Commit fab5db97 authored by Paul Mackerras's avatar Paul Mackerras

[PATCH] powerpc: Implement support for setting little-endian mode via prctl

This adds the PowerPC part of the code to allow processes to change
their endian mode via prctl.

This also extends the alignment exception handler to be able to fix up
alignment exceptions that occur in little-endian mode, both for
"PowerPC" little-endian and true little-endian.

We always enter signal handlers in big-endian mode -- the support for
little-endian mode does not amount to the creation of a little-endian
user/kernel ABI.  If the signal handler returns, the endian mode is
restored to what it was when the signal was delivered.

We have two new kernel CPU feature bits, one for PPC little-endian and
one for true little-endian.  Most of the classic 32-bit processors
support PPC little-endian, and this is reflected in the CPU feature
table.  There are two corresponding feature bits reported to userland
in the AT_HWCAP aux vector entry.

This is based on an earlier patch by Anton Blanchard.
Signed-off-by: default avatarPaul Mackerras <paulus@samba.org>
parent 651d765d
...@@ -35,17 +35,19 @@ struct aligninfo { ...@@ -35,17 +35,19 @@ struct aligninfo {
#define INVALID { 0, 0 } #define INVALID { 0, 0 }
#define LD 1 /* load */ /* Bits in the flags field */
#define ST 2 /* store */ #define LD 0 /* load */
#define SE 4 /* sign-extend value */ #define ST 1 /* store */
#define F 8 /* to/from fp regs */ #define SE 2 /* sign-extend value */
#define U 0x10 /* update index register */ #define F 4 /* to/from fp regs */
#define M 0x20 /* multiple load/store */ #define U 8 /* update index register */
#define SW 0x40 /* byte swap int or ... */ #define M 0x10 /* multiple load/store */
#define S 0x40 /* ... single-precision fp */ #define SW 0x20 /* byte swap */
#define SX 0x40 /* byte count in XER */ #define S 0x40 /* single-precision fp or... */
#define SX 0x40 /* ... byte count in XER */
#define HARD 0x80 /* string, stwcx. */ #define HARD 0x80 /* string, stwcx. */
/* DSISR bits reported for a DCBZ instruction: */
#define DCBZ 0x5f /* 8xx/82xx dcbz faults when cache not enabled */ #define DCBZ 0x5f /* 8xx/82xx dcbz faults when cache not enabled */
#define SWAP(a, b) (t = (a), (a) = (b), (b) = t) #define SWAP(a, b) (t = (a), (a) = (b), (b) = t)
...@@ -256,12 +258,16 @@ static int emulate_dcbz(struct pt_regs *regs, unsigned char __user *addr) ...@@ -256,12 +258,16 @@ static int emulate_dcbz(struct pt_regs *regs, unsigned char __user *addr)
#define REG_BYTE(rp, i) *((u8 *)(rp) + (i)) #define REG_BYTE(rp, i) *((u8 *)(rp) + (i))
#endif #endif
#define SWIZ_PTR(p) ((unsigned char __user *)((p) ^ swiz))
static int emulate_multiple(struct pt_regs *regs, unsigned char __user *addr, static int emulate_multiple(struct pt_regs *regs, unsigned char __user *addr,
unsigned int reg, unsigned int nb, unsigned int reg, unsigned int nb,
unsigned int flags, unsigned int instr) unsigned int flags, unsigned int instr,
unsigned long swiz)
{ {
unsigned long *rptr; unsigned long *rptr;
unsigned int nb0, i; unsigned int nb0, i, bswiz;
unsigned long p;
/* /*
* We do not try to emulate 8 bytes multiple as they aren't really * We do not try to emulate 8 bytes multiple as they aren't really
...@@ -280,9 +286,12 @@ static int emulate_multiple(struct pt_regs *regs, unsigned char __user *addr, ...@@ -280,9 +286,12 @@ static int emulate_multiple(struct pt_regs *regs, unsigned char __user *addr,
if (nb == 0) if (nb == 0)
return 1; return 1;
} else { } else {
if (__get_user(instr, unsigned long pc = regs->nip ^ (swiz & 4);
(unsigned int __user *)regs->nip))
if (__get_user(instr, (unsigned int __user *)pc))
return -EFAULT; return -EFAULT;
if (swiz == 0 && (flags & SW))
instr = cpu_to_le32(instr);
nb = (instr >> 11) & 0x1f; nb = (instr >> 11) & 0x1f;
if (nb == 0) if (nb == 0)
nb = 32; nb = 32;
...@@ -300,7 +309,10 @@ static int emulate_multiple(struct pt_regs *regs, unsigned char __user *addr, ...@@ -300,7 +309,10 @@ static int emulate_multiple(struct pt_regs *regs, unsigned char __user *addr,
return -EFAULT; /* bad address */ return -EFAULT; /* bad address */
rptr = &regs->gpr[reg]; rptr = &regs->gpr[reg];
if (flags & LD) { p = (unsigned long) addr;
bswiz = (flags & SW)? 3: 0;
if (!(flags & ST)) {
/* /*
* This zeroes the top 4 bytes of the affected registers * This zeroes the top 4 bytes of the affected registers
* in 64-bit mode, and also zeroes out any remaining * in 64-bit mode, and also zeroes out any remaining
...@@ -311,26 +323,28 @@ static int emulate_multiple(struct pt_regs *regs, unsigned char __user *addr, ...@@ -311,26 +323,28 @@ static int emulate_multiple(struct pt_regs *regs, unsigned char __user *addr,
memset(&regs->gpr[0], 0, memset(&regs->gpr[0], 0,
((nb0 + 3) / 4) * sizeof(unsigned long)); ((nb0 + 3) / 4) * sizeof(unsigned long));
for (i = 0; i < nb; ++i) for (i = 0; i < nb; ++i, ++p)
if (__get_user(REG_BYTE(rptr, i), addr + i)) if (__get_user(REG_BYTE(rptr, i ^ bswiz), SWIZ_PTR(p)))
return -EFAULT; return -EFAULT;
if (nb0 > 0) { if (nb0 > 0) {
rptr = &regs->gpr[0]; rptr = &regs->gpr[0];
addr += nb; addr += nb;
for (i = 0; i < nb0; ++i) for (i = 0; i < nb0; ++i, ++p)
if (__get_user(REG_BYTE(rptr, i), addr + i)) if (__get_user(REG_BYTE(rptr, i ^ bswiz),
SWIZ_PTR(p)))
return -EFAULT; return -EFAULT;
} }
} else { } else {
for (i = 0; i < nb; ++i) for (i = 0; i < nb; ++i, ++p)
if (__put_user(REG_BYTE(rptr, i), addr + i)) if (__put_user(REG_BYTE(rptr, i ^ bswiz), SWIZ_PTR(p)))
return -EFAULT; return -EFAULT;
if (nb0 > 0) { if (nb0 > 0) {
rptr = &regs->gpr[0]; rptr = &regs->gpr[0];
addr += nb; addr += nb;
for (i = 0; i < nb0; ++i) for (i = 0; i < nb0; ++i, ++p)
if (__put_user(REG_BYTE(rptr, i), addr + i)) if (__put_user(REG_BYTE(rptr, i ^ bswiz),
SWIZ_PTR(p)))
return -EFAULT; return -EFAULT;
} }
} }
...@@ -352,7 +366,7 @@ int fix_alignment(struct pt_regs *regs) ...@@ -352,7 +366,7 @@ int fix_alignment(struct pt_regs *regs)
unsigned int reg, areg; unsigned int reg, areg;
unsigned int dsisr; unsigned int dsisr;
unsigned char __user *addr; unsigned char __user *addr;
unsigned char __user *p; unsigned long p, swiz;
int ret, t; int ret, t;
union { union {
u64 ll; u64 ll;
...@@ -380,11 +394,15 @@ int fix_alignment(struct pt_regs *regs) ...@@ -380,11 +394,15 @@ int fix_alignment(struct pt_regs *regs)
* let's make one up from the instruction * let's make one up from the instruction
*/ */
if (cpu_has_feature(CPU_FTR_NODSISRALIGN)) { if (cpu_has_feature(CPU_FTR_NODSISRALIGN)) {
unsigned int real_instr; unsigned long pc = regs->nip;
if (unlikely(__get_user(real_instr,
(unsigned int __user *)regs->nip))) if (cpu_has_feature(CPU_FTR_PPC_LE) && (regs->msr & MSR_LE))
pc ^= 4;
if (unlikely(__get_user(instr, (unsigned int __user *)pc)))
return -EFAULT; return -EFAULT;
dsisr = make_dsisr(real_instr); if (cpu_has_feature(CPU_FTR_REAL_LE) && (regs->msr & MSR_LE))
instr = cpu_to_le32(instr);
dsisr = make_dsisr(instr);
} }
/* extract the operation and registers from the dsisr */ /* extract the operation and registers from the dsisr */
...@@ -397,6 +415,24 @@ int fix_alignment(struct pt_regs *regs) ...@@ -397,6 +415,24 @@ int fix_alignment(struct pt_regs *regs)
nb = aligninfo[instr].len; nb = aligninfo[instr].len;
flags = aligninfo[instr].flags; flags = aligninfo[instr].flags;
/* Byteswap little endian loads and stores */
swiz = 0;
if (regs->msr & MSR_LE) {
flags ^= SW;
/*
* So-called "PowerPC little endian" mode works by
* swizzling addresses rather than by actually doing
* any byte-swapping. To emulate this, we XOR each
* byte address with 7. We also byte-swap, because
* the processor's address swizzling depends on the
* operand size (it xors the address with 7 for bytes,
* 6 for halfwords, 4 for words, 0 for doublewords) but
* we will xor with 7 and load/store each byte separately.
*/
if (cpu_has_feature(CPU_FTR_PPC_LE))
swiz = 7;
}
/* DAR has the operand effective address */ /* DAR has the operand effective address */
addr = (unsigned char __user *)regs->dar; addr = (unsigned char __user *)regs->dar;
...@@ -412,7 +448,8 @@ int fix_alignment(struct pt_regs *regs) ...@@ -412,7 +448,8 @@ int fix_alignment(struct pt_regs *regs)
* function * function
*/ */
if (flags & M) if (flags & M)
return emulate_multiple(regs, addr, reg, nb, flags, instr); return emulate_multiple(regs, addr, reg, nb,
flags, instr, swiz);
/* Verify the address of the operand */ /* Verify the address of the operand */
if (unlikely(user_mode(regs) && if (unlikely(user_mode(regs) &&
...@@ -431,51 +468,71 @@ int fix_alignment(struct pt_regs *regs) ...@@ -431,51 +468,71 @@ int fix_alignment(struct pt_regs *regs)
/* If we are loading, get the data from user space, else /* If we are loading, get the data from user space, else
* get it from register values * get it from register values
*/ */
if (flags & LD) { if (!(flags & ST)) {
data.ll = 0; data.ll = 0;
ret = 0; ret = 0;
p = addr; p = (unsigned long) addr;
switch (nb) { switch (nb) {
case 8: case 8:
ret |= __get_user(data.v[0], p++); ret |= __get_user(data.v[0], SWIZ_PTR(p++));
ret |= __get_user(data.v[1], p++); ret |= __get_user(data.v[1], SWIZ_PTR(p++));
ret |= __get_user(data.v[2], p++); ret |= __get_user(data.v[2], SWIZ_PTR(p++));
ret |= __get_user(data.v[3], p++); ret |= __get_user(data.v[3], SWIZ_PTR(p++));
case 4: case 4:
ret |= __get_user(data.v[4], p++); ret |= __get_user(data.v[4], SWIZ_PTR(p++));
ret |= __get_user(data.v[5], p++); ret |= __get_user(data.v[5], SWIZ_PTR(p++));
case 2: case 2:
ret |= __get_user(data.v[6], p++); ret |= __get_user(data.v[6], SWIZ_PTR(p++));
ret |= __get_user(data.v[7], p++); ret |= __get_user(data.v[7], SWIZ_PTR(p++));
if (unlikely(ret)) if (unlikely(ret))
return -EFAULT; return -EFAULT;
} }
} else if (flags & F) } else if (flags & F) {
data.dd = current->thread.fpr[reg]; data.dd = current->thread.fpr[reg];
else if (flags & S) {
/* Single-precision FP store requires conversion... */
#ifdef CONFIG_PPC_FPU
preempt_disable();
enable_kernel_fp();
cvt_df(&data.dd, (float *)&data.v[4], &current->thread);
preempt_enable();
#else
return 0;
#endif
}
} else
data.ll = regs->gpr[reg]; data.ll = regs->gpr[reg];
/* Perform other misc operations like sign extension, byteswap, if (flags & SW) {
switch (nb) {
case 8:
SWAP(data.v[0], data.v[7]);
SWAP(data.v[1], data.v[6]);
SWAP(data.v[2], data.v[5]);
SWAP(data.v[3], data.v[4]);
break;
case 4:
SWAP(data.v[4], data.v[7]);
SWAP(data.v[5], data.v[6]);
break;
case 2:
SWAP(data.v[6], data.v[7]);
break;
}
}
/* Perform other misc operations like sign extension
* or floating point single precision conversion * or floating point single precision conversion
*/ */
switch (flags & ~U) { switch (flags & ~(U|SW)) {
case LD+SE: /* sign extend */ case LD+SE: /* sign extend */
if ( nb == 2 ) if ( nb == 2 )
data.ll = data.x16.low16; data.ll = data.x16.low16;
else /* nb must be 4 */ else /* nb must be 4 */
data.ll = data.x32.low32; data.ll = data.x32.low32;
break; break;
case LD+S: /* byte-swap */
case ST+S:
if (nb == 2) {
SWAP(data.v[6], data.v[7]);
} else {
SWAP(data.v[4], data.v[7]);
SWAP(data.v[5], data.v[6]);
}
break;
/* Single-precision FP load and store require conversions... */ /* Single-precision FP load requires conversion... */
case LD+F+S: case LD+F+S:
#ifdef CONFIG_PPC_FPU #ifdef CONFIG_PPC_FPU
preempt_disable(); preempt_disable();
...@@ -484,16 +541,6 @@ int fix_alignment(struct pt_regs *regs) ...@@ -484,16 +541,6 @@ int fix_alignment(struct pt_regs *regs)
preempt_enable(); preempt_enable();
#else #else
return 0; return 0;
#endif
break;
case ST+F+S:
#ifdef CONFIG_PPC_FPU
preempt_disable();
enable_kernel_fp();
cvt_df(&data.dd, (float *)&data.v[4], &current->thread);
preempt_enable();
#else
return 0;
#endif #endif
break; break;
} }
...@@ -501,19 +548,19 @@ int fix_alignment(struct pt_regs *regs) ...@@ -501,19 +548,19 @@ int fix_alignment(struct pt_regs *regs)
/* Store result to memory or update registers */ /* Store result to memory or update registers */
if (flags & ST) { if (flags & ST) {
ret = 0; ret = 0;
p = addr; p = (unsigned long) addr;
switch (nb) { switch (nb) {
case 8: case 8:
ret |= __put_user(data.v[0], p++); ret |= __put_user(data.v[0], SWIZ_PTR(p++));
ret |= __put_user(data.v[1], p++); ret |= __put_user(data.v[1], SWIZ_PTR(p++));
ret |= __put_user(data.v[2], p++); ret |= __put_user(data.v[2], SWIZ_PTR(p++));
ret |= __put_user(data.v[3], p++); ret |= __put_user(data.v[3], SWIZ_PTR(p++));
case 4: case 4:
ret |= __put_user(data.v[4], p++); ret |= __put_user(data.v[4], SWIZ_PTR(p++));
ret |= __put_user(data.v[5], p++); ret |= __put_user(data.v[5], SWIZ_PTR(p++));
case 2: case 2:
ret |= __put_user(data.v[6], p++); ret |= __put_user(data.v[6], SWIZ_PTR(p++));
ret |= __put_user(data.v[7], p++); ret |= __put_user(data.v[7], SWIZ_PTR(p++));
} }
if (unlikely(ret)) if (unlikely(ret))
return -EFAULT; return -EFAULT;
......
This diff is collapsed.
...@@ -708,6 +708,50 @@ int get_fpexc_mode(struct task_struct *tsk, unsigned long adr) ...@@ -708,6 +708,50 @@ int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
return put_user(val, (unsigned int __user *) adr); return put_user(val, (unsigned int __user *) adr);
} }
int set_endian(struct task_struct *tsk, unsigned int val)
{
struct pt_regs *regs = tsk->thread.regs;
if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
(val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
return -EINVAL;
if (regs == NULL)
return -EINVAL;
if (val == PR_ENDIAN_BIG)
regs->msr &= ~MSR_LE;
else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
regs->msr |= MSR_LE;
else
return -EINVAL;
return 0;
}
int get_endian(struct task_struct *tsk, unsigned long adr)
{
struct pt_regs *regs = tsk->thread.regs;
unsigned int val;
if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
!cpu_has_feature(CPU_FTR_REAL_LE))
return -EINVAL;
if (regs == NULL)
return -EINVAL;
if (regs->msr & MSR_LE) {
if (cpu_has_feature(CPU_FTR_REAL_LE))
val = PR_ENDIAN_LITTLE;
else
val = PR_ENDIAN_PPC_LITTLE;
} else
val = PR_ENDIAN_BIG;
return put_user(val, (unsigned int __user *)adr);
}
#define TRUNC_PTR(x) ((typeof(x))(((unsigned long)(x)) & 0xffffffff)) #define TRUNC_PTR(x) ((typeof(x))(((unsigned long)(x)) & 0xffffffff))
int sys_clone(unsigned long clone_flags, unsigned long usp, int sys_clone(unsigned long clone_flags, unsigned long usp,
......
...@@ -419,9 +419,7 @@ static long restore_user_regs(struct pt_regs *regs, ...@@ -419,9 +419,7 @@ static long restore_user_regs(struct pt_regs *regs,
{ {
long err; long err;
unsigned int save_r2 = 0; unsigned int save_r2 = 0;
#if defined(CONFIG_ALTIVEC) || defined(CONFIG_SPE)
unsigned long msr; unsigned long msr;
#endif
/* /*
* restore general registers but not including MSR or SOFTE. Also * restore general registers but not including MSR or SOFTE. Also
...@@ -430,11 +428,16 @@ static long restore_user_regs(struct pt_regs *regs, ...@@ -430,11 +428,16 @@ static long restore_user_regs(struct pt_regs *regs,
if (!sig) if (!sig)
save_r2 = (unsigned int)regs->gpr[2]; save_r2 = (unsigned int)regs->gpr[2];
err = restore_general_regs(regs, sr); err = restore_general_regs(regs, sr);
err |= __get_user(msr, &sr->mc_gregs[PT_MSR]);
if (!sig) if (!sig)
regs->gpr[2] = (unsigned long) save_r2; regs->gpr[2] = (unsigned long) save_r2;
if (err) if (err)
return 1; return 1;
/* if doing signal return, restore the previous little-endian mode */
if (sig)
regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE);
/* /*
* Do this before updating the thread state in * Do this before updating the thread state in
* current->thread.fpr/vr/evr. That way, if we get preempted * current->thread.fpr/vr/evr. That way, if we get preempted
...@@ -455,7 +458,7 @@ static long restore_user_regs(struct pt_regs *regs, ...@@ -455,7 +458,7 @@ static long restore_user_regs(struct pt_regs *regs,
/* force the process to reload the altivec registers from /* force the process to reload the altivec registers from
current->thread when it next does altivec instructions */ current->thread when it next does altivec instructions */
regs->msr &= ~MSR_VEC; regs->msr &= ~MSR_VEC;
if (!__get_user(msr, &sr->mc_gregs[PT_MSR]) && (msr & MSR_VEC) != 0) { if (msr & MSR_VEC) {
/* restore altivec registers from the stack */ /* restore altivec registers from the stack */
if (__copy_from_user(current->thread.vr, &sr->mc_vregs, if (__copy_from_user(current->thread.vr, &sr->mc_vregs,
sizeof(sr->mc_vregs))) sizeof(sr->mc_vregs)))
...@@ -472,7 +475,7 @@ static long restore_user_regs(struct pt_regs *regs, ...@@ -472,7 +475,7 @@ static long restore_user_regs(struct pt_regs *regs,
/* force the process to reload the spe registers from /* force the process to reload the spe registers from
current->thread when it next does spe instructions */ current->thread when it next does spe instructions */
regs->msr &= ~MSR_SPE; regs->msr &= ~MSR_SPE;
if (!__get_user(msr, &sr->mc_gregs[PT_MSR]) && (msr & MSR_SPE) != 0) { if (msr & MSR_SPE) {
/* restore spe registers from the stack */ /* restore spe registers from the stack */
if (__copy_from_user(current->thread.evr, &sr->mc_vregs, if (__copy_from_user(current->thread.evr, &sr->mc_vregs,
ELF_NEVRREG * sizeof(u32))) ELF_NEVRREG * sizeof(u32)))
...@@ -777,6 +780,8 @@ static int handle_rt_signal(unsigned long sig, struct k_sigaction *ka, ...@@ -777,6 +780,8 @@ static int handle_rt_signal(unsigned long sig, struct k_sigaction *ka,
regs->gpr[5] = (unsigned long) &rt_sf->uc; regs->gpr[5] = (unsigned long) &rt_sf->uc;
regs->gpr[6] = (unsigned long) rt_sf; regs->gpr[6] = (unsigned long) rt_sf;
regs->nip = (unsigned long) ka->sa.sa_handler; regs->nip = (unsigned long) ka->sa.sa_handler;
/* enter the signal handler in big-endian mode */
regs->msr &= ~MSR_LE;
regs->trap = 0; regs->trap = 0;
return 1; return 1;
...@@ -1047,6 +1052,8 @@ static int handle_signal(unsigned long sig, struct k_sigaction *ka, ...@@ -1047,6 +1052,8 @@ static int handle_signal(unsigned long sig, struct k_sigaction *ka,
regs->gpr[3] = sig; regs->gpr[3] = sig;
regs->gpr[4] = (unsigned long) sc; regs->gpr[4] = (unsigned long) sc;
regs->nip = (unsigned long) ka->sa.sa_handler; regs->nip = (unsigned long) ka->sa.sa_handler;
/* enter the signal handler in big-endian mode */
regs->msr &= ~MSR_LE;
regs->trap = 0; regs->trap = 0;
return 1; return 1;
......
...@@ -141,9 +141,7 @@ static long restore_sigcontext(struct pt_regs *regs, sigset_t *set, int sig, ...@@ -141,9 +141,7 @@ static long restore_sigcontext(struct pt_regs *regs, sigset_t *set, int sig,
unsigned long err = 0; unsigned long err = 0;
unsigned long save_r13 = 0; unsigned long save_r13 = 0;
elf_greg_t *gregs = (elf_greg_t *)regs; elf_greg_t *gregs = (elf_greg_t *)regs;
#ifdef CONFIG_ALTIVEC
unsigned long msr; unsigned long msr;
#endif
int i; int i;
/* If this is not a signal return, we preserve the TLS in r13 */ /* If this is not a signal return, we preserve the TLS in r13 */
...@@ -154,7 +152,12 @@ static long restore_sigcontext(struct pt_regs *regs, sigset_t *set, int sig, ...@@ -154,7 +152,12 @@ static long restore_sigcontext(struct pt_regs *regs, sigset_t *set, int sig,
err |= __copy_from_user(regs, &sc->gp_regs, err |= __copy_from_user(regs, &sc->gp_regs,
PT_MSR*sizeof(unsigned long)); PT_MSR*sizeof(unsigned long));
/* skip MSR and SOFTE */ /* get MSR separately, transfer the LE bit if doing signal return */
err |= __get_user(msr, &sc->gp_regs[PT_MSR]);
if (sig)
regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE);
/* skip SOFTE */
for (i = PT_MSR+1; i <= PT_RESULT; i++) { for (i = PT_MSR+1; i <= PT_RESULT; i++) {
if (i == PT_SOFTE) if (i == PT_SOFTE)
continue; continue;
...@@ -179,7 +182,6 @@ static long restore_sigcontext(struct pt_regs *regs, sigset_t *set, int sig, ...@@ -179,7 +182,6 @@ static long restore_sigcontext(struct pt_regs *regs, sigset_t *set, int sig,
#ifdef CONFIG_ALTIVEC #ifdef CONFIG_ALTIVEC
err |= __get_user(v_regs, &sc->v_regs); err |= __get_user(v_regs, &sc->v_regs);
err |= __get_user(msr, &sc->gp_regs[PT_MSR]);
if (err) if (err)
return err; return err;
/* Copy 33 vec registers (vr0..31 and vscr) from the stack */ /* Copy 33 vec registers (vr0..31 and vscr) from the stack */
...@@ -410,6 +412,8 @@ static int setup_rt_frame(int signr, struct k_sigaction *ka, siginfo_t *info, ...@@ -410,6 +412,8 @@ static int setup_rt_frame(int signr, struct k_sigaction *ka, siginfo_t *info,
/* Set up "regs" so we "return" to the signal handler. */ /* Set up "regs" so we "return" to the signal handler. */
err |= get_user(regs->nip, &funct_desc_ptr->entry); err |= get_user(regs->nip, &funct_desc_ptr->entry);
/* enter the signal handler in big-endian mode */
regs->msr &= ~MSR_LE;
regs->gpr[1] = newsp; regs->gpr[1] = newsp;
err |= get_user(regs->gpr[2], &funct_desc_ptr->toc); err |= get_user(regs->gpr[2], &funct_desc_ptr->toc);
regs->gpr[3] = signr; regs->gpr[3] = signr;
......
...@@ -658,7 +658,7 @@ static int emulate_instruction(struct pt_regs *regs) ...@@ -658,7 +658,7 @@ static int emulate_instruction(struct pt_regs *regs)
u32 instword; u32 instword;
u32 rd; u32 rd;
if (!user_mode(regs)) if (!user_mode(regs) || (regs->msr & MSR_LE))
return -EINVAL; return -EINVAL;
CHECK_FULL_REGS(regs); CHECK_FULL_REGS(regs);
......
...@@ -24,6 +24,9 @@ ...@@ -24,6 +24,9 @@
#define PPC_FEATURE_ICACHE_SNOOP 0x00002000 #define PPC_FEATURE_ICACHE_SNOOP 0x00002000
#define PPC_FEATURE_ARCH_2_05 0x00001000 #define PPC_FEATURE_ARCH_2_05 0x00001000
#define PPC_FEATURE_TRUE_LE 0x00000002
#define PPC_FEATURE_PPC_LE 0x00000001
#ifdef __KERNEL__ #ifdef __KERNEL__
#ifndef __ASSEMBLY__ #ifndef __ASSEMBLY__
...@@ -111,6 +114,8 @@ extern void do_cpu_ftr_fixups(unsigned long offset); ...@@ -111,6 +114,8 @@ extern void do_cpu_ftr_fixups(unsigned long offset);
#define CPU_FTR_NO_BTIC ASM_CONST(0x0000000000040000) #define CPU_FTR_NO_BTIC ASM_CONST(0x0000000000040000)
#define CPU_FTR_BIG_PHYS ASM_CONST(0x0000000000080000) #define CPU_FTR_BIG_PHYS ASM_CONST(0x0000000000080000)
#define CPU_FTR_NODSISRALIGN ASM_CONST(0x0000000000100000) #define CPU_FTR_NODSISRALIGN ASM_CONST(0x0000000000100000)
#define CPU_FTR_PPC_LE ASM_CONST(0x0000000000200000)
#define CPU_FTR_REAL_LE ASM_CONST(0x0000000000400000)
#ifdef __powerpc64__ #ifdef __powerpc64__
/* Add the 64b processor unique features in the top half of the word */ /* Add the 64b processor unique features in the top half of the word */
...@@ -197,92 +202,95 @@ extern void do_cpu_ftr_fixups(unsigned long offset); ...@@ -197,92 +202,95 @@ extern void do_cpu_ftr_fixups(unsigned long offset);
#define CPU_FTRS_PPC601 (CPU_FTR_COMMON | CPU_FTR_601 | CPU_FTR_HPTE_TABLE) #define CPU_FTRS_PPC601 (CPU_FTR_COMMON | CPU_FTR_601 | CPU_FTR_HPTE_TABLE)
#define CPU_FTRS_603 (CPU_FTR_COMMON | CPU_FTR_SPLIT_ID_CACHE | \ #define CPU_FTRS_603 (CPU_FTR_COMMON | CPU_FTR_SPLIT_ID_CACHE | \
CPU_FTR_MAYBE_CAN_DOZE | CPU_FTR_USE_TB | \ CPU_FTR_MAYBE_CAN_DOZE | CPU_FTR_USE_TB | \
CPU_FTR_MAYBE_CAN_NAP) CPU_FTR_MAYBE_CAN_NAP | CPU_FTR_PPC_LE)
#define CPU_FTRS_604 (CPU_FTR_COMMON | CPU_FTR_SPLIT_ID_CACHE | \ #define CPU_FTRS_604 (CPU_FTR_COMMON | CPU_FTR_SPLIT_ID_CACHE | \
CPU_FTR_USE_TB | CPU_FTR_604_PERF_MON | CPU_FTR_HPTE_TABLE) CPU_FTR_USE_TB | CPU_FTR_604_PERF_MON | CPU_FTR_HPTE_TABLE | \
CPU_FTR_PPC_LE)
#define CPU_FTRS_740_NOTAU (CPU_FTR_COMMON | CPU_FTR_SPLIT_ID_CACHE | \ #define CPU_FTRS_740_NOTAU (CPU_FTR_COMMON | CPU_FTR_SPLIT_ID_CACHE | \
CPU_FTR_MAYBE_CAN_DOZE | CPU_FTR_USE_TB | CPU_FTR_L2CR | \ CPU_FTR_MAYBE_CAN_DOZE | CPU_FTR_USE_TB | CPU_FTR_L2CR | \
CPU_FTR_HPTE_TABLE | CPU_FTR_MAYBE_CAN_NAP) CPU_FTR_HPTE_TABLE | CPU_FTR_MAYBE_CAN_NAP | CPU_FTR_PPC_LE)
#define CPU_FTRS_740 (CPU_FTR_COMMON | CPU_FTR_SPLIT_ID_CACHE | \ #define CPU_FTRS_740 (CPU_FTR_COMMON | CPU_FTR_SPLIT_ID_CACHE | \
CPU_FTR_MAYBE_CAN_DOZE | CPU_FTR_USE_TB | CPU_FTR_L2CR | \ CPU_FTR_MAYBE_CAN_DOZE | CPU_FTR_USE_TB | CPU_FTR_L2CR | \
CPU_FTR_TAU | CPU_FTR_HPTE_TABLE | CPU_FTR_MAYBE_CAN_NAP) CPU_FTR_TAU | CPU_FTR_HPTE_TABLE | CPU_FTR_MAYBE_CAN_NAP | \
CPU_FTR_PPC_LE)
#define CPU_FTRS_750 (CPU_FTR_COMMON | CPU_FTR_SPLIT_ID_CACHE | \ #define CPU_FTRS_750 (CPU_FTR_COMMON | CPU_FTR_SPLIT_ID_CACHE | \
CPU_FTR_MAYBE_CAN_DOZE | CPU_FTR_USE_TB | CPU_FTR_L2CR | \ CPU_FTR_MAYBE_CAN_DOZE | CPU_FTR_USE_TB | CPU_FTR_L2CR | \
CPU_FTR_TAU | CPU_FTR_HPTE_TABLE | CPU_FTR_MAYBE_CAN_NAP) CPU_FTR_TAU | CPU_FTR_HPTE_TABLE | CPU_FTR_MAYBE_CAN_NAP | \
CPU_FTR_PPC_LE)
#define CPU_FTRS_750FX1 (CPU_FTR_COMMON | CPU_FTR_SPLIT_ID_CACHE | \ #define CPU_FTRS_750FX1 (CPU_FTR_COMMON | CPU_FTR_SPLIT_ID_CACHE | \
CPU_FTR_MAYBE_CAN_DOZE | CPU_FTR_USE_TB | CPU_FTR_L2CR | \ CPU_FTR_MAYBE_CAN_DOZE | CPU_FTR_USE_TB | CPU_FTR_L2CR | \
CPU_FTR_TAU | CPU_FTR_HPTE_TABLE | CPU_FTR_MAYBE_CAN_NAP | \ CPU_FTR_TAU | CPU_FTR_HPTE_TABLE | CPU_FTR_MAYBE_CAN_NAP | \
CPU_FTR_DUAL_PLL_750FX | CPU_FTR_NO_DPM) CPU_FTR_DUAL_PLL_750FX | CPU_FTR_NO_DPM | CPU_FTR_PPC_LE)
#define CPU_FTRS_750FX2 (CPU_FTR_COMMON | CPU_FTR_SPLIT_ID_CACHE | \ #define CPU_FTRS_750FX2 (CPU_FTR_COMMON | CPU_FTR_SPLIT_ID_CACHE | \
CPU_FTR_MAYBE_CAN_DOZE | CPU_FTR_USE_TB | CPU_FTR_L2CR | \ CPU_FTR_MAYBE_CAN_DOZE | CPU_FTR_USE_TB | CPU_FTR_L2CR | \
CPU_FTR_TAU | CPU_FTR_HPTE_TABLE | CPU_FTR_MAYBE_CAN_NAP | \ CPU_FTR_TAU | CPU_FTR_HPTE_TABLE | CPU_FTR_MAYBE_CAN_NAP | \
CPU_FTR_NO_DPM) CPU_FTR_NO_DPM | CPU_FTR_PPC_LE)
#define CPU_FTRS_750FX (CPU_FTR_COMMON | CPU_FTR_SPLIT_ID_CACHE | \ #define CPU_FTRS_750FX (CPU_FTR_COMMON | CPU_FTR_SPLIT_ID_CACHE | \
CPU_FTR_MAYBE_CAN_DOZE | CPU_FTR_USE_TB | CPU_FTR_L2CR | \ CPU_FTR_MAYBE_CAN_DOZE | CPU_FTR_USE_TB | CPU_FTR_L2CR | \
CPU_FTR_TAU | CPU_FTR_HPTE_TABLE | CPU_FTR_MAYBE_CAN_NAP | \ CPU_FTR_TAU | CPU_FTR_HPTE_TABLE | CPU_FTR_MAYBE_CAN_NAP | \
CPU_FTR_DUAL_PLL_750FX | CPU_FTR_HAS_HIGH_BATS) CPU_FTR_DUAL_PLL_750FX | CPU_FTR_HAS_HIGH_BATS | CPU_FTR_PPC_LE)
#define CPU_FTRS_750GX (CPU_FTR_SPLIT_ID_CACHE | CPU_FTR_MAYBE_CAN_DOZE | \ #define CPU_FTRS_750GX (CPU_FTR_SPLIT_ID_CACHE | CPU_FTR_MAYBE_CAN_DOZE | \
CPU_FTR_USE_TB | CPU_FTR_L2CR | CPU_FTR_TAU | \ CPU_FTR_USE_TB | CPU_FTR_L2CR | CPU_FTR_TAU | \
CPU_FTR_HPTE_TABLE | CPU_FTR_MAYBE_CAN_NAP | \ CPU_FTR_HPTE_TABLE | CPU_FTR_MAYBE_CAN_NAP | \
CPU_FTR_DUAL_PLL_750FX | CPU_FTR_HAS_HIGH_BATS) CPU_FTR_DUAL_PLL_750FX | CPU_FTR_HAS_HIGH_BATS | CPU_FTR_PPC_LE)
#define CPU_FTRS_7400_NOTAU (CPU_FTR_COMMON | CPU_FTR_SPLIT_ID_CACHE | \ #define CPU_FTRS_7400_NOTAU (CPU_FTR_COMMON | CPU_FTR_SPLIT_ID_CACHE | \
CPU_FTR_MAYBE_CAN_DOZE | CPU_FTR_USE_TB | CPU_FTR_L2CR | \ CPU_FTR_MAYBE_CAN_DOZE | CPU_FTR_USE_TB | CPU_FTR_L2CR | \
CPU_FTR_ALTIVEC_COMP | CPU_FTR_HPTE_TABLE | \ CPU_FTR_ALTIVEC_COMP | CPU_FTR_HPTE_TABLE | \
CPU_FTR_MAYBE_CAN_NAP) CPU_FTR_MAYBE_CAN_NAP | CPU_FTR_PPC_LE)
#define CPU_FTRS_7400 (CPU_FTR_COMMON | CPU_FTR_SPLIT_ID_CACHE | \ #define CPU_FTRS_7400 (CPU_FTR_COMMON | CPU_FTR_SPLIT_ID_CACHE | \
CPU_FTR_MAYBE_CAN_DOZE | CPU_FTR_USE_TB | CPU_FTR_L2CR | \ CPU_FTR_MAYBE_CAN_DOZE | CPU_FTR_USE_TB | CPU_FTR_L2CR | \
CPU_FTR_TAU | CPU_FTR_ALTIVEC_COMP | CPU_FTR_HPTE_TABLE | \ CPU_FTR_TAU | CPU_FTR_ALTIVEC_COMP | CPU_FTR_HPTE_TABLE | \
CPU_FTR_MAYBE_CAN_NAP) CPU_FTR_MAYBE_CAN_NAP | CPU_FTR_PPC_LE)
#define CPU_FTRS_7450_20 (CPU_FTR_COMMON | CPU_FTR_SPLIT_ID_CACHE | \ #define CPU_FTRS_7450_20 (CPU_FTR_COMMON | CPU_FTR_SPLIT_ID_CACHE | \
CPU_FTR_USE_TB | CPU_FTR_L2CR | CPU_FTR_ALTIVEC_COMP | \ CPU_FTR_USE_TB | CPU_FTR_L2CR | CPU_FTR_ALTIVEC_COMP | \
CPU_FTR_L3CR | CPU_FTR_HPTE_TABLE | CPU_FTR_SPEC7450 | \ CPU_FTR_L3CR | CPU_FTR_HPTE_TABLE | CPU_FTR_SPEC7450 | \
CPU_FTR_NEED_COHERENT) CPU_FTR_NEED_COHERENT | CPU_FTR_PPC_LE)
#define CPU_FTRS_7450_21 (CPU_FTR_COMMON | CPU_FTR_SPLIT_ID_CACHE | \ #define CPU_FTRS_7450_21 (CPU_FTR_COMMON | CPU_FTR_SPLIT_ID_CACHE | \
CPU_FTR_USE_TB | \ CPU_FTR_USE_TB | \
CPU_FTR_MAYBE_CAN_NAP | CPU_FTR_L2CR | CPU_FTR_ALTIVEC_COMP | \ CPU_FTR_MAYBE_CAN_NAP | CPU_FTR_L2CR | CPU_FTR_ALTIVEC_COMP | \
CPU_FTR_L3CR | CPU_FTR_HPTE_TABLE | CPU_FTR_SPEC7450 | \ CPU_FTR_L3CR | CPU_FTR_HPTE_TABLE | CPU_FTR_SPEC7450 | \
CPU_FTR_NAP_DISABLE_L2_PR | CPU_FTR_L3_DISABLE_NAP | \ CPU_FTR_NAP_DISABLE_L2_PR | CPU_FTR_L3_DISABLE_NAP | \
CPU_FTR_NEED_COHERENT) CPU_FTR_NEED_COHERENT | CPU_FTR_PPC_LE)
#define CPU_FTRS_7450_23 (CPU_FTR_COMMON | CPU_FTR_SPLIT_ID_CACHE | \ #define CPU_FTRS_7450_23 (CPU_FTR_COMMON | CPU_FTR_SPLIT_ID_CACHE | \
CPU_FTR_USE_TB | \ CPU_FTR_USE_TB | \
CPU_FTR_MAYBE_CAN_NAP | CPU_FTR_L2CR | CPU_FTR_ALTIVEC_COMP | \ CPU_FTR_MAYBE_CAN_NAP | CPU_FTR_L2CR | CPU_FTR_ALTIVEC_COMP | \
CPU_FTR_L3CR | CPU_FTR_HPTE_TABLE | CPU_FTR_SPEC7450 | \ CPU_FTR_L3CR | CPU_FTR_HPTE_TABLE | CPU_FTR_SPEC7450 | \
CPU_FTR_NAP_DISABLE_L2_PR | CPU_FTR_NEED_COHERENT) CPU_FTR_NAP_DISABLE_L2_PR | CPU_FTR_NEED_COHERENT | CPU_FTR_PPC_LE)
#define CPU_FTRS_7455_1 (CPU_FTR_COMMON | CPU_FTR_SPLIT_ID_CACHE | \ #define CPU_FTRS_7455_1 (CPU_FTR_COMMON | CPU_FTR_SPLIT_ID_CACHE | \
CPU_FTR_USE_TB | \ CPU_FTR_USE_TB | \
CPU_FTR_L2CR | CPU_FTR_ALTIVEC_COMP | CPU_FTR_L3CR | \ CPU_FTR_L2CR | CPU_FTR_ALTIVEC_COMP | CPU_FTR_L3CR | \
CPU_FTR_HPTE_TABLE | CPU_FTR_SPEC7450 | CPU_FTR_HAS_HIGH_BATS | \ CPU_FTR_HPTE_TABLE | CPU_FTR_SPEC7450 | CPU_FTR_HAS_HIGH_BATS | \
CPU_FTR_NEED_COHERENT) CPU_FTR_NEED_COHERENT | CPU_FTR_PPC_LE)
#define CPU_FTRS_7455_20 (CPU_FTR_COMMON | CPU_FTR_SPLIT_ID_CACHE | \ #define CPU_FTRS_7455_20 (CPU_FTR_COMMON | CPU_FTR_SPLIT_ID_CACHE | \
CPU_FTR_USE_TB | \ CPU_FTR_USE_TB | \
CPU_FTR_MAYBE_CAN_NAP | CPU_FTR_L2CR | CPU_FTR_ALTIVEC_COMP | \ CPU_FTR_MAYBE_CAN_NAP | CPU_FTR_L2CR | CPU_FTR_ALTIVEC_COMP | \
CPU_FTR_L3CR | CPU_FTR_HPTE_TABLE | CPU_FTR_SPEC7450 | \ CPU_FTR_L3CR | CPU_FTR_HPTE_TABLE | CPU_FTR_SPEC7450 | \
CPU_FTR_NAP_DISABLE_L2_PR | CPU_FTR_L3_DISABLE_NAP | \ CPU_FTR_NAP_DISABLE_L2_PR | CPU_FTR_L3_DISABLE_NAP | \
CPU_FTR_NEED_COHERENT | CPU_FTR_HAS_HIGH_BATS) CPU_FTR_NEED_COHERENT | CPU_FTR_HAS_HIGH_BATS | CPU_FTR_PPC_LE)
#define CPU_FTRS_7455 (CPU_FTR_COMMON | CPU_FTR_SPLIT_ID_CACHE | \ #define CPU_FTRS_7455 (CPU_FTR_COMMON | CPU_FTR_SPLIT_ID_CACHE | \
CPU_FTR_USE_TB | \ CPU_FTR_USE_TB | \
CPU_FTR_MAYBE_CAN_NAP | CPU_FTR_L2CR | CPU_FTR_ALTIVEC_COMP | \ CPU_FTR_MAYBE_CAN_NAP | CPU_FTR_L2CR | CPU_FTR_ALTIVEC_COMP | \
CPU_FTR_L3CR | CPU_FTR_HPTE_TABLE | CPU_FTR_SPEC7450 | \ CPU_FTR_L3CR | CPU_FTR_HPTE_TABLE | CPU_FTR_SPEC7450 | \
CPU_FTR_NAP_DISABLE_L2_PR | CPU_FTR_HAS_HIGH_BATS | \ CPU_FTR_NAP_DISABLE_L2_PR | CPU_FTR_HAS_HIGH_BATS | \
CPU_FTR_NEED_COHERENT) CPU_FTR_NEED_COHERENT | CPU_FTR_PPC_LE)
#define CPU_FTRS_7447_10 (CPU_FTR_COMMON | CPU_FTR_SPLIT_ID_CACHE | \ #define CPU_FTRS_7447_10 (CPU_FTR_COMMON | CPU_FTR_SPLIT_ID_CACHE | \
CPU_FTR_USE_TB | \ CPU_FTR_USE_TB | \
CPU_FTR_MAYBE_CAN_NAP | CPU_FTR_L2CR | CPU_FTR_ALTIVEC_COMP | \ CPU_FTR_MAYBE_CAN_NAP | CPU_FTR_L2CR | CPU_FTR_ALTIVEC_COMP | \
CPU_FTR_L3CR | CPU_FTR_HPTE_TABLE | CPU_FTR_SPEC7450 | \ CPU_FTR_L3CR | CPU_FTR_HPTE_TABLE | CPU_FTR_SPEC7450 | \
CPU_FTR_NAP_DISABLE_L2_PR | CPU_FTR_HAS_HIGH_BATS | \ CPU_FTR_NAP_DISABLE_L2_PR | CPU_FTR_HAS_HIGH_BATS | \
CPU_FTR_NEED_COHERENT | CPU_FTR_NO_BTIC) CPU_FTR_NEED_COHERENT | CPU_FTR_NO_BTIC | CPU_FTR_PPC_LE)
#define CPU_FTRS_7447 (CPU_FTR_COMMON | CPU_FTR_SPLIT_ID_CACHE | \ #define CPU_FTRS_7447 (CPU_FTR_COMMON | CPU_FTR_SPLIT_ID_CACHE | \
CPU_FTR_USE_TB | \ CPU_FTR_USE_TB | \
CPU_FTR_MAYBE_CAN_NAP | CPU_FTR_L2CR | CPU_FTR_ALTIVEC_COMP | \ CPU_FTR_MAYBE_CAN_NAP | CPU_FTR_L2CR | CPU_FTR_ALTIVEC_COMP | \
CPU_FTR_L3CR | CPU_FTR_HPTE_TABLE | CPU_FTR_SPEC7450 | \ CPU_FTR_L3CR | CPU_FTR_HPTE_TABLE | CPU_FTR_SPEC7450 | \
CPU_FTR_NAP_DISABLE_L2_PR | CPU_FTR_HAS_HIGH_BATS | \ CPU_FTR_NAP_DISABLE_L2_PR | CPU_FTR_HAS_HIGH_BATS | \
CPU_FTR_NEED_COHERENT) CPU_FTR_NEED_COHERENT | CPU_FTR_PPC_LE)
#define CPU_FTRS_7447A (CPU_FTR_COMMON | CPU_FTR_SPLIT_ID_CACHE | \ #define CPU_FTRS_7447A (CPU_FTR_COMMON | CPU_FTR_SPLIT_ID_CACHE | \
CPU_FTR_USE_TB | \ CPU_FTR_USE_TB | \
CPU_FTR_MAYBE_CAN_NAP | CPU_FTR_L2CR | CPU_FTR_ALTIVEC_COMP | \ CPU_FTR_MAYBE_CAN_NAP | CPU_FTR_L2CR | CPU_FTR_ALTIVEC_COMP | \
CPU_FTR_HPTE_TABLE | CPU_FTR_SPEC7450 | \ CPU_FTR_HPTE_TABLE | CPU_FTR_SPEC7450 | \
CPU_FTR_NAP_DISABLE_L2_PR | CPU_FTR_HAS_HIGH_BATS | \ CPU_FTR_NAP_DISABLE_L2_PR | CPU_FTR_HAS_HIGH_BATS | \
CPU_FTR_NEED_COHERENT) CPU_FTR_NEED_COHERENT | CPU_FTR_PPC_LE)
#define CPU_FTRS_82XX (CPU_FTR_COMMON | CPU_FTR_SPLIT_ID_CACHE | \ #define CPU_FTRS_82XX (CPU_FTR_COMMON | CPU_FTR_SPLIT_ID_CACHE | \
CPU_FTR_MAYBE_CAN_DOZE | CPU_FTR_USE_TB) CPU_FTR_MAYBE_CAN_DOZE | CPU_FTR_USE_TB)
#define CPU_FTRS_G2_LE (CPU_FTR_SPLIT_ID_CACHE | CPU_FTR_MAYBE_CAN_DOZE | \ #define CPU_FTRS_G2_LE (CPU_FTR_SPLIT_ID_CACHE | CPU_FTR_MAYBE_CAN_DOZE | \
...@@ -312,7 +320,7 @@ extern void do_cpu_ftr_fixups(unsigned long offset); ...@@ -312,7 +320,7 @@ extern void do_cpu_ftr_fixups(unsigned long offset);
#define CPU_FTRS_GENERIC_32 (CPU_FTR_COMMON | CPU_FTR_NODSISRALIGN) #define CPU_FTRS_GENERIC_32 (CPU_FTR_COMMON | CPU_FTR_NODSISRALIGN)
#ifdef __powerpc64__ #ifdef __powerpc64__
#define CPU_FTRS_POWER3 (CPU_FTR_SPLIT_ID_CACHE | CPU_FTR_USE_TB | \ #define CPU_FTRS_POWER3 (CPU_FTR_SPLIT_ID_CACHE | CPU_FTR_USE_TB | \
CPU_FTR_HPTE_TABLE | CPU_FTR_IABR) CPU_FTR_HPTE_TABLE | CPU_FTR_IABR | CPU_FTR_PPC_LE)
#define CPU_FTRS_RS64 (CPU_FTR_SPLIT_ID_CACHE | CPU_FTR_USE_TB | \ #define CPU_FTRS_RS64 (CPU_FTR_SPLIT_ID_CACHE | CPU_FTR_USE_TB | \
CPU_FTR_HPTE_TABLE | CPU_FTR_IABR | \ CPU_FTR_HPTE_TABLE | CPU_FTR_IABR | \
CPU_FTR_MMCRA | CPU_FTR_CTRL) CPU_FTR_MMCRA | CPU_FTR_CTRL)
...@@ -330,7 +338,7 @@ extern void do_cpu_ftr_fixups(unsigned long offset); ...@@ -330,7 +338,7 @@ extern void do_cpu_ftr_fixups(unsigned long offset);
CPU_FTR_HPTE_TABLE | CPU_FTR_PPCAS_ARCH_V2 | \ CPU_FTR_HPTE_TABLE | CPU_FTR_PPCAS_ARCH_V2 | \
CPU_FTR_MMCRA | CPU_FTR_SMT | \ CPU_FTR_MMCRA | CPU_FTR_SMT | \
CPU_FTR_COHERENT_ICACHE | CPU_FTR_LOCKLESS_TLBIE | \ CPU_FTR_COHERENT_ICACHE | CPU_FTR_LOCKLESS_TLBIE | \
CPU_FTR_PURR | CPU_FTR_CI_LARGE_PAGE) CPU_FTR_PURR | CPU_FTR_CI_LARGE_PAGE | CPU_FTR_REAL_LE)
#define CPU_FTRS_CELL (CPU_FTR_SPLIT_ID_CACHE | CPU_FTR_USE_TB | \ #define CPU_FTRS_CELL (CPU_FTR_SPLIT_ID_CACHE | CPU_FTR_USE_TB | \
CPU_FTR_HPTE_TABLE | CPU_FTR_PPCAS_ARCH_V2 | \ CPU_FTR_HPTE_TABLE | CPU_FTR_PPCAS_ARCH_V2 | \
CPU_FTR_ALTIVEC_COMP | CPU_FTR_MMCRA | CPU_FTR_SMT | \ CPU_FTR_ALTIVEC_COMP | CPU_FTR_MMCRA | CPU_FTR_SMT | \
......
...@@ -211,6 +211,12 @@ unsigned long get_wchan(struct task_struct *p); ...@@ -211,6 +211,12 @@ unsigned long get_wchan(struct task_struct *p);
extern int get_fpexc_mode(struct task_struct *tsk, unsigned long adr); extern int get_fpexc_mode(struct task_struct *tsk, unsigned long adr);
extern int set_fpexc_mode(struct task_struct *tsk, unsigned int val); extern int set_fpexc_mode(struct task_struct *tsk, unsigned int val);
#define GET_ENDIAN(tsk, adr) get_endian((tsk), (adr))
#define SET_ENDIAN(tsk, val) set_endian((tsk), (val))
extern int get_endian(struct task_struct *tsk, unsigned long adr);
extern int set_endian(struct task_struct *tsk, unsigned int val);
static inline unsigned int __unpack_fe01(unsigned long msr_bits) static inline unsigned int __unpack_fe01(unsigned long msr_bits)
{ {
return ((msr_bits & MSR_FE0) >> 10) | ((msr_bits & MSR_FE1) >> 8); return ((msr_bits & MSR_FE0) >> 10) | ((msr_bits & MSR_FE1) >> 8);
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment