Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
V
vlc
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Redmine
Redmine
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Operations
Operations
Metrics
Environments
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
videolan
vlc
Commits
48940cc2
Commit
48940cc2
authored
Oct 27, 2007
by
Jean-Paul Saman
Committed by
Jean-Paul Saman
Mar 05, 2008
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Tell git about this modules/audio_filter/channel_mixer/mono.c
parent
434f2999
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
704 additions
and
0 deletions
+704
-0
modules/audio_filter/channel_mixer/mono.c
modules/audio_filter/channel_mixer/mono.c
+704
-0
No files found.
modules/audio_filter/channel_mixer/mono.c
0 → 100644
View file @
48940cc2
/*****************************************************************************
* mono.c : stereo2mono downmixsimple channel mixer plug-in
*****************************************************************************
* Copyright (C) 2006 M2X
* $Id: mono.c 21324 2007-08-20 19:10:23Z courmisch $
*
* Authors: Jean-Paul Saman <jpsaman at m2x dot nl>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301, USA.
*****************************************************************************/
/*****************************************************************************
* Preamble
*****************************************************************************/
#include <math.h>
/* sqrt */
#ifdef HAVE_STDINT_H
# include <stdint.h>
/* int16_t .. */
#elif defined(HAVE_INTTYPES_H)
# include <inttypes.h>
/* int16_t .. */
#endif
#ifdef HAVE_UNISTD_H
# include <unistd.h>
#endif
#include <vlc/vlc.h>
#include <vlc_es.h>
#include <vlc_block.h>
#include <vlc_filter.h>
#include <audio_output.h>
#include <aout_internal.h>
/*****************************************************************************
* Local prototypes
*****************************************************************************/
static
int
OpenFilter
(
vlc_object_t
*
);
static
void
CloseFilter
(
vlc_object_t
*
);
static
block_t
*
Convert
(
filter_t
*
p_filter
,
block_t
*
p_block
);
static
unsigned
int
stereo_to_mono
(
aout_instance_t
*
,
aout_filter_t
*
,
aout_buffer_t
*
,
aout_buffer_t
*
);
static
unsigned
int
mono
(
aout_instance_t
*
,
aout_filter_t
*
,
aout_buffer_t
*
,
aout_buffer_t
*
);
static
void
stereo2mono_downmix
(
aout_instance_t
*
,
aout_filter_t
*
,
aout_buffer_t
*
,
aout_buffer_t
*
);
/*****************************************************************************
* Local structures
*****************************************************************************/
struct
atomic_operation_t
{
int
i_source_channel_offset
;
int
i_dest_channel_offset
;
unsigned
int
i_delay
;
/* in sample unit */
double
d_amplitude_factor
;
};
struct
filter_sys_t
{
vlc_bool_t
b_downmix
;
unsigned
int
i_nb_channels
;
/* number of int16_t per sample */
int
i_channel_selected
;
int
i_bitspersample
;
size_t
i_overflow_buffer_size
;
/* in bytes */
byte_t
*
p_overflow_buffer
;
unsigned
int
i_nb_atomic_operations
;
struct
atomic_operation_t
*
p_atomic_operations
;
};
#define MONO_DOWNMIX_TEXT N_("Use downmix algorithme.")
#define MONO_DOWNMIX_LONGTEXT N_("This option selects a stereo to mono " \
"downmix algorithm that is used in the headphone channel mixer. It" \
"gives the effect of standing in a room full of speakers." )
#define MONO_CHANNEL_TEXT N_("Select channel to keep")
#define MONO_CHANNEL_LONGTEXT N_("This option silences all other channels " \
"except the selected channel. Choose one from (0=left, 1=right " \
"2=rear left, 3=rear right, 4=center, 5=left front)")
static
const
int
pi_pos_values
[]
=
{
0
,
1
,
2
,
4
,
8
,
5
};
static
const
char
*
ppsz_pos_descriptions
[]
=
{
N_
(
"Left"
),
N_
(
"Right"
),
N_
(
"Left rear"
),
N_
(
"Right rear"
),
N_
(
"Center"
),
N_
(
"Left front"
)
};
/* our internal channel order (WG-4 order) */
static
const
uint32_t
pi_channels_out
[]
=
{
AOUT_CHAN_LEFT
,
AOUT_CHAN_RIGHT
,
AOUT_CHAN_REARLEFT
,
AOUT_CHAN_REARRIGHT
,
AOUT_CHAN_CENTER
,
AOUT_CHAN_LFE
,
0
};
#define MONO_CFG "sout-mono-"
/*****************************************************************************
* Module descriptor
*****************************************************************************/
vlc_module_begin
();
set_description
(
_
(
"Audio filter for stereo to mono conversion"
)
);
set_capability
(
"audio filter2"
,
0
);
add_bool
(
MONO_CFG
"downmix"
,
VLC_FALSE
,
NULL
,
MONO_DOWNMIX_TEXT
,
MONO_DOWNMIX_LONGTEXT
,
VLC_FALSE
);
add_integer
(
MONO_CFG
"channel"
,
-
1
,
NULL
,
MONO_CHANNEL_TEXT
,
MONO_CHANNEL_LONGTEXT
,
VLC_FALSE
);
change_integer_list
(
pi_pos_values
,
ppsz_pos_descriptions
,
0
);
set_category
(
CAT_AUDIO
);
set_subcategory
(
SUBCAT_AUDIO_MISC
);
set_callbacks
(
OpenFilter
,
CloseFilter
);
set_shortname
(
"Mono"
);
vlc_module_end
();
/* Init() and ComputeChannelOperations() -
* Code taken from modules/audio_filter/channel_mixer/headphone.c
* converted from float into int16_t based downmix
* Written by Boris Dorès <babal@via.ecp.fr>
*/
/*****************************************************************************
* Init: initialize internal data structures
* and computes the needed atomic operations
*****************************************************************************/
/* x and z represent the coordinates of the virtual speaker
* relatively to the center of the listener's head, measured in meters :
*
* left right
*Z
*-
*a head
*x
*i
*s
* rear left rear right
*
* x-axis
* */
static
void
ComputeChannelOperations
(
struct
filter_sys_t
*
p_data
,
unsigned
int
i_rate
,
unsigned
int
i_next_atomic_operation
,
int
i_source_channel_offset
,
double
d_x
,
double
d_z
,
double
d_compensation_length
,
double
d_channel_amplitude_factor
)
{
double
d_c
=
340
;
/*sound celerity (unit: m/s)*/
double
d_compensation_delay
=
(
d_compensation_length
-
0
.
1
)
/
d_c
*
i_rate
;
/* Left ear */
p_data
->
p_atomic_operations
[
i_next_atomic_operation
]
.
i_source_channel_offset
=
i_source_channel_offset
;
p_data
->
p_atomic_operations
[
i_next_atomic_operation
]
.
i_dest_channel_offset
=
0
;
/* left */
p_data
->
p_atomic_operations
[
i_next_atomic_operation
]
.
i_delay
=
(
int
)(
sqrt
(
(
-
0
.
1
-
d_x
)
*
(
-
0
.
1
-
d_x
)
+
(
0
-
d_z
)
*
(
0
-
d_z
)
)
/
d_c
*
i_rate
-
d_compensation_delay
);
if
(
d_x
<
0
)
{
p_data
->
p_atomic_operations
[
i_next_atomic_operation
]
.
d_amplitude_factor
=
d_channel_amplitude_factor
*
1
.
1
/
2
;
}
else
if
(
d_x
>
0
)
{
p_data
->
p_atomic_operations
[
i_next_atomic_operation
]
.
d_amplitude_factor
=
d_channel_amplitude_factor
*
0
.
9
/
2
;
}
else
{
p_data
->
p_atomic_operations
[
i_next_atomic_operation
]
.
d_amplitude_factor
=
d_channel_amplitude_factor
/
2
;
}
/* Right ear */
p_data
->
p_atomic_operations
[
i_next_atomic_operation
+
1
]
.
i_source_channel_offset
=
i_source_channel_offset
;
p_data
->
p_atomic_operations
[
i_next_atomic_operation
+
1
]
.
i_dest_channel_offset
=
1
;
/* right */
p_data
->
p_atomic_operations
[
i_next_atomic_operation
+
1
]
.
i_delay
=
(
int
)(
sqrt
(
(
0
.
1
-
d_x
)
*
(
0
.
1
-
d_x
)
+
(
0
-
d_z
)
*
(
0
-
d_z
)
)
/
d_c
*
i_rate
-
d_compensation_delay
);
if
(
d_x
<
0
)
{
p_data
->
p_atomic_operations
[
i_next_atomic_operation
+
1
]
.
d_amplitude_factor
=
d_channel_amplitude_factor
*
0
.
9
/
2
;
}
else
if
(
d_x
>
0
)
{
p_data
->
p_atomic_operations
[
i_next_atomic_operation
+
1
]
.
d_amplitude_factor
=
d_channel_amplitude_factor
*
1
.
1
/
2
;
}
else
{
p_data
->
p_atomic_operations
[
i_next_atomic_operation
+
1
]
.
d_amplitude_factor
=
d_channel_amplitude_factor
/
2
;
}
}
static
int
Init
(
vlc_object_t
*
p_this
,
struct
filter_sys_t
*
p_data
,
unsigned
int
i_nb_channels
,
uint32_t
i_physical_channels
,
unsigned
int
i_rate
)
{
double
d_x
=
config_GetInt
(
p_this
,
"headphone-dim"
);
double
d_z
=
d_x
;
double
d_z_rear
=
-
d_x
/
3
;
double
d_min
=
0
;
unsigned
int
i_next_atomic_operation
;
int
i_source_channel_offset
;
unsigned
int
i
;
if
(
p_data
==
NULL
)
{
msg_Dbg
(
p_this
,
"passing a null pointer as argument"
);
return
0
;
}
if
(
config_GetInt
(
p_this
,
"headphone-compensate"
)
)
{
/* minimal distance to any speaker */
if
(
i_physical_channels
&
AOUT_CHAN_REARCENTER
)
{
d_min
=
d_z_rear
;
}
else
{
d_min
=
d_z
;
}
}
/* Number of elementary operations */
p_data
->
i_nb_atomic_operations
=
i_nb_channels
*
2
;
if
(
i_physical_channels
&
AOUT_CHAN_CENTER
)
{
p_data
->
i_nb_atomic_operations
+=
2
;
}
p_data
->
p_atomic_operations
=
malloc
(
sizeof
(
struct
atomic_operation_t
)
*
p_data
->
i_nb_atomic_operations
);
if
(
p_data
->
p_atomic_operations
==
NULL
)
{
msg_Err
(
p_this
,
"out of memory"
);
return
-
1
;
}
/* For each virtual speaker, computes elementary wave propagation time
* to each ear */
i_next_atomic_operation
=
0
;
i_source_channel_offset
=
0
;
if
(
i_physical_channels
&
AOUT_CHAN_LEFT
)
{
ComputeChannelOperations
(
p_data
,
i_rate
,
i_next_atomic_operation
,
i_source_channel_offset
,
-
d_x
,
d_z
,
d_min
,
2
.
0
/
i_nb_channels
);
i_next_atomic_operation
+=
2
;
i_source_channel_offset
++
;
}
if
(
i_physical_channels
&
AOUT_CHAN_RIGHT
)
{
ComputeChannelOperations
(
p_data
,
i_rate
,
i_next_atomic_operation
,
i_source_channel_offset
,
d_x
,
d_z
,
d_min
,
2
.
0
/
i_nb_channels
);
i_next_atomic_operation
+=
2
;
i_source_channel_offset
++
;
}
if
(
i_physical_channels
&
AOUT_CHAN_MIDDLELEFT
)
{
ComputeChannelOperations
(
p_data
,
i_rate
,
i_next_atomic_operation
,
i_source_channel_offset
,
-
d_x
,
0
,
d_min
,
1
.
5
/
i_nb_channels
);
i_next_atomic_operation
+=
2
;
i_source_channel_offset
++
;
}
if
(
i_physical_channels
&
AOUT_CHAN_MIDDLERIGHT
)
{
ComputeChannelOperations
(
p_data
,
i_rate
,
i_next_atomic_operation
,
i_source_channel_offset
,
d_x
,
0
,
d_min
,
1
.
5
/
i_nb_channels
);
i_next_atomic_operation
+=
2
;
i_source_channel_offset
++
;
}
if
(
i_physical_channels
&
AOUT_CHAN_REARLEFT
)
{
ComputeChannelOperations
(
p_data
,
i_rate
,
i_next_atomic_operation
,
i_source_channel_offset
,
-
d_x
,
d_z_rear
,
d_min
,
1
.
5
/
i_nb_channels
);
i_next_atomic_operation
+=
2
;
i_source_channel_offset
++
;
}
if
(
i_physical_channels
&
AOUT_CHAN_REARRIGHT
)
{
ComputeChannelOperations
(
p_data
,
i_rate
,
i_next_atomic_operation
,
i_source_channel_offset
,
d_x
,
d_z_rear
,
d_min
,
1
.
5
/
i_nb_channels
);
i_next_atomic_operation
+=
2
;
i_source_channel_offset
++
;
}
if
(
i_physical_channels
&
AOUT_CHAN_REARCENTER
)
{
ComputeChannelOperations
(
p_data
,
i_rate
,
i_next_atomic_operation
,
i_source_channel_offset
,
0
,
-
d_z
,
d_min
,
1
.
5
/
i_nb_channels
);
i_next_atomic_operation
+=
2
;
i_source_channel_offset
++
;
}
if
(
i_physical_channels
&
AOUT_CHAN_CENTER
)
{
/* having two center channels increases the spatialization effect */
ComputeChannelOperations
(
p_data
,
i_rate
,
i_next_atomic_operation
,
i_source_channel_offset
,
d_x
/
5
.
0
,
d_z
,
d_min
,
0
.
75
/
i_nb_channels
);
i_next_atomic_operation
+=
2
;
ComputeChannelOperations
(
p_data
,
i_rate
,
i_next_atomic_operation
,
i_source_channel_offset
,
-
d_x
/
5
.
0
,
d_z
,
d_min
,
0
.
75
/
i_nb_channels
);
i_next_atomic_operation
+=
2
;
i_source_channel_offset
++
;
}
if
(
i_physical_channels
&
AOUT_CHAN_LFE
)
{
ComputeChannelOperations
(
p_data
,
i_rate
,
i_next_atomic_operation
,
i_source_channel_offset
,
0
,
d_z_rear
,
d_min
,
5
.
0
/
i_nb_channels
);
i_next_atomic_operation
+=
2
;
i_source_channel_offset
++
;
}
/* Initialize the overflow buffer
* we need it because the process induce a delay in the samples */
p_data
->
i_overflow_buffer_size
=
0
;
for
(
i
=
0
;
i
<
p_data
->
i_nb_atomic_operations
;
i
++
)
{
if
(
p_data
->
i_overflow_buffer_size
<
p_data
->
p_atomic_operations
[
i
].
i_delay
*
2
*
sizeof
(
int16_t
)
)
{
p_data
->
i_overflow_buffer_size
=
p_data
->
p_atomic_operations
[
i
].
i_delay
*
2
*
sizeof
(
int16_t
);
}
}
p_data
->
p_overflow_buffer
=
malloc
(
p_data
->
i_overflow_buffer_size
);
if
(
p_data
->
p_atomic_operations
==
NULL
)
{
msg_Err
(
p_this
,
"out of memory"
);
return
-
1
;
}
memset
(
p_data
->
p_overflow_buffer
,
0
,
p_data
->
i_overflow_buffer_size
);
/* end */
return
0
;
}
/*****************************************************************************
* OpenFilter
*****************************************************************************/
static
int
OpenFilter
(
vlc_object_t
*
p_this
)
{
filter_t
*
p_filter
=
(
filter_t
*
)
p_this
;
filter_sys_t
*
p_sys
=
NULL
;
if
(
aout_FormatNbChannels
(
&
(
p_filter
->
fmt_in
.
audio
)
)
==
1
)
{
msg_Dbg
(
p_filter
,
"filter discarded (incompatible format)"
);
return
VLC_EGENERIC
;
}
if
(
(
p_filter
->
fmt_in
.
i_codec
!=
AOUT_FMT_S16_NE
)
||
(
p_filter
->
fmt_out
.
i_codec
!=
AOUT_FMT_S16_NE
)
)
{
msg_Err
(
p_this
,
"filter discarded (invalid format)"
);
return
-
1
;
}
if
(
(
p_filter
->
fmt_in
.
audio
.
i_format
!=
p_filter
->
fmt_out
.
audio
.
i_format
)
&&
(
p_filter
->
fmt_in
.
audio
.
i_rate
!=
p_filter
->
fmt_out
.
audio
.
i_rate
)
&&
(
p_filter
->
fmt_in
.
audio
.
i_format
!=
AOUT_FMT_S16_NE
)
&&
(
p_filter
->
fmt_out
.
audio
.
i_format
!=
AOUT_FMT_S16_NE
)
&&
(
p_filter
->
fmt_in
.
audio
.
i_bitspersample
!=
p_filter
->
fmt_out
.
audio
.
i_bitspersample
))
{
msg_Err
(
p_this
,
"couldn't load mono filter"
);
return
VLC_EGENERIC
;
}
/* Allocate the memory needed to store the module's structure */
p_sys
=
p_filter
->
p_sys
=
malloc
(
sizeof
(
filter_sys_t
)
);
if
(
p_sys
==
NULL
)
{
msg_Err
(
p_filter
,
"out of memory"
);
return
VLC_EGENERIC
;
}
var_Create
(
p_this
,
MONO_CFG
"downmix"
,
VLC_VAR_BOOL
|
VLC_VAR_DOINHERIT
);
p_sys
->
b_downmix
=
var_GetBool
(
p_this
,
MONO_CFG
"downmix"
);
var_Create
(
p_this
,
MONO_CFG
"channel"
,
VLC_VAR_INTEGER
|
VLC_VAR_DOINHERIT
);
p_sys
->
i_channel_selected
=
(
unsigned
int
)
var_GetInteger
(
p_this
,
MONO_CFG
"channel"
);
if
(
p_sys
->
b_downmix
)
{
msg_Dbg
(
p_this
,
"using stereo to mono downmix"
);
p_filter
->
fmt_out
.
audio
.
i_physical_channels
=
AOUT_CHAN_CENTER
;
p_filter
->
fmt_out
.
audio
.
i_channels
=
1
;
}
else
{
msg_Dbg
(
p_this
,
"using pseudo mono"
);
p_filter
->
fmt_out
.
audio
.
i_physical_channels
=
(
AOUT_CHAN_LEFT
|
AOUT_CHAN_RIGHT
);
p_filter
->
fmt_out
.
audio
.
i_channels
=
2
;
}
p_filter
->
fmt_out
.
audio
.
i_rate
=
p_filter
->
fmt_in
.
audio
.
i_rate
;
p_filter
->
fmt_out
.
audio
.
i_format
=
p_filter
->
fmt_out
.
i_codec
;
p_sys
->
i_nb_channels
=
aout_FormatNbChannels
(
&
(
p_filter
->
fmt_in
.
audio
)
);
p_sys
->
i_bitspersample
=
p_filter
->
fmt_out
.
audio
.
i_bitspersample
;
p_sys
->
i_overflow_buffer_size
=
0
;
p_sys
->
p_overflow_buffer
=
NULL
;
p_sys
->
i_nb_atomic_operations
=
0
;
p_sys
->
p_atomic_operations
=
NULL
;
if
(
Init
(
VLC_OBJECT
(
p_filter
),
p_filter
->
p_sys
,
aout_FormatNbChannels
(
&
p_filter
->
fmt_in
.
audio
),
p_filter
->
fmt_in
.
audio
.
i_physical_channels
,
p_filter
->
fmt_in
.
audio
.
i_rate
)
<
0
)
{
return
VLC_EGENERIC
;
}
p_filter
->
pf_audio_filter
=
Convert
;
msg_Dbg
(
p_this
,
"%4.4s->%4.4s, channels %d->%d, bits per sample: %i->%i"
,
(
char
*
)
&
p_filter
->
fmt_in
.
i_codec
,
(
char
*
)
&
p_filter
->
fmt_out
.
i_codec
,
p_filter
->
fmt_in
.
audio
.
i_physical_channels
,
p_filter
->
fmt_out
.
audio
.
i_physical_channels
,
p_filter
->
fmt_in
.
audio
.
i_bitspersample
,
p_filter
->
fmt_out
.
audio
.
i_bitspersample
);
return
VLC_SUCCESS
;
}
/*****************************************************************************
* CloseFilter
*****************************************************************************/
static
void
CloseFilter
(
vlc_object_t
*
p_this
)
{
filter_t
*
p_filter
=
(
filter_t
*
)
p_this
;
filter_sys_t
*
p_sys
=
p_filter
->
p_sys
;
var_Destroy
(
p_this
,
MONO_CFG
"channel"
);
var_Destroy
(
p_this
,
MONO_CFG
"downmix"
);
free
(
p_sys
);
}
/*****************************************************************************
* Convert
*****************************************************************************/
static
block_t
*
Convert
(
filter_t
*
p_filter
,
block_t
*
p_block
)
{
aout_filter_t
aout_filter
;
aout_buffer_t
in_buf
,
out_buf
;
block_t
*
p_out
=
NULL
;
unsigned
int
i_samples
;
int
i_out_size
;
if
(
!
p_block
||
!
p_block
->
i_samples
)
{
if
(
p_block
)
p_block
->
pf_release
(
p_block
);
return
NULL
;
}
i_out_size
=
p_block
->
i_samples
*
p_filter
->
p_sys
->
i_bitspersample
/
8
*
aout_FormatNbChannels
(
&
(
p_filter
->
fmt_out
.
audio
)
);
p_out
=
p_filter
->
pf_audio_buffer_new
(
p_filter
,
i_out_size
);
if
(
!
p_out
)
{
msg_Warn
(
p_filter
,
"can't get output buffer"
);
p_block
->
pf_release
(
p_block
);
return
NULL
;
}
p_out
->
i_samples
=
(
p_block
->
i_samples
/
p_filter
->
p_sys
->
i_nb_channels
)
*
aout_FormatNbChannels
(
&
(
p_filter
->
fmt_out
.
audio
)
);
p_out
->
i_dts
=
p_block
->
i_dts
;
p_out
->
i_pts
=
p_block
->
i_pts
;
p_out
->
i_length
=
p_block
->
i_length
;
aout_filter
.
p_sys
=
(
struct
aout_filter_sys_t
*
)
p_filter
->
p_sys
;
aout_filter
.
input
=
p_filter
->
fmt_in
.
audio
;
aout_filter
.
input
.
i_format
=
p_filter
->
fmt_in
.
i_codec
;
aout_filter
.
output
=
p_filter
->
fmt_out
.
audio
;
aout_filter
.
output
.
i_format
=
p_filter
->
fmt_out
.
i_codec
;
in_buf
.
p_buffer
=
p_block
->
p_buffer
;
in_buf
.
i_nb_bytes
=
p_block
->
i_buffer
;
in_buf
.
i_nb_samples
=
p_block
->
i_samples
;
#if 0
unsigned int i_in_size = in_buf.i_nb_samples * (p_filter->p_sys->i_bitspersample/8) *
aout_FormatNbChannels( &(p_filter->fmt_in.audio) );
if( (in_buf.i_nb_bytes != i_in_size) && ((i_in_size % 32) != 0) ) /* is it word aligned?? */
{
msg_Err( p_filter, "input buffer is not word aligned" );
/* Fix output buffer to be word aligned */
}
#endif
out_buf
.
p_buffer
=
p_out
->
p_buffer
;
out_buf
.
i_nb_bytes
=
p_out
->
i_buffer
;
out_buf
.
i_nb_samples
=
p_out
->
i_samples
;
memset
(
p_out
->
p_buffer
,
0
,
i_out_size
);
if
(
p_filter
->
p_sys
->
b_downmix
)
{
stereo2mono_downmix
(
(
aout_instance_t
*
)
p_filter
,
&
aout_filter
,
&
in_buf
,
&
out_buf
);
i_samples
=
mono
(
(
aout_instance_t
*
)
p_filter
,
&
aout_filter
,
&
out_buf
,
&
in_buf
);
}
else
{
i_samples
=
stereo_to_mono
(
(
aout_instance_t
*
)
p_filter
,
&
aout_filter
,
&
out_buf
,
&
in_buf
);
}
p_out
->
i_buffer
=
out_buf
.
i_nb_bytes
;
p_out
->
i_samples
=
out_buf
.
i_nb_samples
;
p_block
->
pf_release
(
p_block
);
return
p_out
;
}
/* stereo2mono_downmix - stereo channels into one mono channel.
* Code taken from modules/audio_filter/channel_mixer/headphone.c
* converted from float into int16_t based downmix
* Written by Boris Dorès <babal@via.ecp.fr>
*/
static
void
stereo2mono_downmix
(
aout_instance_t
*
p_aout
,
aout_filter_t
*
p_filter
,
aout_buffer_t
*
p_in_buf
,
aout_buffer_t
*
p_out_buf
)
{
filter_sys_t
*
p_sys
=
(
filter_sys_t
*
)
p_filter
->
p_sys
;
int
i_input_nb
=
aout_FormatNbChannels
(
&
p_filter
->
input
);
int
i_output_nb
=
aout_FormatNbChannels
(
&
p_filter
->
output
);
int16_t
*
p_in
=
(
int16_t
*
)
p_in_buf
->
p_buffer
;
byte_t
*
p_out
;
byte_t
*
p_overflow
;
byte_t
*
p_slide
;
size_t
i_overflow_size
;
/* in bytes */
size_t
i_out_size
;
/* in bytes */
unsigned
int
i
,
j
;
int
i_source_channel_offset
;
int
i_dest_channel_offset
;
unsigned
int
i_delay
;
double
d_amplitude_factor
;
/* out buffer characterisitcs */
p_out_buf
->
i_nb_samples
=
p_in_buf
->
i_nb_samples
;
p_out_buf
->
i_nb_bytes
=
p_in_buf
->
i_nb_bytes
*
i_output_nb
/
i_input_nb
;
p_out
=
p_out_buf
->
p_buffer
;
i_out_size
=
p_out_buf
->
i_nb_bytes
;
if
(
p_sys
!=
NULL
)
{
/* Slide the overflow buffer */
p_overflow
=
p_sys
->
p_overflow_buffer
;
i_overflow_size
=
p_sys
->
i_overflow_buffer_size
;
if
(
i_out_size
>
i_overflow_size
)
memcpy
(
p_out
,
p_overflow
,
i_overflow_size
);
else
memcpy
(
p_out
,
p_overflow
,
i_out_size
);
p_slide
=
p_sys
->
p_overflow_buffer
;
while
(
p_slide
<
p_overflow
+
i_overflow_size
)
{
if
(
p_slide
+
i_out_size
<
p_overflow
+
i_overflow_size
)
{
memset
(
p_slide
,
0
,
i_out_size
);
if
(
p_slide
+
2
*
i_out_size
<
p_overflow
+
i_overflow_size
)
memcpy
(
p_slide
,
p_slide
+
i_out_size
,
i_out_size
);
else
memcpy
(
p_slide
,
p_slide
+
i_out_size
,
p_overflow
+
i_overflow_size
-
(
p_slide
+
i_out_size
)
);
}
else
{
memset
(
p_slide
,
0
,
p_overflow
+
i_overflow_size
-
p_slide
);
}
p_slide
+=
i_out_size
;
}
/* apply the atomic operations */
for
(
i
=
0
;
i
<
p_sys
->
i_nb_atomic_operations
;
i
++
)
{
/* shorter variable names */
i_source_channel_offset
=
p_sys
->
p_atomic_operations
[
i
].
i_source_channel_offset
;
i_dest_channel_offset
=
p_sys
->
p_atomic_operations
[
i
].
i_dest_channel_offset
;
i_delay
=
p_sys
->
p_atomic_operations
[
i
].
i_delay
;
d_amplitude_factor
=
p_sys
->
p_atomic_operations
[
i
].
d_amplitude_factor
;
if
(
p_out_buf
->
i_nb_samples
>
i_delay
)
{
/* current buffer coefficients */
for
(
j
=
0
;
j
<
p_out_buf
->
i_nb_samples
-
i_delay
;
j
++
)
{
((
int16_t
*
)
p_out
)[
(
i_delay
+
j
)
*
i_output_nb
+
i_dest_channel_offset
]
+=
p_in
[
j
*
i_input_nb
+
i_source_channel_offset
]
*
d_amplitude_factor
;
}
/* overflow buffer coefficients */
for
(
j
=
0
;
j
<
i_delay
;
j
++
)
{
((
int16_t
*
)
p_overflow
)[
j
*
i_output_nb
+
i_dest_channel_offset
]
+=
p_in
[
(
p_out_buf
->
i_nb_samples
-
i_delay
+
j
)
*
i_input_nb
+
i_source_channel_offset
]
*
d_amplitude_factor
;
}
}
else
{
/* overflow buffer coefficients only */
for
(
j
=
0
;
j
<
p_out_buf
->
i_nb_samples
;
j
++
)
{
((
int16_t
*
)
p_overflow
)[
(
i_delay
-
p_out_buf
->
i_nb_samples
+
j
)
*
i_output_nb
+
i_dest_channel_offset
]
+=
p_in
[
j
*
i_input_nb
+
i_source_channel_offset
]
*
d_amplitude_factor
;
}
}
}
}
else
{
memset
(
p_out
,
0
,
i_out_size
);
}
}
/* Simple stereo to mono mixing. */
static
unsigned
int
mono
(
aout_instance_t
*
p_aout
,
aout_filter_t
*
p_filter
,
aout_buffer_t
*
p_output
,
aout_buffer_t
*
p_input
)
{
filter_sys_t
*
p_sys
=
(
filter_sys_t
*
)
p_filter
->
p_sys
;
int16_t
*
p_in
,
*
p_out
;
unsigned
int
n
=
0
,
r
=
0
;
p_in
=
(
int16_t
*
)
p_input
->
p_buffer
;
p_out
=
(
int16_t
*
)
p_output
->
p_buffer
;
while
(
n
<
(
p_input
->
i_nb_samples
*
p_sys
->
i_nb_channels
)
)
{
p_out
[
r
]
=
(
p_in
[
n
]
+
p_in
[
n
+
1
])
>>
1
;
r
++
;
n
+=
2
;
}
return
r
;
}
/* Simple stereo to mono mixing. */
static
unsigned
int
stereo_to_mono
(
aout_instance_t
*
p_aout
,
aout_filter_t
*
p_filter
,
aout_buffer_t
*
p_output
,
aout_buffer_t
*
p_input
)
{
filter_sys_t
*
p_sys
=
(
filter_sys_t
*
)
p_filter
->
p_sys
;
int16_t
*
p_in
,
*
p_out
;
unsigned
int
n
;
p_in
=
(
int16_t
*
)
p_input
->
p_buffer
;
p_out
=
(
int16_t
*
)
p_output
->
p_buffer
;
for
(
n
=
0
;
n
<
(
p_input
->
i_nb_samples
*
p_sys
->
i_nb_channels
);
n
++
)
{
/* Fake real mono. */
if
(
p_sys
->
i_channel_selected
==
-
1
)
{
p_out
[
n
]
=
p_out
[
n
+
1
]
=
(
p_in
[
n
]
+
p_in
[
n
+
1
])
>>
1
;
n
++
;
}
else
if
(
(
n
%
p_sys
->
i_nb_channels
)
==
(
unsigned
int
)
p_sys
->
i_channel_selected
)
{
p_out
[
n
]
=
p_out
[
n
+
1
]
=
p_in
[
n
];
}
}
return
n
;
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment