Commit 61b03bd7 authored by Thomas Gleixner's avatar Thomas Gleixner Committed by Thomas Gleixner

[MTD] NAND: Clean up trailing white spaces

Signed-off-by: default avatarThomas Gleixner <tglx@linutronix.de>
parent e5580fbe
# drivers/mtd/nand/Kconfig
# $Id: Kconfig,v 1.34 2005/09/23 01:44:55 ppopov Exp $
# $Id: Kconfig,v 1.35 2005/11/07 11:14:30 gleixner Exp $
menu "NAND Flash Device Drivers"
depends on MTD!=n
......@@ -27,14 +27,14 @@ config MTD_NAND_AUTCPU12
tristate "SmartMediaCard on autronix autcpu12 board"
depends on MTD_NAND && ARCH_AUTCPU12
help
This enables the driver for the autronix autcpu12 board to
This enables the driver for the autronix autcpu12 board to
access the SmartMediaCard.
config MTD_NAND_EDB7312
tristate "Support for Cirrus Logic EBD7312 evaluation board"
depends on MTD_NAND && ARCH_EDB7312
help
This enables the driver for the Cirrus Logic EBD7312 evaluation
This enables the driver for the Cirrus Logic EBD7312 evaluation
board to access the onboard NAND Flash.
config MTD_NAND_H1900
......@@ -71,7 +71,7 @@ config MTD_NAND_RTC_FROM4
select REED_SOLOMON
select REED_SOLOMON_DEC8
help
This enables the driver for the Renesas Technology AG-AND
This enables the driver for the Renesas Technology AG-AND
flash interface board (FROM_BOARD4)
config MTD_NAND_PPCHAMELEONEVB
......@@ -88,7 +88,7 @@ config MTD_NAND_S3C2410
SoCs
No board specfic support is done by this driver, each board
must advertise a platform_device for the driver to attach.
must advertise a platform_device for the driver to attach.
config MTD_NAND_S3C2410_DEBUG
bool "S3C2410 NAND driver debug"
......
......@@ -3,7 +3,7 @@
*
* Copyright (C) 2004 Embedded Edge, LLC
*
* $Id: au1550nd.c,v 1.12 2005/09/23 01:44:55 ppopov Exp $
* $Id: au1550nd.c,v 1.13 2005/11/07 11:14:30 gleixner Exp $
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
......@@ -25,10 +25,10 @@
#else
#include <asm/au1000.h>
#ifdef CONFIG_MIPS_PB1550
#include <asm/pb1550.h>
#include <asm/pb1550.h>
#endif
#ifdef CONFIG_MIPS_DB1550
#include <asm/db1x00.h>
#include <asm/db1x00.h>
#endif
#endif
......@@ -43,12 +43,12 @@ static int nand_width = 1; /* default x8*/
* Define partitions for flash device
*/
const static struct mtd_partition partition_info[] = {
{
{
.name = "NAND FS 0",
.offset = 0,
.size = 8*1024*1024
.size = 8*1024*1024
},
{
{
.name = "NAND FS 1",
.offset = MTDPART_OFS_APPEND,
.size = MTDPART_SIZ_FULL
......@@ -89,7 +89,7 @@ static void au_write_byte(struct mtd_info *mtd, u_char byte)
* au_read_byte16 - read one byte endianess aware from the chip
* @mtd: MTD device structure
*
* read function for 16bit buswith with
* read function for 16bit buswith with
* endianess conversion
*/
static u_char au_read_byte16(struct mtd_info *mtd)
......@@ -119,7 +119,7 @@ static void au_write_byte16(struct mtd_info *mtd, u_char byte)
* au_read_word - read one word from the chip
* @mtd: MTD device structure
*
* read function for 16bit buswith without
* read function for 16bit buswith without
* endianess conversion
*/
static u16 au_read_word(struct mtd_info *mtd)
......@@ -135,7 +135,7 @@ static u16 au_read_word(struct mtd_info *mtd)
* @mtd: MTD device structure
* @word: data word to write
*
* write function for 16bit buswith without
* write function for 16bit buswith without
* endianess conversion
*/
static void au_write_word(struct mtd_info *mtd, u16 word)
......@@ -165,7 +165,7 @@ static void au_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
}
/**
* au_read_buf - read chip data into buffer
* au_read_buf - read chip data into buffer
* @mtd: MTD device structure
* @buf: buffer to store date
* @len: number of bytes to read
......@@ -179,12 +179,12 @@ static void au_read_buf(struct mtd_info *mtd, u_char *buf, int len)
for (i=0; i<len; i++) {
buf[i] = readb(this->IO_ADDR_R);
au_sync();
au_sync();
}
}
/**
* au_verify_buf - Verify chip data against buffer
* au_verify_buf - Verify chip data against buffer
* @mtd: MTD device structure
* @buf: buffer containing the data to compare
* @len: number of bytes to compare
......@@ -219,16 +219,16 @@ static void au_write_buf16(struct mtd_info *mtd, const u_char *buf, int len)
struct nand_chip *this = mtd->priv;
u16 *p = (u16 *) buf;
len >>= 1;
for (i=0; i<len; i++) {
writew(p[i], this->IO_ADDR_W);
au_sync();
}
}
/**
* au_read_buf16 - read chip data into buffer
* au_read_buf16 - read chip data into buffer
* @mtd: MTD device structure
* @buf: buffer to store date
* @len: number of bytes to read
......@@ -249,7 +249,7 @@ static void au_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
}
/**
* au_verify_buf16 - Verify chip data against buffer
* au_verify_buf16 - Verify chip data against buffer
* @mtd: MTD device structure
* @buf: buffer containing the data to compare
* @len: number of bytes to compare
......@@ -282,26 +282,26 @@ static void au1550_hwcontrol(struct mtd_info *mtd, int cmd)
case NAND_CTL_CLRCLE: this->IO_ADDR_W = p_nand + MEM_STNAND_DATA; break;
case NAND_CTL_SETALE: this->IO_ADDR_W = p_nand + MEM_STNAND_ADDR; break;
case NAND_CTL_CLRALE:
this->IO_ADDR_W = p_nand + MEM_STNAND_DATA;
/* FIXME: Nobody knows why this is neccecary,
case NAND_CTL_CLRALE:
this->IO_ADDR_W = p_nand + MEM_STNAND_DATA;
/* FIXME: Nobody knows why this is neccecary,
* but it works only that way */
udelay(1);
udelay(1);
break;
case NAND_CTL_SETNCE:
case NAND_CTL_SETNCE:
/* assert (force assert) chip enable */
au_writel((1<<(4+NAND_CS)) , MEM_STNDCTL); break;
break;
case NAND_CTL_CLRNCE:
case NAND_CTL_CLRNCE:
/* deassert chip enable */
au_writel(0, MEM_STNDCTL); break;
break;
}
this->IO_ADDR_R = this->IO_ADDR_W;
/* Drain the writebuffer */
au_sync();
}
......@@ -325,7 +325,7 @@ int __init au1xxx_nand_init (void)
u32 nand_phys;
/* Allocate memory for MTD device structure and private data */
au1550_mtd = kmalloc (sizeof(struct mtd_info) +
au1550_mtd = kmalloc (sizeof(struct mtd_info) +
sizeof (struct nand_chip), GFP_KERNEL);
if (!au1550_mtd) {
printk ("Unable to allocate NAND MTD dev structure.\n");
......@@ -345,7 +345,7 @@ int __init au1xxx_nand_init (void)
/* disable interrupts */
au_writel(au_readl(MEM_STNDCTL) & ~(1<<8), MEM_STNDCTL);
/* disable NAND boot */
au_writel(au_readl(MEM_STNDCTL) & ~(1<<0), MEM_STNDCTL);
......@@ -353,7 +353,7 @@ int __init au1xxx_nand_init (void)
/* set gpio206 high */
au_writel(au_readl(GPIO2_DIR) & ~(1<<6), GPIO2_DIR);
boot_swapboot = (au_readl(MEM_STSTAT) & (0x7<<1)) |
boot_swapboot = (au_readl(MEM_STSTAT) & (0x7<<1)) |
((bcsr->status >> 6) & 0x1);
switch (boot_swapboot) {
case 0:
......@@ -402,7 +402,7 @@ int __init au1xxx_nand_init (void)
au_writel(NAND_STADDR, MEM_STADDR3);
}
#endif
/* Locate NAND chip-select in order to determine NAND phys address */
mem_staddr = 0x00000000;
if (((au_readl(MEM_STCFG0) & 0x7) == 0x5) && (NAND_CS == 0))
......@@ -438,7 +438,7 @@ int __init au1xxx_nand_init (void)
this->hwcontrol = au1550_hwcontrol;
this->dev_ready = au1550_device_ready;
/* 30 us command delay time */
this->chip_delay = 30;
this->chip_delay = 30;
this->eccmode = NAND_ECC_SOFT;
this->options = NAND_NO_AUTOINCR;
......@@ -467,7 +467,7 @@ int __init au1xxx_nand_init (void)
outio:
iounmap ((void *)p_nand);
outmem:
kfree (au1550_mtd);
return retval;
......
......@@ -5,8 +5,8 @@
*
* Derived from drivers/mtd/spia.c
* Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
*
* $Id: autcpu12.c,v 1.22 2004/11/04 12:53:10 gleixner Exp $
*
* $Id: autcpu12.c,v 1.23 2005/11/07 11:14:30 gleixner Exp $
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
......@@ -14,7 +14,7 @@
*
* Overview:
* This is a device driver for the NAND flash device found on the
* autronix autcpu12 board, which is a SmartMediaCard. It supports
* autronix autcpu12 board, which is a SmartMediaCard. It supports
* 16MiB, 32MiB and 64MiB cards.
*
*
......@@ -93,7 +93,7 @@ static struct mtd_partition partition_info128k[] = {
#define NUM_PARTITIONS32K 2
#define NUM_PARTITIONS64K 2
#define NUM_PARTITIONS128K 2
/*
/*
* hardware specific access to control-lines
*/
static void autcpu12_hwcontrol(struct mtd_info *mtd, int cmd)
......@@ -163,7 +163,7 @@ int __init autcpu12_init (void)
this->hwcontrol = autcpu12_hwcontrol;
this->dev_ready = autcpu12_device_ready;
/* 20 us command delay time */
this->chip_delay = 20;
this->chip_delay = 20;
this->eccmode = NAND_ECC_SOFT;
/* Enable the following for a flash based bad block table */
......@@ -171,21 +171,21 @@ int __init autcpu12_init (void)
this->options = NAND_USE_FLASH_BBT;
*/
this->options = NAND_USE_FLASH_BBT;
/* Scan to find existance of the device */
if (nand_scan (autcpu12_mtd, 1)) {
err = -ENXIO;
goto out_ior;
}
/* Register the partitions */
switch(autcpu12_mtd->size){
case SZ_16M: add_mtd_partitions(autcpu12_mtd, partition_info16k, NUM_PARTITIONS16K); break;
case SZ_32M: add_mtd_partitions(autcpu12_mtd, partition_info32k, NUM_PARTITIONS32K); break;
case SZ_64M: add_mtd_partitions(autcpu12_mtd, partition_info64k, NUM_PARTITIONS64K); break;
case SZ_128M: add_mtd_partitions(autcpu12_mtd, partition_info128k, NUM_PARTITIONS128K); break;
case SZ_64M: add_mtd_partitions(autcpu12_mtd, partition_info64k, NUM_PARTITIONS64K); break;
case SZ_128M: add_mtd_partitions(autcpu12_mtd, partition_info128k, NUM_PARTITIONS128K); break;
default: {
printk ("Unsupported SmartMedia device\n");
printk ("Unsupported SmartMedia device\n");
err = -ENXIO;
goto out_ior;
}
......@@ -213,7 +213,7 @@ static void __exit autcpu12_cleanup (void)
/* unmap physical adress */
iounmap((void *)autcpu12_fio_base);
/* Free the MTD device structure */
kfree (autcpu12_mtd);
}
......
This diff is collapsed.
......@@ -6,7 +6,7 @@
* Derived from drivers/mtd/nand/autcpu12.c
* Copyright (c) 2001 Thomas Gleixner (gleixner@autronix.de)
*
* $Id: edb7312.c,v 1.11 2004/11/04 12:53:10 gleixner Exp $
* $Id: edb7312.c,v 1.12 2005/11/07 11:14:30 gleixner Exp $
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
......@@ -71,27 +71,27 @@ static struct mtd_partition partition_info[] = {
#endif
/*
/*
* hardware specific access to control-lines
*/
static void ep7312_hwcontrol(struct mtd_info *mtd, int cmd)
static void ep7312_hwcontrol(struct mtd_info *mtd, int cmd)
{
switch(cmd) {
case NAND_CTL_SETCLE:
clps_writeb(clps_readb(ep7312_pxdr) | 0x10, ep7312_pxdr);
case NAND_CTL_SETCLE:
clps_writeb(clps_readb(ep7312_pxdr) | 0x10, ep7312_pxdr);
break;
case NAND_CTL_CLRCLE:
case NAND_CTL_CLRCLE:
clps_writeb(clps_readb(ep7312_pxdr) & ~0x10, ep7312_pxdr);
break;
case NAND_CTL_SETALE:
clps_writeb(clps_readb(ep7312_pxdr) | 0x20, ep7312_pxdr);
break;
case NAND_CTL_CLRALE:
clps_writeb(clps_readb(ep7312_pxdr) & ~0x20, ep7312_pxdr);
break;
case NAND_CTL_SETNCE:
clps_writeb((clps_readb(ep7312_pxdr) | 0x80) & ~0x40, ep7312_pxdr);
break;
......@@ -122,16 +122,16 @@ static int __init ep7312_init (void)
int mtd_parts_nb = 0;
struct mtd_partition *mtd_parts = 0;
void __iomem * ep7312_fio_base;
/* Allocate memory for MTD device structure and private data */
ep7312_mtd = kmalloc(sizeof(struct mtd_info) +
ep7312_mtd = kmalloc(sizeof(struct mtd_info) +
sizeof(struct nand_chip),
GFP_KERNEL);
if (!ep7312_mtd) {
printk("Unable to allocate EDB7312 NAND MTD device structure.\n");
return -ENOMEM;
}
/* map physical adress */
ep7312_fio_base = ioremap(ep7312_fio_pbase, SZ_1K);
if(!ep7312_fio_base) {
......@@ -139,23 +139,23 @@ static int __init ep7312_init (void)
kfree(ep7312_mtd);
return -EIO;
}
/* Get pointer to private data */
this = (struct nand_chip *) (&ep7312_mtd[1]);
/* Initialize structures */
memset((char *) ep7312_mtd, 0, sizeof(struct mtd_info));
memset((char *) this, 0, sizeof(struct nand_chip));
/* Link the private data with the MTD structure */
ep7312_mtd->priv = this;
/*
* Set GPIO Port B control register so that the pins are configured
* to be outputs for controlling the NAND flash.
*/
clps_writeb(0xf0, ep7312_pxddr);
/* insert callbacks */
this->IO_ADDR_R = ep7312_fio_base;
this->IO_ADDR_W = ep7312_fio_base;
......@@ -163,14 +163,14 @@ static int __init ep7312_init (void)
this->dev_ready = ep7312_device_ready;
/* 15 us command delay time */
this->chip_delay = 15;
/* Scan to find existence of the device */
if (nand_scan (ep7312_mtd, 1)) {
iounmap((void *)ep7312_fio_base);
kfree (ep7312_mtd);
return -ENXIO;
}
#ifdef CONFIG_MTD_PARTITIONS
ep7312_mtd->name = "edb7312-nand";
mtd_parts_nb = parse_mtd_partitions(ep7312_mtd, part_probes,
......@@ -185,11 +185,11 @@ static int __init ep7312_init (void)
mtd_parts_nb = NUM_PARTITIONS;
part_type = "static";
}
/* Register the partitions */
printk(KERN_NOTICE "Using %s partition definition\n", part_type);
add_mtd_partitions(ep7312_mtd, mtd_parts, mtd_parts_nb);
/* Return happy */
return 0;
}
......@@ -201,13 +201,13 @@ module_init(ep7312_init);
static void __exit ep7312_cleanup (void)
{
struct nand_chip *this = (struct nand_chip *) &ep7312_mtd[1];
/* Release resources, unregister device */
nand_release (ap7312_mtd);
/* Free internal data buffer */
kfree (this->data_buf);
/* Free the MTD device structure */
kfree (ep7312_mtd);
}
......
......@@ -7,7 +7,7 @@
* Copyright (C) 2002 Marius Grger (mag@sysgo.de)
* Copyright (c) 2001 Thomas Gleixner (gleixner@autronix.de)
*
* $Id: h1910.c,v 1.5 2004/11/04 12:53:10 gleixner Exp $
* $Id: h1910.c,v 1.6 2005/11/07 11:14:30 gleixner Exp $
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
......@@ -54,24 +54,24 @@ static struct mtd_partition partition_info[] = {
#endif
/*
/*
* hardware specific access to control-lines
*/
static void h1910_hwcontrol(struct mtd_info *mtd, int cmd)
static void h1910_hwcontrol(struct mtd_info *mtd, int cmd)
{
struct nand_chip* this = (struct nand_chip *) (mtd->priv);
switch(cmd) {
case NAND_CTL_SETCLE:
case NAND_CTL_SETCLE:
this->IO_ADDR_R |= (1 << 2);
this->IO_ADDR_W |= (1 << 2);
break;
case NAND_CTL_CLRCLE:
case NAND_CTL_CLRCLE:
this->IO_ADDR_R &= ~(1 << 2);
this->IO_ADDR_W &= ~(1 << 2);
break;
case NAND_CTL_SETALE:
this->IO_ADDR_R |= (1 << 3);
this->IO_ADDR_W |= (1 << 3);
......@@ -80,7 +80,7 @@ static void h1910_hwcontrol(struct mtd_info *mtd, int cmd)
this->IO_ADDR_R &= ~(1 << 3);
this->IO_ADDR_W &= ~(1 << 3);
break;
case NAND_CTL_SETNCE:
break;
case NAND_CTL_CLRNCE:
......@@ -108,18 +108,18 @@ static int __init h1910_init (void)
int mtd_parts_nb = 0;
struct mtd_partition *mtd_parts = 0;
void __iomem *nandaddr;
if (!machine_is_h1900())
return -ENODEV;
nandaddr = __ioremap(0x08000000, 0x1000, 0, 1);
if (!nandaddr) {
printk("Failed to ioremap nand flash.\n");
return -ENOMEM;
}
/* Allocate memory for MTD device structure and private data */
h1910_nand_mtd = kmalloc(sizeof(struct mtd_info) +
h1910_nand_mtd = kmalloc(sizeof(struct mtd_info) +
sizeof(struct nand_chip),
GFP_KERNEL);
if (!h1910_nand_mtd) {
......@@ -127,22 +127,22 @@ static int __init h1910_init (void)
iounmap ((void *) nandaddr);
return -ENOMEM;
}
/* Get pointer to private data */
this = (struct nand_chip *) (&h1910_nand_mtd[1]);
/* Initialize structures */
memset((char *) h1910_nand_mtd, 0, sizeof(struct mtd_info));
memset((char *) this, 0, sizeof(struct nand_chip));
/* Link the private data with the MTD structure */
h1910_nand_mtd->priv = this;
/*
* Enable VPEN
*/
GPSR(37) = GPIO_bit(37);
/* insert callbacks */
this->IO_ADDR_R = nandaddr;
this->IO_ADDR_W = nandaddr;
......@@ -152,7 +152,7 @@ static int __init h1910_init (void)
this->chip_delay = 50;
this->eccmode = NAND_ECC_SOFT;
this->options = NAND_NO_AUTOINCR;
/* Scan to find existence of the device */
if (nand_scan (h1910_nand_mtd, 1)) {
printk(KERN_NOTICE "No NAND device - returning -ENXIO\n");
......@@ -160,9 +160,9 @@ static int __init h1910_init (void)
iounmap ((void *) nandaddr);
return -ENXIO;
}
#ifdef CONFIG_MTD_CMDLINE_PARTS
mtd_parts_nb = parse_cmdline_partitions(h1910_nand_mtd, &mtd_parts,
mtd_parts_nb = parse_cmdline_partitions(h1910_nand_mtd, &mtd_parts,
"h1910-nand");
if (mtd_parts_nb > 0)
part_type = "command line";
......@@ -175,11 +175,11 @@ static int __init h1910_init (void)
mtd_parts_nb = NUM_PARTITIONS;
part_type = "static";
}
/* Register the partitions */
printk(KERN_NOTICE "Using %s partition definition\n", part_type);
add_mtd_partitions(h1910_nand_mtd, mtd_parts, mtd_parts_nb);
/* Return happy */
return 0;
}
......@@ -191,7 +191,7 @@ module_init(h1910_init);
static void __exit h1910_cleanup (void)
{
struct nand_chip *this = (struct nand_chip *) &h1910_nand_mtd[1];
/* Release resources, unregister device */
nand_release (h1910_nand_mtd);
......
This diff is collapsed.
This diff is collapsed.
......@@ -7,22 +7,22 @@
* Copyright (C) 2000-2004 Steven J. Hill (sjhill@realitydiluted.com)
* Toshiba America Electronics Components, Inc.
*
* $Id: nand_ecc.c,v 1.14 2004/06/16 15:34:37 gleixner Exp $
* $Id: nand_ecc.c,v 1.15 2005/11/07 11:14:30 gleixner Exp $
*
* This file is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 or (at your option) any
* later version.
*
*
* This file is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
*
* You should have received a copy of the GNU General Public License along
* with this file; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
*
*
* As a special exception, if other files instantiate templates or use
* macros or inline functions from these files, or you compile these
* files and link them with other works to produce a work based on these
......@@ -30,7 +30,7 @@
* covered by the GNU General Public License. However the source code for
* these files must still be made available in accordance with section (3)
* of the GNU General Public License.
*
*
* This exception does not invalidate any other reasons why a work based on
* this file might be covered by the GNU General Public License.
*/
......@@ -67,7 +67,7 @@ static const u_char nand_ecc_precalc_table[] = {
* nand_trans_result - [GENERIC] create non-inverted ECC
* @reg2: line parity reg 2
* @reg3: line parity reg 3
* @ecc_code: ecc
* @ecc_code: ecc
*
* Creates non-inverted ECC code from line parity
*/
......@@ -75,11 +75,11 @@ static void nand_trans_result(u_char reg2, u_char reg3,
u_char *ecc_code)
{
u_char a, b, i, tmp1, tmp2;
/* Initialize variables */
a = b = 0x80;
tmp1 = tmp2 = 0;
/* Calculate first ECC byte */
for (i = 0; i < 4; i++) {
if (reg3 & a) /* LP15,13,11,9 --> ecc_code[0] */
......@@ -90,7 +90,7 @@ static void nand_trans_result(u_char reg2, u_char reg3,
b >>= 1;
a >>= 1;
}
/* Calculate second ECC byte */
b = 0x80;
for (i = 0; i < 4; i++) {
......@@ -102,7 +102,7 @@ static void nand_trans_result(u_char reg2, u_char reg3,
b >>= 1;
a >>= 1;
}
/* Store two of the ECC bytes */
ecc_code[0] = tmp1;
ecc_code[1] = tmp2;
......@@ -118,28 +118,28 @@ int nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code
{
u_char idx, reg1, reg2, reg3;
int j;
/* Initialize variables */
reg1 = reg2 = reg3 = 0;
ecc_code[0] = ecc_code[1] = ecc_code[2] = 0;
/* Build up column parity */
/* Build up column parity */
for(j = 0; j < 256; j++) {
/* Get CP0 - CP5 from table */
idx = nand_ecc_precalc_table[dat[j]];
reg1 ^= (idx & 0x3f);
/* All bit XOR = 1 ? */
if (idx & 0x40) {
reg3 ^= (u_char) j;
reg2 ^= ~((u_char) j);
}
}
/* Create non-inverted ECC code from line parity */
nand_trans_result(reg2, reg3, ecc_code);
/* Calculate final ECC code */
ecc_code[0] = ~ecc_code[0];
ecc_code[1] = ~ecc_code[1];
......@@ -159,12 +159,12 @@ int nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code
int nand_correct_data(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *calc_ecc)
{
u_char a, b, c, d1, d2, d3, add, bit, i;
/* Do error detection */
/* Do error detection */
d1 = calc_ecc[0] ^ read_ecc[0];
d2 = calc_ecc[1] ^ read_ecc[1];
d3 = calc_ecc[2] ^ read_ecc[2];
if ((d1 | d2 | d3) == 0) {
/* No errors */
return 0;
......@@ -173,7 +173,7 @@ int nand_correct_data(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_cha
a = (d1 ^ (d1 >> 1)) & 0x55;
b = (d2 ^ (d2 >> 1)) & 0x55;
c = (d3 ^ (d3 >> 1)) & 0x54;
/* Found and will correct single bit error in the data */
if ((a == 0x55) && (b == 0x55) && (c == 0x54)) {
c = 0x80;
......@@ -237,7 +237,7 @@ int nand_correct_data(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_cha
}
}
}
/* Should never happen */
return -1;
}
......
......@@ -3,7 +3,7 @@
*
* Copyright (C) 2002 Thomas Gleixner (tglx@linutronix.de)
*
* $Id: nand_ids.c,v 1.14 2005/06/23 09:38:50 gleixner Exp $
* $Id: nand_ids.c,v 1.16 2005/11/07 11:14:31 gleixner Exp $
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
......@@ -14,14 +14,14 @@
#include <linux/mtd/nand.h>
/*
* Chip ID list
*
*
* Name. ID code, pagesize, chipsize in MegaByte, eraseblock size,
* options
*
*
* Pagesize; 0, 256, 512
* 0 get this information from the extended chip ID
+ 256 256 Byte page size
* 512 512 Byte page size
* 512 512 Byte page size
*/
struct nand_flash_dev nand_flash_ids[] = {
{"NAND 1MiB 5V 8-bit", 0x6e, 256, 1, 0x1000, 0},
......@@ -34,27 +34,27 @@ struct nand_flash_dev nand_flash_ids[] = {
{"NAND 4MiB 3,3V 8-bit", 0xe3, 512, 4, 0x2000, 0},
{"NAND 4MiB 3,3V 8-bit", 0xe5, 512, 4, 0x2000, 0},
{"NAND 8MiB 3,3V 8-bit", 0xd6, 512, 8, 0x2000, 0},
{"NAND 8MiB 1,8V 8-bit", 0x39, 512, 8, 0x2000, 0},
{"NAND 8MiB 3,3V 8-bit", 0xe6, 512, 8, 0x2000, 0},
{"NAND 8MiB 1,8V 16-bit", 0x49, 512, 8, 0x2000, NAND_BUSWIDTH_16},
{"NAND 8MiB 3,3V 16-bit", 0x59, 512, 8, 0x2000, NAND_BUSWIDTH_16},
{"NAND 16MiB 1,8V 8-bit", 0x33, 512, 16, 0x4000, 0},
{"NAND 16MiB 3,3V 8-bit", 0x73, 512, 16, 0x4000, 0},
{"NAND 16MiB 1,8V 16-bit", 0x43, 512, 16, 0x4000, NAND_BUSWIDTH_16},
{"NAND 16MiB 3,3V 16-bit", 0x53, 512, 16, 0x4000, NAND_BUSWIDTH_16},
{"NAND 32MiB 1,8V 8-bit", 0x35, 512, 32, 0x4000, 0},
{"NAND 32MiB 3,3V 8-bit", 0x75, 512, 32, 0x4000, 0},
{"NAND 32MiB 1,8V 16-bit", 0x45, 512, 32, 0x4000, NAND_BUSWIDTH_16},
{"NAND 32MiB 3,3V 16-bit", 0x55, 512, 32, 0x4000, NAND_BUSWIDTH_16},
{"NAND 64MiB 1,8V 8-bit", 0x36, 512, 64, 0x4000, 0},
{"NAND 64MiB 3,3V 8-bit", 0x76, 512, 64, 0x4000, 0},
{"NAND 64MiB 1,8V 16-bit", 0x46, 512, 64, 0x4000, NAND_BUSWIDTH_16},
{"NAND 64MiB 3,3V 16-bit", 0x56, 512, 64, 0x4000, NAND_BUSWIDTH_16},
{"NAND 128MiB 1,8V 8-bit", 0x78, 512, 128, 0x4000, 0},
{"NAND 128MiB 1,8V 8-bit", 0x39, 512, 128, 0x4000, 0},
{"NAND 128MiB 3,3V 8-bit", 0x79, 512, 128, 0x4000, 0},
......@@ -62,7 +62,7 @@ struct nand_flash_dev nand_flash_ids[] = {
{"NAND 128MiB 1,8V 16-bit", 0x49, 512, 128, 0x4000, NAND_BUSWIDTH_16},
{"NAND 128MiB 3,3V 16-bit", 0x74, 512, 128, 0x4000, NAND_BUSWIDTH_16},
{"NAND 128MiB 3,3V 16-bit", 0x59, 512, 128, 0x4000, NAND_BUSWIDTH_16},
{"NAND 256MiB 3,3V 8-bit", 0x71, 512, 256, 0x4000, 0},
/* These are the new chips with large page size. The pagesize
......@@ -73,7 +73,7 @@ struct nand_flash_dev nand_flash_ids[] = {
{"NAND 64MiB 3,3V 8-bit", 0xF2, 0, 64, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR},
{"NAND 64MiB 1,8V 16-bit", 0xB2, 0, 64, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR},
{"NAND 64MiB 3,3V 16-bit", 0xC2, 0, 64, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR},
/* 1 Gigabit */
{"NAND 128MiB 1,8V 8-bit", 0xA1, 0, 128, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR},
{"NAND 128MiB 3,3V 8-bit", 0xF1, 0, 128, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR},
......@@ -85,13 +85,13 @@ struct nand_flash_dev nand_flash_ids[] = {
{"NAND 256MiB 3,3V 8-bit", 0xDA, 0, 256, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR},
{"NAND 256MiB 1,8V 16-bit", 0xBA, 0, 256, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR},
{"NAND 256MiB 3,3V 16-bit", 0xCA, 0, 256, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR},
/* 4 Gigabit */
{"NAND 512MiB 1,8V 8-bit", 0xAC, 0, 512, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR},
{"NAND 512MiB 3,3V 8-bit", 0xDC, 0, 512, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR},
{"NAND 512MiB 1,8V 16-bit", 0xBC, 0, 512, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR},
{"NAND 512MiB 3,3V 16-bit", 0xCC, 0, 512, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR},
/* 8 Gigabit */
{"NAND 1GiB 1,8V 8-bit", 0xA3, 0, 1024, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR},
{"NAND 1GiB 3,3V 8-bit", 0xD3, 0, 1024, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR},
......@@ -104,11 +104,11 @@ struct nand_flash_dev nand_flash_ids[] = {
{"NAND 2GiB 1,8V 16-bit", 0xB5, 0, 2048, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR},
{"NAND 2GiB 3,3V 16-bit", 0xC5, 0, 2048, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR},
/* Renesas AND 1 Gigabit. Those chips do not support extended id and have a strange page/block layout !
/* Renesas AND 1 Gigabit. Those chips do not support extended id and have a strange page/block layout !
* The chosen minimum erasesize is 4 * 2 * 2048 = 16384 Byte, as those chips have an array of 4 page planes
* 1 block = 2 pages, but due to plane arrangement the blocks 0-3 consists of page 0 + 4,1 + 5, 2 + 6, 3 + 7
* Anyway JFFS2 would increase the eraseblock size so we chose a combined one which can be erased in one go
* There are more speed improvements for reads and writes possible, but not implemented now
* There are more speed improvements for reads and writes possible, but not implemented now
*/
{"AND 128MiB 3,3V 8-bit", 0x01, 2048, 128, 0x4000, NAND_IS_AND | NAND_NO_AUTOINCR | NAND_4PAGE_ARRAY | BBT_AUTO_REFRESH},
......
This diff is collapsed.
......@@ -6,7 +6,7 @@
* Derived from drivers/mtd/nand/edb7312.c
*
*
* $Id: ppchameleonevb.c,v 1.6 2004/11/05 16:07:16 kalev Exp $
* $Id: ppchameleonevb.c,v 1.7 2005/11/07 11:14:31 gleixner Exp $
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
......@@ -338,7 +338,7 @@ nand_evb_init:
out_be32((volatile unsigned*)GPIO0_TSRH, in_be32((volatile unsigned*)GPIO0_TSRH) & 0xFFFFFFF0);
out_be32((volatile unsigned*)GPIO0_TSRL, in_be32((volatile unsigned*)GPIO0_TSRL) & 0x3FFFFFFF);
/* enable output driver */
out_be32((volatile unsigned*)GPIO0_TCR, in_be32((volatile unsigned*)GPIO0_TCR) | NAND_EVB_nCE_GPIO_PIN |
out_be32((volatile unsigned*)GPIO0_TCR, in_be32((volatile unsigned*)GPIO0_TCR) | NAND_EVB_nCE_GPIO_PIN |
NAND_EVB_CLE_GPIO_PIN | NAND_EVB_ALE_GPIO_PIN);
#ifdef USE_READY_BUSY_PIN
/* three-state select */
......@@ -402,7 +402,7 @@ static void __exit ppchameleonevb_cleanup (void)
/* Release resources, unregister device(s) */
nand_release (ppchameleon_mtd);
nand_release (ppchameleonevb_mtd);
/* Release iomaps */
this = (struct nand_chip *) &ppchameleon_mtd[1];
iounmap((void *) this->IO_ADDR_R;
......
......@@ -2,11 +2,11 @@
* drivers/mtd/nand/rtc_from4.c
*
* Copyright (C) 2004 Red Hat, Inc.
*
*
* Derived from drivers/mtd/nand/spia.c
* Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
*
* $Id: rtc_from4.c,v 1.9 2005/01/24 20:40:11 dmarlin Exp $
* $Id: rtc_from4.c,v 1.10 2005/11/07 11:14:31 gleixner Exp $
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
......@@ -14,8 +14,8 @@
*
* Overview:
* This is a device driver for the AG-AND flash device found on the
* Renesas Technology Corp. Flash ROM 4-slot interface board (FROM_BOARD4),
* which utilizes the Renesas HN29V1G91T-30 part.
* Renesas Technology Corp. Flash ROM 4-slot interface board (FROM_BOARD4),
* which utilizes the Renesas HN29V1G91T-30 part.
* This chip is a 1 GBibit (128MiB x 8 bits) AG-AND flash device.
*/
......@@ -105,9 +105,9 @@ const static struct mtd_partition partition_info[] = {
};
#define NUM_PARTITIONS 1
/*
/*
* hardware specific flash bbt decriptors
* Note: this is to allow debugging by disabling
* Note: this is to allow debugging by disabling
* NAND_BBT_CREATE and/or NAND_BBT_WRITE
*
*/
......@@ -141,7 +141,7 @@ static struct nand_bbt_descr rtc_from4_bbt_mirror_descr = {
/* the Reed Solomon control structure */
static struct rs_control *rs_decoder;
/*
/*
* hardware specific Out Of Band information
*/
static struct nand_oobinfo rtc_from4_nand_oobinfo = {
......@@ -200,38 +200,38 @@ static uint8_t revbits[256] = {
/*
/*
* rtc_from4_hwcontrol - hardware specific access to control-lines
* @mtd: MTD device structure
* @cmd: hardware control command
*
* Address lines (A5 and A4) are used to control Command and Address Latch
* Address lines (A5 and A4) are used to control Command and Address Latch
* Enable on this board, so set the read/write address appropriately.
*
* Chip Enable is also controlled by the Chip Select (CS5) and
* Chip Enable is also controlled by the Chip Select (CS5) and
* Address lines (A24-A22), so no action is required here.
*
*/
static void rtc_from4_hwcontrol(struct mtd_info *mtd, int cmd)
{
struct nand_chip* this = (struct nand_chip *) (mtd->priv);
switch(cmd) {
case NAND_CTL_SETCLE:
case NAND_CTL_SETCLE:
this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W | RTC_FROM4_CLE);
break;
case NAND_CTL_CLRCLE:
case NAND_CTL_CLRCLE:
this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W & ~RTC_FROM4_CLE);
break;
case NAND_CTL_SETALE:
this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W | RTC_FROM4_ALE);
break;
case NAND_CTL_CLRALE:
this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W & ~RTC_FROM4_ALE);
break;
case NAND_CTL_SETNCE:
break;
case NAND_CTL_CLRNCE:
......@@ -296,7 +296,7 @@ static int rtc_from4_nand_device_ready(struct mtd_info *mtd)
* @mtd: MTD device structure
* @chip: Chip to select (0 == slot 3, 1 == slot 4)
*
* If there was a sudden loss of power during an erase operation, a
* If there was a sudden loss of power during an erase operation, a
* "device recovery" operation must be performed when power is restored
* to ensure correct operation. This routine performs the required steps
* for the requested chip.
......@@ -312,7 +312,7 @@ static void deplete(struct mtd_info *mtd, int chip)
while (!this->dev_ready(mtd));
this->select_chip(mtd, chip);
/* Send the commands for device recovery, phase 1 */
this->cmdfunc (mtd, NAND_CMD_DEPLETE1, 0x0000, 0x0000);
this->cmdfunc (mtd, NAND_CMD_DEPLETE2, -1, -1);
......@@ -330,7 +330,7 @@ static void deplete(struct mtd_info *mtd, int chip)
* @mtd: MTD device structure
* @mode: I/O mode; read or write
*
* enable hardware ECC for data read or write
* enable hardware ECC for data read or write
*
*/
static void rtc_from4_enable_hwecc(struct mtd_info *mtd, int mode)
......@@ -340,7 +340,7 @@ static void rtc_from4_enable_hwecc(struct mtd_info *mtd, int mode)
switch (mode) {
case NAND_ECC_READ :
status = RTC_FROM4_RS_ECC_CTL_CLR
status = RTC_FROM4_RS_ECC_CTL_CLR
| RTC_FROM4_RS_ECC_CTL_FD_E;
*rs_ecc_ctl = status;
......@@ -353,8 +353,8 @@ static void rtc_from4_enable_hwecc(struct mtd_info *mtd, int mode)
break;
case NAND_ECC_WRITE :
status = RTC_FROM4_RS_ECC_CTL_CLR
| RTC_FROM4_RS_ECC_CTL_GEN
status = RTC_FROM4_RS_ECC_CTL_CLR
| RTC_FROM4_RS_ECC_CTL_GEN
| RTC_FROM4_RS_ECC_CTL_FD_E;
*rs_ecc_ctl = status;
......@@ -411,7 +411,7 @@ static void rtc_from4_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_c
static int rtc_from4_correct_data(struct mtd_info *mtd, const u_char *buf, u_char *ecc1, u_char *ecc2)
{
int i, j, res;
unsigned short status;
unsigned short status;
uint16_t par[6], syn[6];
uint8_t ecc[8];
volatile unsigned short *rs_ecc;
......@@ -430,7 +430,7 @@ static int rtc_from4_correct_data(struct mtd_info *mtd, const u_char *buf, u_cha
}
/* convert into 6 10bit syndrome fields */
par[5] = rs_decoder->index_of[(((uint16_t)ecc[0] >> 0) & 0x0ff) |
par[5] = rs_decoder->index_of[(((uint16_t)ecc[0] >> 0) & 0x0ff) |
(((uint16_t)ecc[1] << 8) & 0x300)];
par[4] = rs_decoder->index_of[(((uint16_t)ecc[1] >> 2) & 0x03f) |
(((uint16_t)ecc[2] << 6) & 0x3c0)];
......@@ -456,7 +456,7 @@ static int rtc_from4_correct_data(struct mtd_info *mtd, const u_char *buf, u_cha
/* Let the library code do its magic.*/
res = decode_rs8(rs_decoder, (uint8_t *)buf, par, 512, syn, 0, NULL, 0xff, NULL);
if (res > 0) {
DEBUG (MTD_DEBUG_LEVEL0, "rtc_from4_correct_data: "
DEBUG (MTD_DEBUG_LEVEL0, "rtc_from4_correct_data: "
"ECC corrected %d errors on read\n", res);
}
return res;
......@@ -470,9 +470,9 @@ static int rtc_from4_correct_data(struct mtd_info *mtd, const u_char *buf, u_cha
* @state: state or the operation
* @status: status code returned from read status
* @page: startpage inside the chip, must be called with (page & this->pagemask)
*
* Perform additional error status checks on erase and write failures
* to determine if errors are correctable. For this device, correctable
*
* Perform additional error status checks on erase and write failures
* to determine if errors are correctable. For this device, correctable
* 1-bit errors on erase and write are considered acceptable.
*
* note: see pages 34..37 of data sheet for details.
......@@ -633,7 +633,7 @@ int __init rtc_from4_init (void)
#ifdef RTC_FROM4_HWECC
/* We could create the decoder on demand, if memory is a concern.
* This way we have it handy, if an error happens
* This way we have it handy, if an error happens
*
* Symbolsize is 10 (bits)
* Primitve polynomial is x^10+x^3+1
......
......@@ -19,7 +19,7 @@
* 08-Jul-2005 BJD Fix OOPS when no platform data supplied
* 20-Oct-2005 BJD Fix timing calculation bug
*
* $Id: s3c2410.c,v 1.18 2005/10/20 21:22:55 bjd Exp $
* $Id: s3c2410.c,v 1.20 2005/11/07 11:14:31 gleixner Exp $
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
......@@ -164,7 +164,7 @@ static int s3c2410_nand_calc_rate(int wanted, unsigned long clk, int max)
/* controller setup */
static int s3c2410_nand_inithw(struct s3c2410_nand_info *info,
static int s3c2410_nand_inithw(struct s3c2410_nand_info *info,
struct device *dev)
{
struct s3c2410_platform_nand *plat = to_nand_plat(dev);
......@@ -186,7 +186,7 @@ static int s3c2410_nand_inithw(struct s3c2410_nand_info *info,
twrph0 = 8;
twrph1 = 8;
}
if (tacls < 0 || twrph0 < 0 || twrph1 < 0) {
printk(KERN_ERR PFX "cannot get timings suitable for board\n");
return -EINVAL;
......@@ -194,7 +194,7 @@ static int s3c2410_nand_inithw(struct s3c2410_nand_info *info,
printk(KERN_INFO PFX "Tacls=%d, %dns Twrph0=%d %dns, Twrph1=%d %dns\n",
tacls, to_ns(tacls, clkrate),
twrph0, to_ns(twrph0, clkrate),
twrph0, to_ns(twrph0, clkrate),
twrph1, to_ns(twrph1, clkrate));
if (!info->is_s3c2440) {
......@@ -219,7 +219,7 @@ static int s3c2410_nand_inithw(struct s3c2410_nand_info *info,
static void s3c2410_nand_select_chip(struct mtd_info *mtd, int chip)
{
struct s3c2410_nand_info *info;
struct s3c2410_nand_mtd *nmtd;
struct s3c2410_nand_mtd *nmtd;
struct nand_chip *this = mtd->priv;
void __iomem *reg;
unsigned long cur;
......@@ -252,7 +252,7 @@ static void s3c2410_nand_select_chip(struct mtd_info *mtd, int chip)
writel(cur, reg);
}
/* command and control functions
/* command and control functions
*
* Note, these all use tglx's method of changing the IO_ADDR_W field
* to make the code simpler, and use the nand layer's code to issue the
......@@ -324,7 +324,7 @@ static void s3c2440_nand_hwcontrol(struct mtd_info *mtd, int cmd)
static int s3c2410_nand_devready(struct mtd_info *mtd)
{
struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
if (info->is_s3c2440)
return readb(info->regs + S3C2440_NFSTAT) & S3C2440_NFSTAT_READY;
return readb(info->regs + S3C2410_NFSTAT) & S3C2410_NFSTAT_BUSY;
......@@ -345,7 +345,7 @@ static int s3c2410_nand_correct_data(struct mtd_info *mtd, u_char *dat,
if (read_ecc[0] == calc_ecc[0] &&
read_ecc[1] == calc_ecc[1] &&
read_ecc[2] == calc_ecc[2])
read_ecc[2] == calc_ecc[2])
return 0;
/* we curently have no method for correcting the error */
......@@ -436,14 +436,14 @@ static int s3c2410_nand_remove(struct device *dev)
dev_set_drvdata(dev, NULL);
if (info == NULL)
if (info == NULL)
return 0;
/* first thing we need to do is release all our mtds
* and their partitions, then go through freeing the
* resources used
* resources used
*/
if (info->mtds != NULL) {
struct s3c2410_nand_mtd *ptr = info->mtds;
int mtdno;
......@@ -507,7 +507,7 @@ static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info,
/* s3c2410_nand_init_chip
*
* init a single instance of an chip
* init a single instance of an chip
*/
static void s3c2410_nand_init_chip(struct s3c2410_nand_info *info,
......@@ -625,7 +625,7 @@ static int s3c24xx_nand_probe(struct device *dev, int is_s3c2440)
dev_err(dev, "cannot reserve register region\n");
err = -EIO;
goto exit_error;
}
}
dev_dbg(dev, "mapped registers at %p\n", info->regs);
......@@ -659,7 +659,7 @@ static int s3c24xx_nand_probe(struct device *dev, int is_s3c2440)
for (setno = 0; setno < nr_sets; setno++, nmtd++) {
pr_debug("initialising set %d (%p, info %p)\n",
setno, nmtd, info);
s3c2410_nand_init_chip(info, nmtd, sets);
nmtd->scan_res = nand_scan(&nmtd->mtd,
......@@ -672,7 +672,7 @@ static int s3c24xx_nand_probe(struct device *dev, int is_s3c2440)
if (sets != NULL)
sets++;
}
pr_debug("initialised ok\n");
return 0;
......
......@@ -3,7 +3,7 @@
*
* Copyright (C) 2004 Richard Purdie
*
* $Id: sharpsl.c,v 1.6 2005/11/03 11:36:42 rpurdie Exp $
* $Id: sharpsl.c,v 1.7 2005/11/07 11:14:31 gleixner Exp $
*
* Based on Sharp's NAND driver sharp_sl.c
*
......@@ -76,14 +76,14 @@ static struct mtd_partition sharpsl_nand_default_partition_info[] = {
},
};
/*
/*
* hardware specific access to control-lines
*/
static void
sharpsl_nand_hwcontrol(struct mtd_info* mtd, int cmd)
{
switch (cmd) {
case NAND_CTL_SETCLE:
case NAND_CTL_SETCLE:
writeb(readb(FLASHCTL) | FLCLE, FLASHCTL);
break;
case NAND_CTL_CLRCLE:
......@@ -97,10 +97,10 @@ sharpsl_nand_hwcontrol(struct mtd_info* mtd, int cmd)
writeb(readb(FLASHCTL) & ~FLALE, FLASHCTL);
break;
case NAND_CTL_SETNCE:
case NAND_CTL_SETNCE:
writeb(readb(FLASHCTL) & ~(FLCE0|FLCE1), FLASHCTL);
break;
case NAND_CTL_CLRNCE:
case NAND_CTL_CLRNCE:
writeb(readb(FLASHCTL) | (FLCE0|FLCE1), FLASHCTL);
break;
}
......@@ -126,8 +126,8 @@ static struct nand_oobinfo akita_oobinfo = {
.useecc = MTD_NANDECC_AUTOPLACE,
.eccbytes = 24,
.eccpos = {
0x5, 0x1, 0x2, 0x3, 0x6, 0x7, 0x15, 0x11,
0x12, 0x13, 0x16, 0x17, 0x25, 0x21, 0x22, 0x23,
0x5, 0x1, 0x2, 0x3, 0x6, 0x7, 0x15, 0x11,
0x12, 0x13, 0x16, 0x17, 0x25, 0x21, 0x22, 0x23,
0x26, 0x27, 0x35, 0x31, 0x32, 0x33, 0x36, 0x37},
.oobfree = { {0x08, 0x09} }
};
......@@ -177,7 +177,7 @@ sharpsl_nand_init(void)
printk ("Unable to allocate SharpSL NAND MTD device structure.\n");
return -ENOMEM;
}
/* map physical adress */
sharpsl_io_base = ioremap(sharpsl_phys_base, 0x1000);
if(!sharpsl_io_base){
......@@ -185,7 +185,7 @@ sharpsl_nand_init(void)
kfree(sharpsl_mtd);
return -EIO;
}
/* Get pointer to private data */
this = (struct nand_chip *) (&sharpsl_mtd[1]);
......@@ -211,7 +211,7 @@ sharpsl_nand_init(void)
this->chip_delay = 15;
/* set eccmode using hardware ECC */
this->eccmode = NAND_ECC_HW3_256;
this->badblock_pattern = &sharpsl_bbt;
this->badblock_pattern = &sharpsl_bbt;
if (machine_is_akita() || machine_is_borzoi()) {
this->badblock_pattern = &sharpsl_akita_bbt;
this->autooob = &akita_oobinfo;
......@@ -232,7 +232,7 @@ sharpsl_nand_init(void)
sharpsl_mtd->name = "sharpsl-nand";
nr_partitions = parse_mtd_partitions(sharpsl_mtd, part_probes,
&sharpsl_partition_info, 0);
if (nr_partitions <= 0) {
nr_partitions = DEFAULT_NUM_PARTITIONS;
sharpsl_partition_info = sharpsl_nand_default_partition_info;
......
......@@ -8,7 +8,7 @@
* to controllines (due to change in nand.c)
* page_cache added
*
* $Id: spia.c,v 1.24 2004/11/04 12:53:10 gleixner Exp $
* $Id: spia.c,v 1.25 2005/11/07 11:14:31 gleixner Exp $
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
......@@ -82,7 +82,7 @@ const static struct mtd_partition partition_info[] = {
#define NUM_PARTITIONS 2
/*
/*
* hardware specific access to control-lines
*/
static void spia_hwcontrol(struct mtd_info *mtd, int cmd){
......@@ -137,7 +137,7 @@ int __init spia_init (void)
/* Set address of hardware control function */
this->hwcontrol = spia_hwcontrol;
/* 15 us command delay time */
this->chip_delay = 15;
this->chip_delay = 15;
/* Scan to find existence of the device */
if (nand_scan (spia_mtd, 1)) {
......
......@@ -15,7 +15,7 @@
* This is a device driver for the NAND flash device found on the
* TI fido board. It supports 32MiB and 64MiB cards
*
* $Id: toto.c,v 1.4 2004/10/05 13:50:20 gleixner Exp $
* $Id: toto.c,v 1.5 2005/11/07 11:14:31 gleixner Exp $
*/
#include <linux/slab.h>
......@@ -57,7 +57,7 @@ static unsigned long toto_io_base = OMAP_FLASH_1_BASE;
#endif
#define T_NAND_CTL_SETNCE(iob) gpiosetout(NAND_NCE, 0)
#define T_NAND_CTL_CLRNCE(iob) gpiosetout(NAND_NCE, NAND_NCE)
/*
* Define partitions for flash devices
*/
......@@ -91,7 +91,7 @@ static struct mtd_partition partition_info32M[] = {
#define NUM_PARTITIONS32M 3
#define NUM_PARTITIONS64M 4
/*
/*
* hardware specific access to control-lines
*/
......@@ -146,7 +146,7 @@ int __init toto_init (void)
this->hwcontrol = toto_hwcontrol;
this->dev_ready = NULL;
/* 25 us command delay time */
this->chip_delay = 30;
this->chip_delay = 30;
this->eccmode = NAND_ECC_SOFT;
/* Scan to find existance of the device */
......@@ -157,10 +157,10 @@ int __init toto_init (void)
/* Register the partitions */
switch(toto_mtd->size){
case SZ_64M: add_mtd_partitions(toto_mtd, partition_info64M, NUM_PARTITIONS64M); break;
case SZ_32M: add_mtd_partitions(toto_mtd, partition_info32M, NUM_PARTITIONS32M); break;
case SZ_64M: add_mtd_partitions(toto_mtd, partition_info64M, NUM_PARTITIONS64M); break;
case SZ_32M: add_mtd_partitions(toto_mtd, partition_info32M, NUM_PARTITIONS32M); break;
default: {
printk (KERN_WARNING "Unsupported Nand device\n");
printk (KERN_WARNING "Unsupported Nand device\n");
err = -ENXIO;
goto out_buf;
}
......@@ -170,9 +170,9 @@ int __init toto_init (void)
archflashwp(0,0); /* open up flash for writing */
goto out;
out_buf:
kfree (this->data_buf);
kfree (this->data_buf);
out_mtd:
kfree (toto_mtd);
out:
......@@ -194,7 +194,7 @@ static void __exit toto_cleanup (void)
/* stop flash writes */
archflashwp(0,1);
/* release gpios to system */
gpiorelease(NAND_MASK);
}
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment