Commit a906b2f5 authored by Renaud Dartus's avatar Renaud Dartus

* Move ac3 globals variables into structures

* Adding authors
* Prepared to add asm imdct and downmix
parent 1c5f8330
......@@ -218,7 +218,8 @@ AC3_DECODER = src/ac3_decoder/ac3_decoder_thread.o \
src/ac3_decoder/ac3_mantissa.o \
src/ac3_decoder/ac3_rematrix.o \
src/ac3_decoder/ac3_imdct.o \
src/ac3_decoder/ac3_downmix.o
src/ac3_decoder/ac3_downmix.o \
src/ac3_decoder/ac3_downmix_c.o
LPCM_DECODER = src/lpcm_decoder/lpcm_decoder_thread.o \
src/lpcm_decoder/lpcm_decoder.o
......
......@@ -3,7 +3,9 @@
*****************************************************************************
* Copyright (C) 2000 VideoLAN
*
* Authors:
* Authors: Michel Kaempf <maxx@via.ecp.fr>
* Aaron Holtzman <aholtzma@engr.uvic.ca>
* Renaud Dartus <reno@videolan.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
......@@ -25,49 +27,40 @@
#include "ac3_decoder.h"
#include "ac3_internal.h"
/*
static inline s16 logadd (s16 a, s16 b);
static s16 calc_lowcomp (s16 a, s16 b0, s16 b1, s16 bin);
static inline u16 min (s16 a, s16 b);
static inline u16 max (s16 a, s16 b);
*/
static void ba_compute_psd (s16 start, s16 end, s16 exps[],
s16 psd[], s16 bndpsd[]);
static void ba_compute_psd (bit_allocate_t * p_bit, s16 start, s16 end, s16 exps[]);
static void ba_compute_excitation (s16 start, s16 end, s16 fgain,
s16 fastleak, s16 slowleak, s16 is_lfe,
s16 bndpsd[], s16 excite[]);
static void ba_compute_mask (s16 start, s16 end, u16 fscod,
static void ba_compute_excitation (bit_allocate_t * p_bit, s16 start, s16 end, s16 fgain,
s16 fastleak, s16 slowleak, s16 is_lfe);
static void ba_compute_mask (bit_allocate_t * p_bit, s16 start, s16 end, u16 fscod,
u16 deltbae, u16 deltnseg, u16 deltoffst[],
u16 deltba[], u16 deltlen[], s16 excite[],
s16 mask[]);
static void ba_compute_bap (s16 start, s16 end, s16 snroffset,
s16 psd[], s16 mask[], s16 bap[]);
u16 deltba[], u16 deltlen[]);
static void ba_compute_bap (bit_allocate_t * p_bit, s16 start, s16 end,
s16 snroffset, s16 bap[]);
/* Misc LUTs for bit allocation process */
static s16 slowdec[] = { 0x0f, 0x11, 0x13, 0x15 };
static s16 fastdec[] = { 0x3f, 0x53, 0x67, 0x7b };
static s16 slowgain[] = { 0x540, 0x4d8, 0x478, 0x410 };
static s16 dbpbtab[] = { 0x000, 0x700, 0x900, 0xb00 };
static const s16 slowdec[] = { 0x0f, 0x11, 0x13, 0x15 };
static const s16 fastdec[] = { 0x3f, 0x53, 0x67, 0x7b };
static const s16 slowgain[] = { 0x540, 0x4d8, 0x478, 0x410 };
static const s16 dbpbtab[] = { 0x000, 0x700, 0x900, 0xb00 };
static u16 floortab[] = { 0x2f0, 0x2b0, 0x270, 0x230, 0x1f0, 0x170, 0x0f0, 0xf800 };
static s16 fastgain[] = { 0x080, 0x100, 0x180, 0x200, 0x280, 0x300, 0x380, 0x400 };
static const u16 floortab[] = { 0x2f0, 0x2b0, 0x270, 0x230, 0x1f0, 0x170, 0x0f0, 0xf800 };
static const s16 fastgain[] = { 0x080, 0x100, 0x180, 0x200, 0x280, 0x300, 0x380, 0x400 };
static s16 bndtab[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
static const s16 bndtab[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24, 25, 26, 27, 28, 31,
34, 37, 40, 43, 46, 49, 55, 61, 67, 73,
79, 85, 97, 109, 121, 133, 157, 181, 205, 229 };
static s16 bndsz[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
static const s16 bndsz[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 3, 3,
3, 3, 3, 3, 3, 6, 6, 6, 6, 6,
6, 12, 12, 12, 12, 24, 24, 24, 24, 24 };
static s16 masktab[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
static const s16 masktab[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 28, 28, 29,
29, 29, 30, 30, 30, 31, 31, 31, 32, 32, 32, 33, 33, 33, 34, 34,
34, 35, 35, 35, 35, 35, 35, 36, 36, 36, 36, 36, 36, 37, 37, 37,
......@@ -85,7 +78,7 @@ static s16 masktab[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 0, 0, 0 };
static s16 latab[] = { 0x0040, 0x003f, 0x003e, 0x003d, 0x003c, 0x003b, 0x003a, 0x0039,
static const s16 latab[] = { 0x0040, 0x003f, 0x003e, 0x003d, 0x003c, 0x003b, 0x003a, 0x0039,
0x0038, 0x0037, 0x0036, 0x0035, 0x0034, 0x0034, 0x0033, 0x0032,
0x0031, 0x0030, 0x002f, 0x002f, 0x002e, 0x002d, 0x002c, 0x002c,
0x002b, 0x002a, 0x0029, 0x0029, 0x0028, 0x0027, 0x0026, 0x0026,
......@@ -119,7 +112,7 @@ static s16 latab[] = { 0x0040, 0x003f, 0x003e, 0x003d, 0x003c, 0x003b, 0x003a, 0
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000};
static s16 hth[][50] = {{ 0x04d0, 0x04d0, 0x0440, 0x0400, 0x03e0, 0x03c0, 0x03b0, 0x03b0,
static const s16 hth[][50] = {{ 0x04d0, 0x04d0, 0x0440, 0x0400, 0x03e0, 0x03c0, 0x03b0, 0x03b0,
0x03a0, 0x03a0, 0x03a0, 0x03a0, 0x03a0, 0x0390, 0x0390, 0x0390,
0x0380, 0x0380, 0x0370, 0x0370, 0x0360, 0x0360, 0x0350, 0x0350,
0x0340, 0x0340, 0x0330, 0x0320, 0x0310, 0x0300, 0x02f0, 0x02f0,
......@@ -144,21 +137,11 @@ static s16 hth[][50] = {{ 0x04d0, 0x04d0, 0x0440, 0x0400, 0x03e0, 0x03c0, 0x03b0
0x0450, 0x04e0 }};
static s16 baptab[] = { 0, 1, 1, 1, 1, 1, 2, 2, 3, 3, 3, 4, 4, 5, 5, 6,
static const s16 baptab[] = { 0, 1, 1, 1, 1, 1, 2, 2, 3, 3, 3, 4, 4, 5, 5, 6,
6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 10,
10, 10, 10, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13, 14,
14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15 };
static s16 sdecay;
static s16 fdecay;
static s16 sgain;
static s16 dbknee;
static s16 floor;
static s16 psd[256];
static s16 bndpsd[256];
static s16 excite[256];
static s16 mask[256];
static __inline__ u16 max (s16 a, s16 b)
{
return (a > b ? a : b);
......@@ -218,11 +201,11 @@ void bit_allocate (ac3dec_t * p_ac3dec)
return;
/* Do some setup before we do the bit alloc */
sdecay = slowdec[p_ac3dec->audblk.sdcycod];
fdecay = fastdec[p_ac3dec->audblk.fdcycod];
sgain = slowgain[p_ac3dec->audblk.sgaincod];
dbknee = dbpbtab[p_ac3dec->audblk.dbpbcod];
floor = floortab[p_ac3dec->audblk.floorcod];
p_ac3dec->bit_allocate.sdecay = slowdec[p_ac3dec->audblk.sdcycod];
p_ac3dec->bit_allocate.fdecay = fastdec[p_ac3dec->audblk.fdcycod];
p_ac3dec->bit_allocate.sgain = slowgain[p_ac3dec->audblk.sgaincod];
p_ac3dec->bit_allocate.dbknee = dbpbtab[p_ac3dec->audblk.dbpbcod];
p_ac3dec->bit_allocate.floor = floortab[p_ac3dec->audblk.floorcod];
/* if all the SNR offset constants are zero then the whole block is zero */
if (!p_ac3dec->audblk.csnroffst && !p_ac3dec->audblk.fsnroffst[0] &&
......@@ -239,24 +222,22 @@ void bit_allocate (ac3dec_t * p_ac3dec)
start = 0;
end = p_ac3dec->audblk.endmant[i] ;
fgain = fastgain[p_ac3dec->audblk.fgaincod[i]];
snroffset = (((p_ac3dec->audblk.csnroffst - 15) << 4) + p_ac3dec->audblk.fsnroffst[i]) << 2 ;
snroffset = (((p_ac3dec->audblk.csnroffst - 15) << 4) + p_ac3dec->audblk.fsnroffst[i]) << 2;
fastleak = 0;
slowleak = 0;
ba_compute_psd (start, end, p_ac3dec->audblk.fbw_exp[i], psd, bndpsd);
ba_compute_psd (&p_ac3dec->bit_allocate, start, end, p_ac3dec->audblk.fbw_exp[i]);
ba_compute_excitation (start, end , fgain, fastleak, slowleak, 0,
bndpsd, excite);
ba_compute_excitation (&p_ac3dec->bit_allocate, start, end , fgain, fastleak, slowleak, 0);
ba_compute_mask (start, end, p_ac3dec->syncinfo.fscod,
ba_compute_mask (&p_ac3dec->bit_allocate, start, end, p_ac3dec->syncinfo.fscod,
p_ac3dec->audblk.deltbae[i],
p_ac3dec->audblk.deltnseg[i],
p_ac3dec->audblk.deltoffst[i],
p_ac3dec->audblk.deltba[i],
p_ac3dec->audblk.deltlen[i], excite, mask);
p_ac3dec->audblk.deltlen[i]);
ba_compute_bap (start, end, snroffset, psd, mask,
p_ac3dec->audblk.fbw_bap[i]);
ba_compute_bap (&p_ac3dec->bit_allocate, start, end, snroffset, p_ac3dec->audblk.fbw_bap[i]);
}
if (p_ac3dec->audblk.cplinu) {
......@@ -267,20 +248,18 @@ void bit_allocate (ac3dec_t * p_ac3dec)
fastleak = (p_ac3dec->audblk.cplfleak << 8) + 768;
slowleak = (p_ac3dec->audblk.cplsleak << 8) + 768;
ba_compute_psd (start, end, p_ac3dec->audblk.cpl_exp, psd, bndpsd);
ba_compute_psd (&p_ac3dec->bit_allocate, start, end, p_ac3dec->audblk.cpl_exp);
ba_compute_excitation (start, end , fgain, fastleak, slowleak, 0,
bndpsd, excite);
ba_compute_excitation (&p_ac3dec->bit_allocate, start, end , fgain, fastleak, slowleak, 0);
ba_compute_mask (start, end, p_ac3dec->syncinfo.fscod,
ba_compute_mask (&p_ac3dec->bit_allocate, start, end, p_ac3dec->syncinfo.fscod,
p_ac3dec->audblk.cpldeltbae,
p_ac3dec->audblk.cpldeltnseg,
p_ac3dec->audblk.cpldeltoffst,
p_ac3dec->audblk.cpldeltba,
p_ac3dec->audblk.cpldeltlen, excite, mask);
p_ac3dec->audblk.cpldeltlen);
ba_compute_bap (start, end, snroffset, psd, mask,
p_ac3dec->audblk.cpl_bap);
ba_compute_bap (&p_ac3dec->bit_allocate, start, end, snroffset, p_ac3dec->audblk.cpl_bap);
}
if (p_ac3dec->bsi.lfeon) {
......@@ -291,29 +270,25 @@ void bit_allocate (ac3dec_t * p_ac3dec)
fastleak = 0;
slowleak = 0;
ba_compute_psd (start, end, p_ac3dec->audblk.lfe_exp, psd, bndpsd);
ba_compute_psd (&p_ac3dec->bit_allocate, start, end, p_ac3dec->audblk.lfe_exp);
ba_compute_excitation (start, end , fgain, fastleak, slowleak, 1,
bndpsd, excite);
ba_compute_excitation (&p_ac3dec->bit_allocate, start, end , fgain, fastleak, slowleak, 1);
ba_compute_mask (start, end, p_ac3dec->syncinfo.fscod, 2, 0, 0, 0, 0,
excite, mask);
ba_compute_mask (&p_ac3dec->bit_allocate, start, end, p_ac3dec->syncinfo.fscod, 2, 0, 0, 0, 0);
ba_compute_bap (start, end, snroffset, psd, mask,
p_ac3dec->audblk.lfe_bap);
ba_compute_bap (&p_ac3dec->bit_allocate, start, end, snroffset, p_ac3dec->audblk.lfe_bap);
}
}
static void ba_compute_psd (s16 start, s16 end, s16 exps[], s16 psd[],
s16 bndpsd[])
static void ba_compute_psd (bit_allocate_t * p_bit, s16 start, s16 end, s16 exps[])
{
int bin,i,j,k;
s16 lastbin = 0;
/* Map the exponents into dBs */
for (bin=start; bin<end; bin++) {
psd[bin] = (3072 - (exps[bin] << 7));
p_bit->psd[bin] = (3072 - (exps[bin] << 7));
}
/* Integrate the psd function over each bit allocation band */
......@@ -322,11 +297,11 @@ static void ba_compute_psd (s16 start, s16 end, s16 exps[], s16 psd[],
do {
lastbin = min(bndtab[k] + bndsz[k], end);
bndpsd[k] = psd[j];
p_bit->bndpsd[k] = p_bit->psd[j];
j++;
for (i = j; i < lastbin; i++) {
bndpsd[k] = logadd(bndpsd[k], psd[j]);
p_bit->bndpsd[k] = logadd(p_bit->bndpsd[k],p_bit->psd[j]);
j++;
}
......@@ -334,9 +309,8 @@ static void ba_compute_psd (s16 start, s16 end, s16 exps[], s16 psd[],
} while (end > lastbin);
}
static void ba_compute_excitation (s16 start, s16 end,s16 fgain, s16 fastleak,
s16 slowleak, s16 is_lfe, s16 bndpsd[],
s16 excite[])
static void ba_compute_excitation (bit_allocate_t * p_bit, s16 start, s16 end,
s16 fgain, s16 fastleak, s16 slowleak, s16 is_lfe)
{
int bin;
s16 bndstrt;
......@@ -349,22 +323,24 @@ static void ba_compute_excitation (s16 start, s16 end,s16 fgain, s16 fastleak,
bndend = masktab[end - 1] + 1;
if (bndstrt == 0) { /* For fbw and lfe channels */
lowcomp = calc_lowcomp(lowcomp, bndpsd[0], bndpsd[1], 0);
excite[0] = bndpsd[0] - fgain - lowcomp;
lowcomp = calc_lowcomp(lowcomp, bndpsd[1], bndpsd[2], 1);
excite[1] = bndpsd[1] - fgain - lowcomp;
lowcomp = calc_lowcomp(lowcomp, p_bit->bndpsd[0], p_bit->bndpsd[1], 0);
p_bit->excite[0] = p_bit->bndpsd[0] - fgain - lowcomp;
lowcomp = calc_lowcomp(lowcomp, p_bit->bndpsd[1], p_bit->bndpsd[2], 1);
p_bit->excite[1] = p_bit->bndpsd[1] - fgain - lowcomp;
begin = 7 ;
/* Note: Do not call calc_lowcomp() for the last band of the lfe channel, (bin = 6) */
for (bin = 2; bin < 7; bin++) {
if (!(is_lfe && (bin == 6)))
lowcomp = calc_lowcomp (lowcomp, bndpsd[bin], bndpsd[bin+1], bin);
fastleak = bndpsd[bin] - fgain;
slowleak = bndpsd[bin] - sgain;
excite[bin] = fastleak - lowcomp;
lowcomp = calc_lowcomp (lowcomp, p_bit->bndpsd[bin], p_bit->bndpsd[bin+1], bin);
fastleak = p_bit->bndpsd[bin] - fgain;
slowleak = p_bit->bndpsd[bin] - p_bit->sgain;
p_bit->excite[bin] = fastleak - lowcomp;
if (!(is_lfe && (bin == 6))) {
if (bndpsd[bin] <= bndpsd[bin+1]) {
if (p_bit->bndpsd[bin] <=
p_bit->bndpsd[bin+1])
{
begin = bin + 1 ;
break;
}
......@@ -373,12 +349,13 @@ static void ba_compute_excitation (s16 start, s16 end,s16 fgain, s16 fastleak,
for (bin = begin; bin < min(bndend, 22); bin++) {
if (!(is_lfe && (bin == 6)))
lowcomp = calc_lowcomp (lowcomp, bndpsd[bin], bndpsd[bin+1], bin);
fastleak -= fdecay ;
fastleak = max(fastleak, bndpsd[bin] - fgain);
slowleak -= sdecay ;
slowleak = max(slowleak, bndpsd[bin] - sgain);
excite[bin] = max(fastleak - lowcomp, slowleak);
lowcomp = calc_lowcomp (lowcomp, p_bit->bndpsd[bin],
p_bit->bndpsd[bin+1], bin);
fastleak -= p_bit->fdecay ;
fastleak = max(fastleak, p_bit->bndpsd[bin] - fgain);
slowleak -= p_bit->sdecay ;
slowleak = max(slowleak, p_bit->bndpsd[bin] - p_bit->sgain);
p_bit->excite[bin] = max(fastleak - lowcomp, slowleak);
}
begin = 22;
} else { /* For coupling channel */
......@@ -386,17 +363,17 @@ static void ba_compute_excitation (s16 start, s16 end,s16 fgain, s16 fastleak,
}
for (bin = begin; bin < bndend; bin++) {
fastleak -= fdecay;
fastleak = max(fastleak, bndpsd[bin] - fgain);
slowleak -= sdecay;
slowleak = max(slowleak, bndpsd[bin] - sgain);
excite[bin] = max(fastleak, slowleak) ;
fastleak -= p_bit->fdecay;
fastleak = max(fastleak, p_bit->bndpsd[bin] - fgain);
slowleak -= p_bit->sdecay;
slowleak = max(slowleak, p_bit->bndpsd[bin] - p_bit->sgain);
p_bit->excite[bin] = max(fastleak, slowleak) ;
}
}
static void ba_compute_mask (s16 start, s16 end, u16 fscod, u16 deltbae,
u16 deltnseg, u16 deltoffst[], u16 deltba[],
u16 deltlen[], s16 excite[], s16 mask[])
static void ba_compute_mask (bit_allocate_t * p_bit, s16 start, s16 end, u16 fscod,
u16 deltbae, u16 deltnseg, u16 deltoffst[],
u16 deltba[], u16 deltlen[])
{
int bin,k;
s16 bndstrt;
......@@ -408,10 +385,10 @@ static void ba_compute_mask (s16 start, s16 end, u16 fscod, u16 deltbae,
/* Compute the masking curve */
for (bin = bndstrt; bin < bndend; bin++) {
if (bndpsd[bin] < dbknee) {
excite[bin] += ((dbknee - bndpsd[bin]) >> 2);
if (p_bit->bndpsd[bin] < p_bit->dbknee) {
p_bit->excite[bin] += ((p_bit->dbknee - p_bit->bndpsd[bin]) >> 2);
}
mask[bin] = max(excite[bin], hth[fscod][bin]);
p_bit->mask[bin] = max(p_bit->excite[bin], hth[fscod][bin]);
}
/* Perform delta bit modulation if necessary */
......@@ -427,15 +404,15 @@ static void ba_compute_mask (s16 start, s16 end, u16 fscod, u16 deltbae,
delta = (deltba[seg] - 4) << 7;
}
for (k = 0; k < deltlen[seg]; k++) {
mask[band] += delta;
p_bit->mask[band] += delta;
band++;
}
}
}
}
static void ba_compute_bap (s16 start, s16 end, s16 snroffset, s16 psd[],
s16 mask[], s16 bap[])
static void ba_compute_bap (bit_allocate_t * p_bit, s16 start, s16 end, s16 snroffset,
s16 bap[])
{
int i,j,k;
s16 lastbin = 0;
......@@ -447,16 +424,16 @@ static void ba_compute_bap (s16 start, s16 end, s16 snroffset, s16 psd[],
do {
lastbin = min(bndtab[j] + bndsz[j], end);
mask[j] -= snroffset;
mask[j] -= floor;
p_bit->mask[j] -= snroffset;
p_bit->mask[j] -= p_bit->floor;
if (mask[j] < 0)
mask[j] = 0;
if (p_bit->mask[j] < 0)
p_bit->mask[j] = 0;
mask[j] &= 0x1fe0;
mask[j] += floor;
p_bit->mask[j] &= 0x1fe0;
p_bit->mask[j] += p_bit->floor;
for (k = i; k < lastbin; k++) {
address = (psd[i] - mask[j]) >> 5;
address = (p_bit->psd[i] - p_bit->mask[j]) >> 5;
address = min(63, max(0, address));
bap[i] = baptab[address];
i++;
......
......@@ -3,7 +3,8 @@
*****************************************************************************
* Copyright (C) 2000, 2001 VideoLAN
*
* Authors: Renaud Dartus <reno@videolan.org>
* Authors: Michel Lespinasse <walken@zoy.org>
* Renaud Dartus <reno@videolan.org>
*
*
* This program is free software; you can redistribute it and/or modify
......
......@@ -3,7 +3,9 @@
*****************************************************************************
* Copyright (C) 1999, 2000 VideoLAN
*
* Authors:
* Authors: Michel Kaempf <maxx@via.ecp.fr>
* Michel Lespinasse <walken@zoy.org>
* Aaron Holtzman <aholtzma@engr.uvic.ca>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
......@@ -19,17 +21,24 @@
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111, USA.
*****************************************************************************/
#include "defs.h"
#include "int_types.h"
#include "ac3_decoder.h"
#include "ac3_internal.h"
#include <stdio.h>
void imdct_init (imdct_t * p_imdct);
int ac3_init (ac3dec_t * p_ac3dec)
{
//p_ac3dec->bit_stream.buffer = 0;
//p_ac3dec->bit_stream.i_available = 0;
p_ac3dec->mantissa.lfsr_state = 1; /* dither_gen initialization */
imdct_init(&p_ac3dec->imdct);
return 0;
}
......@@ -39,7 +48,7 @@ int ac3_decode_frame (ac3dec_t * p_ac3dec, s16 * buffer)
if (parse_bsi (p_ac3dec))
return 1;
for (i = 0; i < 6; i++) {
if (parse_audblk (p_ac3dec, i))
return 1;
......@@ -49,8 +58,8 @@ int ac3_decode_frame (ac3dec_t * p_ac3dec, s16 * buffer)
mantissa_unpack (p_ac3dec);
if (p_ac3dec->bsi.acmod == 0x2)
rematrix (p_ac3dec);
imdct (p_ac3dec);
downmix (p_ac3dec, buffer);
imdct (p_ac3dec, buffer);
// downmix (p_ac3dec, buffer);
buffer += 2*256;
}
......
......@@ -3,8 +3,8 @@
*****************************************************************************
* Copyright (C) 1999, 2000 VideoLAN
*
* Authors:
* Michel Kaempf <maxx@via.ecp.fr>
* Authors: Michel Kaempf <maxx@via.ecp.fr>
* Renaud Dartus <reno@videolan.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
......@@ -355,6 +355,63 @@ typedef struct ac3_bit_stream_s
unsigned int total_bits_read; /* temporary */
} ac3_bit_stream_t;
typedef struct bit_allocate_s
{
s16 psd[256];
s16 bndpsd[256];
s16 excite[256];
s16 mask[256];
s16 sdecay;
s16 fdecay;
s16 sgain;
s16 dbknee;
s16 floor;
} bit_allocate_t;
/* These store the persistent state of the packed mantissas */
typedef struct mantissa_s
{
float q_1[2];
float q_2[2];
float q_4[1];
s32 q_1_pointer;
s32 q_2_pointer;
s32 q_4_pointer;
u16 lfsr_state;
} mantissa_t;
typedef struct complex_s {
float real;
float imag;
} complex_t;
#define N 512
typedef struct imdct_s
{
complex_t buf[N/4];
/* Delay buffer for time domain interleaving */
float delay[6][256];
/* Twiddle factors for IMDCT */
float xcos1[N/4];
float xsin1[N/4];
float xcos2[N/8];
float xsin2[N/8];
/* Twiddle factor LUT */
complex_t *w[7];
complex_t w_1[1];
complex_t w_2[2];
complex_t w_4[4];
complex_t w_8[8];
complex_t w_16[16];
complex_t w_32[32];
complex_t w_64[64];
} imdct_t;
struct ac3dec_s
{
/*
......@@ -373,6 +430,10 @@ struct ac3dec_s
stream_coeffs_t coeffs;
stream_samples_t samples;
bit_allocate_t bit_allocate;
mantissa_t mantissa;
imdct_t imdct;
};
/**** ac3 decoder inline functions ****/
......
......@@ -2,9 +2,9 @@
* ac3_decoder_thread.c: ac3 decoder thread
*****************************************************************************
* Copyright (C) 1999, 2000 VideoLAN
* $Id: ac3_decoder_thread.c,v 1.24 2001/02/11 01:15:10 sam Exp $
* $Id: ac3_decoder_thread.c,v 1.25 2001/02/20 12:06:28 reno Exp $
*
* Authors:
* Authors: Michel Lespinasse <walken@zoy.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
......@@ -164,9 +164,6 @@ static void RunThread (ac3dec_thread_t * p_ac3dec)
intf_DbgMsg ("ac3dec debug: running ac3 decoder thread (%p) (pid == %i)", p_ac3dec, getpid());
/* FIXME ! Qu'est-ce que c'est que ce bordel !?!?!?!? --Meuuh */
//msleep (INPUT_PTS_DELAY);
/* Initializing the ac3 decoder thread */
if (InitThread (p_ac3dec)) /* XXX?? */
{
......@@ -210,7 +207,7 @@ static void RunThread (ac3dec_thread_t * p_ac3dec)
{
if (p_byte_stream->p_byte >= p_byte_stream->p_end)
{
ac3_byte_stream_next (p_byte_stream);
ac3_byte_stream_next (p_byte_stream);
}
p_byte_stream->p_byte++;
}
......@@ -326,7 +323,6 @@ static void EndThread (ac3dec_thread_t * p_ac3dec)
void ac3_byte_stream_next (ac3_byte_stream_t * p_byte_stream)
{
ac3dec_thread_t * p_ac3dec = p_byte_stream->info;
/* We are looking for the next TS packet that contains real data,
* and not just a PES header */
do
......
......@@ -3,7 +3,9 @@
*****************************************************************************
* Copyright (C) 1999, 2000 VideoLAN
*
* Authors:
* Authors: Michel Kaempf <maxx@via.ecp.fr>
* Aaron Holtzman <aholtzma@engr.uvic.ca>
* Renaud Dartus <reno@videolan.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
......@@ -25,302 +27,70 @@
#include "ac3_decoder.h"
#include "ac3_internal.h"
#define NORM 16384
typedef struct prefs_s
{
u16 use_dolby_surround;
u16 dual_mono_channel_select;
} prefs_t;
prefs_t global_prefs = {0,0};
#include "ac3_downmix.h"
/* Pre-scaled downmix coefficients */
static float cmixlev_lut[4] = { 0.2928, 0.2468, 0.2071, 0.2468 };
static float smixlev_lut[4] = { 0.2928, 0.2071, 0.0 , 0.2071 };
static const float cmixlev_lut[4] = { 0.2928, 0.2468, 0.2071, 0.2468 };
static const float smixlev_lut[4] = { 0.2928, 0.2071, 0.0 , 0.2071 };
/* Downmix into _two_ channels...other downmix modes aren't implemented
* to reduce complexity. Realistically, there aren't many machines around
* with > 2 channel output anyways */
void downmix (ac3dec_t * p_ac3dec, s16 * out_buf)
int __inline__ downmix (ac3dec_t * p_ac3dec, s16 * out_buf)
{
int j;
float right_tmp;
float left_tmp;
float clev,slev;
float *centre = 0, *left = 0, *right = 0, *left_sur = 0, *right_sur = 0;
/*
if (p_ac3dec->bsi.acmod > 7)
intf_ErrMsg( "ac3dec: (downmix) invalid acmod number" );
*/
/* There are two main cases, with or without Dolby Surround */
if (global_prefs.use_dolby_surround)
{
switch(p_ac3dec->bsi.acmod)
{
case 7: /* 3/2 */
left = p_ac3dec->samples.channel[0];
centre = p_ac3dec->samples.channel[1];
right = p_ac3dec->samples.channel[2];
left_sur = p_ac3dec->samples.channel[3];
right_sur = p_ac3dec->samples.channel[4];
for (j = 0; j < 256; j++)
{
right_tmp = 0.2265f * *left_sur++ + 0.2265f * *right_sur++;
left_tmp = -1 * right_tmp;
right_tmp += 0.3204f * *right++ + 0.2265f * *centre;
left_tmp += 0.3204f * *left++ + 0.2265f * *centre++;
*(out_buf++) = left_tmp * NORM;
*(out_buf++) = right_tmp * NORM;
}
break;
case 6: /* 2/2 */
left = p_ac3dec->samples.channel[0];
right = p_ac3dec->samples.channel[1];
left_sur = p_ac3dec->samples.channel[2];
right_sur = p_ac3dec->samples.channel[3];
for (j = 0; j < 256; j++)
{
right_tmp = 0.2265f * *left_sur++ + 0.2265f * *right_sur++;
left_tmp = -1 * right_tmp;
right_tmp += 0.3204f * *right++;
left_tmp += 0.3204f * *left++ ;
*(out_buf++) = left_tmp * NORM;
*(out_buf++) = right_tmp * NORM;
}
break;
case 5: /* 3/1 */
left = p_ac3dec->samples.channel[0];
centre = p_ac3dec->samples.channel[1];
right = p_ac3dec->samples.channel[2];
/* Mono surround */
right_sur = p_ac3dec->samples.channel[3];
for (j = 0; j < 256; j++)
{
right_tmp = 0.2265f * *right_sur++;
left_tmp = - right_tmp;
right_tmp += 0.3204f * *right++ + 0.2265f * *centre;
left_tmp += 0.3204f * *left++ + 0.2265f * *centre++;
*(out_buf++) = left_tmp * NORM;
*(out_buf++) = right_tmp * NORM;
}
break;
case 4: /* 2/1 */
left = p_ac3dec->samples.channel[0];
right = p_ac3dec->samples.channel[1];
/* Mono surround */
right_sur = p_ac3dec->samples.channel[2];
for (j = 0; j < 256; j++)
{
right_tmp = 0.2265f * *right_sur++;
left_tmp = - right_tmp;
right_tmp += 0.3204f * *right++;
left_tmp += 0.3204f * *left++;
*(out_buf++) = left_tmp * NORM;
*(out_buf++) = right_tmp * NORM;
}
break;
case 3: /* 3/0 */
left = p_ac3dec->samples.channel[0];
centre = p_ac3dec->samples.channel[1];
right = p_ac3dec->samples.channel[2];
for (j = 0; j < 256; j++)
{
right_tmp = 0.3204f * *right++ + 0.2265f * *centre;
left_tmp = 0.3204f * *left++ + 0.2265f * *centre++;
*(out_buf++) = left_tmp * NORM;
*(out_buf++) = right_tmp * NORM;
}
break;
case 2: /* 2/0 */
left = p_ac3dec->samples.channel[0];
right = p_ac3dec->samples.channel[1];
for (j = 0; j < 256; j++)
{
*(out_buf++) = *(left++) * NORM;
*(out_buf++) = *(right++) * NORM;
}
break;
case 1: /* 1/0 */
/* Mono program! */
right = p_ac3dec->samples.channel[0];
for (j = 0; j < 256; j++)
{
right_tmp = 0.7071f * *right++;
*(out_buf++) = right_tmp * NORM;
*(out_buf++) = right_tmp * NORM;
}
break;
case 0: /* 1+1 */
/* Dual mono, output selected by user */
right = p_ac3dec->samples.channel[global_prefs.dual_mono_channel_select];
dm_par_t dm_par;
float * center = 0;
dm_par.clev = 0.0;
dm_par.slev = 0.0;
dm_par.unit = 1.0;
for (j = 0; j < 256; j++)
{
right_tmp = 0.7071f * *right++;
if (p_ac3dec->bsi.acmod & 0x1) /* have center */
dm_par.clev = cmixlev_lut[p_ac3dec->bsi.cmixlev];
*(out_buf++) = right_tmp * NORM;
*(out_buf++) = right_tmp * NORM;
}
break;
}
} else {
/* Non-Dolby surround downmixes */
switch(p_ac3dec->bsi.acmod)
{
case 7: /* 3/2 */
left = p_ac3dec->samples.channel[0];
centre = p_ac3dec->samples.channel[1];
right = p_ac3dec->samples.channel[2];
left_sur = p_ac3dec->samples.channel[3];
right_sur = p_ac3dec->samples.channel[4];
if (p_ac3dec->bsi.acmod & 0x4) /* have surround channels */
dm_par.slev = smixlev_lut[p_ac3dec->bsi.surmixlev];
clev = cmixlev_lut[p_ac3dec->bsi.cmixlev];
slev = smixlev_lut[p_ac3dec->bsi.surmixlev];
dm_par.unit /= 1.0 + dm_par.clev + dm_par.slev;
dm_par.clev *= dm_par.unit;
dm_par.slev *= dm_par.unit;
for (j = 0; j < 256; j++)
{
right_tmp= 0.4142f * *right++ + clev * *centre + slev * *right_sur++;
left_tmp = 0.4142f * *left++ + clev * *centre++ + slev * *left_sur++;
*(out_buf++) = left_tmp * NORM;
*(out_buf++) = right_tmp * NORM;
}
break;
case 6: /* 2/2 */
left = p_ac3dec->samples.channel[0];
right = p_ac3dec->samples.channel[1];
left_sur = p_ac3dec->samples.channel[2];
right_sur = p_ac3dec->samples.channel[3];
slev = smixlev_lut[p_ac3dec->bsi.surmixlev];
for (j = 0; j < 256; j++)
{
right_tmp= 0.4142f * *right++ + slev * *right_sur++;
left_tmp = 0.4142f * *left++ + slev * *left_sur++;
*(out_buf++) = left_tmp * NORM;
*(out_buf++) = right_tmp * NORM;
}
break;
case 5: /* 3/1 */
left = p_ac3dec->samples.channel[0];
centre = p_ac3dec->samples.channel[1];
right = p_ac3dec->samples.channel[2];
/* Mono surround */
right_sur = p_ac3dec->samples.channel[3];
clev = cmixlev_lut[p_ac3dec->bsi.cmixlev];
slev = smixlev_lut[p_ac3dec->bsi.surmixlev];
for (j = 0; j < 256; j++)
{
right_tmp= 0.4142f * *right++ + clev * *centre + slev * *right_sur;
left_tmp = 0.4142f * *left++ + clev * *centre++ + slev * *right_sur++;
*(out_buf++) = left_tmp * NORM;
*(out_buf++) = right_tmp * NORM;
}
break;
case 4: /* 2/1 */
left = p_ac3dec->samples.channel[0];
right = p_ac3dec->samples.channel[1];
/* Mono surround */
right_sur = p_ac3dec->samples.channel[2];
slev = smixlev_lut[p_ac3dec->bsi.surmixlev];
for (j = 0; j < 256; j++)
{
right_tmp= 0.4142f * *right++ + slev * *right_sur;
left_tmp = 0.4142f * *left++ + slev * *right_sur++;
*(out_buf++) = left_tmp * NORM;
*(out_buf++) = right_tmp * NORM;
}
break;
case 3: /* 3/0 */
left = p_ac3dec->samples.channel[0];
centre = p_ac3dec->samples.channel[1];
right = p_ac3dec->samples.channel[2];
clev = cmixlev_lut[p_ac3dec->bsi.cmixlev];
for (j = 0; j < 256; j++)
{
right_tmp= 0.4142f * *right++ + clev * *centre;
left_tmp = 0.4142f * *left++ + clev * *centre++;
*(out_buf++) = left_tmp * NORM;
*(out_buf++) = right_tmp * NORM;
}
break;
case 2: /* 2/0 */
left = p_ac3dec->samples.channel[0];
right = p_ac3dec->samples.channel[1];
for (j = 0; j < 256; j++)
{
*(out_buf++) = *(left++) * NORM;
*(out_buf++) = *(right++) * NORM;
}
break;
case 1: /* 1/0 */
/* Mono program! */
right = p_ac3dec->samples.channel[0];
for (j = 0; j < 256; j++)
{
right_tmp = 0.7071f * *right++;
*(out_buf++) = right_tmp * NORM;
*(out_buf++) = right_tmp * NORM;
}
break;
case 0: /* 1+1 */
/* Dual mono, output selected by user */
right = p_ac3dec->samples.channel[global_prefs.dual_mono_channel_select];
for (j = 0; j < 256; j++)
{
right_tmp = 0.7071f * *right++;
*(out_buf++) = right_tmp * NORM;
*(out_buf++) = right_tmp * NORM;
}
break;
}
}
/*
if (p_ac3dec->bsi.acmod > 7)
intf_ErrMsg( "ac3dec: (downmix) invalid acmod number" );
*/
switch(p_ac3dec->bsi.acmod)
{
case 7: // 3/2
downmix_3f_2r_to_2ch_c (p_ac3dec->samples.channel[0], &dm_par);
break;
case 6: // 2/2
downmix_2f_2r_to_2ch_c (p_ac3dec->samples.channel[0], &dm_par);
break;
case 5: // 3/1
downmix_3f_1r_to_2ch_c (p_ac3dec->samples.channel[0], &dm_par);
break;
case 4: // 2/1
downmix_2f_1r_to_2ch_c (p_ac3dec->samples.channel[0], &dm_par);
break;
case 3: // 3/0
downmix_3f_0r_to_2ch_c (p_ac3dec->samples.channel[0], &dm_par);
break;
case 2:
break;
default: // 1/0
if (p_ac3dec->bsi.acmod == 1)
center = p_ac3dec->samples.channel[0];
else if (p_ac3dec->bsi.acmod == 0)
center = p_ac3dec->samples.channel[0]; /* FIXME */
stream_sample_1ch_to_s16_c (out_buf, center);
return 1;
}
return 0;
}
/*****************************************************************************
* ac3_downmix.h: ac3 downmix functions
*****************************************************************************
* Copyright (C) 2000, 2001 VideoLAN
*
* Authors: Renaud Dartus <reno@videolan.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111, USA.
*****************************************************************************/
#define NORM 16384
typedef struct dm_par_s {
float unit;
float clev;
float slev;
} dm_par_t;
void downmix_3f_2r_to_2ch_c(float *samples, dm_par_t * dm_par);
void downmix_3f_1r_to_2ch_c(float *samples, dm_par_t * dm_par);
void downmix_2f_2r_to_2ch_c(float *samples, dm_par_t * dm_par);
void downmix_2f_1r_to_2ch_c(float *samples, dm_par_t * dm_par);
void downmix_3f_0r_to_2ch_c(float *samples, dm_par_t * dm_par);
void stream_sample_2ch_to_s16_c(s16 *s16_samples, float *left, float *right);
void stream_sample_1ch_to_s16_c(s16 *s16_samples, float *center);
/*****************************************************************************
* ac3_downmix_c.c: ac3 downmix functions
*****************************************************************************
* Copyright (C) 1999, 2000, 2001 VideoLAN
*
* Authors: Renaud Dartus <reno@videolan.org>
* Aaron Holtzman <aholtzma@engr.uvic.ca>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111, USA.
*****************************************************************************/
#include "defs.h"
#include "int_types.h"
#include "ac3_decoder.h"
#include "ac3_internal.h"
#include "ac3_bit_stream.h"
#include "ac3_downmix.h"
void __inline__ downmix_3f_2r_to_2ch_c (float *samples, dm_par_t *dm_par)
{
int i;
float *left, *right, *center, *left_sur, *right_sur;
float left_tmp, right_tmp;
left = samples;
center = samples + 256;
right = samples + 256*2;
left_sur = samples + 256*3;
right_sur = samples + 256*4;
for (i=0; i < 256; i++) {
left_tmp = dm_par->unit * *left + dm_par->clev * *center + dm_par->slev * *left_sur++;
right_tmp = dm_par->unit * *right++ + dm_par->clev * *center + dm_par->slev * *right_sur++;
*left++ = left_tmp;
*center++ = right_tmp;
}
}
void __inline__ downmix_2f_2r_to_2ch_c (float *samples, dm_par_t *dm_par)
{
int i;
float *left, *right, *left_sur, *right_sur;
float left_tmp, right_tmp;
left = &samples[0];
right = &samples[256];
left_sur = &samples[512];
right_sur = &samples[768];
for (i = 0; i < 256; i++) {
left_tmp = dm_par->unit * *left + dm_par->slev * *left_sur++;
right_tmp= dm_par->unit * *right + dm_par->slev * *right_sur++;
*left++ = left_tmp;
*right++ = right_tmp;
}
}
void __inline__ downmix_3f_1r_to_2ch_c (float *samples, dm_par_t *dm_par)
{
int i;
float *left, *right, *center, *right_sur;
float left_tmp, right_tmp;
left = &samples[0];
right = &samples[512];
center = &samples[256];
right_sur = &samples[768];
for (i = 0; i < 256; i++) {
left_tmp = dm_par->unit * *left + dm_par->clev * *center - dm_par->slev * *right_sur;
right_tmp= dm_par->unit * *right++ + dm_par->clev * *center + dm_par->slev * *right_sur++;
*left++ = left_tmp;
*center++ = right_tmp;
}
}
void __inline__ downmix_2f_1r_to_2ch_c (float *samples, dm_par_t *dm_par)
{
int i;
float *left, *right, *right_sur;
float left_tmp, right_tmp;
left = &samples[0];
right = &samples[256];
right_sur = &samples[512];
for (i = 0; i < 256; i++) {
left_tmp = dm_par->unit * *left - dm_par->slev * *right_sur;
right_tmp= dm_par->unit * *right + dm_par->slev * *right_sur++;
*left++ = left_tmp;
*right++ = right_tmp;
}
}
void __inline__ downmix_3f_0r_to_2ch_c (float *samples, dm_par_t *dm_par)
{
int i;
float *left, *right, *center;
float left_tmp, right_tmp;
left = &samples[0];
center = &samples[256];
right = &samples[512];
for (i = 0; i < 256; i++) {
left_tmp = dm_par->unit * *left + dm_par->clev * *center;
right_tmp= dm_par->unit * *right++ + dm_par->clev * *center;
*left++ = left_tmp;
*center++ = right_tmp;
}
}
void __inline__ stream_sample_2ch_to_s16_c (s16 *out_buf, float *left, float *right)
{
int i;
for (i=0; i < 256; i++) {
*out_buf++ = (s16) (*left++ * NORM);
*out_buf++ = (s16) (*right++ * NORM);
}
}
void __inline__ stream_sample_1ch_to_s16_c (s16 *out_buf, float *center)
{
int i;
float tmp;
for (i=0; i < 256; i++) {
*out_buf++ = tmp = (s16) (0.7071f * *center++ * NORM);
*out_buf++ = tmp * NORM;
}
}
......@@ -3,7 +3,9 @@
*****************************************************************************
* Copyright (C) 1999, 2000 VideoLAN
*
* Authors:
* Authors: Michel Kaempf <maxx@via.ecp.fr>
* Michel Lespinasse <walken@zoy.org>
* Aaron Holtzman <aholtzma@engr.uvic.ca>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
......
......@@ -3,7 +3,9 @@
*****************************************************************************
* Copyright (C) 1999, 2000 VideoLAN
*
* Authors:
* Authors: Michel Kaempf <maxx@via.ecp.fr>
* Aaron Holtzman <aholtzma@engr.uvic.ca>
* Renaud Dartus <reno@videolan.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
......@@ -19,28 +21,23 @@
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111, USA.
*****************************************************************************/
#include "defs.h"
#include <math.h>
#include <stdio.h>
#include "int_types.h"
#include "ac3_decoder.h"
#include "ac3_internal.h"
void imdct_do_256(float x[],float y[],float delay[]);
void imdct_do_512(float x[],float y[],float delay[]);
typedef struct complex_s {
float real;
float imag;
} complex_t;
#define N 512
#include "ac3_downmix.h"
static complex_t buf[N/4];
void imdct_do_256(imdct_t * p_imdct, float x[],float y[], int id);
void imdct_do_512(imdct_t * p_imdct, float x[],float y[], int id);
/* 128 point bit-reverse LUT */
static u8 bit_reverse_512[] = {
static const u8 bit_reverse_512[] = {
0x00, 0x40, 0x20, 0x60, 0x10, 0x50, 0x30, 0x70,
0x08, 0x48, 0x28, 0x68, 0x18, 0x58, 0x38, 0x78,
0x04, 0x44, 0x24, 0x64, 0x14, 0x54, 0x34, 0x74,
......@@ -58,7 +55,7 @@ static u8 bit_reverse_512[] = {
0x07, 0x47, 0x27, 0x67, 0x17, 0x57, 0x37, 0x77,
0x0f, 0x4f, 0x2f, 0x6f, 0x1f, 0x5f, 0x3f, 0x7f};
static u8 bit_reverse_256[] = {
static const u8 bit_reverse_256[] = {
0x00, 0x20, 0x10, 0x30, 0x08, 0x28, 0x18, 0x38,
0x04, 0x24, 0x14, 0x34, 0x0c, 0x2c, 0x1c, 0x3c,
0x02, 0x22, 0x12, 0x32, 0x0a, 0x2a, 0x1a, 0x3a,
......@@ -68,25 +65,6 @@ static u8 bit_reverse_256[] = {
0x03, 0x23, 0x13, 0x33, 0x0b, 0x2b, 0x1b, 0x3b,
0x07, 0x27, 0x17, 0x37, 0x0f, 0x2f, 0x1f, 0x3f};
/* Twiddle factor LUT */
static complex_t *w[7];
static complex_t w_1[1];
static complex_t w_2[2];
static complex_t w_4[4];
static complex_t w_8[8];
static complex_t w_16[16];
static complex_t w_32[32];
static complex_t w_64[64];
/* Twiddle factors for IMDCT */
static float xcos1[N/4];
static float xsin1[N/4];
static float xcos2[N/8];
static float xsin2[N/8];
/* Delay buffer for time domain interleaving */
static float delay[6][256];
/* Windowing function for Modified DCT - Thank you acroread */
static float window[] = {
0.00014, 0.00024, 0.00037, 0.00051, 0.00067, 0.00086, 0.00107, 0.00130,
......@@ -141,33 +119,32 @@ static __inline__ complex_t cmplx_mult(complex_t a, complex_t b)
return ret;
}
static void imdct_init(void) __attribute__ ((__constructor__));
static void imdct_init(void)
void imdct_init(imdct_t * p_imdct)
{
int i,k;
complex_t angle_step;
complex_t current_angle;
/* Twiddle factors to turn IFFT into IMDCT */
for (i=0; i < N/4; i++) {
xcos1[i] = -cos(2 * M_PI * (8*i+1)/(8*N)) ;
xsin1[i] = -sin(2 * M_PI * (8*i+1)/(8*N)) ;
p_imdct->xcos1[i] = -cos(2 * M_PI * (8*i+1)/(8*N)) ;
p_imdct->xsin1[i] = -sin(2 * M_PI * (8*i+1)/(8*N)) ;
}
/* More twiddle factors to turn IFFT into IMDCT */
for (i=0; i < N/8; i++) {
xcos2[i] = -cos(2 * M_PI * (8*i+1)/(4*N)) ;
xsin2[i] = -sin(2 * M_PI * (8*i+1)/(4*N)) ;
p_imdct->xcos2[i] = -cos(2 * M_PI * (8*i+1)/(4*N)) ;
p_imdct->xsin2[i] = -sin(2 * M_PI * (8*i+1)/(4*N)) ;
}
/* Canonical twiddle factors for FFT */
w[0] = w_1;
w[1] = w_2;
w[2] = w_4;
w[3] = w_8;
w[4] = w_16;
w[5] = w_32;
w[6] = w_64;
p_imdct->w[0] = p_imdct->w_1;
p_imdct->w[1] = p_imdct->w_2;
p_imdct->w[2] = p_imdct->w_4;
p_imdct->w[3] = p_imdct->w_8;
p_imdct->w[4] = p_imdct->w_16;
p_imdct->w[5] = p_imdct->w_32;
p_imdct->w[6] = p_imdct->w_64;
for (i = 0; i < 7; i++) {
angle_step.real = cos(-2.0f * M_PI / (1 << (i+1)));
......@@ -177,21 +154,53 @@ static void imdct_init(void)
current_angle.imag = 0.0f;
for (k = 0; k < 1 << i; k++) {
w[i][k] = current_angle;
p_imdct->w[i][k] = current_angle;
current_angle = cmplx_mult(current_angle,angle_step);
}
}
}
void imdct (ac3dec_t * p_ac3dec)
void imdct (ac3dec_t * p_ac3dec, s16 * buffer)
{
int i;
int i, i_stream_done;
int doable = 0;
void (*do_imdct)(imdct_t * p_imdct, float x[],float y[], int id);
/* Test if dm in frequency is doable */
if ( !(doable = p_ac3dec->audblk.blksw[0]) )
do_imdct = imdct_do_512;
else
do_imdct = imdct_do_256;
/* Downmix in the frequency domain if all the channes use the same imdct */
for (i=0; i < p_ac3dec->bsi.nfchans; i++)
{
if ( doable != p_ac3dec->audblk.blksw[i] )
{
do_imdct = NULL;
break;
}
}
if (do_imdct)
{
i_stream_done = downmix(p_ac3dec, buffer);
do_imdct(&p_ac3dec->imdct,p_ac3dec->coeffs.fbw[0],p_ac3dec->samples.channel[0], 0);
do_imdct(&p_ac3dec->imdct, p_ac3dec->coeffs.fbw[1],p_ac3dec->samples.channel[1], 1);
} else {
for (i=0; i<p_ac3dec->bsi.nfchans;i++) {
if (p_ac3dec->audblk.blksw[i])
imdct_do_256(&p_ac3dec->imdct, p_ac3dec->coeffs.fbw[i],p_ac3dec->samples.channel[i], i);
else
imdct_do_512(&p_ac3dec->imdct, p_ac3dec->coeffs.fbw[i],p_ac3dec->samples.channel[i], i);
}
i_stream_done = downmix(p_ac3dec, buffer);
}
for (i=0; i<p_ac3dec->bsi.nfchans;i++) {
if (p_ac3dec->audblk.blksw[i])
imdct_do_256(p_ac3dec->coeffs.fbw[i],p_ac3dec->samples.channel[i],delay[i]);
else
imdct_do_512(p_ac3dec->coeffs.fbw[i],p_ac3dec->samples.channel[i],delay[i]);
if ( !i_stream_done ) /* We have to stream sample */
{
stream_sample_2ch_to_s16_c(buffer, p_ac3dec->samples.channel[0],
p_ac3dec->samples.channel[1]);
}
/* XXX?? We don't bother with the IMDCT for the LFE as it's currently
......@@ -200,8 +209,7 @@ void imdct (ac3dec_t * p_ac3dec)
// imdct_do_512(coeffs->lfe,samples->channel[5],delay[5]);
}
void
imdct_do_512(float x[],float y[],float delay[])
void imdct_do_512(imdct_t * p_imdct, float x[], float y[], int id)
{
int i,k;
int p,q;
......@@ -222,15 +230,15 @@ imdct_do_512(float x[],float y[],float delay[])
/* Pre IFFT complex multiply plus IFFT cmplx conjugate */
for (i=0; i < N/4; i++) {
/* z[i] = (X[N/2-2*i-1] + j * X[2*i]) * (xcos1[i] + j * xsin1[i]) ; */
buf[i].real = (x[N/2-2*i-1] * xcos1[i]) - (x[2*i] * xsin1[i]);
buf[i].imag = -((x[2*i] * xcos1[i]) + (x[N/2-2*i-1] * xsin1[i]));
p_imdct->buf[i].real = (x[N/2-2*i-1] * p_imdct->xcos1[i]) - (x[2*i] * p_imdct->xsin1[i]);
p_imdct->buf[i].imag = -((x[2*i] * p_imdct->xcos1[i]) + (x[N/2-2*i-1] * p_imdct->xsin1[i]));
}
/* Bit reversed shuffling */
for (i=0; i<N/4; i++) {
k = bit_reverse_512[i];
if (k < i)
swap_cmplx(&buf[i],&buf[k]);
swap_cmplx(&p_imdct->buf[i],&p_imdct->buf[k]);
}
/* FFT Merge */
......@@ -242,14 +250,14 @@ imdct_do_512(float x[],float y[],float delay[])
for (i = 0; i < 128; i += two_m_plus_one) {
p = k + i;
q = p + two_m;
tmp_a_r = buf[p].real;
tmp_a_i = buf[p].imag;
tmp_b_r = buf[q].real * w[m][k].real - buf[q].imag * w[m][k].imag;
tmp_b_i = buf[q].imag * w[m][k].real + buf[q].real * w[m][k].imag;
buf[p].real = tmp_a_r + tmp_b_r;
buf[p].imag = tmp_a_i + tmp_b_i;
buf[q].real = tmp_a_r - tmp_b_r;
buf[q].imag = tmp_a_i - tmp_b_i;
tmp_a_r = p_imdct->buf[p].real;
tmp_a_i = p_imdct->buf[p].imag;
tmp_b_r = p_imdct->buf[q].real * p_imdct->w[m][k].real - p_imdct->buf[q].imag * p_imdct->w[m][k].imag;
tmp_b_i = p_imdct->buf[q].imag * p_imdct->w[m][k].real + p_imdct->buf[q].real * p_imdct->w[m][k].imag;
p_imdct->buf[p].real = tmp_a_r + tmp_b_r;
p_imdct->buf[p].imag = tmp_a_i + tmp_b_i;
p_imdct->buf[q].real = tmp_a_r - tmp_b_r;
p_imdct->buf[q].imag = tmp_a_i - tmp_b_i;
}
}
}
......@@ -257,42 +265,41 @@ imdct_do_512(float x[],float y[],float delay[])
/* Post IFFT complex multiply plus IFFT complex conjugate*/
for (i=0; i < N/4; i++) {
/* y[n] = z[n] * (xcos1[n] + j * xsin1[n]) ; */
tmp_a_r = buf[i].real;
tmp_a_i = - buf[i].imag;
buf[i].real =(tmp_a_r * xcos1[i]) - (tmp_a_i * xsin1[i]);
buf[i].imag =(tmp_a_r * xsin1[i]) + (tmp_a_i * xcos1[i]);
tmp_a_r = p_imdct->buf[i].real;
tmp_a_i = - p_imdct->buf[i].imag;
p_imdct->buf[i].real =(tmp_a_r * p_imdct->xcos1[i]) - (tmp_a_i * p_imdct->xsin1[i]);
p_imdct->buf[i].imag =(tmp_a_r * p_imdct->xsin1[i]) + (tmp_a_i * p_imdct->xcos1[i]);
}
y_ptr = y;
delay_ptr = delay;
delay_ptr = p_imdct->delay[id];
window_ptr = window;
/* Window and convert to real valued signal */
for (i=0; i<N/8; i++) {
*y_ptr++ = 2.0f * (-buf[N/8+i].imag * *window_ptr++ + *delay_ptr++);
*y_ptr++ = 2.0f * (buf[N/8-i-1].real * *window_ptr++ + *delay_ptr++);
*y_ptr++ = 2.0f * (-p_imdct->buf[N/8+i].imag * *window_ptr++ + *delay_ptr++);
*y_ptr++ = 2.0f * (p_imdct->buf[N/8-i-1].real * *window_ptr++ + *delay_ptr++);
}
for (i=0; i<N/8; i++) {
*y_ptr++ = 2.0f * (-buf[i].real * *window_ptr++ + *delay_ptr++);
*y_ptr++ = 2.0f * (buf[N/4-i-1].imag * *window_ptr++ + *delay_ptr++);
*y_ptr++ = 2.0f * (-p_imdct->buf[i].real * *window_ptr++ + *delay_ptr++);
*y_ptr++ = 2.0f * (p_imdct->buf[N/4-i-1].imag * *window_ptr++ + *delay_ptr++);
}
/* The trailing edge of the window goes into the delay line */
delay_ptr = delay;
delay_ptr = p_imdct->delay[id];
for (i=0; i<N/8; i++) {
*delay_ptr++ = -buf[N/8+i].real * *--window_ptr;
*delay_ptr++ = buf[N/8-i-1].imag * *--window_ptr;
*delay_ptr++ = -p_imdct->buf[N/8+i].real * *--window_ptr;
*delay_ptr++ = p_imdct->buf[N/8-i-1].imag * *--window_ptr;
}
for (i=0; i<N/8; i++) {
*delay_ptr++ = buf[i].imag * *--window_ptr;
*delay_ptr++ = -buf[N/4-i-1].real * *--window_ptr;
*delay_ptr++ = p_imdct->buf[i].imag * *--window_ptr;
*delay_ptr++ = -p_imdct->buf[N/4-i-1].real * *--window_ptr;
}
}
void
imdct_do_256(float x[],float y[],float delay[])
void imdct_do_256(imdct_t * p_imdct,float x[],float y[], int id)
{
int i,k;
int p,q;
......@@ -307,8 +314,8 @@ imdct_do_256(float x[],float y[],float delay[])
complex_t *buf_1, *buf_2;
buf_1 = &buf[0];
buf_2 = &buf[64];
buf_1 = &p_imdct->buf[0];
buf_2 = &p_imdct->buf[64];
/* Pre IFFT complex multiply plus IFFT cmplx conjugate */
for (k=0; k<N/8; k++) {
......@@ -319,11 +326,11 @@ imdct_do_256(float x[],float y[],float delay[])
q = 2 * (2 * k);
/* Z1[k] = (X1[N/4-2*k-1] + j * X1[2*k]) * (xcos2[k] + j * xsin2[k]); */
buf_1[k].real = x[p] * xcos2[k] - x[q] * xsin2[k];
buf_1[k].imag = - (x[q] * xcos2[k] + x[p] * xsin2[k]);
buf_1[k].real = x[p] * p_imdct->xcos2[k] - x[q] * p_imdct->xsin2[k];
buf_1[k].imag = - (x[q] * p_imdct->xcos2[k] + x[p] * p_imdct->xsin2[k]);
/* Z2[k] = (X2[N/4-2*k-1] + j * X2[2*k]) * (xcos2[k] + j * xsin2[k]); */
buf_2[k].real = x[p + 1] * xcos2[k] - x[q + 1] * xsin2[k];
buf_2[k].imag = - (x[q + 1] * xcos2[k] + x[p + 1] * xsin2[k]);
buf_2[k].real = x[p + 1] * p_imdct->xcos2[k] - x[q + 1] * p_imdct->xsin2[k];
buf_2[k].imag = - (x[q + 1] * p_imdct->xcos2[k] + x[p + 1] * p_imdct->xsin2[k]);
}
/* IFFT Bit reversed shuffling */
......@@ -347,8 +354,8 @@ imdct_do_256(float x[],float y[],float delay[])
/* Do block 1 */
tmp_a_r = buf_1[p].real;
tmp_a_i = buf_1[p].imag;
tmp_b_r = buf_1[q].real * w[m][k].real - buf_1[q].imag * w[m][k].imag;
tmp_b_i = buf_1[q].imag * w[m][k].real + buf_1[q].real * w[m][k].imag;
tmp_b_r = buf_1[q].real * p_imdct->w[m][k].real - buf_1[q].imag * p_imdct->w[m][k].imag;
tmp_b_i = buf_1[q].imag * p_imdct->w[m][k].real + buf_1[q].real * p_imdct->w[m][k].imag;
buf_1[p].real = tmp_a_r + tmp_b_r;
buf_1[p].imag = tmp_a_i + tmp_b_i;
buf_1[q].real = tmp_a_r - tmp_b_r;
......@@ -357,8 +364,8 @@ imdct_do_256(float x[],float y[],float delay[])
/* Do block 2 */
tmp_a_r = buf_2[p].real;
tmp_a_i = buf_2[p].imag;
tmp_b_r = buf_2[q].real * w[m][k].real - buf_2[q].imag * w[m][k].imag;
tmp_b_i = buf_2[q].imag * w[m][k].real + buf_2[q].real * w[m][k].imag;
tmp_b_r = buf_2[q].real * p_imdct->w[m][k].real - buf_2[q].imag * p_imdct->w[m][k].imag;
tmp_b_i = buf_2[q].imag * p_imdct->w[m][k].real + buf_2[q].real * p_imdct->w[m][k].imag;
buf_2[p].real = tmp_a_r + tmp_b_r;
buf_2[p].imag = tmp_a_i + tmp_b_i;
buf_2[q].real = tmp_a_r - tmp_b_r;
......@@ -372,13 +379,13 @@ imdct_do_256(float x[],float y[],float delay[])
/* y1[n] = z1[n] * (xcos2[n] + j * xs in2[n]) ; */
tmp_a_r = buf_1[i].real;
tmp_a_i = - buf_1[i].imag;
buf_1[i].real =(tmp_a_r * xcos2[i]) - (tmp_a_i * xsin2[i]);
buf_1[i].imag =(tmp_a_r * xsin2[i]) + (tmp_a_i * xcos2[i]);
buf_1[i].real =(tmp_a_r * p_imdct->xcos2[i]) - (tmp_a_i * p_imdct->xsin2[i]);
buf_1[i].imag =(tmp_a_r * p_imdct->xsin2[i]) + (tmp_a_i * p_imdct->xcos2[i]);
/* y2[n] = z2[n] * (xcos2[n] + j * xsin2[n]) ; */
tmp_a_r = buf_2[i].real;
tmp_a_i = - buf_2[i].imag;
buf_2[i].real =(tmp_a_r * xcos2[i]) - (tmp_a_i * xsin2[i]);
buf_2[i].imag =(tmp_a_r * xsin2[i]) + (tmp_a_i * xcos2[i]);
buf_2[i].real =(tmp_a_r * p_imdct->xcos2[i]) - (tmp_a_i * p_imdct->xsin2[i]);
buf_2[i].imag =(tmp_a_r * p_imdct->xsin2[i]) + (tmp_a_i * p_imdct->xcos2[i]);
}
/* Window and convert to real valued signal */
......@@ -395,7 +402,7 @@ imdct_do_256(float x[],float y[],float delay[])
/* Overlap and add */
for (i=0; i<N/2; i++) {
y[i] = 2 * (y[i] + delay[i]);
delay[i] = y[N/2+i];
y[i] = 2 * (y[i] + p_imdct->delay[id][i]);
p_imdct->delay[id][i] = y[N/2+i];
}
}
......@@ -3,7 +3,7 @@
*****************************************************************************
* Copyright (C) 2000 VideoLAN
*
* Authors:
* Authors: Michel Lespinasse <walken@zoy.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
......@@ -36,13 +36,13 @@
void bit_allocate (ac3dec_t *);
/* ac3_downmix.c */
void downmix (ac3dec_t *, s16 *);
int downmix (ac3dec_t *, s16 *);
/* ac3_exponent.c */
int exponent_unpack (ac3dec_t *);
/* ac3_imdct.c */
void imdct (ac3dec_t * p_ac3dec);
void imdct (ac3dec_t * p_ac3dec, s16 * buffer);
/* ac3_mantissa.c */
void mantissa_unpack (ac3dec_t *);
......
......@@ -4,6 +4,7 @@
* Copyright (C) 1999, 2000, 2001 VideoLAN
*
* Authors: Michel Kaempf <maxx@via.ecp.fr>
* Aaron Holtzman <aholtzma@engr.uvic.ca>
* Renaud Dartus <reno@videolan.org>
*
* This program is free software; you can redistribute it and/or modify
......@@ -36,21 +37,21 @@
#define Q0 ((-2 << 15) / 3.0)
#define Q1 (0)
#define Q2 ((2 << 15) / 3.0)
static float q_1_0[ 32 ] =
static const float q_1_0[ 32 ] =
{
Q0, Q0, Q0, Q0, Q0, Q0, Q0, Q0, Q0,
Q1, Q1, Q1, Q1, Q1, Q1, Q1, Q1, Q1,
Q2, Q2, Q2, Q2, Q2, Q2, Q2, Q2, Q2,
0, 0, 0, 0, 0
};
static float q_1_1[ 32 ] =
static const float q_1_1[ 32 ] =
{
Q0, Q0, Q0, Q1, Q1, Q1, Q2, Q2, Q2,
Q0, Q0, Q0, Q1, Q1, Q1, Q2, Q2, Q2,
Q0, Q0, Q0, Q1, Q1, Q1, Q2, Q2, Q2,
0, 0, 0, 0, 0
};
static float q_1_2[ 32 ] =
static const float q_1_2[ 32 ] =
{
Q0, Q1, Q2, Q0, Q1, Q2, Q0, Q1, Q2,
Q0, Q1, Q2, Q0, Q1, Q2, Q0, Q1, Q2,
......@@ -66,7 +67,7 @@ static float q_1_2[ 32 ] =
#define Q2 (0)
#define Q3 ((2 << 15) / 5.0)
#define Q4 ((4 << 15) / 5.0)
static float q_2_0[ 128 ] =
static const float q_2_0[ 128 ] =
{
Q0,Q0,Q0,Q0,Q0,Q0,Q0,Q0,Q0,Q0,Q0,Q0,Q0,Q0,Q0,Q0,Q0,Q0,Q0,Q0,Q0,Q0,Q0,Q0,Q0,
Q1,Q1,Q1,Q1,Q1,Q1,Q1,Q1,Q1,Q1,Q1,Q1,Q1,Q1,Q1,Q1,Q1,Q1,Q1,Q1,Q1,Q1,Q1,Q1,Q1,
......@@ -75,7 +76,7 @@ static float q_2_0[ 128 ] =
Q4,Q4,Q4,Q4,Q4,Q4,Q4,Q4,Q4,Q4,Q4,Q4,Q4,Q4,Q4,Q4,Q4,Q4,Q4,Q4,Q4,Q4,Q4,Q4,Q4,
0, 0, 0
};
static float q_2_1[ 128 ] =
static const float q_2_1[ 128 ] =
{
Q0,Q0,Q0,Q0,Q0,Q1,Q1,Q1,Q1,Q1,Q2,Q2,Q2,Q2,Q2,Q3,Q3,Q3,Q3,Q3,Q4,Q4,Q4,Q4,Q4,
Q0,Q0,Q0,Q0,Q0,Q1,Q1,Q1,Q1,Q1,Q2,Q2,Q2,Q2,Q2,Q3,Q3,Q3,Q3,Q3,Q4,Q4,Q4,Q4,Q4,
......@@ -84,7 +85,7 @@ static float q_2_1[ 128 ] =
Q0,Q0,Q0,Q0,Q0,Q1,Q1,Q1,Q1,Q1,Q2,Q2,Q2,Q2,Q2,Q3,Q3,Q3,Q3,Q3,Q4,Q4,Q4,Q4,Q4,
0, 0, 0
};
static float q_2_2[ 128 ] =
static const float q_2_2[ 128 ] =
{
Q0,Q1,Q2,Q3,Q4,Q0,Q1,Q2,Q3,Q4,Q0,Q1,Q2,Q3,Q4,Q0,Q1,Q2,Q3,Q4,Q0,Q1,Q2,Q3,Q4,
Q0,Q1,Q2,Q3,Q4,Q0,Q1,Q2,Q3,Q4,Q0,Q1,Q2,Q3,Q4,Q0,Q1,Q2,Q3,Q4,Q0,Q1,Q2,Q3,Q4,
......@@ -110,7 +111,7 @@ static float q_2_2[ 128 ] =
#define Q8 ((6 << 15) / 11.0)
#define Q9 ((8 << 15) / 11.0)
#define QA ((10 << 15) / 11.0)
static float q_4_0[ 128 ] =
static const float q_4_0[ 128 ] =
{
Q0, Q0, Q0, Q0, Q0, Q0, Q0, Q0, Q0, Q0, Q0,
Q1, Q1, Q1, Q1, Q1, Q1, Q1, Q1, Q1, Q1, Q1,
......@@ -125,7 +126,7 @@ static float q_4_0[ 128 ] =
QA, QA, QA, QA, QA, QA, QA, QA, QA, QA, QA,
0, 0, 0, 0, 0, 0, 0
};
static float q_4_1[ 128 ] =
static const float q_4_1[ 128 ] =
{
Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9, QA,
Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9, QA,
......@@ -154,14 +155,14 @@ static float q_4_1[ 128 ] =
/* Lookup tables of 0.16 two's complement quantization values */
static float q_3[8] =
static const float q_3[8] =
{
(-6 << 15)/7.0, (-4 << 15)/7.0, (-2 << 15)/7.0,
0 , (2 << 15)/7.0, (4 << 15)/7.0,
(6 << 15)/7.0, 0
};
static float q_5[16] =
static const float q_5[16] =
{
(-14 << 15)/15.0, (-12 << 15)/15.0, (-10 << 15)/15.0,
(-8 << 15)/15.0, (-6 << 15)/15.0, (-4 << 15)/15.0,
......@@ -171,22 +172,14 @@ static float q_5[16] =
0
};
/* These store the persistent state of the packed mantissas */
static float q_1[2];
static float q_2[2];
static float q_4[1];
static s32 q_1_pointer;
static s32 q_2_pointer;
static s32 q_4_pointer;
/* Conversion from bap to number of bits in the mantissas
* zeros account for cases 0,1,2,4 which are special cased */
static u16 qnttztab[16] =
static const u16 qnttztab[16] =
{
0, 0, 0, 3, 0, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16
};
static float exp_lut[ 25 ] =
static const float exp_lut[ 25 ] =
{
6.10351562500000000000000000e-05,
3.05175781250000000000000000e-05,
......@@ -215,7 +208,7 @@ static float exp_lut[ 25 ] =
3.63797880709171295166015625e-12,
};
const u16 dither_lut[256] =
static const u16 dither_lut[256] =
{
0x0000, 0xa011, 0xe033, 0x4022, 0x6077, 0xc066, 0x8044, 0x2055,
0xc0ee, 0x60ff, 0x20dd, 0x80cc, 0xa099, 0x0088, 0x40aa, 0xe0bb,
......@@ -251,14 +244,13 @@ const u16 dither_lut[256] =
0x8bf4, 0x2be5, 0x6bc7, 0xcbd6, 0xeb83, 0x4b92, 0x0bb0, 0xaba1
};
u16 lfsr_state = 1;
static __inline__ u16 dither_gen (void)
static __inline__ u16 dither_gen (mantissa_t * p_mantissa)
{
s16 state;
state = dither_lut[lfsr_state >> 8] ^ (lfsr_state << 8);
lfsr_state = (u16) state;
state = dither_lut[p_mantissa->lfsr_state >> 8] ^
(p_mantissa->lfsr_state << 8);
p_mantissa->lfsr_state = (u16) state;
return ( (state * (s32) (0.707106 * 256.0)) >> 8 );
}
......@@ -274,75 +266,75 @@ static __inline__ float float_get (ac3dec_t * p_ac3dec, u16 bap, u16 exp)
case 0:
if (p_ac3dec->audblk.dithflag[exp])
{
return ( dither_gen() * exp_lut[exp] );
return ( dither_gen(&p_ac3dec->mantissa) * exp_lut[exp] );
}
return (0);
case 1:
if (q_1_pointer >= 0)
if (p_ac3dec->mantissa.q_1_pointer >= 0)
{
return (q_1[q_1_pointer--] * exp_lut[exp]);
return (p_ac3dec->mantissa.q_1[p_ac3dec->mantissa.q_1_pointer--] * exp_lut[exp]);
}
if ((group_code = bitstream_get(&(p_ac3dec->bit_stream),5)) >= 27)
{
intf_ErrMsg ( "ac3dec error: invalid mantissa" );
intf_WarnMsg ( 1, "ac3dec error: invalid mantissa" );
}
q_1[ 1 ] = q_1_1[ group_code ];
q_1[ 0 ] = q_1_2[ group_code ];
p_ac3dec->mantissa.q_1[ 1 ] = q_1_1[ group_code ];
p_ac3dec->mantissa.q_1[ 0 ] = q_1_2[ group_code ];
q_1_pointer = 1;
p_ac3dec->mantissa.q_1_pointer = 1;
return (q_1_0[group_code] * exp_lut[exp]);
case 2:
if (q_2_pointer >= 0)
if (p_ac3dec->mantissa.q_2_pointer >= 0)
{
return (q_2[q_2_pointer--] * exp_lut[exp]);
return (p_ac3dec->mantissa.q_2[p_ac3dec->mantissa.q_2_pointer--] * exp_lut[exp]);
}
if ((group_code = bitstream_get(&(p_ac3dec->bit_stream),7)) >= 125)
{
intf_ErrMsg ( "ac3dec error: invalid mantissa" );
intf_WarnMsg ( 1, "ac3dec error: invalid mantissa" );
}
q_2[ 1 ] = q_2_1[ group_code ];
q_2[ 0 ] = q_2_2[ group_code ];
p_ac3dec->mantissa.q_2[ 1 ] = q_2_1[ group_code ];
p_ac3dec->mantissa.q_2[ 0 ] = q_2_2[ group_code ];
q_2_pointer = 1;
p_ac3dec->mantissa.q_2_pointer = 1;
return (q_2_0[ group_code ] * exp_lut[exp]);
case 3:
if ((group_code = bitstream_get(&(p_ac3dec->bit_stream),3)) >= 7)
{
intf_ErrMsg ( "ac3dec error: invalid mantissa" );
intf_WarnMsg ( 1, "ac3dec error: invalid mantissa" );
}
return (q_3[group_code] * exp_lut[exp]);
case 4:
if (q_4_pointer >= 0)
if (p_ac3dec->mantissa.q_4_pointer >= 0)
{
return (q_4[q_4_pointer--] * exp_lut[exp]);
return (p_ac3dec->mantissa.q_4[p_ac3dec->mantissa.q_4_pointer--] * exp_lut[exp]);
}
if ((group_code = bitstream_get(&(p_ac3dec->bit_stream),7)) >= 121)
{
intf_ErrMsg ( "ac3dec error: invalid mantissa" );
intf_WarnMsg ( 1, "ac3dec error: invalid mantissa" );
}
q_4[ 0 ] = q_4_1[ group_code ];
p_ac3dec->mantissa.q_4[ 0 ] = q_4_1[ group_code ];
q_4_pointer = 0;
p_ac3dec->mantissa.q_4_pointer = 0;
return (q_4_0[ group_code ] * exp_lut[exp]);
case 5:
if ((group_code = bitstream_get(&(p_ac3dec->bit_stream),4)) >= 15)
{
intf_ErrMsg ( "ac3dec error: invalid mantissa" );
intf_WarnMsg ( 1, "ac3dec error: invalid mantissa" );
}
return (q_5[group_code] * exp_lut[exp]);
......@@ -394,7 +386,7 @@ static __inline__ void uncouple_channel (ac3dec_t * p_ac3dec, u32 ch)
* so the channels are uncorrelated */
if (p_ac3dec->audblk.dithflag[ch] && !p_ac3dec->audblk.cpl_bap[i])
{
p_ac3dec->coeffs.fbw[ch][i] = cpl_coord * dither_gen() *
p_ac3dec->coeffs.fbw[ch][i] = cpl_coord * dither_gen(&p_ac3dec->mantissa) *
exp_lut[p_ac3dec->audblk.cpl_exp[i]];
} else {
p_ac3dec->coeffs.fbw[ch][i] = cpl_coord * p_ac3dec->audblk.cplfbw[i];
......@@ -408,10 +400,10 @@ void mantissa_unpack (ac3dec_t * p_ac3dec)
{
int i, j;
q_1_pointer = -1;
q_2_pointer = -1;
q_4_pointer = -1;
p_ac3dec->mantissa.q_1_pointer = -1;
p_ac3dec->mantissa.q_2_pointer = -1;
p_ac3dec->mantissa.q_4_pointer = -1;
if (p_ac3dec->audblk.cplinu)
{
/* 1 */
......
......@@ -4,6 +4,7 @@
* Copyright (C) 1999, 2000, 2001 VideoLAN
*
* Authors: Michel Kaempf <maxx@via.ecp.fr>
* Aaron Holtzman <aholtzma@engr.uvic.ca>
* Renaud Dartus <reno@videolan.org>
*
* This program is free software; you can redistribute it and/or modify
......@@ -31,7 +32,7 @@
#include "ac3_bit_stream.h"
/* Misc LUT */
static u16 nfchans[] = { 2, 1, 2, 3, 3, 4, 4, 5 };
static const u16 nfchans[] = { 2, 1, 2, 3, 3, 4, 4, 5 };
struct frmsize_s
{
......@@ -39,7 +40,7 @@ struct frmsize_s
u16 frm_size[3];
};
static struct frmsize_s frmsizecod_tbl[] =
static const struct frmsize_s frmsizecod_tbl[] =
{
{ 32 ,{64 ,69 ,96 } },
{ 32 ,{64 ,70 ,96 } },
......@@ -80,7 +81,7 @@ static struct frmsize_s frmsizecod_tbl[] =
{ 640 ,{1280 ,1393 ,1920 } },
{ 640 ,{1280 ,1394 ,1920 } }};
static int fscod_tbl[] = {48000, 44100, 32000};
static const int fscod_tbl[] = {48000, 44100, 32000};
/* Some internal functions */
void parse_bsi_stats (ac3dec_t * p_ac3dec);
......@@ -264,6 +265,10 @@ int parse_bsi (ac3dec_t * p_ac3dec)
}
}
#ifdef STATS
parse_bsi_stats (p_ac3dec);
#endif
return 0;
}
......@@ -692,6 +697,10 @@ int parse_audblk (ac3dec_t * p_ac3dec, int blknum)
}
}
#ifdef STATS
// parse_audblk_stats(p_ac3dec);
#endif
return 0;
}
......@@ -716,3 +725,69 @@ void parse_auxdata (ac3dec_t * p_ac3dec)
/* Get the crc */
bitstream_get(&(p_ac3dec->bit_stream),16);
}
void parse_bsi_stats (ac3dec_t * p_ac3dec) /*Some stats */
{
struct mixlev_s
{
float clev;
char *desc;
};
static const char *service_ids[8] =
{
"CM","ME","VI","HI",
"D", "C","E", "VO"
};
/*
static const struct mixlev_s cmixlev_tbl[4] =
{
{0.707, "(-3.0 dB)"}, {0.595, "(-4.5 dB)"},
{0.500, "(-6.0 dB)"}, {1.0, "Invalid"}
};
static const struct mixlev_s smixlev_tbl[4] =
{
{0.707, "(-3.0 dB)"}, {0.500, "(-6.0 dB)"},
{ 0.0, "off "}, { 1.0, "Invalid"}
};
*/
static int i;
if ( !i )
{
/* if ((p_ac3dec->bsi.acmod & 0x1) && (p_ac3dec->bsi.acmod != 0x1))
printf("CentreMixLevel %s ",cmixlev_tbl[p_ac3dec->bsi.cmixlev].desc);
if (p_ac3dec->bsi.acmod & 0x4)
printf("SurMixLevel %s",smixlev_tbl[p_ac3dec->bsi.cmixlev].desc);
*/
intf_Msg ( "(ac3dec_parsebsi) %s %d.%d Mode",
service_ids[p_ac3dec->bsi.bsmod],
p_ac3dec->bsi.nfchans,p_ac3dec->bsi.lfeon);
}
i++;
if ( i > 100 )
i = 0;
}
void parse_audblk_stats (ac3dec_t * p_ac3dec)
{
char *exp_strat_tbl[4] = {"R ","D15 ","D25 ","D45 "};
u32 i;
intf_ErrMsg ("(ac3dec_parseaudblk) ");
intf_ErrMsg ("%s ",p_ac3dec->audblk.cplinu ? "cpl on" : "cpl off");
intf_ErrMsg ("%s ",p_ac3dec->audblk.baie? "bai" : " ");
intf_ErrMsg ("%s ",p_ac3dec->audblk.snroffste? "snroffst" : " ");
intf_ErrMsg ("%s ",p_ac3dec->audblk.deltbaie? "deltba" : " ");
intf_ErrMsg ("%s ",p_ac3dec->audblk.phsflginu? "phsflg" : " ");
intf_ErrMsg ("(%s %s %s %s %s) ",exp_strat_tbl[p_ac3dec->audblk.chexpstr[0]],
exp_strat_tbl[p_ac3dec->audblk.chexpstr[1]],exp_strat_tbl[p_ac3dec->audblk.chexpstr[2]],
exp_strat_tbl[p_ac3dec->audblk.chexpstr[3]],exp_strat_tbl[p_ac3dec->audblk.chexpstr[4]]);
intf_ErrMsg ("[");
for(i=0;i<p_ac3dec->bsi.nfchans;i++)
intf_ErrMsg ("%1d",p_ac3dec->audblk.blksw[i]);
intf_ErrMsg ("]");
intf_ErrMsg ("\n");
}
......@@ -3,7 +3,8 @@
*****************************************************************************
* Copyright (C) 1999, 2000 VideoLAN
*
* Authors:
* Authors: Michel Kaempf <maxx@via.ecp.fr>
* Aaron Holtzman <aholtzma@engr.uvic.ca>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
......@@ -30,7 +31,7 @@ struct rematrix_band_s {
u32 end;
};
static struct rematrix_band_s rematrix_band[] = { {13,24}, {25,36}, {37 ,60}, {61,252}};
static const struct rematrix_band_s rematrix_band[] = { {13,24}, {25,36}, {37 ,60}, {61,252}};
static __inline__ u32 min (u32 a, u32 b)
{
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment