/***************************************************************************** * video_yuv.c: YUV transformation functions * Provides functions to perform the YUV conversion. The functions provided here * are a complete and portable C implementation, and may be replaced in certain * case by optimized functions. ***************************************************************************** * Copyright (C) 1999, 2000 VideoLAN * * Authors: * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. *****************************************************************************/ /***************************************************************************** * Preamble *****************************************************************************/ #include "defs.h" #include <math.h> /* exp(), pow() */ #include <errno.h> /* ENOMEM */ #include <stdlib.h> /* free() */ #include <string.h> /* strerror() */ #include "config.h" #include "common.h" #include "threads.h" #include "mtime.h" #include "plugins.h" #include "video.h" #include "video_output.h" #include "video_yuv.h" #include "intf_msg.h" /***************************************************************************** * vout_InitYUV: allocate and initialize translations tables ***************************************************************************** * This function will allocate memory to store translation tables, depending * of the screen depth. *****************************************************************************/ int yuv_CInit( vout_thread_t *p_vout ) { size_t tables_size; /* tables size, in bytes */ /* Computes tables size - 3 Bpp use 32 bits pixel entries in tables */ switch( p_vout->i_bytes_per_pixel ) { case 1: tables_size = sizeof( u8 ) * (p_vout->b_grayscale ? GRAY_TABLE_SIZE : PALETTE_TABLE_SIZE); break; case 2: tables_size = sizeof( u16 ) * (p_vout->b_grayscale ? GRAY_TABLE_SIZE : RGB_TABLE_SIZE); break; case 3: case 4: default: tables_size = sizeof( u32 ) * (p_vout->b_grayscale ? GRAY_TABLE_SIZE : RGB_TABLE_SIZE); break; } /* Allocate memory */ p_vout->yuv.p_base = malloc( tables_size ); if( p_vout->yuv.p_base == NULL ) { intf_ErrMsg("error: %s", strerror(ENOMEM)); return( 1 ); } /* Allocate memory for conversion buffer and offset array */ p_vout->yuv.p_buffer = malloc( VOUT_MAX_WIDTH * p_vout->i_bytes_per_pixel ); if( p_vout->yuv.p_buffer == NULL ) { intf_ErrMsg("error: %s", strerror(ENOMEM)); free( p_vout->yuv.p_base ); return( 1 ); } /* In 8bpp we have a twice as big offset table because we also * need the offsets for U and V (not only Y) */ p_vout->yuv.p_offset = malloc( p_vout->i_width * sizeof( int ) * ( ( p_vout->i_bytes_per_pixel == 1 ) ? 2 : 1 ) ); if( p_vout->yuv.p_offset == NULL ) { intf_ErrMsg("error: %s", strerror(ENOMEM)); free( p_vout->yuv.p_base ); free( p_vout->yuv.p_buffer ); return( 1 ); } /* Initialize tables */ SetYUV( p_vout ); return( 0 ); } /***************************************************************************** * yuv_CEnd: destroy translations tables ***************************************************************************** * Free memory allocated by yuv_CCreate. *****************************************************************************/ void yuv_CEnd( vout_thread_t *p_vout ) { free( p_vout->yuv.p_base ); free( p_vout->yuv.p_buffer ); free( p_vout->yuv.p_offset ); } /***************************************************************************** * yuv_CReset: re-initialize translations tables ***************************************************************************** * This function will initialize the tables allocated by vout_CreateTables and * set functions pointers. *****************************************************************************/ int yuv_CReset( vout_thread_t *p_vout ) { yuv_CEnd( p_vout ); return( yuv_CInit( p_vout ) ); } /* following functions are local */ /***************************************************************************** * SetGammaTable: return intensity table transformed by gamma curve. ***************************************************************************** * pi_table is a table of 256 entries from 0 to 255. *****************************************************************************/ void SetGammaTable( int *pi_table, double f_gamma ) { int i_y; /* base intensity */ /* Use exp(gamma) instead of gamma */ f_gamma = exp( f_gamma ); /* Build gamma table */ for( i_y = 0; i_y < 256; i_y++ ) { pi_table[ i_y ] = pow( (double)i_y / 256, f_gamma ) * 256; } } /***************************************************************************** * SetYUV: compute tables and set function pointers + *****************************************************************************/ void SetYUV( vout_thread_t *p_vout ) { int pi_gamma[256]; /* gamma table */ int i_index; /* index in tables */ /* Build gamma table */ SetGammaTable( pi_gamma, p_vout->f_gamma ); /* * Set pointers and build YUV tables */ if( p_vout->b_grayscale ) { /* Grayscale: build gray table */ switch( p_vout->i_bytes_per_pixel ) { case 1: { u16 bright[256], transp[256]; p_vout->yuv.yuv.p_gray8 = (u8 *)p_vout->yuv.p_base + GRAY_MARGIN; for( i_index = 0; i_index < GRAY_MARGIN; i_index++ ) { p_vout->yuv.yuv.p_gray8[ -i_index ] = RGB2PIXEL( p_vout, pi_gamma[0], pi_gamma[0], pi_gamma[0] ); p_vout->yuv.yuv.p_gray8[ 256 + i_index ] = RGB2PIXEL( p_vout, pi_gamma[255], pi_gamma[255], pi_gamma[255] ); } for( i_index = 0; i_index < 256; i_index++) { p_vout->yuv.yuv.p_gray8[ i_index ] = pi_gamma[ i_index ]; bright[ i_index ] = i_index << 8; transp[ i_index ] = 0; } /* the colors have been allocated, we can set the palette */ p_vout->p_set_palette( p_vout, bright, bright, bright, transp ); p_vout->i_white_pixel = 0xff; p_vout->i_black_pixel = 0x00; p_vout->i_gray_pixel = 0x44; p_vout->i_blue_pixel = 0x3b; break; } case 2: p_vout->yuv.yuv.p_gray16 = (u16 *)p_vout->yuv.p_base + GRAY_MARGIN; for( i_index = 0; i_index < GRAY_MARGIN; i_index++ ) { p_vout->yuv.yuv.p_gray16[ -i_index ] = RGB2PIXEL( p_vout, pi_gamma[0], pi_gamma[0], pi_gamma[0] ); p_vout->yuv.yuv.p_gray16[ 256 + i_index ] = RGB2PIXEL( p_vout, pi_gamma[255], pi_gamma[255], pi_gamma[255] ); } for( i_index = 0; i_index < 256; i_index++) { p_vout->yuv.yuv.p_gray16[ i_index ] = RGB2PIXEL( p_vout, pi_gamma[i_index], pi_gamma[i_index], pi_gamma[i_index] ); } break; case 3: case 4: p_vout->yuv.yuv.p_gray32 = (u32 *)p_vout->yuv.p_base + GRAY_MARGIN; for( i_index = 0; i_index < GRAY_MARGIN; i_index++ ) { p_vout->yuv.yuv.p_gray32[ -i_index ] = RGB2PIXEL( p_vout, pi_gamma[0], pi_gamma[0], pi_gamma[0] ); p_vout->yuv.yuv.p_gray32[ 256 + i_index ] = RGB2PIXEL( p_vout, pi_gamma[255], pi_gamma[255], pi_gamma[255] ); } for( i_index = 0; i_index < 256; i_index++) { p_vout->yuv.yuv.p_gray32[ i_index ] = RGB2PIXEL( p_vout, pi_gamma[i_index], pi_gamma[i_index], pi_gamma[i_index] ); } break; } } else { /* Color: build red, green and blue tables */ switch( p_vout->i_bytes_per_pixel ) { case 1: { #define RGB_MIN 0 #define RGB_MAX 255 #define CLIP( x ) ( ((x < 0) ? 0 : (x > 255) ? 255 : x) << 8 ) int y,u,v; int r,g,b; int uvr, uvg, uvb; int i = 0, j = 0; u16 red[256], green[256], blue[256], transp[256]; unsigned char lookup[PALETTE_TABLE_SIZE]; p_vout->yuv.yuv.p_rgb8 = (u8 *)p_vout->yuv.p_base; /* this loop calculates the intersection of an YUV box * and the RGB cube. */ for ( y = 0; y <= 256; y += 16 ) { for ( u = 0; u <= 256; u += 32 ) for ( v = 0; v <= 256; v += 32 ) { uvr = (V_RED_COEF*(v-128)) >> SHIFT; uvg = (U_GREEN_COEF*(u-128) + V_GREEN_COEF*(v-128)) >> SHIFT; uvb = (U_BLUE_COEF*(u-128)) >> SHIFT; r = y + uvr; g = y + uvg; b = y + uvb; if( r >= RGB_MIN && g >= RGB_MIN && b >= RGB_MIN && r <= RGB_MAX && g <= RGB_MAX && b <= RGB_MAX ) { /* this one should never happen unless someone fscked up my code */ if(j == 256) { intf_ErrMsg( "vout error: no colors left to build palette" ); break; } /* clip the colors */ red[j] = CLIP( r ); green[j] = CLIP( g ); blue[j] = CLIP( b ); transp[j] = 0; /* allocate color */ lookup[i] = 1; p_vout->yuv.yuv.p_rgb8[i++] = j; j++; } else { lookup[i] = 0; p_vout->yuv.yuv.p_rgb8[i++] = 0; } } i += 128-81; } /* the colors have been allocated, we can set the palette */ /* there will eventually be a way to know which colors * couldn't be allocated and try to find a replacement */ p_vout->p_set_palette( p_vout, red, green, blue, transp ); p_vout->i_white_pixel = 0xff; p_vout->i_black_pixel = 0x00; p_vout->i_gray_pixel = 0x44; p_vout->i_blue_pixel = 0x3b; i = 0; /* this loop allocates colors that got outside * the RGB cube */ for ( y = 0; y <= 256; y += 16 ) { for ( u = 0; u <= 256; u += 32 ) for ( v = 0; v <= 256; v += 32 ) { int u2, v2; int dist, mindist = 100000000; if( lookup[i] || y==0) { i++; continue; } /* heavy. yeah. */ for( u2 = 0; u2 <= 256; u2 += 32 ) for( v2 = 0; v2 <= 256; v2 += 32 ) { j = ((y>>4)<<7) + (u2>>5)*9 + (v2>>5); dist = (u-u2)*(u-u2) + (v-v2)*(v-v2); if( lookup[j] ) /* find the nearest color */ if( dist < mindist ) { p_vout->yuv.yuv.p_rgb8[i] = p_vout->yuv.yuv.p_rgb8[j]; mindist = dist; } j -= 128; if( lookup[j] ) /* find the nearest color */ if( dist + 128 < mindist ) { p_vout->yuv.yuv.p_rgb8[i] = p_vout->yuv.yuv.p_rgb8[j]; mindist = dist + 128; } } i++; } i += 128-81; } break; } case 2: p_vout->yuv.yuv.p_rgb16 = (u16 *)p_vout->yuv.p_base; for( i_index = 0; i_index < RED_MARGIN; i_index++ ) { p_vout->yuv.yuv.p_rgb16[RED_OFFSET - RED_MARGIN + i_index] = RGB2PIXEL( p_vout, pi_gamma[0], 0, 0 ); p_vout->yuv.yuv.p_rgb16[RED_OFFSET + 256 + i_index] = RGB2PIXEL( p_vout, pi_gamma[255], 0, 0 ); } for( i_index = 0; i_index < GREEN_MARGIN; i_index++ ) { p_vout->yuv.yuv.p_rgb16[GREEN_OFFSET - GREEN_MARGIN + i_index] = RGB2PIXEL( p_vout, 0, pi_gamma[0], 0 ); p_vout->yuv.yuv.p_rgb16[GREEN_OFFSET + 256 + i_index] = RGB2PIXEL( p_vout, 0, pi_gamma[255], 0 ); } for( i_index = 0; i_index < BLUE_MARGIN; i_index++ ) { p_vout->yuv.yuv.p_rgb16[BLUE_OFFSET - BLUE_MARGIN + i_index] = RGB2PIXEL( p_vout, 0, 0, pi_gamma[0] ); p_vout->yuv.yuv.p_rgb16[BLUE_OFFSET + BLUE_MARGIN + i_index] = RGB2PIXEL( p_vout, 0, 0, pi_gamma[255] ); } for( i_index = 0; i_index < 256; i_index++ ) { p_vout->yuv.yuv.p_rgb16[RED_OFFSET + i_index] = RGB2PIXEL( p_vout, pi_gamma[ i_index ], 0, 0 ); p_vout->yuv.yuv.p_rgb16[GREEN_OFFSET + i_index] = RGB2PIXEL( p_vout, 0, pi_gamma[ i_index ], 0 ); p_vout->yuv.yuv.p_rgb16[BLUE_OFFSET + i_index] = RGB2PIXEL( p_vout, 0, 0, pi_gamma[ i_index ] ); } break; case 3: case 4: p_vout->yuv.yuv.p_rgb32 = (u32 *)p_vout->yuv.p_base; for( i_index = 0; i_index < RED_MARGIN; i_index++ ) { p_vout->yuv.yuv.p_rgb32[RED_OFFSET - RED_MARGIN + i_index] = RGB2PIXEL( p_vout, pi_gamma[0], 0, 0 ); p_vout->yuv.yuv.p_rgb32[RED_OFFSET + 256 + i_index] = RGB2PIXEL( p_vout, pi_gamma[255], 0, 0 ); } for( i_index = 0; i_index < GREEN_MARGIN; i_index++ ) { p_vout->yuv.yuv.p_rgb32[GREEN_OFFSET - GREEN_MARGIN + i_index] = RGB2PIXEL( p_vout, 0, pi_gamma[0], 0 ); p_vout->yuv.yuv.p_rgb32[GREEN_OFFSET + 256 + i_index] = RGB2PIXEL( p_vout, 0, pi_gamma[255], 0 ); } for( i_index = 0; i_index < BLUE_MARGIN; i_index++ ) { p_vout->yuv.yuv.p_rgb32[BLUE_OFFSET - BLUE_MARGIN + i_index] = RGB2PIXEL( p_vout, 0, 0, pi_gamma[0] ); p_vout->yuv.yuv.p_rgb32[BLUE_OFFSET + BLUE_MARGIN + i_index] = RGB2PIXEL( p_vout, 0, 0, pi_gamma[255] ); } for( i_index = 0; i_index < 256; i_index++ ) { p_vout->yuv.yuv.p_rgb32[RED_OFFSET + i_index] = RGB2PIXEL( p_vout, pi_gamma[ i_index ], 0, 0 ); p_vout->yuv.yuv.p_rgb32[GREEN_OFFSET + i_index] = RGB2PIXEL( p_vout, 0, pi_gamma[ i_index ], 0 ); p_vout->yuv.yuv.p_rgb32[BLUE_OFFSET + i_index] = RGB2PIXEL( p_vout, 0, 0, pi_gamma[ i_index ] ); } break; } } /* * Set functions pointers */ if( p_vout->b_grayscale ) { /* Grayscale */ switch( p_vout->i_bytes_per_pixel ) { case 1: p_vout->yuv.p_Convert420 = (vout_yuv_convert_t *) ConvertY4Gray8; p_vout->yuv.p_Convert422 = (vout_yuv_convert_t *) ConvertY4Gray8; p_vout->yuv.p_Convert444 = (vout_yuv_convert_t *) ConvertY4Gray8; break; case 2: p_vout->yuv.p_Convert420 = (vout_yuv_convert_t *) ConvertY4Gray16; p_vout->yuv.p_Convert422 = (vout_yuv_convert_t *) ConvertY4Gray16; p_vout->yuv.p_Convert444 = (vout_yuv_convert_t *) ConvertY4Gray16; break; case 3: p_vout->yuv.p_Convert420 = (vout_yuv_convert_t *) ConvertY4Gray24; p_vout->yuv.p_Convert422 = (vout_yuv_convert_t *) ConvertY4Gray24; p_vout->yuv.p_Convert444 = (vout_yuv_convert_t *) ConvertY4Gray24; break; case 4: p_vout->yuv.p_Convert420 = (vout_yuv_convert_t *) ConvertY4Gray32; p_vout->yuv.p_Convert422 = (vout_yuv_convert_t *) ConvertY4Gray32; p_vout->yuv.p_Convert444 = (vout_yuv_convert_t *) ConvertY4Gray32; break; } } else { /* Color */ switch( p_vout->i_bytes_per_pixel ) { case 1: p_vout->yuv.p_Convert420 = (vout_yuv_convert_t *) ConvertYUV420RGB8; p_vout->yuv.p_Convert422 = (vout_yuv_convert_t *) ConvertYUV422RGB8; p_vout->yuv.p_Convert444 = (vout_yuv_convert_t *) ConvertYUV444RGB8; break; case 2: p_vout->yuv.p_Convert420 = (vout_yuv_convert_t *) ConvertYUV420RGB16; p_vout->yuv.p_Convert422 = (vout_yuv_convert_t *) ConvertYUV422RGB16; p_vout->yuv.p_Convert444 = (vout_yuv_convert_t *) ConvertYUV444RGB16; break; case 3: p_vout->yuv.p_Convert420 = (vout_yuv_convert_t *) ConvertYUV420RGB24; p_vout->yuv.p_Convert422 = (vout_yuv_convert_t *) ConvertYUV422RGB24; p_vout->yuv.p_Convert444 = (vout_yuv_convert_t *) ConvertYUV444RGB24; break; case 4: p_vout->yuv.p_Convert420 = (vout_yuv_convert_t *) ConvertYUV420RGB32; p_vout->yuv.p_Convert422 = (vout_yuv_convert_t *) ConvertYUV422RGB32; p_vout->yuv.p_Convert444 = (vout_yuv_convert_t *) ConvertYUV444RGB32; break; } } } /***************************************************************************** * SetOffset: build offset array for conversion functions ***************************************************************************** * This function will build an offset array used in later conversion functions. * It will also set horizontal and vertical scaling indicators. If b_double * is set, the p_offset structure has interleaved Y and U/V offsets. *****************************************************************************/ void SetOffset( int i_width, int i_height, int i_pic_width, int i_pic_height, boolean_t *pb_h_scaling, int *pi_v_scaling, int *p_offset, boolean_t b_double ) { int i_x; /* x position in destination */ int i_scale_count; /* modulo counter */ /* * Prepare horizontal offset array */ if( i_pic_width - i_width == 0 ) { /* No horizontal scaling: YUV conversion is done directly to picture */ *pb_h_scaling = 0; } else if( i_pic_width - i_width > 0 ) { /* Prepare scaling array for horizontal extension */ *pb_h_scaling = 1; i_scale_count = i_pic_width; if( !b_double ) { for( i_x = i_width; i_x--; ) { while( (i_scale_count -= i_width) > 0 ) { *p_offset++ = 0; } *p_offset++ = 1; i_scale_count += i_pic_width; } } else { int i_dummy = 0; for( i_x = i_width; i_x--; ) { while( (i_scale_count -= i_width) > 0 ) { *p_offset++ = 0; *p_offset++ = 0; } *p_offset++ = 1; *p_offset++ = i_dummy; i_dummy = 1 - i_dummy; i_scale_count += i_pic_width; } } } else /* if( i_pic_width - i_width < 0 ) */ { /* Prepare scaling array for horizontal reduction */ *pb_h_scaling = 1; i_scale_count = i_width; if( !b_double ) { for( i_x = i_pic_width; i_x--; ) { *p_offset = 1; while( (i_scale_count -= i_pic_width) > 0 ) { *p_offset += 1; } p_offset++; i_scale_count += i_width; } } else { int i_remainder = 0; int i_jump; for( i_x = i_pic_width; i_x--; ) { i_jump = 1; while( (i_scale_count -= i_pic_width) > 0 ) { i_jump += 1; } *p_offset++ = i_jump; *p_offset++ = ( i_jump += i_remainder ) >> 1; i_remainder = i_jump & 1; i_scale_count += i_width; } } } /* * Set vertical scaling indicator */ if( i_pic_height - i_height == 0 ) { *pi_v_scaling = 0; } else if( i_pic_height - i_height > 0 ) { *pi_v_scaling = 1; } else /* if( i_pic_height - i_height < 0 ) */ { *pi_v_scaling = -1; } }