialization and configuration */
	for (i = 0; i < config->rx_ring_num; i++) {
1908
		writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
Linus Torvalds's avatar
Linus Torvalds committed
1909 1910 1911
		       &bar0->prc_rxd0_n[i]);

		val64 = readq(&bar0->prc_ctrl_n[i]);
1912 1913
		if (nic->config.bimodal)
			val64 |= PRC_CTRL_BIMODAL_INTERRUPT;
1914 1915 1916 1917
		if (nic->rxd_mode == RXD_MODE_1)
			val64 |= PRC_CTRL_RC_ENABLED;
		else
			val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
Linus Torvalds's avatar
Linus Torvalds committed
1918 1919 1920
		writeq(val64, &bar0->prc_ctrl_n[i]);
	}

1921 1922 1923 1924 1925 1926
	if (nic->rxd_mode == RXD_MODE_3B) {
		/* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
		val64 = readq(&bar0->rx_pa_cfg);
		val64 |= RX_PA_CFG_IGNORE_L2_ERR;
		writeq(val64, &bar0->rx_pa_cfg);
	}
Linus Torvalds's avatar
Linus Torvalds committed
1927

1928
	/*
Linus Torvalds's avatar
Linus Torvalds committed
1929 1930 1931 1932 1933 1934 1935 1936 1937
	 * Enabling MC-RLDRAM. After enabling the device, we timeout
	 * for around 100ms, which is approximately the time required
	 * for the device to be ready for operation.
	 */
	val64 = readq(&bar0->mc_rldram_mrs);
	val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
	SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
	val64 = readq(&bar0->mc_rldram_mrs);

1938
	msleep(100);	/* Delay by around 100 ms. */
Linus Torvalds's avatar
Linus Torvalds committed
1939 1940 1941 1942 1943 1944

	/* Enabling ECC Protection. */
	val64 = readq(&bar0->adapter_control);
	val64 &= ~ADAPTER_ECC_EN;
	writeq(val64, &bar0->adapter_control);

1945 1946
	/*
	 * Clearing any possible Link state change interrupts that
Linus Torvalds's avatar
Linus Torvalds committed
1947 1948 1949 1950 1951 1952
	 * could have popped up just before Enabling the card.
	 */
	val64 = readq(&bar0->mac_rmac_err_reg);
	if (val64)
		writeq(val64, &bar0->mac_rmac_err_reg);

1953 1954
	/*
	 * Verify if the device is ready to be enabled, if so enable
Linus Torvalds's avatar
Linus Torvalds committed
1955 1956 1957
	 * it.
	 */
	val64 = readq(&bar0->adapter_status);
1958
	if (!verify_xena_quiescence(nic, val64, nic->device_enabled_once)) {
Linus Torvalds's avatar
Linus Torvalds committed
1959 1960 1961 1962 1963 1964 1965
		DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
		DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
			  (unsigned long long) val64);
		return FAILURE;
	}

	/*  Enable select interrupts */
1966 1967 1968 1969 1970 1971 1972 1973
	if (nic->intr_type != INTA)
		en_dis_able_nic_intrs(nic, ENA_ALL_INTRS, DISABLE_INTRS);
	else {
		interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
		interruptible |= TX_PIC_INTR | RX_PIC_INTR;
		interruptible |= TX_MAC_INTR | RX_MAC_INTR;
		en_dis_able_nic_intrs(nic, interruptible, ENABLE_INTRS);
	}
Linus Torvalds's avatar
Linus Torvalds committed
1974

1975
	/*
Linus Torvalds's avatar
Linus Torvalds committed
1976
	 * With some switches, link might be already up at this point.
1977 1978 1979 1980
	 * Because of this weird behavior, when we enable laser,
	 * we may not get link. We need to handle this. We cannot
	 * figure out which switch is misbehaving. So we are forced to
	 * make a global change.
Linus Torvalds's avatar
Linus Torvalds committed
1981 1982 1983 1984 1985 1986 1987 1988 1989
	 */

	/* Enabling Laser. */
	val64 = readq(&bar0->adapter_control);
	val64 |= ADAPTER_EOI_TX_ON;
	writeq(val64, &bar0->adapter_control);

	/* SXE-002: Initialize link and activity LED */
	subid = nic->pdev->subsystem_device;
1990 1991
	if (((subid & 0xFF) >= 0x07) &&
	    (nic->device_type == XFRAME_I_DEVICE)) {
Linus Torvalds's avatar
Linus Torvalds committed
1992 1993 1994 1995
		val64 = readq(&bar0->gpio_control);
		val64 |= 0x0000800000000000ULL;
		writeq(val64, &bar0->gpio_control);
		val64 = 0x0411040400000000ULL;
1996
		writeq(val64, (void __iomem *)bar0 + 0x2700);
Linus Torvalds's avatar
Linus Torvalds committed
1997 1998
	}

1999 2000
	/*
	 * Don't see link state interrupts on certain switches, so
Linus Torvalds's avatar
Linus Torvalds committed
2001 2002 2003 2004 2005 2006 2007
	 * directly scheduling a link state task from here.
	 */
	schedule_work(&nic->set_link_task);

	return SUCCESS;
}

2008 2009
/**
 *  free_tx_buffers - Free all queued Tx buffers
Linus Torvalds's avatar
Linus Torvalds committed
2010
 *  @nic : device private variable.
2011
 *  Description:
Linus Torvalds's avatar
Linus Torvalds committed
2012
 *  Free all queued Tx buffers.
2013
 *  Return Value: void
Linus Torvalds's avatar
Linus Torvalds committed
2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
*/

static void free_tx_buffers(struct s2io_nic *nic)
{
	struct net_device *dev = nic->dev;
	struct sk_buff *skb;
	TxD_t *txdp;
	int i, j;
	mac_info_t *mac_control;
	struct config_param *config;
2024
	int cnt = 0, frg_cnt;
Linus Torvalds's avatar
Linus Torvalds committed
2025 2026 2027 2028 2029 2030

	mac_control = &nic->mac_control;
	config = &nic->config;

	for (i = 0; i < config->tx_fifo_num; i++) {
		for (j = 0; j < config->tx_cfg[i].fifo_len - 1; j++) {
2031
			txdp = (TxD_t *) mac_control->fifos[i].list_info[j].
Linus Torvalds's avatar
Linus Torvalds committed
2032 2033 2034 2035 2036
			    list_virt_addr;
			skb =
			    (struct sk_buff *) ((unsigned long) txdp->
						Host_Control);
			if (skb == NULL) {
2037 2038
				memset(txdp, 0, sizeof(TxD_t) *
				       config->max_txds);
Linus Torvalds's avatar
Linus Torvalds committed
2039 2040
				continue;
			}
2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061
			frg_cnt = skb_shinfo(skb)->nr_frags;
			pci_unmap_single(nic->pdev, (dma_addr_t)
					 txdp->Buffer_Pointer,
					 skb->len - skb->data_len,
					 PCI_DMA_TODEVICE);
			if (frg_cnt) {
				TxD_t *temp;
				temp = txdp;
				txdp++;
				for (j = 0; j < frg_cnt; j++, txdp++) {
					skb_frag_t *frag =
					    &skb_shinfo(skb)->frags[j];
					pci_unmap_page(nic->pdev,
						       (dma_addr_t)
						       txdp->
						       Buffer_Pointer,
						       frag->size,
						       PCI_DMA_TODEVICE);
				}
				txdp = temp;
			}
Linus Torvalds's avatar
Linus Torvalds committed
2062
			dev_kfree_skb(skb);
2063
			memset(txdp, 0, sizeof(TxD_t) * config->max_txds);
Linus Torvalds's avatar
Linus Torvalds committed
2064 2065 2066 2067 2068
			cnt++;
		}
		DBG_PRINT(INTR_DBG,
			  "%s:forcibly freeing %d skbs on FIFO%d\n",
			  dev->name, cnt, i);
2069 2070
		mac_control->fifos[i].tx_curr_get_info.offset = 0;
		mac_control->fifos[i].tx_curr_put_info.offset = 0;
Linus Torvalds's avatar
Linus Torvalds committed
2071 2072 2073
	}
}

2074 2075
/**
 *   stop_nic -  To stop the nic
Linus Torvalds's avatar
Linus Torvalds committed
2076
 *   @nic ; device private variable.
2077 2078
 *   Description:
 *   This function does exactly the opposite of what the start_nic()
Linus Torvalds's avatar
Linus Torvalds committed
2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
 *   function does. This function is called to stop the device.
 *   Return Value:
 *   void.
 */

static void stop_nic(struct s2io_nic *nic)
{
	XENA_dev_config_t __iomem *bar0 = nic->bar0;
	register u64 val64 = 0;
	u16 interruptible, i;
	mac_info_t *mac_control;
	struct config_param *config;

	mac_control = &nic->mac_control;
	config = &nic->config;

	/*  Disable all interrupts */
2096
	interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2097 2098
	interruptible |= TX_PIC_INTR | RX_PIC_INTR;
	interruptible |= TX_MAC_INTR | RX_MAC_INTR;
Linus Torvalds's avatar
Linus Torvalds committed
2099 2100 2101 2102 2103 2104 2105 2106 2107 2108
	en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);

	/*  Disable PRCs */
	for (i = 0; i < config->rx_ring_num; i++) {
		val64 = readq(&bar0->prc_ctrl_n[i]);
		val64 &= ~((u64) PRC_CTRL_RC_ENABLED);
		writeq(val64, &bar0->prc_ctrl_n[i]);
	}
}

2109 2110 2111 2112
int fill_rxd_3buf(nic_t *nic, RxD_t *rxdp, struct sk_buff *skb)
{
	struct net_device *dev = nic->dev;
	struct sk_buff *frag_list;
Jeff Garzik's avatar
Jeff Garzik committed
2113
	void *tmp;
2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127

	/* Buffer-1 receives L3/L4 headers */
	((RxD3_t*)rxdp)->Buffer1_ptr = pci_map_single
			(nic->pdev, skb->data, l3l4hdr_size + 4,
			PCI_DMA_FROMDEVICE);

	/* skb_shinfo(skb)->frag_list will have L4 data payload */
	skb_shinfo(skb)->frag_list = dev_alloc_skb(dev->mtu + ALIGN_SIZE);
	if (skb_shinfo(skb)->frag_list == NULL) {
		DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb failed\n ", dev->name);
		return -ENOMEM ;
	}
	frag_list = skb_shinfo(skb)->frag_list;
	frag_list->next = NULL;
Jeff Garzik's avatar
Jeff Garzik committed
2128 2129 2130
	tmp = (void *)ALIGN((long)frag_list->data, ALIGN_SIZE + 1);
	frag_list->data = tmp;
	frag_list->tail = tmp;
2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141

	/* Buffer-2 receives L4 data payload */
	((RxD3_t*)rxdp)->Buffer2_ptr = pci_map_single(nic->pdev,
				frag_list->data, dev->mtu,
				PCI_DMA_FROMDEVICE);
	rxdp->Control_2 |= SET_BUFFER1_SIZE_3(l3l4hdr_size + 4);
	rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu);

	return SUCCESS;
}

2142 2143
/**
 *  fill_rx_buffers - Allocates the Rx side skbs
Linus Torvalds's avatar
Linus Torvalds committed
2144
 *  @nic:  device private variable
2145 2146
 *  @ring_no: ring number
 *  Description:
Linus Torvalds's avatar
Linus Torvalds committed
2147 2148 2149 2150 2151 2152 2153
 *  The function allocates Rx side skbs and puts the physical
 *  address of these buffers into the RxD buffer pointers, so that the NIC
 *  can DMA the received frame into these locations.
 *  The NIC supports 3 receive modes, viz
 *  1. single buffer,
 *  2. three buffer and
 *  3. Five buffer modes.
2154 2155
 *  Each mode defines how many fragments the received frame will be split
 *  up into by the NIC. The frame is split into L3 header, L4 Header,
Linus Torvalds's avatar
Linus Torvalds committed
2156 2157 2158 2159 2160 2161 2162
 *  L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
 *  is split into 3 fragments. As of now only single buffer mode is
 *  supported.
 *   Return Value:
 *  SUCCESS on success or an appropriate -ve value on failure.
 */

2163
int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
Linus Torvalds's avatar
Linus Torvalds committed
2164 2165 2166 2167 2168 2169
{
	struct net_device *dev = nic->dev;
	struct sk_buff *skb;
	RxD_t *rxdp;
	int off, off1, size, block_no, block_no1;
	u32 alloc_tab = 0;
2170
	u32 alloc_cnt;
Linus Torvalds's avatar
Linus Torvalds committed
2171 2172
	mac_info_t *mac_control;
	struct config_param *config;
2173
	u64 tmp;
Linus Torvalds's avatar
Linus Torvalds committed
2174 2175 2176 2177
	buffAdd_t *ba;
#ifndef CONFIG_S2IO_NAPI
	unsigned long flags;
#endif
2178
	RxD_t *first_rxdp = NULL;
Linus Torvalds's avatar
Linus Torvalds committed
2179 2180 2181

	mac_control = &nic->mac_control;
	config = &nic->config;
2182 2183
	alloc_cnt = mac_control->rings[ring_no].pkt_cnt -
	    atomic_read(&nic->rx_bufs_left[ring_no]);
Linus Torvalds's avatar
Linus Torvalds committed
2184 2185

	while (alloc_tab < alloc_cnt) {
2186
		block_no = mac_control->rings[ring_no].rx_curr_put_info.
Linus Torvalds's avatar
Linus Torvalds committed
2187
		    block_index;
2188
		block_no1 = mac_control->rings[ring_no].rx_curr_get_info.
Linus Torvalds's avatar
Linus Torvalds committed
2189
		    block_index;
2190 2191
		off = mac_control->rings[ring_no].rx_curr_put_info.offset;
		off1 = mac_control->rings[ring_no].rx_curr_get_info.offset;
Linus Torvalds's avatar
Linus Torvalds committed
2192

2193 2194 2195 2196 2197 2198 2199
		rxdp = mac_control->rings[ring_no].
				rx_blocks[block_no].rxds[off].virt_addr;

		if ((block_no == block_no1) && (off == off1) &&
					(rxdp->Host_Control)) {
			DBG_PRINT(INTR_DBG, "%s: Get and Put",
				  dev->name);
Linus Torvalds's avatar
Linus Torvalds committed
2200 2201 2202
			DBG_PRINT(INTR_DBG, " info equated\n");
			goto end;
		}
2203
		if (off && (off == rxd_count[nic->rxd_mode])) {
2204
			mac_control->rings[ring_no].rx_curr_put_info.
Linus Torvalds's avatar
Linus Torvalds committed
2205
			    block_index++;
2206 2207 2208 2209 2210 2211 2212 2213 2214
			if (mac_control->rings[ring_no].rx_curr_put_info.
			    block_index == mac_control->rings[ring_no].
					block_count)
				mac_control->rings[ring_no].rx_curr_put_info.
					block_index = 0;
			block_no = mac_control->rings[ring_no].
					rx_curr_put_info.block_index;
			if (off == rxd_count[nic->rxd_mode])
				off = 0;
2215
			mac_control->rings[ring_no].rx_curr_put_info.
2216 2217 2218
				offset = off;
			rxdp = mac_control->rings[ring_no].
				rx_blocks[block_no].block_virt_addr;
Linus Torvalds's avatar
Linus Torvalds committed
2219 2220 2221 2222 2223
			DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
				  dev->name, rxdp);
		}
#ifndef CONFIG_S2IO_NAPI
		spin_lock_irqsave(&nic->put_lock, flags);
2224
		mac_control->rings[ring_no].put_pos =
2225
		    (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
Linus Torvalds's avatar
Linus Torvalds committed
2226 2227
		spin_unlock_irqrestore(&nic->put_lock, flags);
#endif
2228 2229 2230
		if ((rxdp->Control_1 & RXD_OWN_XENA) &&
			((nic->rxd_mode >= RXD_MODE_3A) &&
				(rxdp->Control_2 & BIT(0)))) {
2231
			mac_control->rings[ring_no].rx_curr_put_info.
2232
					offset = off;
Linus Torvalds's avatar
Linus Torvalds committed
2233 2234
			goto end;
		}
2235 2236 2237 2238 2239 2240 2241 2242 2243
		/* calculate size of skb based on ring mode */
		size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
				HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
		if (nic->rxd_mode == RXD_MODE_1)
			size += NET_IP_ALIGN;
		else if (nic->rxd_mode == RXD_MODE_3B)
			size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
		else
			size = l3l4hdr_size + ALIGN_SIZE + BUF0_LEN + 4;
Linus Torvalds's avatar
Linus Torvalds committed
2244

2245 2246 2247
		/* allocate skb */
		skb = dev_alloc_skb(size);
		if(!skb) {
Linus Torvalds's avatar
Linus Torvalds committed
2248 2249
			DBG_PRINT(ERR_DBG, "%s: Out of ", dev->name);
			DBG_PRINT(ERR_DBG, "memory to allocate SKBs\n");
2250 2251 2252 2253
			if (first_rxdp) {
				wmb();
				first_rxdp->Control_1 |= RXD_OWN_XENA;
			}
2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320
			return -ENOMEM ;
		}
		if (nic->rxd_mode == RXD_MODE_1) {
			/* 1 buffer mode - normal operation mode */
			memset(rxdp, 0, sizeof(RxD1_t));
			skb_reserve(skb, NET_IP_ALIGN);
			((RxD1_t*)rxdp)->Buffer0_ptr = pci_map_single
			    (nic->pdev, skb->data, size, PCI_DMA_FROMDEVICE);
			rxdp->Control_2 &= (~MASK_BUFFER0_SIZE_1);
			rxdp->Control_2 |= SET_BUFFER0_SIZE_1(size);

		} else if (nic->rxd_mode >= RXD_MODE_3A) {
			/*
			 * 2 or 3 buffer mode -
			 * Both 2 buffer mode and 3 buffer mode provides 128
			 * byte aligned receive buffers.
			 *
			 * 3 buffer mode provides header separation where in
			 * skb->data will have L3/L4 headers where as
			 * skb_shinfo(skb)->frag_list will have the L4 data
			 * payload
			 */

			memset(rxdp, 0, sizeof(RxD3_t));
			ba = &mac_control->rings[ring_no].ba[block_no][off];
			skb_reserve(skb, BUF0_LEN);
			tmp = (u64)(unsigned long) skb->data;
			tmp += ALIGN_SIZE;
			tmp &= ~ALIGN_SIZE;
			skb->data = (void *) (unsigned long)tmp;
			skb->tail = (void *) (unsigned long)tmp;

			((RxD3_t*)rxdp)->Buffer0_ptr =
			    pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN,
					   PCI_DMA_FROMDEVICE);
			rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
			if (nic->rxd_mode == RXD_MODE_3B) {
				/* Two buffer mode */

				/*
				 * Buffer2 will have L3/L4 header plus 
				 * L4 payload
				 */
				((RxD3_t*)rxdp)->Buffer2_ptr = pci_map_single
				(nic->pdev, skb->data, dev->mtu + 4,
						PCI_DMA_FROMDEVICE);

				/* Buffer-1 will be dummy buffer not used */
				((RxD3_t*)rxdp)->Buffer1_ptr =
				pci_map_single(nic->pdev, ba->ba_1, BUF1_LEN,
					PCI_DMA_FROMDEVICE);
				rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
				rxdp->Control_2 |= SET_BUFFER2_SIZE_3
								(dev->mtu + 4);
			} else {
				/* 3 buffer mode */
				if (fill_rxd_3buf(nic, rxdp, skb) == -ENOMEM) {
					dev_kfree_skb_irq(skb);
					if (first_rxdp) {
						wmb();
						first_rxdp->Control_1 |=
							RXD_OWN_XENA;
					}
					return -ENOMEM ;
				}
			}
			rxdp->Control_2 |= BIT(0);
Linus Torvalds's avatar
Linus Torvalds committed
2321 2322
		}
		rxdp->Host_Control = (unsigned long) (skb);
2323 2324
		if (alloc_tab & ((1 << rxsync_frequency) - 1))
			rxdp->Control_1 |= RXD_OWN_XENA;
Linus Torvalds's avatar
Linus Torvalds committed
2325
		off++;
2326 2327
		if (off == (rxd_count[nic->rxd_mode] + 1))
			off = 0;
2328 2329
		mac_control->rings[ring_no].rx_curr_put_info.offset = off;

2330
		rxdp->Control_2 |= SET_RXD_MARKER;
2331 2332 2333 2334 2335 2336 2337
		if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
			if (first_rxdp) {
				wmb();
				first_rxdp->Control_1 |= RXD_OWN_XENA;
			}
			first_rxdp = rxdp;
		}
Linus Torvalds's avatar
Linus Torvalds committed
2338 2339 2340 2341 2342
		atomic_inc(&nic->rx_bufs_left[ring_no]);
		alloc_tab++;
	}

      end:
2343 2344 2345 2346 2347 2348 2349 2350 2351
	/* Transfer ownership of first descriptor to adapter just before
	 * exiting. Before that, use memory barrier so that ownership
	 * and other fields are seen by adapter correctly.
	 */
	if (first_rxdp) {
		wmb();
		first_rxdp->Control_1 |= RXD_OWN_XENA;
	}

Linus Torvalds's avatar
Linus Torvalds committed
2352 2353 2354
	return SUCCESS;
}

2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
{
	struct net_device *dev = sp->dev;
	int j;
	struct sk_buff *skb;
	RxD_t *rxdp;
	mac_info_t *mac_control;
	buffAdd_t *ba;

	mac_control = &sp->mac_control;
	for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
		rxdp = mac_control->rings[ring_no].
                                rx_blocks[blk].rxds[j].virt_addr;
		skb = (struct sk_buff *)
			((unsigned long) rxdp->Host_Control);
		if (!skb) {
			continue;
		}
		if (sp->rxd_mode == RXD_MODE_1) {
			pci_unmap_single(sp->pdev, (dma_addr_t)
				 ((RxD1_t*)rxdp)->Buffer0_ptr,
				 dev->mtu +
				 HEADER_ETHERNET_II_802_3_SIZE
				 + HEADER_802_2_SIZE +
				 HEADER_SNAP_SIZE,
				 PCI_DMA_FROMDEVICE);
			memset(rxdp, 0, sizeof(RxD1_t));
		} else if(sp->rxd_mode == RXD_MODE_3B) {
			ba = &mac_control->rings[ring_no].
				ba[blk][j];
			pci_unmap_single(sp->pdev, (dma_addr_t)
				 ((RxD3_t*)rxdp)->Buffer0_ptr,
				 BUF0_LEN,
				 PCI_DMA_FROMDEVICE);
			pci_unmap_single(sp->pdev, (dma_addr_t)
				 ((RxD3_t*)rxdp)->Buffer1_ptr,
				 BUF1_LEN,
				 PCI_DMA_FROMDEVICE);
			pci_unmap_single(sp->pdev, (dma_addr_t)
				 ((RxD3_t*)rxdp)->Buffer2_ptr,
				 dev->mtu + 4,
				 PCI_DMA_FROMDEVICE);
			memset(rxdp, 0, sizeof(RxD3_t));
		} else {
			pci_unmap_single(sp->pdev, (dma_addr_t)
				((RxD3_t*)rxdp)->Buffer0_ptr, BUF0_LEN,
				PCI_DMA_FROMDEVICE);
			pci_unmap_single(sp->pdev, (dma_addr_t)
				((RxD3_t*)rxdp)->Buffer1_ptr, 
				l3l4hdr_size + 4,
				PCI_DMA_FROMDEVICE);
			pci_unmap_single(sp->pdev, (dma_addr_t)
				((RxD3_t*)rxdp)->Buffer2_ptr, dev->mtu,
				PCI_DMA_FROMDEVICE);
			memset(rxdp, 0, sizeof(RxD3_t));
		}
		dev_kfree_skb(skb);
		atomic_dec(&sp->rx_bufs_left[ring_no]);
	}
}

Linus Torvalds's avatar
Linus Torvalds committed
2416
/**
2417
 *  free_rx_buffers - Frees all Rx buffers
Linus Torvalds's avatar
Linus Torvalds committed
2418
 *  @sp: device private variable.
2419
 *  Description:
Linus Torvalds's avatar
Linus Torvalds committed
2420 2421 2422 2423 2424 2425 2426 2427
 *  This function will free all Rx buffers allocated by host.
 *  Return Value:
 *  NONE.
 */

static void free_rx_buffers(struct s2io_nic *sp)
{
	struct net_device *dev = sp->dev;
2428
	int i, blk = 0, buf_cnt = 0;
Linus Torvalds's avatar
Linus Torvalds committed
2429 2430 2431 2432 2433 2434 2435
	mac_info_t *mac_control;
	struct config_param *config;

	mac_control = &sp->mac_control;
	config = &sp->config;

	for (i = 0; i < config->rx_ring_num; i++) {
2436 2437
		for (blk = 0; blk < rx_ring_sz[i]; blk++)
			free_rxd_blk(sp,i,blk);
Linus Torvalds's avatar
Linus Torvalds committed
2438

2439 2440 2441 2442
		mac_control->rings[i].rx_curr_put_info.block_index = 0;
		mac_control->rings[i].rx_curr_get_info.block_index = 0;
		mac_control->rings[i].rx_curr_put_info.offset = 0;
		mac_control->rings[i].rx_curr_get_info.offset = 0;
Linus Torvalds's avatar
Linus Torvalds committed
2443 2444 2445 2446 2447 2448 2449 2450 2451
		atomic_set(&sp->rx_bufs_left[i], 0);
		DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
			  dev->name, buf_cnt, i);
	}
}

/**
 * s2io_poll - Rx interrupt handler for NAPI support
 * @dev : pointer to the device structure.
2452
 * @budget : The number of packets that were budgeted to be processed
Linus Torvalds's avatar
Linus Torvalds committed
2453 2454 2455 2456 2457 2458 2459 2460 2461
 * during  one pass through the 'Poll" function.
 * Description:
 * Comes into picture only if NAPI support has been incorporated. It does
 * the same thing that rx_intr_handler does, but not in a interrupt context
 * also It will process only a given number of packets.
 * Return value:
 * 0 on success and 1 if there are No Rx packets to be processed.
 */

2462
#if defined(CONFIG_S2IO_NAPI)
Linus Torvalds's avatar
Linus Torvalds committed
2463 2464 2465
static int s2io_poll(struct net_device *dev, int *budget)
{
	nic_t *nic = dev->priv;
2466
	int pkt_cnt = 0, org_pkts_to_process;
Linus Torvalds's avatar
Linus Torvalds committed
2467 2468
	mac_info_t *mac_control;
	struct config_param *config;
2469
	XENA_dev_config_t __iomem *bar0 = nic->bar0;
2470 2471
	u64 val64;
	int i;
Linus Torvalds's avatar
Linus Torvalds committed
2472

2473
	atomic_inc(&nic->isr_cnt);
Linus Torvalds's avatar
Linus Torvalds committed
2474 2475 2476
	mac_control = &nic->mac_control;
	config = &nic->config;

2477 2478 2479 2480
	nic->pkts_to_process = *budget;
	if (nic->pkts_to_process > dev->quota)
		nic->pkts_to_process = dev->quota;
	org_pkts_to_process = nic->pkts_to_process;
Linus Torvalds's avatar
Linus Torvalds committed
2481 2482 2483 2484 2485

	val64 = readq(&bar0->rx_traffic_int);
	writeq(val64, &bar0->rx_traffic_int);

	for (i = 0; i < config->rx_ring_num; i++) {
2486 2487 2488 2489 2490
		rx_intr_handler(&mac_control->rings[i]);
		pkt_cnt = org_pkts_to_process - nic->pkts_to_process;
		if (!nic->pkts_to_process) {
			/* Quota for the current iteration has been met */
			goto no_rx;
Linus Torvalds's avatar
Linus Torvalds committed
2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508
		}
	}
	if (!pkt_cnt)
		pkt_cnt = 1;

	dev->quota -= pkt_cnt;
	*budget -= pkt_cnt;
	netif_rx_complete(dev);

	for (i = 0; i < config->rx_ring_num; i++) {
		if (fill_rx_buffers(nic, i) == -ENOMEM) {
			DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
			DBG_PRINT(ERR_DBG, " in Rx Poll!!\n");
			break;
		}
	}
	/* Re enable the Rx interrupts. */
	en_dis_able_nic_intrs(nic, RX_TRAFFIC_INTR, ENABLE_INTRS);
2509
	atomic_dec(&nic->isr_cnt);
Linus Torvalds's avatar
Linus Torvalds committed
2510 2511
	return 0;

2512
no_rx:
Linus Torvalds's avatar
Linus Torvalds committed
2513 2514 2515 2516 2517 2518 2519 2520 2521 2522
	dev->quota -= pkt_cnt;
	*budget -= pkt_cnt;

	for (i = 0; i < config->rx_ring_num; i++) {
		if (fill_rx_buffers(nic, i) == -ENOMEM) {
			DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
			DBG_PRINT(ERR_DBG, " in Rx Poll!!\n");
			break;
		}
	}
2523
	atomic_dec(&nic->isr_cnt);
Linus Torvalds's avatar
Linus Torvalds committed
2524 2525
	return 1;
}
2526 2527 2528
#endif

/**
Linus Torvalds's avatar
Linus Torvalds committed
2529 2530
 *  rx_intr_handler - Rx interrupt handler
 *  @nic: device private variable.
2531 2532
 *  Description:
 *  If the interrupt is because of a received frame or if the
Linus Torvalds's avatar
Linus Torvalds committed
2533
 *  receive ring contains fresh as yet un-processed frames,this function is
2534 2535
 *  called. It picks out the RxD at which place the last Rx processing had
 *  stopped and sends the skb to the OSM's Rx handler and then increments
Linus Torvalds's avatar
Linus Torvalds committed
2536 2537 2538 2539
 *  the offset.
 *  Return Value:
 *  NONE.
 */
2540
static void rx_intr_handler(ring_info_t *ring_data)
Linus Torvalds's avatar
Linus Torvalds committed
2541
{
2542
	nic_t *nic = ring_data->nic;
Linus Torvalds's avatar
Linus Torvalds committed
2543
	struct net_device *dev = (struct net_device *) nic->dev;
2544
	int get_block, put_block, put_offset;
Linus Torvalds's avatar
Linus Torvalds committed
2545 2546 2547
	rx_curr_get_info_t get_info, put_info;
	RxD_t *rxdp;
	struct sk_buff *skb;
2548 2549
#ifndef CONFIG_S2IO_NAPI
	int pkt_cnt = 0;
Linus Torvalds's avatar
Linus Torvalds committed
2550
#endif
2551 2552
	spin_lock(&nic->rx_lock);
	if (atomic_read(&nic->card_state) == CARD_DOWN) {
2553
		DBG_PRINT(INTR_DBG, "%s: %s going down for reset\n",
2554 2555
			  __FUNCTION__, dev->name);
		spin_unlock(&nic->rx_lock);
2556
		return;
2557 2558
	}

2559 2560 2561 2562
	get_info = ring_data->rx_curr_get_info;
	get_block = get_info.block_index;
	put_info = ring_data->rx_curr_put_info;
	put_block = put_info.block_index;
2563
	rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2564 2565 2566 2567 2568
#ifndef CONFIG_S2IO_NAPI
	spin_lock(&nic->put_lock);
	put_offset = ring_data->put_pos;
	spin_unlock(&nic->put_lock);
#else
2569
	put_offset = (put_block * (rxd_count[nic->rxd_mode] + 1)) +
2570 2571
		put_info.offset;
#endif
2572 2573 2574 2575 2576 2577 2578
	while (RXD_IS_UP2DT(rxdp)) {
		/* If your are next to put index then it's FIFO full condition */
		if ((get_block == put_block) &&
		    (get_info.offset + 1) == put_info.offset) {
			DBG_PRINT(ERR_DBG, "%s: Ring Full\n",dev->name);
			break;
		}
2579 2580 2581 2582 2583
		skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
		if (skb == NULL) {
			DBG_PRINT(ERR_DBG, "%s: The skb is ",
				  dev->name);
			DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
2584
			spin_unlock(&nic->rx_lock);
2585
			return;
Linus Torvalds's avatar
Linus Torvalds committed
2586
		}
2587 2588 2589
		if (nic->rxd_mode == RXD_MODE_1) {
			pci_unmap_single(nic->pdev, (dma_addr_t)
				 ((RxD1_t*)rxdp)->Buffer0_ptr,
2590 2591 2592 2593 2594
				 dev->mtu +
				 HEADER_ETHERNET_II_802_3_SIZE +
				 HEADER_802_2_SIZE +
				 HEADER_SNAP_SIZE,
				 PCI_DMA_FROMDEVICE);
2595 2596 2597
		} else if (nic->rxd_mode == RXD_MODE_3B) {
			pci_unmap_single(nic->pdev, (dma_addr_t)
				 ((RxD3_t*)rxdp)->Buffer0_ptr,
2598
				 BUF0_LEN, PCI_DMA_FROMDEVICE);
2599 2600
			pci_unmap_single(nic->pdev, (dma_addr_t)
				 ((RxD3_t*)rxdp)->Buffer1_ptr,
2601
				 BUF1_LEN, PCI_DMA_FROMDEVICE);
2602 2603 2604
			pci_unmap_single(nic->pdev, (dma_addr_t)
				 ((RxD3_t*)rxdp)->Buffer2_ptr,
				 dev->mtu + 4,
2605
				 PCI_DMA_FROMDEVICE);
2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617
		} else {
			pci_unmap_single(nic->pdev, (dma_addr_t)
					 ((RxD3_t*)rxdp)->Buffer0_ptr, BUF0_LEN,
					 PCI_DMA_FROMDEVICE);
			pci_unmap_single(nic->pdev, (dma_addr_t)
					 ((RxD3_t*)rxdp)->Buffer1_ptr,
					 l3l4hdr_size + 4,
					 PCI_DMA_FROMDEVICE);
			pci_unmap_single(nic->pdev, (dma_addr_t)
					 ((RxD3_t*)rxdp)->Buffer2_ptr,
					 dev->mtu, PCI_DMA_FROMDEVICE);
		}
2618 2619
		rx_osm_handler(ring_data, rxdp);
		get_info.offset++;
2620 2621 2622 2623
		ring_data->rx_curr_get_info.offset = get_info.offset;
		rxdp = ring_data->rx_blocks[get_block].
				rxds[get_info.offset].virt_addr;
		if (get_info.offset == rxd_count[nic->rxd_mode]) {
2624
			get_info.offset = 0;
2625
			ring_data->rx_curr_get_info.offset = get_info.offset;
2626
			get_block++;
2627 2628 2629
			if (get_block == ring_data->block_count)
				get_block = 0;
			ring_data->rx_curr_get_info.block_index = get_block;
2630 2631
			rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
		}
Linus Torvalds's avatar
Linus Torvalds committed
2632

2633 2634 2635 2636 2637 2638
#ifdef CONFIG_S2IO_NAPI
		nic->pkts_to_process -= 1;
		if (!nic->pkts_to_process)
			break;
#else
		pkt_cnt++;
Linus Torvalds's avatar
Linus Torvalds committed
2639 2640
		if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
			break;
2641
#endif
Linus Torvalds's avatar
Linus Torvalds committed
2642
	}
2643
	spin_unlock(&nic->rx_lock);
Linus Torvalds's avatar
Linus Torvalds committed
2644
}
2645 2646

/**
Linus Torvalds's avatar
Linus Torvalds committed
2647 2648
 *  tx_intr_handler - Transmit interrupt handler
 *  @nic : device private variable
2649 2650 2651 2652
 *  Description:
 *  If an interrupt was raised to indicate DMA complete of the
 *  Tx packet, this function is called. It identifies the last TxD
 *  whose buffer was freed and frees all skbs whose data have already
Linus Torvalds's avatar
Linus Torvalds committed
2653 2654 2655 2656 2657
 *  DMA'ed into the NICs internal memory.
 *  Return Value:
 *  NONE
 */

2658
static void tx_intr_handler(fifo_info_t *fifo_data)
Linus Torvalds's avatar
Linus Torvalds committed
2659
{
2660
	nic_t *nic = fifo_data->nic;
Linus Torvalds's avatar
Linus Torvalds committed
2661 2662 2663 2664 2665 2666
	struct net_device *dev = (struct net_device *) nic->dev;
	tx_curr_get_info_t get_info, put_info;
	struct sk_buff *skb;
	TxD_t *txdlp;
	u16 j, frg_cnt;

2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677
	get_info = fifo_data->tx_curr_get_info;
	put_info = fifo_data->tx_curr_put_info;
	txdlp = (TxD_t *) fifo_data->list_info[get_info.offset].
	    list_virt_addr;
	while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
	       (get_info.offset != put_info.offset) &&
	       (txdlp->Host_Control)) {
		/* Check for TxD errors */
		if (txdlp->Control_1 & TXD_T_CODE) {
			unsigned long long err;
			err = txdlp->Control_1 & TXD_T_CODE;
2678 2679
			if ((err >> 48) == 0xA) {
				DBG_PRINT(TX_DBG, "TxD returned due \
2680
to loss of link\n");
2681 2682 2683
			}
			else {
				DBG_PRINT(ERR_DBG, "***TxD error \
2684
%llx\n", err);
2685
			}
2686
		}
Linus Torvalds's avatar
Linus Torvalds committed
2687

2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710
		skb = (struct sk_buff *) ((unsigned long)
				txdlp->Host_Control);
		if (skb == NULL) {
			DBG_PRINT(ERR_DBG, "%s: Null skb ",
			__FUNCTION__);
			DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
			return;
		}

		frg_cnt = skb_shinfo(skb)->nr_frags;
		nic->tx_pkt_count++;

		pci_unmap_single(nic->pdev, (dma_addr_t)
				 txdlp->Buffer_Pointer,
				 skb->len - skb->data_len,
				 PCI_DMA_TODEVICE);
		if (frg_cnt) {
			TxD_t *temp;
			temp = txdlp;
			txdlp++;
			for (j = 0; j < frg_cnt; j++, txdlp++) {
				skb_frag_t *frag =
				    &skb_shinfo(skb)->frags[j];
2711 2712
				if (!txdlp->Buffer_Pointer)
					break;
2713 2714 2715 2716 2717 2718
				pci_unmap_page(nic->pdev,
					       (dma_addr_t)
					       txdlp->
					       Buffer_Pointer,
					       frag->size,
					       PCI_DMA_TODEVICE);
Linus Torvalds's avatar
Linus Torvalds committed
2719
			}
2720
			txdlp = temp;
Linus Torvalds's avatar
Linus Torvalds committed
2721
		}
2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734
		memset(txdlp, 0,
		       (sizeof(TxD_t) * fifo_data->max_txds));

		/* Updating the statistics block */
		nic->stats.tx_bytes += skb->len;
		dev_kfree_skb_irq(skb);

		get_info.offset++;
		get_info.offset %= get_info.fifo_len + 1;
		txdlp = (TxD_t *) fifo_data->list_info
		    [get_info.offset].list_virt_addr;
		fifo_data->tx_curr_get_info.offset =
		    get_info.offset;
Linus Torvalds's avatar
Linus Torvalds committed
2735 2736 2737 2738 2739 2740 2741 2742
	}

	spin_lock(&nic->tx_lock);
	if (netif_queue_stopped(dev))
		netif_wake_queue(dev);
	spin_unlock(&nic->tx_lock);
}

2743
/**
Linus Torvalds's avatar
Linus Torvalds committed
2744 2745
 *  alarm_intr_handler - Alarm Interrrupt handler
 *  @nic: device private variable
2746
 *  Description: If the interrupt was neither because of Rx packet or Tx
Linus Torvalds's avatar
Linus Torvalds committed
2747
 *  complete, this function is called. If the interrupt was to indicate
2748 2749
 *  a loss of link, the OSM link status handler is invoked for any other
 *  alarm interrupt the block that raised the interrupt is displayed
Linus Torvalds's avatar
Linus Torvalds committed
2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761
 *  and a H/W reset is issued.
 *  Return Value:
 *  NONE
*/

static void alarm_intr_handler(struct s2io_nic *nic)
{
	struct net_device *dev = (struct net_device *) nic->dev;
	XENA_dev_config_t __iomem *bar0 = nic->bar0;
	register u64 val64 = 0, err_reg = 0;

	/* Handling link status change error Intr */
2762 2763 2764 2765 2766 2767
	if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
		err_reg = readq(&bar0->mac_rmac_err_reg);
		writeq(err_reg, &bar0->mac_rmac_err_reg);
		if (err_reg & RMAC_LINK_STATE_CHANGE_INT) {
			schedule_work(&nic->set_link_task);
		}
Linus Torvalds's avatar
Linus Torvalds committed
2768 2769
	}

2770 2771 2772 2773 2774
	/* Handling Ecc errors */
	val64 = readq(&bar0->mc_err_reg);
	writeq(val64, &bar0->mc_err_reg);
	if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
		if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
2775 2776
			nic->mac_control.stats_info->sw_stat.
				double_ecc_errs++;
2777
			DBG_PRINT(INIT_DBG, "%s: Device indicates ",
2778
				  dev->name);
2779
			DBG_PRINT(INIT_DBG, "double ECC error!!\n");
2780
			if (nic->device_type != XFRAME_II_DEVICE) {
2781 2782 2783 2784 2785 2786
				/* Reset XframeI only if critical error */
				if (val64 & (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
					     MC_ERR_REG_MIRI_ECC_DB_ERR_1)) {
					netif_stop_queue(dev);
					schedule_work(&nic->rst_timer_task);
				}
2787
			}
2788
		} else {
2789 2790
			nic->mac_control.stats_info->sw_stat.
				single_ecc_errs++;
2791 2792 2793
		}
	}

Linus Torvalds's avatar
Linus Torvalds committed
2794 2795 2796 2797
	/* In case of a serious error, the device will be Reset. */
	val64 = readq(&bar0->serr_source);
	if (val64 & SERR_SOURCE_ANY) {
		DBG_PRINT(ERR_DBG, "%s: Device indicates ", dev->name);
2798 2799
		DBG_PRINT(ERR_DBG, "serious error %llx!!\n", 
			  (unsigned long long)val64);
Linus Torvalds's avatar
Linus Torvalds committed
2800 2801 2802 2803 2804 2805 2806
		netif_stop_queue(dev);
		schedule_work(&nic->rst_timer_task);
	}

	/*
	 * Also as mentioned in the latest Errata sheets if the PCC_FB_ECC
	 * Error occurs, the adapter will be recycled by disabling the
2807
	 * adapter enable bit and enabling it again after the device
Linus Torvalds's avatar
Linus Torvalds committed
2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822
	 * becomes Quiescent.
	 */
	val64 = readq(&bar0->pcc_err_reg);
	writeq(val64, &bar0->pcc_err_reg);
	if (val64 & PCC_FB_ECC_DB_ERR) {
		u64 ac = readq(&bar0->adapter_control);
		ac &= ~(ADAPTER_CNTL_EN);
		writeq(ac, &bar0->adapter_control);
		ac = readq(&bar0->adapter_control);
		schedule_work(&nic->set_link_task);
	}

	/* Other type of interrupts are not being handled now,  TODO */
}

2823
/**
Linus Torvalds's avatar
Linus Torvalds committed
2824
 *  wait_for_cmd_complete - waits for a command to complete.
2825
 *  @sp : private member of the device structure, which is a pointer to the
Linus Torvalds's avatar
Linus Torvalds committed
2826
 *  s2io_nic structure.
2827 2828 2829
 *  Description: Function that waits for a command to Write into RMAC
 *  ADDR DATA registers to be completed and returns either success or
 *  error depending on whether the command was complete or not.
Linus Torvalds's avatar
Linus Torvalds committed
2830 2831 2832 2833
 *  Return value:
 *   SUCCESS on success and FAILURE on failure.
 */

2834
int wait_for_cmd_complete(nic_t * sp)
Linus Torvalds's avatar
Linus Torvalds committed
2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853
{
	XENA_dev_config_t __iomem *bar0 = sp->bar0;
	int ret = FAILURE, cnt = 0;
	u64 val64;

	while (TRUE) {
		val64 = readq(&bar0->rmac_addr_cmd_mem);
		if (!(val64 & RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING)) {
			ret = SUCCESS;
			break;
		}
		msleep(50);
		if (cnt++ > 10)
			break;
	}

	return ret;
}

2854 2855
/**
 *  s2io_reset - Resets the card.
Linus Torvalds's avatar
Linus Torvalds committed
2856 2857
 *  @sp : private member of the device structure.
 *  Description: Function to Reset the card. This function then also
2858
 *  restores the previously saved PCI configuration space registers as
Linus Torvalds's avatar
Linus Torvalds committed
2859 2860 2861 2862 2863
 *  the card reset also resets the configuration space.
 *  Return value:
 *  void.
 */

2864
void s2io_reset(nic_t * sp)
Linus Torvalds's avatar
Linus Torvalds committed
2865 2866 2867
{
	XENA_dev_config_t __iomem *bar0 = sp->bar0;
	u64 val64;
2868
	u16 subid, pci_cmd;
Linus Torvalds's avatar
Linus Torvalds committed
2869

2870
	/* Back up  the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
2871
	pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
2872

Linus Torvalds's avatar
Linus Torvalds committed
2873 2874 2875
	val64 = SW_RESET_ALL;
	writeq(val64, &bar0->sw_reset);

2876 2877 2878 2879
	/*
	 * At this stage, if the PCI write is indeed completed, the
	 * card is reset and so is the PCI Config space of the device.
	 * So a read cannot be issued at this stage on any of the
Linus Torvalds's avatar
Linus Torvalds committed
2880 2881 2882 2883 2884 2885 2886 2887 2888 2889
	 * registers to ensure the write into "sw_reset" register
	 * has gone through.
	 * Question: Is there any system call that will explicitly force
	 * all the write commands still pending on the bus to be pushed
	 * through?
	 * As of now I'am just giving a 250ms delay and hoping that the
	 * PCI write to sw_reset register is done by this time.
	 */
	msleep(250);

2890 2891 2892
	/* Restore the PCI state saved during initialization. */
	pci_restore_state(sp->pdev);
	pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
2893
				     pci_cmd);
Linus Torvalds's avatar
Linus Torvalds committed
2894 2895 2896 2897
	s2io_init_pci(sp);

	msleep(250);

2898 2899 2900
	/* Set swapper to enable I/O register access */
	s2io_set_swapper(sp);

2901 2902 2903
	/* Restore the MSIX table entries from local variables */
	restore_xmsi_data(sp);

2904
	/* Clear certain PCI/PCI-X fields after reset */
2905 2906 2907
	if (sp->device_type == XFRAME_II_DEVICE) {
		/* Clear parity err detect bit */
		pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
2908

2909 2910
		/* Clearing PCIX Ecc status register */
		pci_write_config_dword(sp->pdev, 0x68, 0x7C);
2911

2912 2913 2914
		/* Clearing PCI_STATUS error reflected here */
		writeq(BIT(62), &bar0->txpic_int_reg);
	}
2915

2916 2917 2918
	/* Reset device statistics maintained by OS */
	memset(&sp->stats, 0, sizeof (struct net_device_stats));

Linus Torvalds's avatar
Linus Torvalds committed
2919 2920
	/* SXE-002: Configure link and activity LED to turn it off */
	subid = sp->pdev->subsystem_device;
2921 2922
	if (((subid & 0xFF) >= 0x07) &&
	    (sp->device_type == XFRAME_I_DEVICE)) {
Linus Torvalds's avatar
Linus Torvalds committed
2923 2924 2925 2926
		val64 = readq(&bar0->gpio_control);
		val64 |= 0x0000800000000000ULL;
		writeq(val64, &bar0->gpio_control);
		val64 = 0x0411040400000000ULL;
2927
		writeq(val64, (void __iomem *)bar0 + 0x2700);
Linus Torvalds's avatar
Linus Torvalds committed
2928 2929
	}

2930 2931 2932 2933 2934 2935 2936 2937 2938
	/*
	 * Clear spurious ECC interrupts that would have occured on
	 * XFRAME II cards after reset.
	 */
	if (sp->device_type == XFRAME_II_DEVICE) {
		val64 = readq(&bar0->pcc_err_reg);
		writeq(val64, &bar0->pcc_err_reg);
	}

Linus Torvalds's avatar
Linus Torvalds committed
2939 2940 2941 2942
	sp->device_enabled_once = FALSE;
}

/**
2943 2944
 *  s2io_set_swapper - to set the swapper controle on the card
 *  @sp : private member of the device structure,
Linus Torvalds's avatar
Linus Torvalds committed
2945
 *  pointer to the s2io_nic structure.
2946
 *  Description: Function to set the swapper control on the card
Linus Torvalds's avatar
Linus Torvalds committed
2947 2948 2949 2950 2951
 *  correctly depending on the 'endianness' of the system.
 *  Return value:
 *  SUCCESS on success and FAILURE on failure.
 */

2952
int s2io_set_swapper(nic_t * sp)
Linus Torvalds's avatar
Linus Torvalds committed
2953 2954 2955 2956 2957
{
	struct net_device *dev = sp->dev;
	XENA_dev_config_t __iomem *bar0 = sp->bar0;
	u64 val64, valt, valr;

2958
	/*
Linus Torvalds's avatar
Linus Torvalds committed
2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009
	 * Set proper endian settings and verify the same by reading
	 * the PIF Feed-back register.
	 */

	val64 = readq(&bar0->pif_rd_swapper_fb);
	if (val64 != 0x0123456789ABCDEFULL) {
		int i = 0;
		u64 value[] = { 0xC30000C3C30000C3ULL,   /* FE=1, SE=1 */
				0x8100008181000081ULL,  /* FE=1, SE=0 */
				0x4200004242000042ULL,  /* FE=0, SE=1 */
				0};                     /* FE=0, SE=0 */

		while(i<4) {
			writeq(value[i], &bar0->swapper_ctrl);
			val64 = readq(&bar0->pif_rd_swapper_fb);
			if (val64 == 0x0123456789ABCDEFULL)
				break;
			i++;
		}
		if (i == 4) {
			DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
				dev->name);
			DBG_PRINT(ERR_DBG, "feedback read %llx\n",
				(unsigned long long) val64);
			return FAILURE;
		}
		valr = value[i];
	} else {
		valr = readq(&bar0->swapper_ctrl);
	}

	valt = 0x0123456789ABCDEFULL;
	writeq(valt, &bar0->xmsi_address);
	val64 = readq(&bar0->xmsi_address);

	if(val64 != valt) {
		int i = 0;
		u64 value[] = { 0x00C3C30000C3C300ULL,  /* FE=1, SE=1 */
				0x0081810000818100ULL,  /* FE=1, SE=0 */
				0x0042420000424200ULL,  /* FE=0, SE=1 */
				0};                     /* FE=0, SE=0 */

		while(i<4) {
			writeq((value[i] | valr), &bar0->swapper_ctrl);
			writeq(valt, &bar0->xmsi_address);
			val64 = readq(&bar0->xmsi_address);
			if(val64 == valt)
				break;
			i++;
		}
		if(i == 4) {
3010
			unsigned long long x = val64;
Linus Torvalds's avatar
Linus Torvalds committed
3011
			DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
3012
			DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
Linus Torvalds's avatar
Linus Torvalds committed
3013 3014 3015 3016 3017 3018 3019
			return FAILURE;
		}
	}
	val64 = readq(&bar0->swapper_ctrl);
	val64 &= 0xFFFF000000000000ULL;

#ifdef  __BIG_ENDIAN
3020 3021
	/*
	 * The device by default set to a big endian format, so a
Linus Torvalds's avatar
Linus Torvalds committed
3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033
	 * big endian driver need not set anything.
	 */
	val64 |= (SWAPPER_CTRL_TXP_FE |
		 SWAPPER_CTRL_TXP_SE |
		 SWAPPER_CTRL_TXD_R_FE |
		 SWAPPER_CTRL_TXD_W_FE |
		 SWAPPER_CTRL_TXF_R_FE |
		 SWAPPER_CTRL_RXD_R_FE |
		 SWAPPER_CTRL_RXD_W_FE |
		 SWAPPER_CTRL_RXF_W_FE |
		 SWAPPER_CTRL_XMSI_FE |
		 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
Andrew Morton's avatar
Andrew Morton committed
3034
	if (sp->intr_type == INTA)
3035
		val64 |= SWAPPER_CTRL_XMSI_SE;
Linus Torvalds's avatar
Linus Torvalds committed
3036 3037
	writeq(val64, &bar0->swapper_ctrl);
#else
3038
	/*
Linus Torvalds's avatar
Linus Torvalds committed
3039
	 * Initially we enable all bits to make it accessible by the
3040
	 * driver, then we selectively enable only those bits that
Linus Torvalds's avatar
Linus Torvalds committed
3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056
	 * we want to set.
	 */
	val64 |= (SWAPPER_CTRL_TXP_FE |
		 SWAPPER_CTRL_TXP_SE |
		 SWAPPER_CTRL_TXD_R_FE |
		 SWAPPER_CTRL_TXD_R_SE |
		 SWAPPER_CTRL_TXD_W_FE |
		 SWAPPER_CTRL_TXD_W_SE |
		 SWAPPER_CTRL_TXF_R_FE |
		 SWAPPER_CTRL_RXD_R_FE |
		 SWAPPER_CTRL_RXD_R_SE |
		 SWAPPER_CTRL_RXD_W_FE |
		 SWAPPER_CTRL_RXD_W_SE |
		 SWAPPER_CTRL_RXF_W_FE |
		 SWAPPER_CTRL_XMSI_FE |
		 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3057 3058
	if (sp->intr_type == INTA)
		val64 |= SWAPPER_CTRL_XMSI_SE;
Linus Torvalds's avatar
Linus Torvalds committed
3059 3060 3061 3062
	writeq(val64, &bar0->swapper_ctrl);
#endif
	val64 = readq(&bar0->swapper_ctrl);

3063 3064
	/*
	 * Verifying if endian settings are accurate by reading a
Linus Torvalds's avatar
Linus Torvalds committed
3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079
	 * feedback register.
	 */
	val64 = readq(&bar0->pif_rd_swapper_fb);
	if (val64 != 0x0123456789ABCDEFULL) {
		/* Endian settings are incorrect, calls for another dekko. */
		DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
			  dev->name);
		DBG_PRINT(ERR_DBG, "feedback read %llx\n",
			  (unsigned long long) val64);
		return FAILURE;
	}

	return SUCCESS;
}

3080 3081
int wait_for_msix_trans(nic_t *nic, int i)
{
3082
	XENA_dev_config_t *bar0 = (XENA_dev_config_t *) nic->bar0;
3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102
	u64 val64;
	int ret = 0, cnt = 0;

	do {
		val64 = readq(&bar0->xmsi_access);
		if (!(val64 & BIT(15)))
			break;
		mdelay(1);
		cnt++;
	} while(cnt < 5);
	if (cnt == 5) {
		DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
		ret = 1;
	}

	return ret;
}

void restore_xmsi_data(nic_t *nic)
{
3103
	XENA_dev_config_t *bar0 = (XENA_dev_config_t *) nic->bar0;
3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120
	u64 val64;
	int i;

	for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
		writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
		writeq(nic->msix_info[i].data, &bar0->xmsi_data);
		val64 = (BIT(7) | BIT(15) | vBIT(i, 26, 6));
		writeq(val64, &bar0->xmsi_access);
		if (wait_for_msix_trans(nic, i)) {
			DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
			continue;
		}
	}
}

void store_xmsi_data(nic_t *nic)
{
3121
	XENA_dev_config_t *bar0 = (XENA_dev_config_t *) nic->bar0;
3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143
	u64 val64, addr, data;
	int i;

	/* Store and display */
	for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
		val64 = (BIT(15) | vBIT(i, 26, 6));
		writeq(val64, &bar0->xmsi_access);
		if (wait_for_msix_trans(nic, i)) {
			DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
			continue;
		}
		addr = readq(&bar0->xmsi_address);
		data = readq(&bar0->xmsi_data);
		if (addr && data) {
			nic->msix_info[i].addr = addr;
			nic->msix_info[i].data = data;
		}
	}
}

int s2io_enable_msi(nic_t *nic)
{
3144
	XENA_dev_config_t *bar0 = (XENA_dev_config_t *) nic->bar0;
3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193
	u16 msi_ctrl, msg_val;
	struct config_param *config = &nic->config;
	struct net_device *dev = nic->dev;
	u64 val64, tx_mat, rx_mat;
	int i, err;

	val64 = readq(&bar0->pic_control);
	val64 &= ~BIT(1);
	writeq(val64, &bar0->pic_control);

	err = pci_enable_msi(nic->pdev);
	if (err) {
		DBG_PRINT(ERR_DBG, "%s: enabling MSI failed\n",
			  nic->dev->name);
		return err;
	}

	/*
	 * Enable MSI and use MSI-1 in stead of the standard MSI-0
	 * for interrupt handling.
	 */
	pci_read_config_word(nic->pdev, 0x4c, &msg_val);
	msg_val ^= 0x1;
	pci_write_config_word(nic->pdev, 0x4c, msg_val);
	pci_read_config_word(nic->pdev, 0x4c, &msg_val);

	pci_read_config_word(nic->pdev, 0x42, &msi_ctrl);
	msi_ctrl |= 0x10;
	pci_write_config_word(nic->pdev, 0x42, msi_ctrl);

	/* program MSI-1 into all usable Tx_Mat and Rx_Mat fields */
	tx_mat = readq(&bar0->tx_mat0_n[0]);
	for (i=0; i<config->tx_fifo_num; i++) {
		tx_mat |= TX_MAT_SET(i, 1);
	}
	writeq(tx_mat, &bar0->tx_mat0_n[0]);

	rx_mat = readq(&bar0->rx_mat);
	for (i=0; i<config->rx_ring_num; i++) {
		rx_mat |= RX_MAT_SET(i, 1);
	}
	writeq(rx_mat, &bar0->rx_mat);

	dev->irq = nic->pdev->irq;
	return 0;
}

int s2io_enable_msi_x(nic_t *nic)
{
3194
	XENA_dev_config_t *bar0 = (XENA_dev_config_t *) nic->bar0;
3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274
	u64 tx_mat, rx_mat;
	u16 msi_control; /* Temp variable */
	int ret, i, j, msix_indx = 1;

	nic->entries = kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct msix_entry),
			       GFP_KERNEL);
	if (nic->entries == NULL) {
		DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", __FUNCTION__);
		return -ENOMEM;
	}
	memset(nic->entries, 0, MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));

	nic->s2io_entries =
		kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry),
				   GFP_KERNEL);
	if (nic->s2io_entries == NULL) {
		DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", __FUNCTION__);
		kfree(nic->entries);
		return -ENOMEM;
	}
	memset(nic->s2io_entries, 0,
	       MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));

	for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
		nic->entries[i].entry = i;
		nic->s2io_entries[i].entry = i;
		nic->s2io_entries[i].arg = NULL;
		nic->s2io_entries[i].in_use = 0;
	}

	tx_mat = readq(&bar0->tx_mat0_n[0]);
	for (i=0; i<nic->config.tx_fifo_num; i++, msix_indx++) {
		tx_mat |= TX_MAT_SET(i, msix_indx);
		nic->s2io_entries[msix_indx].arg = &nic->mac_control.fifos[i];
		nic->s2io_entries[msix_indx].type = MSIX_FIFO_TYPE;
		nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
	}
	writeq(tx_mat, &bar0->tx_mat0_n[0]);

	if (!nic->config.bimodal) {
		rx_mat = readq(&bar0->rx_mat);
		for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
			rx_mat |= RX_MAT_SET(j, msix_indx);
			nic->s2io_entries[msix_indx].arg = &nic->mac_control.rings[j];
			nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
			nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
		}
		writeq(rx_mat, &bar0->rx_mat);
	} else {
		tx_mat = readq(&bar0->tx_mat0_n[7]);
		for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
			tx_mat |= TX_MAT_SET(i, msix_indx);
			nic->s2io_entries[msix_indx].arg = &nic->mac_control.rings[j];
			nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
			nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
		}
		writeq(tx_mat, &bar0->tx_mat0_n[7]);
	}

	ret = pci_enable_msix(nic->pdev, nic->entries, MAX_REQUESTED_MSI_X);
	if (ret) {
		DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
		kfree(nic->entries);
		kfree(nic->s2io_entries);
		nic->entries = NULL;
		nic->s2io_entries = NULL;
		return -ENOMEM;
	}

	/*
	 * To enable MSI-X, MSI also needs to be enabled, due to a bug
	 * in the herc NIC. (Temp change, needs to be removed later)
	 */
	pci_read_config_word(nic->pdev, 0x42, &msi_control);
	msi_control |= 0x1; /* Enable MSI */
	pci_write_config_word(nic->pdev, 0x42, msi_control);

	return 0;
}

Linus Torvalds's avatar
Linus Torvalds committed
3275 3276 3277 3278
/* ********************************************************* *
 * Functions defined below concern the OS part of the driver *
 * ********************************************************* */

3279
/**
Linus Torvalds's avatar
Linus Torvalds committed
3280 3281 3282 3283 3284
 *  s2io_open - open entry point of the driver
 *  @dev : pointer to the device structure.
 *  Description:
 *  This function is the open entry point of the driver. It mainly calls a
 *  function to allocate Rx buffers and inserts them into the buffer
3285
 *  descriptors and then enables the Rx part of the NIC.
Linus Torvalds's avatar
Linus Torvalds committed
3286 3287 3288 3289 3290
 *  Return value:
 *  0 on success and an appropriate (-)ve integer as defined in errno.h
 *   file on failure.
 */

3291
int s2io_open(struct net_device *dev)
Linus Torvalds's avatar
Linus Torvalds committed
3292 3293 3294
{
	nic_t *sp = dev->priv;
	int err = 0;
3295 3296
	int i;
	u16 msi_control; /* Temp variable */
Linus Torvalds's avatar
Linus Torvalds committed
3297

3298 3299
	/*
	 * Make sure you have link off by default every time
Linus Torvalds's avatar
Linus Torvalds committed
3300 3301 3302
	 * Nic is initialized
	 */
	netif_carrier_off(dev);
3303
	sp->last_link_state = 0;
Linus Torvalds's avatar
Linus Torvalds committed
3304 3305 3306 3307 3308

	/* Initialize H/W and enable interrupts */
	if (s2io_card_up(sp)) {
		DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
			  dev->name);
3309 3310
		err = -ENODEV;
		goto hw_init_failed;
Linus Torvalds's avatar
Linus Torvalds committed
3311 3312
	}

3313 3314 3315
	/* Store the values of the MSIX table in the nic_t structure */
	store_xmsi_data(sp);

Linus Torvalds's avatar
Linus Torvalds committed
3316
	/* After proper initialization of H/W, register ISR */
3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361
	if (sp->intr_type == MSI) {
		err = request_irq((int) sp->pdev->irq, s2io_msi_handle, 
			SA_SHIRQ, sp->name, dev);
		if (err) {
			DBG_PRINT(ERR_DBG, "%s: MSI registration \
failed\n", dev->name);
			goto isr_registration_failed;
		}
	}
	if (sp->intr_type == MSI_X) {
		for (i=1; (sp->s2io_entries[i].in_use == MSIX_FLG); i++) {
			if (sp->s2io_entries[i].type == MSIX_FIFO_TYPE) {
				sprintf(sp->desc1, "%s:MSI-X-%d-TX",
					dev->name, i);
				err = request_irq(sp->entries[i].vector,
					  s2io_msix_fifo_handle, 0, sp->desc1,
					  sp->s2io_entries[i].arg);
				DBG_PRINT(ERR_DBG, "%s @ 0x%llx\n", sp->desc1, 
							sp->msix_info[i].addr);
			} else {
				sprintf(sp->desc2, "%s:MSI-X-%d-RX",
					dev->name, i);
				err = request_irq(sp->entries[i].vector,
					  s2io_msix_ring_handle, 0, sp->desc2,
					  sp->s2io_entries[i].arg);
				DBG_PRINT(ERR_DBG, "%s @ 0x%llx\n", sp->desc2, 
							sp->msix_info[i].addr);
			}
			if (err) {
				DBG_PRINT(ERR_DBG, "%s: MSI-X-%d registration \
failed\n", dev->name, i);
				DBG_PRINT(ERR_DBG, "Returned: %d\n", err);
				goto isr_registration_failed;
			}
			sp->s2io_entries[i].in_use = MSIX_REGISTERED_SUCCESS;
		}
	}
	if (sp->intr_type == INTA) {
		err = request_irq((int) sp->pdev->irq, s2io_isr, SA_SHIRQ,
				sp->name, dev);
		if (err) {
			DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
				  dev->name);
			goto isr_registration_failed;
		}
Linus Torvalds's avatar
Linus Torvalds committed
3362 3363 3364 3365
	}

	if (s2io_set_mac_addr(dev, dev->dev_addr) == FAILURE) {
		DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
3366 3367
		err = -ENODEV;
		goto setting_mac_address_failed;
Linus Torvalds's avatar
Linus Torvalds committed
3368 3369 3370 3371
	}

	netif_start_queue(dev);
	return 0;
3372 3373

setting_mac_address_failed:
3374 3375
	if (sp->intr_type != MSI_X)
		free_irq(sp->pdev->irq, dev);
3376
isr_registration_failed:
3377
	del_timer_sync(&sp->alarm_timer);
3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396
	if (sp->intr_type == MSI_X) {
		if (sp->device_type == XFRAME_II_DEVICE) {
			for (i=1; (sp->s2io_entries[i].in_use == 
				MSIX_REGISTERED_SUCCESS); i++) {
				int vector = sp->entries[i].vector;
				void *arg = sp->s2io_entries[i].arg;

				free_irq(vector, arg);
			}
			pci_disable_msix(sp->pdev);

			/* Temp */
			pci_read_config_word(sp->pdev, 0x42, &msi_control);
			msi_control &= 0xFFFE; /* Disable MSI */
			pci_write_config_word(sp->pdev, 0x42, msi_control);
		}
	}
	else if (sp->intr_type == MSI)
		pci_disable_msi(sp->pdev);
3397 3398
	s2io_reset(sp);
hw_init_failed:
3399 3400 3401 3402 3403 3404
	if (sp->intr_type == MSI_X) {
		if (sp->entries)
			kfree(sp->entries);
		if (sp->s2io_entries)
			kfree(sp->s2io_entries);
	}
3405
	return err;
Linus Torvalds's avatar
Linus Torvalds committed
3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420
}

/**
 *  s2io_close -close entry point of the driver
 *  @dev : device pointer.
 *  Description:
 *  This is the stop entry point of the driver. It needs to undo exactly
 *  whatever was done by the open entry point,thus it's usually referred to
 *  as the close function.Among other things this function mainly stops the
 *  Rx side of the NIC and frees all the Rx buffers in the Rx rings.
 *  Return value:
 *  0 on success and an appropriate (-)ve integer as defined in errno.h
 *  file on failure.
 */

3421
int s2io_close(struct net_device *dev)
Linus Torvalds's avatar
Linus Torvalds committed
3422 3423
{
	nic_t *sp = dev->priv;
3424 3425 3426
	int i;
	u16 msi_control;

Linus Torvalds's avatar
Linus Torvalds committed
3427 3428 3429 3430 3431
	flush_scheduled_work();
	netif_stop_queue(dev);
	/* Reset card, kill tasklet and free Tx and Rx buffers. */
	s2io_card_down(sp);

3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452
	if (sp->intr_type == MSI_X) {
		if (sp->device_type == XFRAME_II_DEVICE) {
			for (i=1; (sp->s2io_entries[i].in_use == 
					MSIX_REGISTERED_SUCCESS); i++) {
				int vector = sp->entries[i].vector;
				void *arg = sp->s2io_entries[i].arg;

				free_irq(vector, arg);
			}
			pci_read_config_word(sp->pdev, 0x42, &msi_control);
			msi_control &= 0xFFFE; /* Disable MSI */
			pci_write_config_word(sp->pdev, 0x42, msi_control);

			pci_disable_msix(sp->pdev);
		}
	}
	else {
		free_irq(sp->pdev->irq, dev);
		if (sp->intr_type == MSI)
			pci_disable_msi(sp->pdev);
	}	
Linus Torvalds's avatar
Linus Torvalds committed
3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469
	sp->device_close_flag = TRUE;	/* Device is shut down. */
	return 0;
}

/**
 *  s2io_xmit - Tx entry point of te driver
 *  @skb : the socket buffer containing the Tx data.
 *  @dev : device pointer.
 *  Description :
 *  This function is the Tx entry point of the driver. S2IO NIC supports
 *  certain protocol assist features on Tx side, namely  CSO, S/G, LSO.
 *  NOTE: when device cant queue the pkt,just the trans_start variable will
 *  not be upadted.
 *  Return value:
 *  0 on success & 1 on failure.
 */

3470
int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
Linus Torvalds's avatar
Linus Torvalds committed
3471 3472 3473 3474 3475 3476 3477 3478 3479 3480
{
	nic_t *sp = dev->priv;
	u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
	register u64 val64;
	TxD_t *txdp;
	TxFIFO_element_t __iomem *tx_fifo;
	unsigned long flags;
#ifdef NETIF_F_TSO
	int mss;
#endif
3481 3482
	u16 vlan_tag = 0;
	int vlan_priority = 0;
Linus Torvalds's avatar
Linus Torvalds committed
3483 3484 3485 3486 3487 3488
	mac_info_t *mac_control;
	struct config_param *config;

	mac_control = &sp->mac_control;
	config = &sp->config;

3489
	DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
Linus Torvalds's avatar
Linus Torvalds committed
3490 3491
	spin_lock_irqsave(&sp->tx_lock, flags);
	if (atomic_read(&sp->card_state) == CARD_DOWN) {
3492
		DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
Linus Torvalds's avatar
Linus Torvalds committed
3493 3494
			  dev->name);
		spin_unlock_irqrestore(&sp->tx_lock, flags);
3495 3496
		dev_kfree_skb(skb);
		return 0;
Linus Torvalds's avatar
Linus Torvalds committed
3497 3498 3499 3500
	}

	queue = 0;

3501 3502 3503 3504 3505 3506 3507
	/* Get Fifo number to Transmit based on vlan priority */
	if (sp->vlgrp && vlan_tx_tag_present(skb)) {
		vlan_tag = vlan_tx_tag_get(skb);
		vlan_priority = vlan_tag >> 13;
		queue = config->fifo_mapping[vlan_priority];
	}

3508 3509 3510 3511 3512 3513
	put_off = (u16) mac_control->fifos[queue].tx_curr_put_info.offset;
	get_off = (u16) mac_control->fifos[queue].tx_curr_get_info.offset;
	txdp = (TxD_t *) mac_control->fifos[queue].list_info[put_off].
		list_virt_addr;

	queue_len = mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1;
Linus Torvalds's avatar
Linus Torvalds committed
3514 3515
	/* Avoid "put" pointer going beyond "get" pointer */
	if (txdp->Host_Control || (((put_off + 1) % queue_len) == get_off)) {
3516
		DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
Linus Torvalds's avatar
Linus Torvalds committed
3517 3518 3519 3520 3521
		netif_stop_queue(dev);
		dev_kfree_skb(skb);
		spin_unlock_irqrestore(&sp->tx_lock, flags);
		return 0;
	}
3522 3523 3524 3525 3526 3527 3528 3529 3530

	/* A buffer with no data will be dropped */
	if (!skb->len) {
		DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
		dev_kfree_skb(skb);
		spin_unlock_irqrestore(&sp->tx_lock, flags);
		return 0;
	}

Linus Torvalds's avatar
Linus Torvalds committed
3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543
#ifdef NETIF_F_TSO
	mss = skb_shinfo(skb)->tso_size;
	if (mss) {
		txdp->Control_1 |= TXD_TCP_LSO_EN;
		txdp->Control_1 |= TXD_TCP_LSO_MSS(mss);
	}
#endif

	frg_cnt = skb_shinfo(skb)->nr_frags;
	frg_len = skb->len - skb->data_len;

	txdp->Buffer_Pointer = pci_map_single
	    (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
3544
	txdp->Host_Control = (unsigned long) skb;
Linus Torvalds's avatar
Linus Torvalds committed
3545 3546 3547 3548 3549 3550 3551
	if (skb->ip_summed == CHECKSUM_HW) {
		txdp->Control_2 |=
		    (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
		     TXD_TX_CKO_UDP_EN);
	}

	txdp->Control_2 |= config->tx_intr_type;
3552

3553 3554 3555 3556 3557
	if (sp->vlgrp && vlan_tx_tag_present(skb)) {
		txdp->Control_2 |= TXD_VLAN_ENABLE;
		txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
	}

Linus Torvalds's avatar
Linus Torvalds committed
3558 3559 3560 3561 3562 3563 3564
	txdp->Control_1 |= (TXD_BUFFER0_SIZE(frg_len) |
			    TXD_GATHER_CODE_FIRST);
	txdp->Control_1 |= TXD_LIST_OWN_XENA;

	/* For fragmented SKB. */
	for (i = 0; i < frg_cnt; i++) {
		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3565 3566 3567
		/* A '0' length fragment will be ignored */
		if (!frag->size)
			continue;
Linus Torvalds's avatar
Linus Torvalds committed
3568 3569 3570 3571 3572 3573 3574 3575 3576
		txdp++;
		txdp->Buffer_Pointer = (u64) pci_map_page
		    (sp->pdev, frag->page, frag->page_offset,
		     frag->size, PCI_DMA_TODEVICE);
		txdp->Control_1 |= TXD_BUFFER0_SIZE(frag->size);
	}
	txdp->Control_1 |= TXD_GATHER_CODE_LAST;

	tx_fifo = mac_control->tx_FIFO_start[queue];
3577
	val64 = mac_control->fifos[queue].list_info[put_off].list_phy_addr;
Linus Torvalds's avatar
Linus Torvalds committed
3578 3579 3580 3581
	writeq(val64, &tx_fifo->TxDL_Pointer);

	val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
		 TX_FIFO_LAST_LIST);
3582

Linus Torvalds's avatar
Linus Torvalds committed
3583 3584 3585 3586 3587 3588
#ifdef NETIF_F_TSO
	if (mss)
		val64 |= TX_FIFO_SPECIAL_FUNC;
#endif
	writeq(val64, &tx_fifo->List_Control);

3589 3590
	mmiowb();

Linus Torvalds's avatar
Linus Torvalds committed
3591
	put_off++;
3592 3593
	put_off %= mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1;
	mac_control->fifos[queue].tx_curr_put_info.offset = put_off;
Linus Torvalds's avatar
Linus Torvalds committed
3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608

	/* Avoid "put" pointer going beyond "get" pointer */
	if (((put_off + 1) % queue_len) == get_off) {
		DBG_PRINT(TX_DBG,
			  "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
			  put_off, get_off);
		netif_stop_queue(dev);
	}

	dev->trans_start = jiffies;
	spin_unlock_irqrestore(&sp->tx_lock, flags);

	return 0;
}

3609 3610 3611 3612 3613 3614 3615 3616 3617
static void
s2io_alarm_handle(unsigned long data)
{
	nic_t *sp = (nic_t *)data;

	alarm_intr_handler(sp);
	mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
}

3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715
static irqreturn_t
s2io_msi_handle(int irq, void *dev_id, struct pt_regs *regs)
{
	struct net_device *dev = (struct net_device *) dev_id;
	nic_t *sp = dev->priv;
	int i;
	int ret;
	mac_info_t *mac_control;
	struct config_param *config;

	atomic_inc(&sp->isr_cnt);
	mac_control = &sp->mac_control;
	config = &sp->config;
	DBG_PRINT(INTR_DBG, "%s: MSI handler\n", __FUNCTION__);

	/* If Intr is because of Rx Traffic */
	for (i = 0; i < config->rx_ring_num; i++)
		rx_intr_handler(&mac_control->rings[i]);

	/* If Intr is because of Tx Traffic */
	for (i = 0; i < config->tx_fifo_num; i++)
		tx_intr_handler(&mac_control->fifos[i]);

	/*
	 * If the Rx buffer count is below the panic threshold then
	 * reallocate the buffers from the interrupt handler itself,
	 * else schedule a tasklet to reallocate the buffers.
	 */
	for (i = 0; i < config->rx_ring_num; i++) {
		int rxb_size = atomic_read(&sp->rx_bufs_left[i]);
		int level = rx_buffer_level(sp, rxb_size, i);

		if ((level == PANIC) && (!TASKLET_IN_USE)) {
			DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", dev->name);
			DBG_PRINT(INTR_DBG, "PANIC levels\n");
			if ((ret = fill_rx_buffers(sp, i)) == -ENOMEM) {
				DBG_PRINT(ERR_DBG, "%s:Out of memory",
					  dev->name);
				DBG_PRINT(ERR_DBG, " in ISR!!\n");
				clear_bit(0, (&sp->tasklet_status));
				atomic_dec(&sp->isr_cnt);
				return IRQ_HANDLED;
			}
			clear_bit(0, (&sp->tasklet_status));
		} else if (level == LOW) {
			tasklet_schedule(&sp->task);
		}
	}

	atomic_dec(&sp->isr_cnt);
	return IRQ_HANDLED;
}

static irqreturn_t
s2io_msix_ring_handle(int irq, void *dev_id, struct pt_regs *regs)
{
	ring_info_t *ring = (ring_info_t *)dev_id;
	nic_t *sp = ring->nic;
	int rxb_size, level, rng_n;

	atomic_inc(&sp->isr_cnt);
	rx_intr_handler(ring);

	rng_n = ring->ring_no;
	rxb_size = atomic_read(&sp->rx_bufs_left[rng_n]);
	level = rx_buffer_level(sp, rxb_size, rng_n);

	if ((level == PANIC) && (!TASKLET_IN_USE)) {
		int ret;
		DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", __FUNCTION__);
		DBG_PRINT(INTR_DBG, "PANIC levels\n");
		if ((ret = fill_rx_buffers(sp, rng_n)) == -ENOMEM) {
			DBG_PRINT(ERR_DBG, "Out of memory in %s",
				  __FUNCTION__);
			clear_bit(0, (&sp->tasklet_status));
			return IRQ_HANDLED;
		}
		clear_bit(0, (&sp->tasklet_status));
	} else if (level == LOW) {
		tasklet_schedule(&sp->task);
	}
	atomic_dec(&sp->isr_cnt);

	return IRQ_HANDLED;
}

static irqreturn_t
s2io_msix_fifo_handle(int irq, void *dev_id, struct pt_regs *regs)
{
	fifo_info_t *fifo = (fifo_info_t *)dev_id;
	nic_t *sp = fifo->nic;

	atomic_inc(&sp->isr_cnt);
	tx_intr_handler(fifo);
	atomic_dec(&sp->isr_cnt);
	return IRQ_HANDLED;
}

3716 3717
static void s2io_txpic_intr_handle(nic_t *sp)
{
3718
	XENA_dev_config_t __iomem *bar0 = sp->bar0;
3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762
	u64 val64;

	val64 = readq(&bar0->pic_int_status);
	if (val64 & PIC_INT_GPIO) {
		val64 = readq(&bar0->gpio_int_reg);
		if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
		    (val64 & GPIO_INT_REG_LINK_UP)) {
			val64 |=  GPIO_INT_REG_LINK_DOWN;
			val64 |= GPIO_INT_REG_LINK_UP;
			writeq(val64, &bar0->gpio_int_reg);
			goto masking;
		}

		if (((sp->last_link_state == LINK_UP) &&
			(val64 & GPIO_INT_REG_LINK_DOWN)) ||
		((sp->last_link_state == LINK_DOWN) &&
		(val64 & GPIO_INT_REG_LINK_UP))) {
			val64 = readq(&bar0->gpio_int_mask);
			val64 |=  GPIO_INT_MASK_LINK_DOWN;
			val64 |= GPIO_INT_MASK_LINK_UP;
			writeq(val64, &bar0->gpio_int_mask);
			s2io_set_link((unsigned long)sp);
		}
masking:
		if (sp->last_link_state == LINK_UP) {
			/*enable down interrupt */
			val64 = readq(&bar0->gpio_int_mask);
			/* unmasks link down intr */
			val64 &=  ~GPIO_INT_MASK_LINK_DOWN;
			/* masks link up intr */
			val64 |= GPIO_INT_MASK_LINK_UP;
			writeq(val64, &bar0->gpio_int_mask);
		} else {
			/*enable UP Interrupt */
			val64 = readq(&bar0->gpio_int_mask);
			/* unmasks link up interrupt */
			val64 &= ~GPIO_INT_MASK_LINK_UP;
			/* masks link down interrupt */
			val64 |=  GPIO_INT_MASK_LINK_DOWN;
			writeq(val64, &bar0->gpio_int_mask);
		}
	}
}

Linus Torvalds's avatar
Linus Torvalds committed
3763 3764 3765 3766 3767
/**
 *  s2io_isr - ISR handler of the device .
 *  @irq: the irq of the device.
 *  @dev_id: a void pointer to the dev structure of the NIC.
 *  @pt_regs: pointer to the registers pushed on the stack.
3768 3769 3770
 *  Description:  This function is the ISR handler of the device. It
 *  identifies the reason for the interrupt and calls the relevant
 *  service routines. As a contongency measure, this ISR allocates the
Linus Torvalds's avatar
Linus Torvalds committed
3771 3772 3773
 *  recv buffers, if their numbers are below the panic value which is
 *  presently set to 25% of the original number of rcv buffers allocated.
 *  Return value:
3774
 *   IRQ_HANDLED: will be returned if IRQ was handled by this routine
Linus Torvalds's avatar
Linus Torvalds committed
3775 3776 3777 3778 3779 3780 3781
 *   IRQ_NONE: will be returned if interrupt is not from our device
 */
static irqreturn_t s2io_isr(int irq, void *dev_id, struct pt_regs *regs)
{
	struct net_device *dev = (struct net_device *) dev_id;
	nic_t *sp = dev->priv;
	XENA_dev_config_t __iomem *bar0 = sp->bar0;
3782
	int i;
3783
	u64 reason = 0, val64;
Linus Torvalds's avatar
Linus Torvalds committed
3784 3785 3786
	mac_info_t *mac_control;
	struct config_param *config;

3787
	atomic_inc(&sp->isr_cnt);
Linus Torvalds's avatar
Linus Torvalds committed
3788 3789 3790
	mac_control = &sp->mac_control;
	config = &sp->config;

3791
	/*
Linus Torvalds's avatar
Linus Torvalds committed
3792 3793 3794 3795 3796
	 * Identify the cause for interrupt and call the appropriate
	 * interrupt handler. Causes for the interrupt could be;
	 * 1. Rx of packet.
	 * 2. Tx complete.
	 * 3. Link down.
3797
	 * 4. Error in any functional blocks of the NIC.
Linus Torvalds's avatar
Linus Torvalds committed
3798 3799 3800 3801 3802
	 */
	reason = readq(&bar0->general_int_status);

	if (!reason) {
		/* The interrupt was not raised by Xena. */
3803
		atomic_dec(&sp->isr_cnt);
Linus Torvalds's avatar
Linus Torvalds committed
3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817
		return IRQ_NONE;
	}

#ifdef CONFIG_S2IO_NAPI
	if (reason & GEN_INTR_RXTRAFFIC) {
		if (netif_rx_schedule_prep(dev)) {
			en_dis_able_nic_intrs(sp, RX_TRAFFIC_INTR,
					      DISABLE_INTRS);
			__netif_rx_schedule(dev);
		}
	}
#else
	/* If Intr is because of Rx Traffic */
	if (reason & GEN_INTR_RXTRAFFIC) {
3818 3819 3820 3821 3822 3823 3824
		/*
		 * rx_traffic_int reg is an R1 register, writing all 1's
		 * will ensure that the actual interrupt causing bit get's
		 * cleared and hence a read can be avoided.
		 */
		val64 = 0xFFFFFFFFFFFFFFFFULL;
		writeq(val64, &bar0->rx_traffic_int);
3825 3826 3827
		for (i = 0; i < config->rx_ring_num; i++) {
			rx_intr_handler(&mac_control->rings[i]);
		}
Linus Torvalds's avatar
Linus Torvalds committed
3828 3829 3830
	}
#endif

3831 3832
	/* If Intr is because of Tx Traffic */
	if (reason & GEN_INTR_TXTRAFFIC) {
3833 3834 3835 3836 3837 3838 3839 3840
		/*
		 * tx_traffic_int reg is an R1 register, writing all 1's
		 * will ensure that the actual interrupt causing bit get's
		 * cleared and hence a read can be avoided.
		 */
		val64 = 0xFFFFFFFFFFFFFFFFULL;
		writeq(val64, &bar0->tx_traffic_int);

3841 3842 3843 3844
		for (i = 0; i < config->tx_fifo_num; i++)
			tx_intr_handler(&mac_control->fifos[i]);
	}

3845 3846
	if (reason & GEN_INTR_TXPIC)
		s2io_txpic_intr_handle(sp);
3847 3848 3849
	/*
	 * If the Rx buffer count is below the panic threshold then
	 * reallocate the buffers from the interrupt handler itself,
Linus Torvalds's avatar
Linus Torvalds committed
3850 3851 3852 3853
	 * else schedule a tasklet to reallocate the buffers.
	 */
#ifndef CONFIG_S2IO_NAPI
	for (i = 0; i < config->rx_ring_num; i++) {
3854
		int ret;
Linus Torvalds's avatar
Linus Torvalds committed
3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865
		int rxb_size = atomic_read(&sp->rx_bufs_left[i]);
		int level = rx_buffer_level(sp, rxb_size, i);

		if ((level == PANIC) && (!TASKLET_IN_USE)) {
			DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", dev->name);
			DBG_PRINT(INTR_DBG, "PANIC levels\n");
			if ((ret = fill_rx_buffers(sp, i)) == -ENOMEM) {
				DBG_PRINT(ERR_DBG, "%s:Out of memory",
					  dev->name);
				DBG_PRINT(ERR_DBG, " in ISR!!\n");
				clear_bit(0, (&sp->tasklet_status));
3866
				atomic_dec(&sp->isr_cnt);
Linus Torvalds's avatar
Linus Torvalds committed
3867 3868 3869 3870 3871 3872 3873 3874 3875
				return IRQ_HANDLED;
			}
			clear_bit(0, (&sp->tasklet_status));
		} else if (level == LOW) {
			tasklet_schedule(&sp->task);
		}
	}
#endif

3876
	atomic_dec(&sp->isr_cnt);
Linus Torvalds's avatar
Linus Torvalds committed
3877 3878 3879
	return IRQ_HANDLED;
}

3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905
/**
 * s2io_updt_stats -
 */
static void s2io_updt_stats(nic_t *sp)
{
	XENA_dev_config_t __iomem *bar0 = sp->bar0;
	u64 val64;
	int cnt = 0;

	if (atomic_read(&sp->card_state) == CARD_UP) {
		/* Apprx 30us on a 133 MHz bus */
		val64 = SET_UPDT_CLICKS(10) |
			STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
		writeq(val64, &bar0->stat_cfg);
		do {
			udelay(100);
			val64 = readq(&bar0->stat_cfg);
			if (!(val64 & BIT(0)))
				break;
			cnt++;
			if (cnt == 5)
				break; /* Updt failed */
		} while(1);
	}
}

Linus Torvalds's avatar
Linus Torvalds committed
3906
/**
3907
 *  s2io_get_stats - Updates the device statistics structure.
Linus Torvalds's avatar
Linus Torvalds committed
3908 3909
 *  @dev : pointer to the device structure.
 *  Description:
3910
 *  This function updates the device statistics structure in the s2io_nic
Linus Torvalds's avatar
Linus Torvalds committed
3911 3912 3913 3914 3915
 *  structure and returns a pointer to the same.
 *  Return value:
 *  pointer to the updated net_device_stats structure.
 */

3916
struct net_device_stats *s2io_get_stats(struct net_device *dev)
Linus Torvalds's avatar
Linus Torvalds committed
3917 3918 3919 3920 3921
{
	nic_t *sp = dev->priv;
	mac_info_t *mac_control;
	struct config_param *config;

3922

Linus Torvalds's avatar
Linus Torvalds committed
3923 3924 3925
	mac_control = &sp->mac_control;
	config = &sp->config;

3926 3927 3928 3929 3930
	/* Configure Stats for immediate updt */
	s2io_updt_stats(sp);

	sp->stats.tx_packets =
		le32_to_cpu(mac_control->stats_info->tmac_frms);
3931 3932 3933 3934 3935 3936
	sp->stats.tx_errors =
		le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
	sp->stats.rx_errors =
		le32_to_cpu(mac_control->stats_info->rmac_drop_frms);
	sp->stats.multicast =
		le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
Linus Torvalds's avatar
Linus Torvalds committed
3937
	sp->stats.rx_length_errors =
3938
		le32_to_cpu(mac_control->stats_info->rmac_long_frms);
Linus Torvalds's avatar
Linus Torvalds committed
3939 3940 3941 3942 3943 3944 3945 3946

	return (&sp->stats);
}

/**
 *  s2io_set_multicast - entry point for multicast address enable/disable.
 *  @dev : pointer to the device structure
 *  Description:
3947 3948
 *  This function is a driver entry point which gets called by the kernel
 *  whenever multicast addresses must be enabled/disabled. This also gets
Linus Torvalds's avatar
Linus Torvalds committed
3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985
 *  called to set/reset promiscuous mode. Depending on the deivce flag, we
 *  determine, if multicast address must be enabled or if promiscuous mode
 *  is to be disabled etc.
 *  Return value:
 *  void.
 */

static void s2io_set_multicast(struct net_device *dev)
{
	int i, j, prev_cnt;
	struct dev_mc_list *mclist;
	nic_t *sp = dev->priv;
	XENA_dev_config_t __iomem *bar0 = sp->bar0;
	u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
	    0xfeffffffffffULL;
	u64 dis_addr = 0xffffffffffffULL, mac_addr = 0;
	void __iomem *add;

	if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
		/*  Enable all Multicast addresses */
		writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
		       &bar0->rmac_addr_data0_mem);
		writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
		       &bar0->rmac_addr_data1_mem);
		val64 = RMAC_ADDR_CMD_MEM_WE |
		    RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
		    RMAC_ADDR_CMD_MEM_OFFSET(MAC_MC_ALL_MC_ADDR_OFFSET);
		writeq(val64, &bar0->rmac_addr_cmd_mem);
		/* Wait till command completes */
		wait_for_cmd_complete(sp);

		sp->m_cast_flg = 1;
		sp->all_multi_pos = MAC_MC_ALL_MC_ADDR_OFFSET;
	} else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
		/*  Disable all Multicast addresses */
		writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
		       &bar0->rmac_addr_data0_mem);
3986 3987
		writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
		       &bar0->rmac_addr_data1_mem);
Linus Torvalds's avatar
Linus Torvalds committed
3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011
		val64 = RMAC_ADDR_CMD_MEM_WE |
		    RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
		    RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
		writeq(val64, &bar0->rmac_addr_cmd_mem);
		/* Wait till command completes */
		wait_for_cmd_complete(sp);

		sp->m_cast_flg = 0;
		sp->all_multi_pos = 0;
	}

	if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
		/*  Put the NIC into promiscuous mode */
		add = &bar0->mac_cfg;
		val64 = readq(&bar0->mac_cfg);
		val64 |= MAC_CFG_RMAC_PROM_ENABLE;

		writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
		writel((u32) val64, add);
		writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
		writel((u32) (val64 >> 32), (add + 4));

		val64 = readq(&bar0->mac_cfg);
		sp->promisc_flg = 1;
4012
		DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
Linus Torvalds's avatar
Linus Torvalds committed
4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026
			  dev->name);
	} else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
		/*  Remove the NIC from promiscuous mode */
		add = &bar0->mac_cfg;
		val64 = readq(&bar0->mac_cfg);
		val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;

		writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
		writel((u32) val64, add);
		writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
		writel((u32) (val64 >> 32), (add + 4));

		val64 = readq(&bar0->mac_cfg);
		sp->promisc_flg = 0;
4027
		DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
Linus Torvalds's avatar
Linus Torvalds committed
4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049
			  dev->name);
	}

	/*  Update individual M_CAST address list */
	if ((!sp->m_cast_flg) && dev->mc_count) {
		if (dev->mc_count >
		    (MAX_ADDRS_SUPPORTED - MAC_MC_ADDR_START_OFFSET - 1)) {
			DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
				  dev->name);
			DBG_PRINT(ERR_DBG, "can be added, please enable ");
			DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
			return;
		}

		prev_cnt = sp->mc_addr_count;
		sp->mc_addr_count = dev->mc_count;

		/* Clear out the previous list of Mc in the H/W. */
		for (i = 0; i < prev_cnt; i++) {
			writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
			       &bar0->rmac_addr_data0_mem);
			writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4050
				&bar0->rmac_addr_data1_mem);
Linus Torvalds's avatar
Linus Torvalds committed
4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078
			val64 = RMAC_ADDR_CMD_MEM_WE |
			    RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
			    RMAC_ADDR_CMD_MEM_OFFSET
			    (MAC_MC_ADDR_START_OFFSET + i);
			writeq(val64, &bar0->rmac_addr_cmd_mem);

			/* Wait for command completes */
			if (wait_for_cmd_complete(sp)) {
				DBG_PRINT(ERR_DBG, "%s: Adding ",
					  dev->name);
				DBG_PRINT(ERR_DBG, "Multicasts failed\n");
				return;
			}
		}

		/* Create the new Rx filter list and update the same in H/W. */
		for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
		     i++, mclist = mclist->next) {
			memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
			       ETH_ALEN);
			for (j = 0; j < ETH_ALEN; j++) {
				mac_addr |= mclist->dmi_addr[j];
				mac_addr <<= 8;
			}
			mac_addr >>= 8;
			writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
			       &bar0->rmac_addr_data0_mem);
			writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4079
				&bar0->rmac_addr_data1_mem);
Linus Torvalds's avatar
Linus Torvalds committed
4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097
			val64 = RMAC_ADDR_CMD_MEM_WE |
			    RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
			    RMAC_ADDR_CMD_MEM_OFFSET
			    (i + MAC_MC_ADDR_START_OFFSET);
			writeq(val64, &bar0->rmac_addr_cmd_mem);

			/* Wait for command completes */
			if (wait_for_cmd_complete(sp)) {
				DBG_PRINT(ERR_DBG, "%s: Adding ",
					  dev->name);
				DBG_PRINT(ERR_DBG, "Multicasts failed\n");
				return;
			}
		}
	}
}

/**
4098
 *  s2io_set_mac_addr - Programs the Xframe mac address
Linus Torvalds's avatar
Linus Torvalds committed
4099 4100
 *  @dev : pointer to the device structure.
 *  @addr: a uchar pointer to the new mac address which is to be set.
4101
 *  Description : This procedure will program the Xframe to receive
Linus Torvalds's avatar
Linus Torvalds committed
4102
 *  frames with new Mac Address
4103
 *  Return value: SUCCESS on success and an appropriate (-)ve integer
Linus Torvalds's avatar
Linus Torvalds committed
4104 4105 4106 4107 4108 4109 4110 4111 4112 4113
 *  as defined in errno.h file on failure.
 */

int s2io_set_mac_addr(struct net_device *dev, u8 * addr)
{
	nic_t *sp = dev->priv;
	XENA_dev_config_t __iomem *bar0 = sp->bar0;
	register u64 val64, mac_addr = 0;
	int i;

4114
	/*
Linus Torvalds's avatar
Linus Torvalds committed
4115 4116
	 * Set the new MAC address as the new unicast filter and reflect this
	 * change on the device address registered with the OS. It will be
4117
	 * at offset 0.
Linus Torvalds's avatar
Linus Torvalds committed
4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140
	 */
	for (i = 0; i < ETH_ALEN; i++) {
		mac_addr <<= 8;
		mac_addr |= addr[i];
	}

	writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
	       &bar0->rmac_addr_data0_mem);

	val64 =
	    RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
	    RMAC_ADDR_CMD_MEM_OFFSET(0);
	writeq(val64, &bar0->rmac_addr_cmd_mem);
	/* Wait till command completes */
	if (wait_for_cmd_complete(sp)) {
		DBG_PRINT(ERR_DBG, "%s: set_mac_addr failed\n", dev->name);
		return FAILURE;
	}

	return SUCCESS;
}

/**
4141
 * s2io_ethtool_sset - Sets different link parameters.
Linus Torvalds's avatar
Linus Torvalds committed
4142 4143 4144 4145
 * @sp : private member of the device structure, which is a pointer to the  * s2io_nic structure.
 * @info: pointer to the structure with parameters given by ethtool to set
 * link information.
 * Description:
4146
 * The function sets different link parameters provided by the user onto
Linus Torvalds's avatar
Linus Torvalds committed
4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167
 * the NIC.
 * Return value:
 * 0 on success.
*/

static int s2io_ethtool_sset(struct net_device *dev,
			     struct ethtool_cmd *info)
{
	nic_t *sp = dev->priv;
	if ((info->autoneg == AUTONEG_ENABLE) ||
	    (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
		return -EINVAL;
	else {
		s2io_close(sp->dev);
		s2io_open(sp->dev);
	}

	return 0;
}

/**
4168
 * s2io_ethtol_gset - Return link specific information.
Linus Torvalds's avatar
Linus Torvalds committed
4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199
 * @sp : private member of the device structure, pointer to the
 *      s2io_nic structure.
 * @info : pointer to the structure with parameters given by ethtool
 * to return link information.
 * Description:
 * Returns link specific information like speed, duplex etc.. to ethtool.
 * Return value :
 * return 0 on success.
 */

static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
{
	nic_t *sp = dev->priv;
	info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
	info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
	info->port = PORT_FIBRE;
	/* info->transceiver?? TODO */

	if (netif_carrier_ok(sp->dev)) {
		info->speed = 10000;
		info->duplex = DUPLEX_FULL;
	} else {
		info->speed = -1;
		info->duplex = -1;
	}

	info->autoneg = AUTONEG_DISABLE;
	return 0;
}

/**
4200 4201
 * s2io_ethtool_gdrvinfo - Returns driver specific information.
 * @sp : private member of the device structure, which is a pointer to the
Linus Torvalds's avatar
Linus Torvalds committed
4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215
 * s2io_nic structure.
 * @info : pointer to the structure with parameters given by ethtool to
 * return driver information.
 * Description:
 * Returns driver specefic information like name, version etc.. to ethtool.
 * Return value:
 *  void
 */

static void s2io_ethtool_gdrvinfo(struct net_device *dev,
				  struct ethtool_drvinfo *info)
{
	nic_t *sp = dev->priv;

4216 4217 4218 4219
	strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
	strncpy(info->version, s2io_driver_version, sizeof(info->version));
	strncpy(info->fw_version, "", sizeof(info->fw_version));
	strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
Linus Torvalds's avatar
Linus Torvalds committed
4220 4221 4222 4223 4224 4225 4226 4227
	info->regdump_len = XENA_REG_SPACE;
	info->eedump_len = XENA_EEPROM_SPACE;
	info->testinfo_len = S2IO_TEST_LEN;
	info->n_stats = S2IO_STAT_LEN;
}

/**
 *  s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
4228
 *  @sp: private member of the device structure, which is a pointer to the
Linus Torvalds's avatar
Linus Torvalds committed
4229
 *  s2io_nic structure.
4230
 *  @regs : pointer to the structure with parameters given by ethtool for
Linus Torvalds's avatar
Linus Torvalds committed
4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258
 *  dumping the registers.
 *  @reg_space: The input argumnet into which all the registers are dumped.
 *  Description:
 *  Dumps the entire register space of xFrame NIC into the user given
 *  buffer area.
 * Return value :
 * void .
*/

static void s2io_ethtool_gregs(struct net_device *dev,
			       struct ethtool_regs *regs, void *space)
{
	int i;
	u64 reg;
	u8 *reg_space = (u8 *) space;
	nic_t *sp = dev->priv;

	regs->len = XENA_REG_SPACE;
	regs->version = sp->pdev->subsystem_device;

	for (i = 0; i < regs->len; i += 8) {
		reg = readq(sp->bar0 + i);
		memcpy((reg_space + i), &reg, 8);
	}
}

/**
 *  s2io_phy_id  - timer function that alternates adapter LED.
4259
 *  @data : address of the private member of the device structure, which
Linus Torvalds's avatar
Linus Torvalds committed
4260
 *  is a pointer to the s2io_nic structure, provided as an u32.
4261 4262 4263
 * Description: This is actually the timer function that alternates the
 * adapter LED bit of the adapter control bit to set/reset every time on
 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
Linus Torvalds's avatar
Linus Torvalds committed
4264 4265 4266 4267 4268 4269 4270 4271 4272 4273
 *  once every second.
*/
static void s2io_phy_id(unsigned long data)
{
	nic_t *sp = (nic_t *) data;
	XENA_dev_config_t __iomem *bar0 = sp->bar0;
	u64 val64 = 0;
	u16 subid;

	subid = sp->pdev->subsystem_device;
4274 4275
	if ((sp->device_type == XFRAME_II_DEVICE) ||
		   ((subid & 0xFF) >= 0x07)) {
Linus Torvalds's avatar
Linus Torvalds committed
4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291
		val64 = readq(&bar0->gpio_control);
		val64 ^= GPIO_CTRL_GPIO_0;
		writeq(val64, &bar0->gpio_control);
	} else {
		val64 = readq(&bar0->adapter_control);
		val64 ^= ADAPTER_LED_ON;
		writeq(val64, &bar0->adapter_control);
	}

	mod_timer(&sp->id_timer, jiffies + HZ / 2);
}

/**
 * s2io_ethtool_idnic - To physically identify the nic on the system.
 * @sp : private member of the device structure, which is a pointer to the
 * s2io_nic structure.
4292
 * @id : pointer to the structure with identification parameters given by
Linus Torvalds's avatar
Linus Torvalds committed
4293 4294
 * ethtool.
 * Description: Used to physically identify the NIC on the system.
4295
 * The Link LED will blink for a time specified by the user for
Linus Torvalds's avatar
Linus Torvalds committed
4296
 * identification.
4297
 * NOTE: The Link has to be Up to be able to blink the LED. Hence
Linus Torvalds's avatar
Linus Torvalds committed
4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311
 * identification is possible only if it's link is up.
 * Return value:
 * int , returns 0 on success
 */

static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
{
	u64 val64 = 0, last_gpio_ctrl_val;
	nic_t *sp = dev->priv;
	XENA_dev_config_t __iomem *bar0 = sp->bar0;
	u16 subid;

	subid = sp->pdev->subsystem_device;
	last_gpio_ctrl_val = readq(&bar0->gpio_control);
4312 4313
	if ((sp->device_type == XFRAME_I_DEVICE) &&
		((subid & 0xFF) < 0x07)) {
Linus Torvalds's avatar
Linus Torvalds committed
4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327
		val64 = readq(&bar0->adapter_control);
		if (!(val64 & ADAPTER_CNTL_EN)) {
			printk(KERN_ERR
			       "Adapter Link down, cannot blink LED\n");
			return -EFAULT;
		}
	}
	if (sp->id_timer.function == NULL) {
		init_timer(&sp->id_timer);
		sp->id_timer.function = s2io_phy_id;
		sp->id_timer.data = (unsigned long) sp;
	}
	mod_timer(&sp->id_timer, jiffies);
	if (data)
4328
		msleep_interruptible(data * HZ);
Linus Torvalds's avatar
Linus Torvalds committed
4329
	else
4330
		msleep_interruptible(MAX_FLICKER_TIME);
Linus Torvalds's avatar
Linus Torvalds committed
4331 4332
	del_timer_sync(&sp->id_timer);

4333
	if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
Linus Torvalds's avatar
Linus Torvalds committed
4334 4335 4336 4337 4338 4339 4340 4341 4342
		writeq(last_gpio_ctrl_val, &bar0->gpio_control);
		last_gpio_ctrl_val = readq(&bar0->gpio_control);
	}

	return 0;
}

/**
 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
4343 4344
 * @sp : private member of the device structure, which is a pointer to the
 *	s2io_nic structure.
Linus Torvalds's avatar
Linus Torvalds committed
4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367
 * @ep : pointer to the structure with pause parameters given by ethtool.
 * Description:
 * Returns the Pause frame generation and reception capability of the NIC.
 * Return value:
 *  void
 */
static void s2io_ethtool_getpause_data(struct net_device *dev,
				       struct ethtool_pauseparam *ep)
{
	u64 val64;
	nic_t *sp = dev->priv;
	XENA_dev_config_t __iomem *bar0 = sp->bar0;

	val64 = readq(&bar0->rmac_pause_cfg);
	if (val64 & RMAC_PAUSE_GEN_ENABLE)
		ep->tx_pause = TRUE;
	if (val64 & RMAC_PAUSE_RX_ENABLE)
		ep->rx_pause = TRUE;
	ep->autoneg = FALSE;
}

/**
 * s2io_ethtool_setpause_data -  set/reset pause frame generation.
4368
 * @sp : private member of the device structure, which is a pointer to the
Linus Torvalds's avatar
Linus Torvalds committed
4369 4370 4371 4372 4373 4374 4375 4376 4377 4378
 *      s2io_nic structure.
 * @ep : pointer to the structure with pause parameters given by ethtool.
 * Description:
 * It can be used to set or reset Pause frame generation or reception
 * support of the NIC.
 * Return value:
 * int, returns 0 on Success
 */

static int s2io_ethtool_setpause_data(struct net_device *dev,
4379
			       struct ethtool_pauseparam *ep)
Linus Torvalds's avatar
Linus Torvalds committed
4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399
{
	u64 val64;
	nic_t *sp = dev->priv;
	XENA_dev_config_t __iomem *bar0 = sp->bar0;

	val64 = readq(&bar0->rmac_pause_cfg);
	if (ep->tx_pause)
		val64 |= RMAC_PAUSE_GEN_ENABLE;
	else
		val64 &= ~RMAC_PAUSE_GEN_ENABLE;
	if (ep->rx_pause)
		val64 |= RMAC_PAUSE_RX_ENABLE;
	else
		val64 &= ~RMAC_PAUSE_RX_ENABLE;
	writeq(val64, &bar0->rmac_pause_cfg);
	return 0;
}

/**
 * read_eeprom - reads 4 bytes of data from user given offset.
4400
 * @sp : private member of the device structure, which is a pointer to the
Linus Torvalds's avatar
Linus Torvalds committed
4401 4402 4403
 *      s2io_nic structure.
 * @off : offset at which the data must be written
 * @data : Its an output parameter where the data read at the given
4404
 *	offset is stored.
Linus Torvalds's avatar
Linus Torvalds committed
4405
 * Description:
4406
 * Will read 4 bytes of data from the user given offset and return the
Linus Torvalds's avatar
Linus Torvalds committed
4407 4408 4409 4410 4411 4412 4413 4414
 * read data.
 * NOTE: Will allow to read only part of the EEPROM visible through the
 *   I2C bus.
 * Return value:
 *  -1 on failure and 0 on success.
 */

#define S2IO_DEV_ID		5
4415
static int read_eeprom(nic_t * sp, int off, u64 * data)
Linus Torvalds's avatar
Linus Torvalds committed
4416 4417 4418 4419 4420 4421
{
	int ret = -1;
	u32 exit_cnt = 0;
	u64 val64;
	XENA_dev_config_t __iomem *bar0 = sp->bar0;

4422 4423 4424 4425 4426
	if (sp->device_type == XFRAME_I_DEVICE) {
		val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
		    I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
		    I2C_CONTROL_CNTL_START;
		SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
Linus Torvalds's avatar
Linus Torvalds committed
4427

4428 4429 4430 4431 4432 4433 4434 4435 4436
		while (exit_cnt < 5) {
			val64 = readq(&bar0->i2c_control);
			if (I2C_CONTROL_CNTL_END(val64)) {
				*data = I2C_CONTROL_GET_DATA(val64);
				ret = 0;
				break;
			}
			msleep(50);
			exit_cnt++;
Linus Torvalds's avatar
Linus Torvalds committed
4437 4438 4439
		}
	}

4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461
	if (sp->device_type == XFRAME_II_DEVICE) {
		val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
			SPI_CONTROL_BYTECNT(0x3) | 
			SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
		SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
		val64 |= SPI_CONTROL_REQ;
		SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
		while (exit_cnt < 5) {
			val64 = readq(&bar0->spi_control);
			if (val64 & SPI_CONTROL_NACK) {
				ret = 1;
				break;
			} else if (val64 & SPI_CONTROL_DONE) {
				*data = readq(&bar0->spi_data);
				*data &= 0xffffff;
				ret = 0;
				break;
			}
			msleep(50);
			exit_cnt++;
		}
	}
Linus Torvalds's avatar
Linus Torvalds committed
4462 4463 4464 4465 4466 4467 4468 4469 4470
	return ret;
}

/**
 *  write_eeprom - actually writes the relevant part of the data value.
 *  @sp : private member of the device structure, which is a pointer to the
 *       s2io_nic structure.
 *  @off : offset at which the data must be written
 *  @data : The data that is to be written
4471
 *  @cnt : Number of bytes of the data that are actually to be written into
Linus Torvalds's avatar
Linus Torvalds committed
4472 4473 4474 4475 4476 4477 4478 4479
 *  the Eeprom. (max of 3)
 * Description:
 *  Actually writes the relevant part of the data value into the Eeprom
 *  through the I2C bus.
 * Return value:
 *  0 on success, -1 on failure.
 */

4480
static int write_eeprom(nic_t * sp, int off, u64 data, int cnt)
Linus Torvalds's avatar
Linus Torvalds committed
4481 4482 4483 4484 4485
{
	int exit_cnt = 0, ret = -1;
	u64 val64;
	XENA_dev_config_t __iomem *bar0 = sp->bar0;

4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502
	if (sp->device_type == XFRAME_I_DEVICE) {
		val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
		    I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
		    I2C_CONTROL_CNTL_START;
		SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);

		while (exit_cnt < 5) {
			val64 = readq(&bar0->i2c_control);
			if (I2C_CONTROL_CNTL_END(val64)) {
				if (!(val64 & I2C_CONTROL_NACK))
					ret = 0;
				break;
			}
			msleep(50);
			exit_cnt++;
		}
	}
Linus Torvalds's avatar
Linus Torvalds committed
4503

4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519
	if (sp->device_type == XFRAME_II_DEVICE) {
		int write_cnt = (cnt == 8) ? 0 : cnt;
		writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);

		val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
			SPI_CONTROL_BYTECNT(write_cnt) | 
			SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
		SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
		val64 |= SPI_CONTROL_REQ;
		SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
		while (exit_cnt < 5) {
			val64 = readq(&bar0->spi_control);
			if (val64 & SPI_CONTROL_NACK) {
				ret = 1;
				break;
			} else if (val64 & SPI_CONTROL_DONE) {
Linus Torvalds's avatar
Linus Torvalds committed
4520
				ret = 0;
4521 4522 4523 4524
				break;
			}
			msleep(50);
			exit_cnt++;
Linus Torvalds's avatar
Linus Torvalds committed
4525 4526 4527 4528 4529 4530 4531 4532
		}
	}
	return ret;
}

/**
 *  s2io_ethtool_geeprom  - reads the value stored in the Eeprom.
 *  @sp : private member of the device structure, which is a pointer to the *       s2io_nic structure.
4533
 *  @eeprom : pointer to the user level structure provided by ethtool,
Linus Torvalds's avatar
Linus Torvalds committed
4534 4535 4536 4537 4538 4539 4540 4541 4542 4543
 *  containing all relevant information.
 *  @data_buf : user defined value to be written into Eeprom.
 *  Description: Reads the values stored in the Eeprom at given offset
 *  for a given length. Stores these values int the input argument data
 *  buffer 'data_buf' and returns these to the caller (ethtool.)
 *  Return value:
 *  int  0 on success
 */

static int s2io_ethtool_geeprom(struct net_device *dev,
4544
			 struct ethtool_eeprom *eeprom, u8 * data_buf)
Linus Torvalds's avatar
Linus Torvalds committed
4545
{
4546 4547
	u32 i, valid;
	u64 data;
Linus Torvalds's avatar
Linus Torvalds committed
4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569
	nic_t *sp = dev->priv;

	eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);

	if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
		eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;

	for (i = 0; i < eeprom->len; i += 4) {
		if (read_eeprom(sp, (eeprom->offset + i), &data)) {
			DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
			return -EFAULT;
		}
		valid = INV(data);
		memcpy((data_buf + i), &valid, 4);
	}
	return 0;
}

/**
 *  s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
 *  @sp : private member of the device structure, which is a pointer to the
 *  s2io_nic structure.
4570
 *  @eeprom : pointer to the user level structure provided by ethtool,
Linus Torvalds's avatar
Linus Torvalds committed
4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584
 *  containing all relevant information.
 *  @data_buf ; user defined value to be written into Eeprom.
 *  Description:
 *  Tries to write the user provided value in the Eeprom, at the offset
 *  given by the user.
 *  Return value:
 *  0 on success, -EFAULT on failure.
 */

static int s2io_ethtool_seeprom(struct net_device *dev,
				struct ethtool_eeprom *eeprom,
				u8 * data_buf)
{
	int len = eeprom->len, cnt = 0;
4585
	u64 valid = 0, data;
Linus Torvalds's avatar
Linus Torvalds committed
4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617
	nic_t *sp = dev->priv;

	if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
		DBG_PRINT(ERR_DBG,
			  "ETHTOOL_WRITE_EEPROM Err: Magic value ");
		DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
			  eeprom->magic);
		return -EFAULT;
	}

	while (len) {
		data = (u32) data_buf[cnt] & 0x000000FF;
		if (data) {
			valid = (u32) (data << 24);
		} else
			valid = data;

		if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
			DBG_PRINT(ERR_DBG,
				  "ETHTOOL_WRITE_EEPROM Err: Cannot ");
			DBG_PRINT(ERR_DBG,
				  "write into the specified offset\n");
			return -EFAULT;
		}
		cnt++;
		len--;
	}

	return 0;
}

/**
4618 4619
 * s2io_register_test - reads and writes into all clock domains.
 * @sp : private member of the device structure, which is a pointer to the
Linus Torvalds's avatar
Linus Torvalds committed
4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632
 * s2io_nic structure.
 * @data : variable that returns the result of each of the test conducted b
 * by the driver.
 * Description:
 * Read and write into all clock domains. The NIC has 3 clock domains,
 * see that registers in all the three regions are accessible.
 * Return value:
 * 0 on success.
 */

static int s2io_register_test(nic_t * sp, uint64_t * data)
{
	XENA_dev_config_t __iomem *bar0 = sp->bar0;
4633
	u64 val64 = 0, exp_val;
Linus Torvalds's avatar
Linus Torvalds committed
4634 4635
	int fail = 0;

4636 4637
	val64 = readq(&bar0->pif_rd_swapper_fb);
	if (val64 != 0x123456789abcdefULL) {
Linus Torvalds's avatar
Linus Torvalds committed
4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648
		fail = 1;
		DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
	}

	val64 = readq(&bar0->rmac_pause_cfg);
	if (val64 != 0xc000ffff00000000ULL) {
		fail = 1;
		DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
	}

	val64 = readq(&bar0->rx_queue_cfg);
4649 4650 4651 4652 4653
	if (sp->device_type == XFRAME_II_DEVICE)
		exp_val = 0x0404040404040404ULL;
	else
		exp_val = 0x0808080808080808ULL;
	if (val64 != exp_val) {
Linus Torvalds's avatar
Linus Torvalds committed
4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680
		fail = 1;
		DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
	}

	val64 = readq(&bar0->xgxs_efifo_cfg);
	if (val64 != 0x000000001923141EULL) {
		fail = 1;
		DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
	}

	val64 = 0x5A5A5A5A5A5A5A5AULL;
	writeq(val64, &bar0->xmsi_data);
	val64 = readq(&bar0->xmsi_data);
	if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
		fail = 1;
		DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
	}

	val64 = 0xA5A5A5A5A5A5A5A5ULL;
	writeq(val64, &bar0->xmsi_data);
	val64 = readq(&bar0->xmsi_data);
	if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
		fail = 1;
		DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
	}

	*data = fail;
4681
	return fail;
Linus Torvalds's avatar
Linus Torvalds committed
4682 4683 4684
}

/**
4685
 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
Linus Torvalds's avatar
Linus Torvalds committed
4686 4687 4688 4689 4690
 * @sp : private member of the device structure, which is a pointer to the
 * s2io_nic structure.
 * @data:variable that returns the result of each of the test conducted by
 * the driver.
 * Description:
4691
 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
Linus Torvalds's avatar
Linus Torvalds committed
4692 4693 4694 4695 4696 4697 4698 4699
 * register.
 * Return value:
 * 0 on success.
 */

static int s2io_eeprom_test(nic_t * sp, uint64_t * data)
{
	int fail = 0;
4700 4701 4702
	u64 ret_data, org_4F0, org_7F0;
	u8 saved_4F0 = 0, saved_7F0 = 0;
	struct net_device *dev = sp->dev;
Linus Torvalds's avatar
Linus Torvalds committed
4703 4704

	/* Test Write Error at offset 0 */
4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716
	/* Note that SPI interface allows write access to all areas
	 * of EEPROM. Hence doing all negative testing only for Xframe I.
	 */
	if (sp->device_type == XFRAME_I_DEVICE)
		if (!write_eeprom(sp, 0, 0, 3))
			fail = 1;

	/* Save current values at offsets 0x4F0 and 0x7F0 */
	if (!read_eeprom(sp, 0x4F0, &org_4F0))
		saved_4F0 = 1;
	if (!read_eeprom(sp, 0x7F0, &org_7F0))
		saved_7F0 = 1;
Linus Torvalds's avatar
Linus Torvalds committed
4717 4718

	/* Test Write at offset 4f0 */
4719
	if (write_eeprom(sp, 0x4F0, 0x012345, 3))
Linus Torvalds's avatar
Linus Torvalds committed
4720 4721 4722 4723
		fail = 1;
	if (read_eeprom(sp, 0x4F0, &ret_data))
		fail = 1;

4724 4725
	if (ret_data != 0x012345) {
		DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. Data written %llx Data read %llx\n", dev->name, (u64)0x12345, ret_data); 
Linus Torvalds's avatar
Linus Torvalds committed
4726
		fail = 1;
4727
	}
Linus Torvalds's avatar
Linus Torvalds committed
4728 4729

	/* Reset the EEPROM data go FFFF */
4730
	write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
Linus Torvalds's avatar
Linus Torvalds committed
4731 4732

	/* Test Write Request Error at offset 0x7c */
4733 4734 4735
	if (sp->device_type == XFRAME_I_DEVICE)
		if (!write_eeprom(sp, 0x07C, 0, 3))
			fail = 1;
Linus Torvalds's avatar
Linus Torvalds committed
4736

4737 4738
	/* Test Write Request at offset 0x7f0 */
	if (write_eeprom(sp, 0x7F0, 0x012345, 3))
Linus Torvalds's avatar
Linus Torvalds committed
4739
		fail = 1;
4740
	if (read_eeprom(sp, 0x7F0, &ret_data))
Linus Torvalds's avatar
Linus Torvalds committed
4741 4742
		fail = 1;

4743 4744
	if (ret_data != 0x012345) {
		DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. Data written %llx Data read %llx\n", dev->name, (u64)0x12345, ret_data); 
Linus Torvalds's avatar
Linus Torvalds committed
4745
		fail = 1;
4746
	}
Linus Torvalds's avatar
Linus Torvalds committed
4747 4748

	/* Reset the EEPROM data go FFFF */
4749
	write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
Linus Torvalds's avatar
Linus Torvalds committed
4750

4751 4752 4753 4754
	if (sp->device_type == XFRAME_I_DEVICE) {
		/* Test Write Error at offset 0x80 */
		if (!write_eeprom(sp, 0x080, 0, 3))
			fail = 1;
Linus Torvalds's avatar
Linus Torvalds committed
4755

4756 4757 4758
		/* Test Write Error at offset 0xfc */
		if (!write_eeprom(sp, 0x0FC, 0, 3))
			fail = 1;
Linus Torvalds's avatar
Linus Torvalds committed
4759

4760 4761 4762
		/* Test Write Error at offset 0x100 */
		if (!write_eeprom(sp, 0x100, 0, 3))
			fail = 1;
Linus Torvalds's avatar
Linus Torvalds committed
4763

4764 4765 4766 4767 4768 4769 4770 4771 4772 4773
		/* Test Write Error at offset 4ec */
		if (!write_eeprom(sp, 0x4EC, 0, 3))
			fail = 1;
	}

	/* Restore values at offsets 0x4F0 and 0x7F0 */
	if (saved_4F0)
		write_eeprom(sp, 0x4F0, org_4F0, 3);
	if (saved_7F0)
		write_eeprom(sp, 0x7F0, org_7F0, 3);
Linus Torvalds's avatar
Linus Torvalds committed
4774 4775

	*data = fail;
4776
	return fail;
Linus Torvalds's avatar
Linus Torvalds committed
4777 4778 4779 4780
}

/**
 * s2io_bist_test - invokes the MemBist test of the card .
4781
 * @sp : private member of the device structure, which is a pointer to the
Linus Torvalds's avatar
Linus Torvalds committed
4782
 * s2io_nic structure.
4783
 * @data:variable that returns the result of each of the test conducted by
Linus Torvalds's avatar
Linus Torvalds committed
4784 4785 4786 4787
 * the driver.
 * Description:
 * This invokes the MemBist test of the card. We give around
 * 2 secs time for the Test to complete. If it's still not complete
4788
 * within this peiod, we consider that the test failed.
Linus Torvalds's avatar
Linus Torvalds committed
4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816
 * Return value:
 * 0 on success and -1 on failure.
 */

static int s2io_bist_test(nic_t * sp, uint64_t * data)
{
	u8 bist = 0;
	int cnt = 0, ret = -1;

	pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
	bist |= PCI_BIST_START;
	pci_write_config_word(sp->pdev, PCI_BIST, bist);

	while (cnt < 20) {
		pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
		if (!(bist & PCI_BIST_START)) {
			*data = (bist & PCI_BIST_CODE_MASK);
			ret = 0;
			break;
		}
		msleep(100);
		cnt++;
	}

	return ret;
}

/**
4817 4818
 * s2io-link_test - verifies the link state of the nic
 * @sp ; private member of the device structure, which is a pointer to the
Linus Torvalds's avatar
Linus Torvalds committed
4819 4820 4821 4822
 * s2io_nic structure.
 * @data: variable that returns the result of each of the test conducted by
 * the driver.
 * Description:
4823
 * The function verifies the link state of the NIC and updates the input
Linus Torvalds's avatar
Linus Torvalds committed
4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841
 * argument 'data' appropriately.
 * Return value:
 * 0 on success.
 */

static int s2io_link_test(nic_t * sp, uint64_t * data)
{
	XENA_dev_config_t __iomem *bar0 = sp->bar0;
	u64 val64;

	val64 = readq(&bar0->adapter_status);
	if (val64 & ADAPTER_STATUS_RMAC_LOCAL_FAULT)
		*data = 1;

	return 0;
}

/**
4842 4843
 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
 * @sp - private member of the device structure, which is a pointer to the
Linus Torvalds's avatar
Linus Torvalds committed
4844
 * s2io_nic structure.
4845
 * @data - variable that returns the result of each of the test
Linus Torvalds's avatar
Linus Torvalds committed
4846 4847
 * conducted by the driver.
 * Description:
4848
 *  This is one of the offline test that tests the read and write
Linus Torvalds's avatar
Linus Torvalds committed
4849 4850 4851 4852 4853 4854 4855 4856 4857
 *  access to the RldRam chip on the NIC.
 * Return value:
 *  0 on success.
 */

static int s2io_rldram_test(nic_t * sp, uint64_t * data)
{
	XENA_dev_config_t __iomem *bar0 = sp->bar0;
	u64 val64;
4858
	int cnt, iteration = 0, test_fail = 0;
Linus Torvalds's avatar
Linus Torvalds committed
4859 4860 4861 4862 4863 4864 4865

	val64 = readq(&bar0->adapter_control);
	val64 &= ~ADAPTER_ECC_EN;
	writeq(val64, &bar0->adapter_control);

	val64 = readq(&bar0->mc_rldram_test_ctrl);
	val64 |= MC_RLDRAM_TEST_MODE;
4866
	SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
Linus Torvalds's avatar
Linus Torvalds committed
4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893

	val64 = readq(&bar0->mc_rldram_mrs);
	val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
	SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);

	val64 |= MC_RLDRAM_MRS_ENABLE;
	SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);

	while (iteration < 2) {
		val64 = 0x55555555aaaa0000ULL;
		if (iteration == 1) {
			val64 ^= 0xFFFFFFFFFFFF0000ULL;
		}
		writeq(val64, &bar0->mc_rldram_test_d0);

		val64 = 0xaaaa5a5555550000ULL;
		if (iteration == 1) {
			val64 ^= 0xFFFFFFFFFFFF0000ULL;
		}
		writeq(val64, &bar0->mc_rldram_test_d1);

		val64 = 0x55aaaaaaaa5a0000ULL;
		if (iteration == 1) {
			val64 ^= 0xFFFFFFFFFFFF0000ULL;
		}
		writeq(val64, &bar0->mc_rldram_test_d2);

4894
		val64 = (u64) (0x0000003ffffe0100ULL);
Linus Torvalds's avatar
Linus Torvalds committed
4895 4896
		writeq(val64, &bar0->mc_rldram_test_add);

4897 4898 4899
		val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
		    	MC_RLDRAM_TEST_GO;
		SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
Linus Torvalds's avatar
Linus Torvalds committed
4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910

		for (cnt = 0; cnt < 5; cnt++) {
			val64 = readq(&bar0->mc_rldram_test_ctrl);
			if (val64 & MC_RLDRAM_TEST_DONE)
				break;
			msleep(200);
		}

		if (cnt == 5)
			break;

4911 4912
		val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
		SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
Linus Torvalds's avatar
Linus Torvalds committed
4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924

		for (cnt = 0; cnt < 5; cnt++) {
			val64 = readq(&bar0->mc_rldram_test_ctrl);
			if (val64 & MC_RLDRAM_TEST_DONE)
				break;
			msleep(500);
		}

		if (cnt == 5)
			break;

		val64 = readq(&bar0->mc_rldram_test_ctrl);
4925 4926
		if (!(val64 & MC_RLDRAM_TEST_PASS))
			test_fail = 1;
Linus Torvalds's avatar
Linus Torvalds committed
4927 4928 4929 4930

		iteration++;
	}

4931
	*data = test_fail;
Linus Torvalds's avatar
Linus Torvalds committed
4932

4933 4934 4935 4936
	/* Bring the adapter out of test mode */
	SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);

	return test_fail;
Linus Torvalds's avatar
Linus Torvalds committed
4937 4938 4939 4940 4941 4942 4943 4944
}

/**
 *  s2io_ethtool_test - conducts 6 tsets to determine the health of card.
 *  @sp : private member of the device structure, which is a pointer to the
 *  s2io_nic structure.
 *  @ethtest : pointer to a ethtool command specific structure that will be
 *  returned to the user.
4945
 *  @data : variable that returns the result of each of the test
Linus Torvalds's avatar
Linus Torvalds committed
4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962
 * conducted by the driver.
 * Description:
 *  This function conducts 6 tests ( 4 offline and 2 online) to determine
 *  the health of the card.
 * Return value:
 *  void
 */

static void s2io_ethtool_test(struct net_device *dev,
			      struct ethtool_test *ethtest,
			      uint64_t * data)
{
	nic_t *sp = dev->priv;
	int orig_state = netif_running(sp->dev);

	if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
		/* Offline Tests. */
4963
		if (orig_state)
Linus Torvalds's avatar
Linus Torvalds committed
4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016
			s2io_close(sp->dev);

		if (s2io_register_test(sp, &data[0]))
			ethtest->flags |= ETH_TEST_FL_FAILED;

		s2io_reset(sp);

		if (s2io_rldram_test(sp, &data[3]))
			ethtest->flags |= ETH_TEST_FL_FAILED;

		s2io_reset(sp);

		if (s2io_eeprom_test(sp, &data[1]))
			ethtest->flags |= ETH_TEST_FL_FAILED;

		if (s2io_bist_test(sp, &data[4]))
			ethtest->flags |= ETH_TEST_FL_FAILED;

		if (orig_state)
			s2io_open(sp->dev);

		data[2] = 0;
	} else {
		/* Online Tests. */
		if (!orig_state) {
			DBG_PRINT(ERR_DBG,
				  "%s: is not up, cannot run test\n",
				  dev->name);
			data[0] = -1;
			data[1] = -1;
			data[2] = -1;
			data[3] = -1;
			data[4] = -1;
		}

		if (s2io_link_test(sp, &data[2]))
			ethtest->flags |= ETH_TEST_FL_FAILED;

		data[0] = 0;
		data[1] = 0;
		data[3] = 0;
		data[4] = 0;
	}
}

static void s2io_get_ethtool_stats(struct net_device *dev,
				   struct ethtool_stats *estats,
				   u64 * tmp_stats)
{
	int i = 0;
	nic_t *sp = dev->priv;
	StatInfo_t *stat_info = sp->mac_control.stats_info;

5017
	s2io_updt_stats(sp);
5018 5019 5020 5021 5022 5023
	tmp_stats[i++] =
		(u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32  |
		le32_to_cpu(stat_info->tmac_frms);
	tmp_stats[i++] =
		(u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
		le32_to_cpu(stat_info->tmac_data_octets);
Linus Torvalds's avatar
Linus Torvalds committed
5024
	tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
5025 5026 5027 5028 5029 5030
	tmp_stats[i++] =
		(u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
		le32_to_cpu(stat_info->tmac_mcst_frms);
	tmp_stats[i++] =
		(u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
		le32_to_cpu(stat_info->tmac_bcst_frms);
Linus Torvalds's avatar
Linus Torvalds committed
5031
	tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
5032 5033 5034
	tmp_stats[i++] =
		(u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
		le32_to_cpu(stat_info->tmac_any_err_frms);
Linus Torvalds's avatar
Linus Torvalds committed
5035
	tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047
	tmp_stats[i++] =
		(u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
		le32_to_cpu(stat_info->tmac_vld_ip);
	tmp_stats[i++] =
		(u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
		le32_to_cpu(stat_info->tmac_drop_ip);
	tmp_stats[i++] =
		(u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
		le32_to_cpu(stat_info->tmac_icmp);
	tmp_stats[i++] =
		(u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
		le32_to_cpu(stat_info->tmac_rst_tcp);
Linus Torvalds's avatar
Linus Torvalds committed
5048
	tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
5049 5050 5051 5052 5053 5054 5055 5056
	tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
		le32_to_cpu(stat_info->tmac_udp);
	tmp_stats[i++] =
		(u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
		le32_to_cpu(stat_info->rmac_vld_frms);
	tmp_stats[i++] =
		(u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
		le32_to_cpu(stat_info->rmac_data_octets);
Linus Torvalds's avatar
Linus Torvalds committed
5057 5058
	tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
	tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
5059 5060 5061 5062 5063 5064
	tmp_stats[i++] =
		(u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
		le32_to_cpu(stat_info->rmac_vld_mcst_frms);
	tmp_stats[i++] =
		(u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
		le32_to_cpu(stat_info->rmac_vld_bcst_frms);
Linus Torvalds's avatar
Linus Torvalds committed
5065 5066 5067
	tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
	tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
	tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084
	tmp_stats[i++] =
		(u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
		le32_to_cpu(stat_info->rmac_discarded_frms);
	tmp_stats[i++] =
		(u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
		le32_to_cpu(stat_info->rmac_usized_frms);
	tmp_stats[i++] =
		(u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
		le32_to_cpu(stat_info->rmac_osized_frms);
	tmp_stats[i++] =
		(u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
		le32_to_cpu(stat_info->rmac_frag_frms);
	tmp_stats[i++] =
		(u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
		le32_to_cpu(stat_info->rmac_jabber_frms);
	tmp_stats[i++] = (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
		le32_to_cpu(stat_info->rmac_ip);
Linus Torvalds's avatar
Linus Torvalds committed
5085 5086
	tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
	tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
5087 5088 5089 5090
	tmp_stats[i++] = (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
		le32_to_cpu(stat_info->rmac_drop_ip);
	tmp_stats[i++] = (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
		le32_to_cpu(stat_info->rmac_icmp);
Linus Torvalds's avatar
Linus Torvalds committed
5091
	tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102
	tmp_stats[i++] = (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
		le32_to_cpu(stat_info->rmac_udp);
	tmp_stats[i++] =
		(u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
		le32_to_cpu(stat_info->rmac_err_drp_udp);
	tmp_stats[i++] =
		(u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
		le32_to_cpu(stat_info->rmac_pause_cnt);
	tmp_stats[i++] =
		(u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
		le32_to_cpu(stat_info->rmac_accepted_ip);
Linus Torvalds's avatar
Linus Torvalds committed
5103
	tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
5104 5105 5106
	tmp_stats[i++] = 0;
	tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
	tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
Linus Torvalds's avatar
Linus Torvalds committed
5107 5108
}

5109
int s2io_ethtool_get_regs_len(struct net_device *dev)
Linus Torvalds's avatar
Linus Torvalds committed
5110 5111 5112 5113 5114
{
	return (XENA_REG_SPACE);
}


5115
u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
Linus Torvalds's avatar
Linus Torvalds committed
5116 5117 5118 5119 5120
{
	nic_t *sp = dev->priv;

	return (sp->rx_csum);
}
5121
int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
Linus Torvalds's avatar
Linus Torvalds committed
5122 5123 5124 5125 5126 5127 5128 5129 5130 5131
{
	nic_t *sp = dev->priv;

	if (data)
		sp->rx_csum = 1;
	else
		sp->rx_csum = 0;

	return 0;
}
5132
int s2io_get_eeprom_len(struct net_device *dev)
Linus Torvalds's avatar
Linus Torvalds committed
5133 5134 5135 5136
{
	return (XENA_EEPROM_SPACE);
}

5137
int s2io_ethtool_self_test_count(struct net_device *dev)
Linus Torvalds's avatar
Linus Torvalds committed
5138 5139 5140
{
	return (S2IO_TEST_LEN);
}
5141 5142
void s2io_ethtool_get_strings(struct net_device *dev,
			      u32 stringset, u8 * data)
Linus Torvalds's avatar
Linus Torvalds committed
5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157
{
	switch (stringset) {
	case ETH_SS_TEST:
		memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
		break;
	case ETH_SS_STATS:
		memcpy(data, &ethtool_stats_keys,
		       sizeof(ethtool_stats_keys));
	}
}
static int s2io_ethtool_get_stats_count(struct net_device *dev)
{
	return (S2IO_STAT_LEN);
}

5158
int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
Linus Torvalds's avatar
Linus Torvalds committed
5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199
{
	if (data)
		dev->features |= NETIF_F_IP_CSUM;
	else
		dev->features &= ~NETIF_F_IP_CSUM;

	return 0;
}


static struct ethtool_ops netdev_ethtool_ops = {
	.get_settings = s2io_ethtool_gset,
	.set_settings = s2io_ethtool_sset,
	.get_drvinfo = s2io_ethtool_gdrvinfo,
	.get_regs_len = s2io_ethtool_get_regs_len,
	.get_regs = s2io_ethtool_gregs,
	.get_link = ethtool_op_get_link,
	.get_eeprom_len = s2io_get_eeprom_len,
	.get_eeprom = s2io_ethtool_geeprom,
	.set_eeprom = s2io_ethtool_seeprom,
	.get_pauseparam = s2io_ethtool_getpause_data,
	.set_pauseparam = s2io_ethtool_setpause_data,
	.get_rx_csum = s2io_ethtool_get_rx_csum,
	.set_rx_csum = s2io_ethtool_set_rx_csum,
	.get_tx_csum = ethtool_op_get_tx_csum,
	.set_tx_csum = s2io_ethtool_op_set_tx_csum,
	.get_sg = ethtool_op_get_sg,
	.set_sg = ethtool_op_set_sg,
#ifdef NETIF_F_TSO
	.get_tso = ethtool_op_get_tso,
	.set_tso = ethtool_op_set_tso,
#endif
	.self_test_count = s2io_ethtool_self_test_count,
	.self_test = s2io_ethtool_test,
	.get_strings = s2io_ethtool_get_strings,
	.phys_id = s2io_ethtool_idnic,
	.get_stats_count = s2io_ethtool_get_stats_count,
	.get_ethtool_stats = s2io_get_ethtool_stats
};

/**
5200
 *  s2io_ioctl - Entry point for the Ioctl
Linus Torvalds's avatar
Linus Torvalds committed
5201 5202 5203 5204 5205 5206
 *  @dev :  Device pointer.
 *  @ifr :  An IOCTL specefic structure, that can contain a pointer to
 *  a proprietary structure used to pass information to the driver.
 *  @cmd :  This is used to distinguish between the different commands that
 *  can be passed to the IOCTL functions.
 *  Description:
5207 5208
 *  Currently there are no special functionality supported in IOCTL, hence
 *  function always return EOPNOTSUPPORTED
Linus Torvalds's avatar
Linus Torvalds committed
5209 5210
 */

5211
int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
Linus Torvalds's avatar
Linus Torvalds committed
5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226
{
	return -EOPNOTSUPP;
}

/**
 *  s2io_change_mtu - entry point to change MTU size for the device.
 *   @dev : device pointer.
 *   @new_mtu : the new MTU size for the device.
 *   Description: A driver entry point to change MTU size for the device.
 *   Before changing the MTU the device must be stopped.
 *  Return value:
 *   0 on success and an appropriate (-)ve integer as defined in errno.h
 *   file on failure.
 */

5227
int s2io_change_mtu(struct net_device *dev, int new_mtu)
Linus Torvalds's avatar
Linus Torvalds committed
5228 5229 5230 5231 5232 5233 5234 5235 5236 5237
{
	nic_t *sp = dev->priv;

	if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
		DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
			  dev->name);
		return -EPERM;
	}

	dev->mtu = new_mtu;
5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252
	if (netif_running(dev)) {
		s2io_card_down(sp);
		netif_stop_queue(dev);
		if (s2io_card_up(sp)) {
			DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
				  __FUNCTION__);
		}
		if (netif_queue_stopped(dev))
			netif_wake_queue(dev);
	} else { /* Device is down */
		XENA_dev_config_t __iomem *bar0 = sp->bar0;
		u64 val64 = new_mtu;

		writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
	}
Linus Torvalds's avatar
Linus Torvalds committed
5253 5254 5255 5256 5257 5258 5259 5260 5261

	return 0;
}

/**
 *  s2io_tasklet - Bottom half of the ISR.
 *  @dev_adr : address of the device structure in dma_addr_t format.
 *  Description:
 *  This is the tasklet or the bottom half of the ISR. This is
5262
 *  an extension of the ISR which is scheduled by the scheduler to be run
Linus Torvalds's avatar
Linus Torvalds committed
5263
 *  when the load on the CPU is low. All low priority tasks of the ISR can
5264
 *  be pushed into the tasklet. For now the tasklet is used only to
Linus Torvalds's avatar
Linus Torvalds committed
5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319
 *  replenish the Rx buffers in the Rx buffer descriptors.
 *  Return value:
 *  void.
 */

static void s2io_tasklet(unsigned long dev_addr)
{
	struct net_device *dev = (struct net_device *) dev_addr;
	nic_t *sp = dev->priv;
	int i, ret;
	mac_info_t *mac_control;
	struct config_param *config;

	mac_control = &sp->mac_control;
	config = &sp->config;

	if (!TASKLET_IN_USE) {
		for (i = 0; i < config->rx_ring_num; i++) {
			ret = fill_rx_buffers(sp, i);
			if (ret == -ENOMEM) {
				DBG_PRINT(ERR_DBG, "%s: Out of ",
					  dev->name);
				DBG_PRINT(ERR_DBG, "memory in tasklet\n");
				break;
			} else if (ret == -EFILL) {
				DBG_PRINT(ERR_DBG,
					  "%s: Rx Ring %d is full\n",
					  dev->name, i);
				break;
			}
		}
		clear_bit(0, (&sp->tasklet_status));
	}
}

/**
 * s2io_set_link - Set the LInk status
 * @data: long pointer to device private structue
 * Description: Sets the link status for the adapter
 */

static void s2io_set_link(unsigned long data)
{
	nic_t *nic = (nic_t *) data;
	struct net_device *dev = nic->dev;
	XENA_dev_config_t __iomem *bar0 = nic->bar0;
	register u64 val64;
	u16 subid;

	if (test_and_set_bit(0, &(nic->link_state))) {
		/* The card is being reset, no point doing anything */
		return;
	}

	subid = nic->pdev->subsystem_device;
5320 5321 5322 5323 5324 5325 5326
	if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
		/*
		 * Allow a small delay for the NICs self initiated
		 * cleanup to complete.
		 */
		msleep(100);
	}
Linus Torvalds's avatar
Linus Torvalds committed
5327 5328

	val64 = readq(&bar0->adapter_status);
5329
	if (verify_xena_quiescence(nic, val64, nic->device_enabled_once)) {
Linus Torvalds's avatar
Linus Torvalds committed
5330 5331 5332 5333
		if (LINK_IS_UP(val64)) {
			val64 = readq(&bar0->adapter_control);
			val64 |= ADAPTER_CNTL_EN;
			writeq(val64, &bar0->adapter_control);
5334 5335
			if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
							     subid)) {
Linus Torvalds's avatar
Linus Torvalds committed
5336 5337 5338 5339 5340 5341 5342 5343
				val64 = readq(&bar0->gpio_control);
				val64 |= GPIO_CTRL_GPIO_0;
				writeq(val64, &bar0->gpio_control);
				val64 = readq(&bar0->gpio_control);
			} else {
				val64 |= ADAPTER_LED_ON;
				writeq(val64, &bar0->adapter_control);
			}
5344 5345 5346 5347 5348 5349 5350 5351 5352 5353
			if (s2io_link_fault_indication(nic) ==
						MAC_RMAC_ERR_TIMER) {
				val64 = readq(&bar0->adapter_status);
				if (!LINK_IS_UP(val64)) {
					DBG_PRINT(ERR_DBG, "%s:", dev->name);
					DBG_PRINT(ERR_DBG, " Link down");
					DBG_PRINT(ERR_DBG, "after ");
					DBG_PRINT(ERR_DBG, "enabling ");
					DBG_PRINT(ERR_DBG, "device \n");
				}
Linus Torvalds's avatar
Linus Torvalds committed
5354 5355 5356 5357 5358 5359
			}
			if (nic->device_enabled_once == FALSE) {
				nic->device_enabled_once = TRUE;
			}
			s2io_link(nic, LINK_UP);
		} else {
5360 5361
			if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
							      subid)) {
Linus Torvalds's avatar
Linus Torvalds committed
5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383
				val64 = readq(&bar0->gpio_control);
				val64 &= ~GPIO_CTRL_GPIO_0;
				writeq(val64, &bar0->gpio_control);
				val64 = readq(&bar0->gpio_control);
			}
			s2io_link(nic, LINK_DOWN);
		}
	} else {		/* NIC is not Quiescent. */
		DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
		DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
		netif_stop_queue(dev);
	}
	clear_bit(0, &(nic->link_state));
}

static void s2io_card_down(nic_t * sp)
{
	int cnt = 0;
	XENA_dev_config_t __iomem *bar0 = sp->bar0;
	unsigned long flags;
	register u64 val64 = 0;

5384
	del_timer_sync(&sp->alarm_timer);
Linus Torvalds's avatar
Linus Torvalds committed
5385
	/* If s2io_set_link task is executing, wait till it completes. */
5386
	while (test_and_set_bit(0, &(sp->link_state))) {
Linus Torvalds's avatar
Linus Torvalds committed
5387
		msleep(50);
5388
	}
Linus Torvalds's avatar
Linus Torvalds committed
5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399
	atomic_set(&sp->card_state, CARD_DOWN);

	/* disable Tx and Rx traffic on the NIC */
	stop_nic(sp);

	/* Kill tasklet. */
	tasklet_kill(&sp->task);

	/* Check if the device is Quiescent and then Reset the NIC */
	do {
		val64 = readq(&bar0->adapter_status);
5400
		if (verify_xena_quiescence(sp, val64, sp->device_enabled_once)) {
Linus Torvalds's avatar
Linus Torvalds committed
5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415
			break;
		}

		msleep(50);
		cnt++;
		if (cnt == 10) {
			DBG_PRINT(ERR_DBG,
				  "s2io_close:Device not Quiescent ");
			DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
				  (unsigned long long) val64);
			break;
		}
	} while (1);
	s2io_reset(sp);

5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426
	/* Waiting till all Interrupt handlers are complete */
	cnt = 0;
	do {
		msleep(10);
		if (!atomic_read(&sp->isr_cnt))
			break;
		cnt++;
	} while(cnt < 5);

	spin_lock_irqsave(&sp->tx_lock, flags);
	/* Free all Tx buffers */
Linus Torvalds's avatar
Linus Torvalds committed
5427
	free_tx_buffers(sp);
5428 5429 5430 5431
	spin_unlock_irqrestore(&sp->tx_lock, flags);

	/* Free all Rx buffers */
	spin_lock_irqsave(&sp->rx_lock, flags);
Linus Torvalds's avatar
Linus Torvalds committed
5432
	free_rx_buffers(sp);
5433
	spin_unlock_irqrestore(&sp->rx_lock, flags);
Linus Torvalds's avatar
Linus Torvalds committed
5434 5435 5436 5437 5438 5439

	clear_bit(0, &(sp->link_state));
}

static int s2io_card_up(nic_t * sp)
{
5440
	int i, ret = 0;
Linus Torvalds's avatar
Linus Torvalds committed
5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451
	mac_info_t *mac_control;
	struct config_param *config;
	struct net_device *dev = (struct net_device *) sp->dev;

	/* Initialize the H/W I/O registers */
	if (init_nic(sp) != 0) {
		DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
			  dev->name);
		return -ENODEV;
	}

5452 5453 5454 5455 5456 5457 5458 5459 5460
	if (sp->intr_type == MSI)
		ret = s2io_enable_msi(sp);
	else if (sp->intr_type == MSI_X)
		ret = s2io_enable_msi_x(sp);
	if (ret) {
		DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
		sp->intr_type = INTA;
	}

5461 5462
	/*
	 * Initializing the Rx buffers. For now we are considering only 1
Linus Torvalds's avatar
Linus Torvalds committed
5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495
	 * Rx ring and initializing buffers into 30 Rx blocks
	 */
	mac_control = &sp->mac_control;
	config = &sp->config;

	for (i = 0; i < config->rx_ring_num; i++) {
		if ((ret = fill_rx_buffers(sp, i))) {
			DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
				  dev->name);
			s2io_reset(sp);
			free_rx_buffers(sp);
			return -ENOMEM;
		}
		DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
			  atomic_read(&sp->rx_bufs_left[i]));
	}

	/* Setting its receive mode */
	s2io_set_multicast(dev);

	/* Enable tasklet for the device */
	tasklet_init(&sp->task, s2io_tasklet, (unsigned long) dev);

	/* Enable Rx Traffic and interrupts on the NIC */
	if (start_nic(sp)) {
		DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
		tasklet_kill(&sp->task);
		s2io_reset(sp);
		free_irq(dev->irq, dev);
		free_rx_buffers(sp);
		return -ENODEV;
	}

5496 5497
	S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));

Linus Torvalds's avatar
Linus Torvalds committed
5498 5499 5500 5501
	atomic_set(&sp->card_state, CARD_UP);
	return 0;
}

5502
/**
Linus Torvalds's avatar
Linus Torvalds committed
5503 5504 5505 5506
 * s2io_restart_nic - Resets the NIC.
 * @data : long pointer to the device private structure
 * Description:
 * This function is scheduled to be run by the s2io_tx_watchdog
5507
 * function after 0.5 secs to reset the NIC. The idea is to reduce
Linus Torvalds's avatar
Linus Torvalds committed
5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524
 * the run time of the watch dog routine which is run holding a
 * spin lock.
 */

static void s2io_restart_nic(unsigned long data)
{
	struct net_device *dev = (struct net_device *) data;
	nic_t *sp = dev->priv;

	s2io_card_down(sp);
	if (s2io_card_up(sp)) {
		DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
			  dev->name);
	}
	netif_wake_queue(dev);
	DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
		  dev->name);
5525

Linus Torvalds's avatar
Linus Torvalds committed
5526 5527
}

5528 5529
/**
 *  s2io_tx_watchdog - Watchdog for transmit side.
Linus Torvalds's avatar
Linus Torvalds committed
5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556
 *  @dev : Pointer to net device structure
 *  Description:
 *  This function is triggered if the Tx Queue is stopped
 *  for a pre-defined amount of time when the Interface is still up.
 *  If the Interface is jammed in such a situation, the hardware is
 *  reset (by s2io_close) and restarted again (by s2io_open) to
 *  overcome any problem that might have been caused in the hardware.
 *  Return value:
 *  void
 */

static void s2io_tx_watchdog(struct net_device *dev)
{
	nic_t *sp = dev->priv;

	if (netif_carrier_ok(dev)) {
		schedule_work(&sp->rst_timer_task);
	}
}

/**
 *   rx_osm_handler - To perform some OS related operations on SKB.
 *   @sp: private member of the device structure,pointer to s2io_nic structure.
 *   @skb : the socket buffer pointer.
 *   @len : length of the packet
 *   @cksum : FCS checksum of the frame.
 *   @ring_no : the ring from which this RxD was extracted.
5557
 *   Description:
Linus Torvalds's avatar
Linus Torvalds committed
5558 5559 5560 5561 5562 5563 5564 5565 5566
 *   This function is called by the Tx interrupt serivce routine to perform
 *   some OS related operations on the SKB before passing it to the upper
 *   layers. It mainly checks if the checksum is OK, if so adds it to the
 *   SKBs cksum variable, increments the Rx packet count and passes the SKB
 *   to the upper layer. If the checksum is wrong, it increments the Rx
 *   packet error count, frees the SKB and returns error.
 *   Return value:
 *   SUCCESS on success and -1 on failure.
 */
5567
static int rx_osm_handler(ring_info_t *ring_data, RxD_t * rxdp)
Linus Torvalds's avatar
Linus Torvalds committed
5568
{
5569
	nic_t *sp = ring_data->nic;
Linus Torvalds's avatar
Linus Torvalds committed
5570
	struct net_device *dev = (struct net_device *) sp->dev;
5571 5572 5573
	struct sk_buff *skb = (struct sk_buff *)
		((unsigned long) rxdp->Host_Control);
	int ring_no = ring_data->ring_no;
Linus Torvalds's avatar
Linus Torvalds committed
5574
	u16 l3_csum, l4_csum;
5575

5576 5577 5578 5579 5580
	skb->dev = dev;
	if (rxdp->Control_1 & RXD_T_CODE) {
		unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
		DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%llx\n",
			  dev->name, err);
5581 5582 5583 5584 5585
		dev_kfree_skb(skb);
		sp->stats.rx_crc_errors++;
		atomic_dec(&sp->rx_bufs_left[ring_no]);
		rxdp->Host_Control = 0;
		return 0;
5586
	}
Linus Torvalds's avatar
Linus Torvalds committed
5587

5588 5589 5590 5591
	/* Updating statistics */
	rxdp->Host_Control = 0;
	sp->rx_pkt_count++;
	sp->stats.rx_packets++;
5592 5593
	if (sp->rxd_mode == RXD_MODE_1) {
		int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
5594

5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621
		sp->stats.rx_bytes += len;
		skb_put(skb, len);

	} else if (sp->rxd_mode >= RXD_MODE_3A) {
		int get_block = ring_data->rx_curr_get_info.block_index;
		int get_off = ring_data->rx_curr_get_info.offset;
		int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
		int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
		unsigned char *buff = skb_push(skb, buf0_len);

		buffAdd_t *ba = &ring_data->ba[get_block][get_off];
		sp->stats.rx_bytes += buf0_len + buf2_len;
		memcpy(buff, ba->ba_0, buf0_len);

		if (sp->rxd_mode == RXD_MODE_3A) {
			int buf1_len = RXD_GET_BUFFER1_SIZE_3(rxdp->Control_2);

			skb_put(skb, buf1_len);
			skb->len += buf2_len;
			skb->data_len += buf2_len;
			skb->truesize += buf2_len;
			skb_put(skb_shinfo(skb)->frag_list, buf2_len);
			sp->stats.rx_bytes += buf1_len;

		} else
			skb_put(skb, buf2_len);
	}
5622 5623 5624 5625

	if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) &&
	    (sp->rx_csum)) {
		l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
Linus Torvalds's avatar
Linus Torvalds committed
5626 5627
		l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
		if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
5628
			/*
Linus Torvalds's avatar
Linus Torvalds committed
5629 5630 5631 5632 5633 5634
			 * NIC verifies if the Checksum of the received
			 * frame is Ok or not and accordingly returns
			 * a flag in the RxD.
			 */
			skb->ip_summed = CHECKSUM_UNNECESSARY;
		} else {
5635 5636
			/*
			 * Packet with erroneous checksum, let the
Linus Torvalds's avatar
Linus Torvalds committed
5637 5638 5639 5640 5641 5642 5643 5644 5645 5646
			 * upper layers deal with it.
			 */
			skb->ip_summed = CHECKSUM_NONE;
		}
	} else {
		skb->ip_summed = CHECKSUM_NONE;
	}

	skb->protocol = eth_type_trans(skb, dev);
#ifdef CONFIG_S2IO_NAPI
5647 5648 5649 5650 5651 5652 5653
	if (sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2)) {
		/* Queueing the vlan frame to the upper layer */
		vlan_hwaccel_receive_skb(skb, sp->vlgrp,
			RXD_GET_VLAN_TAG(rxdp->Control_2));
	} else {
		netif_receive_skb(skb);
	}
Linus Torvalds's avatar
Linus Torvalds committed
5654
#else
5655 5656 5657 5658 5659 5660 5661
	if (sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2)) {
		/* Queueing the vlan frame to the upper layer */
		vlan_hwaccel_rx(skb, sp->vlgrp,
			RXD_GET_VLAN_TAG(rxdp->Control_2));
	} else {
		netif_rx(skb);
	}
Linus Torvalds's avatar
Linus Torvalds committed
5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674
#endif
	dev->last_rx = jiffies;
	atomic_dec(&sp->rx_bufs_left[ring_no]);
	return SUCCESS;
}

/**
 *  s2io_link - stops/starts the Tx queue.
 *  @sp : private member of the device structure, which is a pointer to the
 *  s2io_nic structure.
 *  @link : inidicates whether link is UP/DOWN.
 *  Description:
 *  This function stops/starts the Tx queue depending on whether the link
5675 5676
 *  status of the NIC is is down or up. This is called by the Alarm
 *  interrupt handler whenever a link change interrupt comes up.
Linus Torvalds's avatar
Linus Torvalds committed
5677 5678 5679 5680
 *  Return value:
 *  void.
 */

5681
void s2io_link(nic_t * sp, int link)
Linus Torvalds's avatar
Linus Torvalds committed
5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697
{
	struct net_device *dev = (struct net_device *) sp->dev;

	if (link != sp->last_link_state) {
		if (link == LINK_DOWN) {
			DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
			netif_carrier_off(dev);
		} else {
			DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
			netif_carrier_on(dev);
		}
	}
	sp->last_link_state = link;
}

/**
5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716
 *  get_xena_rev_id - to identify revision ID of xena.
 *  @pdev : PCI Dev structure
 *  Description:
 *  Function to identify the Revision ID of xena.
 *  Return value:
 *  returns the revision ID of the device.
 */

int get_xena_rev_id(struct pci_dev *pdev)
{
	u8 id = 0;
	int ret;
	ret = pci_read_config_byte(pdev, PCI_REVISION_ID, (u8 *) & id);
	return id;
}

/**
 *  s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
 *  @sp : private member of the device structure, which is a pointer to the
Linus Torvalds's avatar
Linus Torvalds committed
5717 5718 5719 5720 5721 5722 5723 5724 5725 5726
 *  s2io_nic structure.
 *  Description:
 *  This function initializes a few of the PCI and PCI-X configuration registers
 *  with recommended values.
 *  Return value:
 *  void
 */

static void s2io_init_pci(nic_t * sp)
{
5727
	u16 pci_cmd = 0, pcix_cmd = 0;
Linus Torvalds's avatar
Linus Torvalds committed
5728 5729 5730

	/* Enable Data Parity Error Recovery in PCI-X command register. */
	pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
5731
			     &(pcix_cmd));
Linus Torvalds's avatar
Linus Torvalds committed
5732
	pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
5733
			      (pcix_cmd | 1));
Linus Torvalds's avatar
Linus Torvalds committed
5734
	pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
5735
			     &(pcix_cmd));
Linus Torvalds's avatar
Linus Torvalds committed
5736 5737 5738 5739 5740 5741 5742 5743

	/* Set the PErr Response bit in PCI command register. */
	pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
	pci_write_config_word(sp->pdev, PCI_COMMAND,
			      (pci_cmd | PCI_COMMAND_PARITY));
	pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);

	/* Forcibly disabling relaxed ordering capability of the card. */
5744
	pcix_cmd &= 0xfffd;
Linus Torvalds's avatar
Linus Torvalds committed
5745
	pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
5746
			      pcix_cmd);
Linus Torvalds's avatar
Linus Torvalds committed
5747
	pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
5748
			     &(pcix_cmd));
Linus Torvalds's avatar
Linus Torvalds committed
5749 5750 5751 5752
}

MODULE_AUTHOR("Raghavendra Koushik <raghavendra.koushik@neterion.com>");
MODULE_LICENSE("GPL");
5753 5754
MODULE_VERSION(DRV_VERSION);

Linus Torvalds's avatar
Linus Torvalds committed
5755 5756
module_param(tx_fifo_num, int, 0);
module_param(rx_ring_num, int, 0);
5757
module_param(rx_ring_mode, int, 0);
5758 5759 5760
module_param_array(tx_fifo_len, uint, NULL, 0);
module_param_array(rx_ring_sz, uint, NULL, 0);
module_param_array(rts_frm_len, uint, NULL, 0);
5761
module_param(use_continuous_tx_intrs, int, 1);
Linus Torvalds's avatar
Linus Torvalds committed
5762 5763 5764 5765 5766 5767
module_param(rmac_pause_time, int, 0);
module_param(mc_pause_threshold_q0q3, int, 0);
module_param(mc_pause_threshold_q4q7, int, 0);
module_param(shared_splits, int, 0);
module_param(tmac_util_period, int, 0);
module_param(rmac_util_period, int, 0);
5768
module_param(bimodal, bool, 0);
5769
module_param(l3l4hdr_size, int , 0);
Linus Torvalds's avatar
Linus Torvalds committed
5770 5771 5772
#ifndef CONFIG_S2IO_NAPI
module_param(indicate_max_pkts, int, 0);
#endif
5773
module_param(rxsync_frequency, int, 0);
5774
module_param(intr_type, int, 0);
5775

Linus Torvalds's avatar
Linus Torvalds committed
5776
/**
5777
 *  s2io_init_nic - Initialization of the adapter .
Linus Torvalds's avatar
Linus Torvalds committed
5778 5779 5780 5781
 *  @pdev : structure containing the PCI related information of the device.
 *  @pre: List of PCI devices supported by the driver listed in s2io_tbl.
 *  Description:
 *  The function initializes an adapter identified by the pci_dec structure.
5782 5783 5784
 *  All OS related initialization including memory and device structure and
 *  initlaization of the device private variable is done. Also the swapper
 *  control register is initialized to enable read and write into the I/O
Linus Torvalds's avatar
Linus Torvalds committed
5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802
 *  registers of the device.
 *  Return value:
 *  returns 0 on success and negative on failure.
 */

static int __devinit
s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
{
	nic_t *sp;
	struct net_device *dev;
	int i, j, ret;
	int dma_flag = FALSE;
	u32 mac_up, mac_down;
	u64 val64 = 0, tmp64 = 0;
	XENA_dev_config_t __iomem *bar0 = NULL;
	u16 subid;
	mac_info_t *mac_control;
	struct config_param *config;
5803
	int mode;
5804
	u8 dev_intr_type = intr_type;
Linus Torvalds's avatar
Linus Torvalds committed
5805

5806
#ifdef CONFIG_S2IO_NAPI
5807 5808 5809 5810 5811 5812 5813
	if (dev_intr_type != INTA) {
		DBG_PRINT(ERR_DBG, "NAPI cannot be enabled when MSI/MSI-X \
is enabled. Defaulting to INTA\n");
		dev_intr_type = INTA;
	}
	else
		DBG_PRINT(ERR_DBG, "NAPI support has been enabled\n");
5814
#endif
Linus Torvalds's avatar
Linus Torvalds committed
5815 5816 5817 5818 5819 5820 5821

	if ((ret = pci_enable_device(pdev))) {
		DBG_PRINT(ERR_DBG,
			  "s2io_init_nic: pci_enable_device failed\n");
		return ret;
	}

5822
	if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
Linus Torvalds's avatar
Linus Torvalds committed
5823 5824 5825
		DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
		dma_flag = TRUE;
		if (pci_set_consistent_dma_mask
5826
		    (pdev, DMA_64BIT_MASK)) {
Linus Torvalds's avatar
Linus Torvalds committed
5827 5828 5829 5830 5831 5832
			DBG_PRINT(ERR_DBG,
				  "Unable to obtain 64bit DMA for \
					consistent allocations\n");
			pci_disable_device(pdev);
			return -ENOMEM;
		}
5833
	} else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
Linus Torvalds's avatar
Linus Torvalds committed
5834 5835 5836 5837 5838 5839
		DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
	} else {
		pci_disable_device(pdev);
		return -ENOMEM;
	}

5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868
	if ((dev_intr_type == MSI_X) && 
			((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
			(pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
		DBG_PRINT(ERR_DBG, "Xframe I does not support MSI_X. \
Defaulting to INTA\n");
		dev_intr_type = INTA;
	}
	if (dev_intr_type != MSI_X) {
		if (pci_request_regions(pdev, s2io_driver_name)) {
			DBG_PRINT(ERR_DBG, "Request Regions failed\n"),
			    pci_disable_device(pdev);
			return -ENODEV;
		}
	}
	else {
		if (!(request_mem_region(pci_resource_start(pdev, 0),
               	         pci_resource_len(pdev, 0), s2io_driver_name))) {
			DBG_PRINT(ERR_DBG, "bar0 Request Regions failed\n");
			pci_disable_device(pdev);
			return -ENODEV;
		}
        	if (!(request_mem_region(pci_resource_start(pdev, 2),
               	         pci_resource_len(pdev, 2), s2io_driver_name))) {
			DBG_PRINT(ERR_DBG, "bar1 Request Regions failed\n");
                	release_mem_region(pci_resource_start(pdev, 0),
                                   pci_resource_len(pdev, 0));
			pci_disable_device(pdev);
			return -ENODEV;
		}
Linus Torvalds's avatar
Linus Torvalds committed
5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890
	}

	dev = alloc_etherdev(sizeof(nic_t));
	if (dev == NULL) {
		DBG_PRINT(ERR_DBG, "Device allocation failed\n");
		pci_disable_device(pdev);
		pci_release_regions(pdev);
		return -ENODEV;
	}

	pci_set_master(pdev);
	pci_set_drvdata(pdev, dev);
	SET_MODULE_OWNER(dev);
	SET_NETDEV_DEV(dev, &pdev->dev);

	/*  Private member variable initialized to s2io NIC structure */
	sp = dev->priv;
	memset(sp, 0, sizeof(nic_t));
	sp->dev = dev;
	sp->pdev = pdev;
	sp->high_dma_flag = dma_flag;
	sp->device_enabled_once = FALSE;
5891 5892 5893 5894 5895 5896 5897
	if (rx_ring_mode == 1)
		sp->rxd_mode = RXD_MODE_1;
	if (rx_ring_mode == 2)
		sp->rxd_mode = RXD_MODE_3B;
	if (rx_ring_mode == 3)
		sp->rxd_mode = RXD_MODE_3A;

5898
	sp->intr_type = dev_intr_type;
Linus Torvalds's avatar
Linus Torvalds committed
5899

5900 5901 5902 5903 5904 5905
	if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
		(pdev->device == PCI_DEVICE_ID_HERC_UNI))
		sp->device_type = XFRAME_II_DEVICE;
	else
		sp->device_type = XFRAME_I_DEVICE;

5906
		
Linus Torvalds's avatar
Linus Torvalds committed
5907 5908 5909
	/* Initialize some PCI/PCI-X fields of the NIC. */
	s2io_init_pci(sp);

5910
	/*
Linus Torvalds's avatar
Linus Torvalds committed
5911
	 * Setting the device configuration parameters.
5912 5913 5914
	 * Most of these parameters can be specified by the user during
	 * module insertion as they are module loadable parameters. If
	 * these parameters are not not specified during load time, they
Linus Torvalds's avatar
Linus Torvalds committed
5915 5916 5917 5918 5919 5920
	 * are initialized with default values.
	 */
	mac_control = &sp->mac_control;
	config = &sp->config;

	/* Tx side parameters. */
5921 5922
	if (tx_fifo_len[0] == 0)
		tx_fifo_len[0] = DEFAULT_FIFO_LEN; /* Default value. */
Linus Torvalds's avatar
Linus Torvalds committed
5923 5924 5925 5926 5927 5928
	config->tx_fifo_num = tx_fifo_num;
	for (i = 0; i < MAX_TX_FIFOS; i++) {
		config->tx_cfg[i].fifo_len = tx_fifo_len[i];
		config->tx_cfg[i].fifo_priority = i;
	}

5929 5930 5931 5932
	/* mapping the QoS priority to the configured fifos */
	for (i = 0; i < MAX_TX_FIFOS; i++)
		config->fifo_mapping[i] = fifo_map[config->tx_fifo_num][i];

Linus Torvalds's avatar
Linus Torvalds committed
5933 5934 5935 5936 5937 5938 5939 5940 5941
	config->tx_intr_type = TXD_INT_TYPE_UTILZ;
	for (i = 0; i < config->tx_fifo_num; i++) {
		config->tx_cfg[i].f_no_snoop =
		    (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
		if (config->tx_cfg[i].fifo_len < 65) {
			config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
			break;
		}
	}
5942
	config->max_txds = MAX_SKB_FRAGS + 1;
Linus Torvalds's avatar
Linus Torvalds committed
5943 5944

	/* Rx side parameters. */
5945 5946
	if (rx_ring_sz[0] == 0)
		rx_ring_sz[0] = SMALL_BLK_CNT; /* Default value. */
Linus Torvalds's avatar
Linus Torvalds committed
5947 5948 5949
	config->rx_ring_num = rx_ring_num;
	for (i = 0; i < MAX_RX_RINGS; i++) {
		config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
5950
		    (rxd_count[sp->rxd_mode] + 1);
Linus Torvalds's avatar
Linus Torvalds committed
5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969
		config->rx_cfg[i].ring_priority = i;
	}

	for (i = 0; i < rx_ring_num; i++) {
		config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
		config->rx_cfg[i].f_no_snoop =
		    (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
	}

	/*  Setting Mac Control parameters */
	mac_control->rmac_pause_time = rmac_pause_time;
	mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
	mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;


	/* Initialize Ring buffer parameters. */
	for (i = 0; i < config->rx_ring_num; i++)
		atomic_set(&sp->rx_bufs_left[i], 0);

5970 5971 5972
	/* Initialize the number of ISRs currently running */
	atomic_set(&sp->isr_cnt, 0);

Linus Torvalds's avatar
Linus Torvalds committed
5973 5974 5975
	/*  initialize the shared memory used by the NIC and the host */
	if (init_shared_mem(sp)) {
		DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
5976
			  __FUNCTION__);
Linus Torvalds's avatar
Linus Torvalds committed
5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016
		ret = -ENOMEM;
		goto mem_alloc_failed;
	}

	sp->bar0 = ioremap(pci_resource_start(pdev, 0),
				     pci_resource_len(pdev, 0));
	if (!sp->bar0) {
		DBG_PRINT(ERR_DBG, "%s: S2IO: cannot remap io mem1\n",
			  dev->name);
		ret = -ENOMEM;
		goto bar0_remap_failed;
	}

	sp->bar1 = ioremap(pci_resource_start(pdev, 2),
				     pci_resource_len(pdev, 2));
	if (!sp->bar1) {
		DBG_PRINT(ERR_DBG, "%s: S2IO: cannot remap io mem2\n",
			  dev->name);
		ret = -ENOMEM;
		goto bar1_remap_failed;
	}

	dev->irq = pdev->irq;
	dev->base_addr = (unsigned long) sp->bar0;

	/* Initializing the BAR1 address as the start of the FIFO pointer. */
	for (j = 0; j < MAX_TX_FIFOS; j++) {
		mac_control->tx_FIFO_start[j] = (TxFIFO_element_t __iomem *)
		    (sp->bar1 + (j * 0x00020000));
	}

	/*  Driver entry points */
	dev->open = &s2io_open;
	dev->stop = &s2io_close;
	dev->hard_start_xmit = &s2io_xmit;
	dev->get_stats = &s2io_get_stats;
	dev->set_multicast_list = &s2io_set_multicast;
	dev->do_ioctl = &s2io_ioctl;
	dev->change_mtu = &s2io_change_mtu;
	SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
6017 6018 6019
	dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
	dev->vlan_rx_register = s2io_vlan_rx_register;
	dev->vlan_rx_kill_vid = (void *)s2io_vlan_rx_kill_vid;
6020

Linus Torvalds's avatar
Linus Torvalds committed
6021 6022 6023 6024
	/*
	 * will use eth_mac_addr() for  dev->set_mac_address
	 * mac address will be set every time dev->open() is called
	 */
6025
#if defined(CONFIG_S2IO_NAPI)
Linus Torvalds's avatar
Linus Torvalds committed
6026
	dev->poll = s2io_poll;
6027
	dev->weight = 32;
Linus Torvalds's avatar
Linus Torvalds committed
6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043
#endif

	dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
	if (sp->high_dma_flag == TRUE)
		dev->features |= NETIF_F_HIGHDMA;
#ifdef NETIF_F_TSO
	dev->features |= NETIF_F_TSO;
#endif

	dev->tx_timeout = &s2io_tx_watchdog;
	dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
	INIT_WORK(&sp->rst_timer_task,
		  (void (*)(void *)) s2io_restart_nic, dev);
	INIT_WORK(&sp->set_link_task,
		  (void (*)(void *)) s2io_set_link, sp);

6044
	pci_save_state(sp->pdev);
Linus Torvalds's avatar
Linus Torvalds committed
6045 6046 6047 6048 6049 6050 6051 6052 6053

	/* Setting swapper control on the NIC, for proper reset operation */
	if (s2io_set_swapper(sp)) {
		DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
			  dev->name);
		ret = -EAGAIN;
		goto set_swap_failed;
	}

6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073
	/* Verify if the Herc works on the slot its placed into */
	if (sp->device_type & XFRAME_II_DEVICE) {
		mode = s2io_verify_pci_mode(sp);
		if (mode < 0) {
			DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__);
			DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
			ret = -EBADSLT;
			goto set_swap_failed;
		}
	}

	/* Not needed for Herc */
	if (sp->device_type & XFRAME_I_DEVICE) {
		/*
		 * Fix for all "FFs" MAC address problems observed on
		 * Alpha platforms
		 */
		fix_mac_address(sp);
		s2io_reset(sp);
	}
Linus Torvalds's avatar
Linus Torvalds committed
6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102

	/*
	 * MAC address initialization.
	 * For now only one mac address will be read and used.
	 */
	bar0 = sp->bar0;
	val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
	    RMAC_ADDR_CMD_MEM_OFFSET(0 + MAC_MAC_ADDR_START_OFFSET);
	writeq(val64, &bar0->rmac_addr_cmd_mem);
	wait_for_cmd_complete(sp);

	tmp64 = readq(&bar0->rmac_addr_data0_mem);
	mac_down = (u32) tmp64;
	mac_up = (u32) (tmp64 >> 32);

	memset(sp->def_mac_addr[0].mac_addr, 0, sizeof(ETH_ALEN));

	sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
	sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
	sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
	sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
	sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
	sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);

	/*  Set the factory defined MAC address initially   */
	dev->addr_len = ETH_ALEN;
	memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);

	/*
6103
	 * Initialize the tasklet status and link state flags
6104
	 * and the card state parameter
Linus Torvalds's avatar
Linus Torvalds committed
6105 6106 6107 6108 6109 6110 6111 6112 6113 6114
	 */
	atomic_set(&(sp->card_state), 0);
	sp->tasklet_status = 0;
	sp->link_state = 0;

	/* Initialize spinlocks */
	spin_lock_init(&sp->tx_lock);
#ifndef CONFIG_S2IO_NAPI
	spin_lock_init(&sp->put_lock);
#endif
6115
	spin_lock_init(&sp->rx_lock);
Linus Torvalds's avatar
Linus Torvalds committed
6116

6117 6118 6119
	/*
	 * SXE-002: Configure link and activity LED to init state
	 * on driver load.
Linus Torvalds's avatar
Linus Torvalds committed
6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138
	 */
	subid = sp->pdev->subsystem_device;
	if ((subid & 0xFF) >= 0x07) {
		val64 = readq(&bar0->gpio_control);
		val64 |= 0x0000800000000000ULL;
		writeq(val64, &bar0->gpio_control);
		val64 = 0x0411040400000000ULL;
		writeq(val64, (void __iomem *) bar0 + 0x2700);
		val64 = readq(&bar0->gpio_control);
	}

	sp->rx_csum = 1;	/* Rx chksum verify enabled by default */

	if (register_netdev(dev)) {
		DBG_PRINT(ERR_DBG, "Device registration failed\n");
		ret = -ENODEV;
		goto register_failed;
	}

6139 6140 6141
	if (sp->device_type & XFRAME_II_DEVICE) {
		DBG_PRINT(ERR_DBG, "%s: Neterion Xframe II 10GbE adapter ",
			  dev->name);
6142
		DBG_PRINT(ERR_DBG, "(rev %d), Version %s",
6143 6144
				get_xena_rev_id(sp->pdev),
				s2io_driver_version);
6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155
		switch(sp->intr_type) {
			case INTA:
				DBG_PRINT(ERR_DBG, ", Intr type INTA");
				break;
			case MSI:
				DBG_PRINT(ERR_DBG, ", Intr type MSI");
				break;
			case MSI_X:
				DBG_PRINT(ERR_DBG, ", Intr type MSI-X");
				break;
		}
6156 6157

		DBG_PRINT(ERR_DBG, "\nCopyright(c) 2002-2005 Neterion Inc.\n");
6158 6159 6160 6161 6162 6163 6164
		DBG_PRINT(ERR_DBG, "MAC ADDR: %02x:%02x:%02x:%02x:%02x:%02x\n",
			  sp->def_mac_addr[0].mac_addr[0],
			  sp->def_mac_addr[0].mac_addr[1],
			  sp->def_mac_addr[0].mac_addr[2],
			  sp->def_mac_addr[0].mac_addr[3],
			  sp->def_mac_addr[0].mac_addr[4],
			  sp->def_mac_addr[0].mac_addr[5]);
6165
		mode = s2io_print_pci_mode(sp);
6166 6167 6168 6169 6170 6171 6172 6173
		if (mode < 0) {
			DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode ");
			ret = -EBADSLT;
			goto set_swap_failed;
		}
	} else {
		DBG_PRINT(ERR_DBG, "%s: Neterion Xframe I 10GbE adapter ",
			  dev->name);
6174
		DBG_PRINT(ERR_DBG, "(rev %d), Version %s",
6175 6176
					get_xena_rev_id(sp->pdev),
					s2io_driver_version);
6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187
		switch(sp->intr_type) {
			case INTA:
				DBG_PRINT(ERR_DBG, ", Intr type INTA");
				break;
			case MSI:
				DBG_PRINT(ERR_DBG, ", Intr type MSI");
				break;
			case MSI_X:
				DBG_PRINT(ERR_DBG, ", Intr type MSI-X");
				break;
		}
6188
		DBG_PRINT(ERR_DBG, "\nCopyright(c) 2002-2005 Neterion Inc.\n");
6189 6190 6191 6192 6193 6194 6195 6196
		DBG_PRINT(ERR_DBG, "MAC ADDR: %02x:%02x:%02x:%02x:%02x:%02x\n",
			  sp->def_mac_addr[0].mac_addr[0],
			  sp->def_mac_addr[0].mac_addr[1],
			  sp->def_mac_addr[0].mac_addr[2],
			  sp->def_mac_addr[0].mac_addr[3],
			  sp->def_mac_addr[0].mac_addr[4],
			  sp->def_mac_addr[0].mac_addr[5]);
	}
6197 6198 6199 6200 6201 6202
	if (sp->rxd_mode == RXD_MODE_3B)
		DBG_PRINT(ERR_DBG, "%s: 2-Buffer mode support has been "
			  "enabled\n",dev->name);
	if (sp->rxd_mode == RXD_MODE_3A)
		DBG_PRINT(ERR_DBG, "%s: 3-Buffer mode support has been "
			  "enabled\n",dev->name);
6203

6204 6205
	/* Initialize device name */
	strcpy(sp->name, dev->name);
6206 6207 6208 6209
	if (sp->device_type & XFRAME_II_DEVICE)
		strcat(sp->name, ": Neterion Xframe II 10GbE adapter");
	else
		strcat(sp->name, ": Neterion Xframe I 10GbE adapter");
6210

6211 6212 6213 6214 6215 6216 6217 6218
	/* Initialize bimodal Interrupts */
	sp->config.bimodal = bimodal;
	if (!(sp->device_type & XFRAME_II_DEVICE) && bimodal) {
		sp->config.bimodal = 0;
		DBG_PRINT(ERR_DBG,"%s:Bimodal intr not supported by Xframe I\n",
			dev->name);
	}

6219 6220 6221
	/*
	 * Make Link state as off at this point, when the Link change
	 * interrupt comes the state will be automatically changed to
Linus Torvalds's avatar
Linus Torvalds committed
6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236
	 * the right state.
	 */
	netif_carrier_off(dev);

	return 0;

      register_failed:
      set_swap_failed:
	iounmap(sp->bar1);
      bar1_remap_failed:
	iounmap(sp->bar0);
      bar0_remap_failed:
      mem_alloc_failed:
	free_shared_mem(sp);
	pci_disable_device(pdev);
6237 6238 6239 6240 6241 6242 6243 6244
	if (dev_intr_type != MSI_X)
		pci_release_regions(pdev);
	else {
		release_mem_region(pci_resource_start(pdev, 0),
			pci_resource_len(pdev, 0));
		release_mem_region(pci_resource_start(pdev, 2),
			pci_resource_len(pdev, 2));
	}
Linus Torvalds's avatar
Linus Torvalds committed
6245 6246 6247 6248 6249 6250 6251
	pci_set_drvdata(pdev, NULL);
	free_netdev(dev);

	return ret;
}

/**
6252
 * s2io_rem_nic - Free the PCI device
Linus Torvalds's avatar
Linus Torvalds committed
6253
 * @pdev: structure containing the PCI related information of the device.
6254
 * Description: This function is called by the Pci subsystem to release a
Linus Torvalds's avatar
Linus Torvalds committed
6255
 * PCI device and free up all resource held up by the device. This could
6256
 * be in response to a Hot plug event or when the driver is to be removed
Linus Torvalds's avatar
Linus Torvalds committed
6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277
 * from memory.
 */

static void __devexit s2io_rem_nic(struct pci_dev *pdev)
{
	struct net_device *dev =
	    (struct net_device *) pci_get_drvdata(pdev);
	nic_t *sp;

	if (dev == NULL) {
		DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
		return;
	}

	sp = dev->priv;
	unregister_netdev(dev);

	free_shared_mem(sp);
	iounmap(sp->bar0);
	iounmap(sp->bar1);
	pci_disable_device(pdev);
6278 6279 6280 6281 6282 6283 6284 6285
	if (sp->intr_type != MSI_X)
		pci_release_regions(pdev);
	else {
		release_mem_region(pci_resource_start(pdev, 0),
			pci_resource_len(pdev, 0));
		release_mem_region(pci_resource_start(pdev, 2),
			pci_resource_len(pdev, 2));
	}
Linus Torvalds's avatar
Linus Torvalds committed
6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301
	pci_set_drvdata(pdev, NULL);
	free_netdev(dev);
}

/**
 * s2io_starter - Entry point for the driver
 * Description: This function is the entry point for the driver. It verifies
 * the module loadable parameters and initializes PCI configuration space.
 */

int __init s2io_starter(void)
{
	return pci_module_init(&s2io_driver);
}

/**
6302
 * s2io_closer - Cleanup routine for the driver
Linus Torvalds's avatar
Linus Torvalds committed
6303 6304 6305
 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
 */

6306
void s2io_closer(void)
Linus Torvalds's avatar
Linus Torvalds committed
6307 6308 6309 6310 6311 6312 6313
{
	pci_unregister_driver(&s2io_driver);
	DBG_PRINT(INIT_DBG, "cleanup done\n");
}

module_init(s2io_starter);
module_exit(s2io_closer);