board-n800-flash.c 4.27 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
/*
 * linux/arch/arm/mach-omap2/board-n800-flash.c
 *
 * Copyright (C) 2006 Nokia Corporation
 * Author: Juha Yrjola
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/kernel.h>
#include <linux/platform_device.h>
#include <asm/mach/flash.h>
#include <linux/mtd/onenand_regs.h>

#include <asm/io.h>
#include <asm/arch/onenand.h>
#include <asm/arch/board.h>
#include <asm/arch/gpmc.h>

static struct mtd_partition n800_partitions[8];

static int n800_onenand_setup(void __iomem *);

static struct omap_onenand_platform_data n800_onenand_data = {
	.cs = 0,
	.gpio_irq = 26,
	.parts = n800_partitions,
	.nr_parts = 0, /* filled later */
	.onenand_setup = n800_onenand_setup,
};

static struct platform_device n800_onenand_device = {
	.name		= "omap2-onenand",
	.id		= -1,
	.dev = {
		.platform_data = &n800_onenand_data,
	},
};

static unsigned short omap2_onenand_readw(void __iomem *addr)
{
	return readw(addr);
}

static void omap2_onenand_writew(unsigned short value, void __iomem *addr)
{
	writew(value, addr);
}

static int omap2_onenand_set_sync_mode(int cs, void __iomem *onenand_base)
{
	const int min_gpmc_clk_period = 18;
	struct gpmc_timings t;
	int tick_ns, div, fclk_offset_ns, fclk_offset, gpmc_clk_ns, latency;
	u32 reg;

	tick_ns = gpmc_round_ns_to_ticks(1);
	div = gpmc_cs_calc_divider(cs, min_gpmc_clk_period);
	gpmc_clk_ns = div * tick_ns;
	if (gpmc_clk_ns >= 24)
		latency = 3;
	else
		latency = 4;

	/* Configure OneNAND for sync read */
	reg = omap2_onenand_readw(onenand_base + ONENAND_REG_SYS_CFG1);
	reg &= ~((0x7 << ONENAND_SYS_CFG1_BRL_SHIFT) | (0x7 << 9));
	reg |=	(latency << ONENAND_SYS_CFG1_BRL_SHIFT) |
		ONENAND_SYS_CFG1_SYNC_READ |
		ONENAND_SYS_CFG1_BL_16;
	omap2_onenand_writew(reg, onenand_base + ONENAND_REG_SYS_CFG1);

	/* FIXME: Get timings from platform data */
	/* Set syncronous read timings */
	memset(&t, 0, sizeof(t));
	t.sync_clk = min_gpmc_clk_period;
	t.cs_on = 0;
	t.adv_on = gpmc_round_ns_to_ticks(7);
	fclk_offset_ns = t.adv_on + gpmc_round_ns_to_ticks(7);
	fclk_offset = fclk_offset_ns / gpmc_round_ns_to_ticks(1);
	t.page_burst_access = gpmc_clk_ns;

	/* Read */
	t.adv_rd_off = fclk_offset_ns + gpmc_round_ns_to_ticks(7);
	t.oe_on = t.adv_rd_off;
	t.access = fclk_offset_ns + (latency + 1) * gpmc_clk_ns;
	t.oe_off = t.access + gpmc_round_ns_to_ticks(1);
	t.cs_rd_off = t.oe_off;
	t.rd_cycle = t.cs_rd_off + gpmc_round_ns_to_ticks(17);

	/* Write */
	t.adv_wr_off = t.adv_on + gpmc_round_ns_to_ticks(12);
	t.we_on = t.adv_wr_off + gpmc_round_ns_to_ticks(1);
	t.we_off = t.we_on + gpmc_round_ns_to_ticks(40);
	t.cs_wr_off = t.we_off + gpmc_round_ns_to_ticks(1);
	t.wr_cycle = t.cs_wr_off + gpmc_round_ns_to_ticks(1);

	/* Configure GPMC for synchronous read */
	fclk_offset %= div;
	gpmc_cs_write_reg(cs, GPMC_CS_CONFIG1,
			  GPMC_CONFIG1_WRAPBURST_SUPP |
			  GPMC_CONFIG1_READMULTIPLE_SUPP |
			  GPMC_CONFIG1_READTYPE_SYNC |
			  GPMC_CONFIG1_CLKACTIVATIONTIME(fclk_offset) |
			  GPMC_CONFIG1_PAGE_LEN(2) |
			  GPMC_CONFIG1_WAIT_READ_MON |
			  GPMC_CONFIG1_WAIT_PIN_SEL(0) |
			  GPMC_CONFIG1_DEVICESIZE_16 |
			  GPMC_CONFIG1_DEVICETYPE_NOR |
			  GPMC_CONFIG1_MUXADDDATA);

	return gpmc_cs_set_timings(cs, &t);
}

static int n800_onenand_setup(void __iomem *onenand_base)
{
	struct omap_onenand_platform_data *datap = &n800_onenand_data;
	struct device *dev = &n800_onenand_device.dev;

	/* Set sync timings in GPMC */
	if (omap2_onenand_set_sync_mode(datap->cs, onenand_base) < 0) {
		dev_err(dev, "Unable to set synchronous mode\n");
		return -EINVAL;
	}

	return 0;
}

void __init n800_flash_init(void)
{
	const struct omap_partition_config *part;
	int i = 0;

	while ((part = omap_get_nr_config(OMAP_TAG_PARTITION,
				struct omap_partition_config, i)) != NULL) {
		struct mtd_partition *mpart;

		mpart = n800_partitions + i;
		mpart->name = (char *) part->name;
		mpart->size = part->size;
		mpart->offset = part->offset;
		mpart->mask_flags = part->mask_flags;
		i++;
		if (i == ARRAY_SIZE(n800_partitions)) {
			printk(KERN_ERR "Too many partitions supplied\n");
			return;
		}
	}
	n800_onenand_data.nr_parts = i;
	if (platform_device_register(&n800_onenand_device) < 0) {
		printk(KERN_ERR "Unable to register OneNAND device\n");
		return;
	}
}