Commit bb7e31d7 authored by diego's avatar diego

cosmetics: prettyprinting, K&R style, break overly long lines


git-svn-id: file:///var/local/repositories/ffmpeg/trunk@19377 9553f0bf-9b14-0410-a0b8-cfaf0461ba5b
parent f32e7dce
......@@ -49,7 +49,7 @@ static const uint8_t run_value_bits_short[16] = {
3, 3, 3, 3, 3, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 9
};
static const uint8_t* run_value_bits[2] = {
static const uint8_t *run_value_bits[2] = {
run_value_bits_long, run_value_bits_short
};
......@@ -64,13 +64,14 @@ static av_always_inline int quant(float coef, const float Q)
return pow(coef * Q, 0.75) + 0.4054;
}
static void quantize_bands(int (*out)[2], const float *in, const float *scaled, int size, float Q34, int is_signed, int maxval)
static void quantize_bands(int (*out)[2], const float *in, const float *scaled,
int size, float Q34, int is_signed, int maxval)
{
int i;
double qc;
for (i = 0; i < size; i++) {
qc = scaled[i] * Q34;
out[i][0] = (int)FFMIN((int)qc, maxval);
out[i][0] = (int)FFMIN((int)qc, maxval);
out[i][1] = (int)FFMIN((int)(qc + 0.4054), maxval);
if (is_signed && in[i] < 0.0f) {
out[i][0] = -out[i][0];
......@@ -79,7 +80,7 @@ static void quantize_bands(int (*out)[2], const float *in, const float *scaled,
}
}
static void abs_pow34_v(float *out, const float* in, const int size)
static void abs_pow34_v(float *out, const float *in, const int size)
{
#ifndef USE_REALLY_FULL_SEARCH
int i;
......@@ -102,8 +103,10 @@ static const uint8_t aac_cb_maxval[12] = {0, 1, 1, 2, 2, 4, 4, 7, 7, 12, 12, 16}
*
* @return quantization distortion
*/
static float quantize_band_cost(struct AACEncContext *s, const float *in, const float *scaled, int size, int scale_idx, int cb,
const float lambda, const float uplim, int *bits)
static float quantize_band_cost(struct AACEncContext *s, const float *in,
const float *scaled, int size, int scale_idx,
int cb, const float lambda, const float uplim,
int *bits)
{
const float IQ = ff_aac_pow2sf_tab[200 + scale_idx - SCALE_ONE_POS + SCALE_DIV_512];
const float Q = ff_aac_pow2sf_tab[200 - scale_idx + SCALE_ONE_POS - SCALE_DIV_512];
......@@ -114,7 +117,7 @@ static float quantize_band_cost(struct AACEncContext *s, const float *in, const
int resbits = 0;
#ifndef USE_REALLY_FULL_SEARCH
const float Q34 = pow(Q, 0.75);
const int range = aac_cb_range[cb];
const int range = aac_cb_range[cb];
const int maxval = aac_cb_maxval[cb];
int offs[4];
#endif /* USE_REALLY_FULL_SEARCH */
......@@ -132,7 +135,7 @@ static float quantize_band_cost(struct AACEncContext *s, const float *in, const
#endif /* USE_REALLY_FULL_SEARCH */
for (i = 0; i < size; i += dim) {
float mincost;
int minidx = 0;
int minidx = 0;
int minbits = 0;
const float *vec;
#ifndef USE_REALLY_FULL_SEARCH
......@@ -148,7 +151,7 @@ static float quantize_band_cost(struct AACEncContext *s, const float *in, const
float rd = 0.0f;
int curbits;
int curidx = IS_CODEBOOK_UNSIGNED(cb) ? 0 : 40;
int same = 0;
int same = 0;
for (k = 0; k < dim; k++) {
if ((j & (1 << k)) && quants[k][0] == quants[k][1]) {
same = 1;
......@@ -159,8 +162,8 @@ static float quantize_band_cost(struct AACEncContext *s, const float *in, const
continue;
for (k = 0; k < dim; k++)
curidx += quants[k][!!(j & (1 << k))] * offs[dim - 1 - k];
curbits = ff_aac_spectral_bits[cb-1][curidx];
vec = &ff_aac_codebook_vectors[cb-1][curidx*dim];
curbits = ff_aac_spectral_bits[cb-1][curidx];
vec = &ff_aac_codebook_vectors[cb-1][curidx*dim];
#else
mincost = INFINITY;
vec = ff_aac_codebook_vectors[cb-1];
......@@ -177,7 +180,7 @@ static float quantize_band_cost(struct AACEncContext *s, const float *in, const
rd = INFINITY;
break;
}
if (vec[k] == 64.0f) {//FIXME: slow
if (vec[k] == 64.0f) { //FIXME: slow
if (t >= CLIPPED_ESCAPE) {
di = t - CLIPPED_ESCAPE;
curbits += 21;
......@@ -202,11 +205,11 @@ static float quantize_band_cost(struct AACEncContext *s, const float *in, const
rd += curbits;
if (rd < mincost) {
mincost = rd;
minidx = j;
minidx = j;
minbits = curbits;
}
}
cost += mincost;
cost += mincost;
resbits += minbits;
if (cost >= uplim)
return uplim;
......@@ -217,8 +220,9 @@ static float quantize_band_cost(struct AACEncContext *s, const float *in, const
return cost;
}
static void quantize_and_encode_band(struct AACEncContext *s, PutBitContext *pb, const float *in, int size,
int scale_idx, int cb, const float lambda)
static void quantize_and_encode_band(struct AACEncContext *s, PutBitContext *pb,
const float *in, int size, int scale_idx,
int cb, const float lambda)
{
const float IQ = ff_aac_pow2sf_tab[200 + scale_idx - SCALE_ONE_POS + SCALE_DIV_512];
const float Q = ff_aac_pow2sf_tab[200 - scale_idx + SCALE_ONE_POS - SCALE_DIV_512];
......@@ -227,7 +231,7 @@ static void quantize_and_encode_band(struct AACEncContext *s, PutBitContext *pb,
int i, j, k;
#ifndef USE_REALLY_FULL_SEARCH
const float Q34 = pow(Q, 0.75);
const int range = aac_cb_range[cb];
const int range = aac_cb_range[cb];
const int maxval = aac_cb_maxval[cb];
int offs[4];
float *scaled = s->scoefs;
......@@ -246,7 +250,7 @@ static void quantize_and_encode_band(struct AACEncContext *s, PutBitContext *pb,
#endif /* USE_REALLY_FULL_SEARCH */
for (i = 0; i < size; i += dim) {
float mincost;
int minidx = 0;
int minidx = 0;
int minbits = 0;
const float *vec;
#ifndef USE_REALLY_FULL_SEARCH
......@@ -262,7 +266,7 @@ static void quantize_and_encode_band(struct AACEncContext *s, PutBitContext *pb,
float rd = 0.0f;
int curbits;
int curidx = IS_CODEBOOK_UNSIGNED(cb) ? 0 : 40;
int same = 0;
int same = 0;
for (k = 0; k < dim; k++) {
if ((j & (1 << k)) && quants[k][0] == quants[k][1]) {
same = 1;
......@@ -273,15 +277,15 @@ static void quantize_and_encode_band(struct AACEncContext *s, PutBitContext *pb,
continue;
for (k = 0; k < dim; k++)
curidx += quants[k][!!(j & (1 << k))] * offs[dim - 1 - k];
curbits = ff_aac_spectral_bits[cb-1][curidx];
vec = &ff_aac_codebook_vectors[cb-1][curidx*dim];
curbits = ff_aac_spectral_bits[cb-1][curidx];
vec = &ff_aac_codebook_vectors[cb-1][curidx*dim];
#else
vec = ff_aac_codebook_vectors[cb-1];
mincost = INFINITY;
for (j = 0; j < ff_aac_spectral_sizes[cb-1]; j++, vec += dim) {
float rd = 0.0f;
int curbits = ff_aac_spectral_bits[cb-1][j];
int curidx = j;
int curidx = j;
#endif /* USE_REALLY_FULL_SEARCH */
if (IS_CODEBOOK_UNSIGNED(cb)) {
for (k = 0; k < dim; k++) {
......@@ -292,7 +296,7 @@ static void quantize_and_encode_band(struct AACEncContext *s, PutBitContext *pb,
rd = INFINITY;
break;
}
if (vec[k] == 64.0f) {//FIXME: slow
if (vec[k] == 64.0f) { //FIXME: slow
if (t >= CLIPPED_ESCAPE) {
di = t - CLIPPED_ESCAPE;
curbits += 21;
......@@ -317,7 +321,7 @@ static void quantize_and_encode_band(struct AACEncContext *s, PutBitContext *pb,
rd += curbits;
if (rd < mincost) {
mincost = rd;
minidx = curidx;
minidx = curidx;
minbits = curbits;
}
}
......@@ -360,9 +364,9 @@ static void encode_window_bands_info(AACEncContext *s, SingleChannelElement *sce
BandCodingPath path[120][12];
int w, swb, cb, start, start2, size;
int i, j;
const int max_sfb = sce->ics.max_sfb;
const int max_sfb = sce->ics.max_sfb;
const int run_bits = sce->ics.num_windows == 1 ? 5 : 3;
const int run_esc = (1 << run_bits) - 1;
const int run_esc = (1 << run_bits) - 1;
int idx, ppos, count;
int stackrun[120], stackcb[120], stack_len;
float next_minrd = INFINITY;
......@@ -371,9 +375,9 @@ static void encode_window_bands_info(AACEncContext *s, SingleChannelElement *sce
abs_pow34_v(s->scoefs, sce->coeffs, 1024);
start = win*128;
for (cb = 0; cb < 12; cb++) {
path[0][cb].cost = 0.0f;
path[0][cb].cost = 0.0f;
path[0][cb].prev_idx = -1;
path[0][cb].run = 0;
path[0][cb].run = 0;
}
for (swb = 0; swb < max_sfb; swb++) {
start2 = start;
......@@ -381,8 +385,8 @@ static void encode_window_bands_info(AACEncContext *s, SingleChannelElement *sce
if (sce->zeroes[win*16 + swb]) {
for (cb = 0; cb < 12; cb++) {
path[swb+1][cb].prev_idx = cb;
path[swb+1][cb].cost = path[swb][cb].cost;
path[swb+1][cb].run = path[swb][cb].run + 1;
path[swb+1][cb].cost = path[swb][cb].cost;
path[swb+1][cb].run = path[swb][cb].run + 1;
}
} else {
float minrd = next_minrd;
......@@ -402,7 +406,7 @@ static void encode_window_bands_info(AACEncContext *s, SingleChannelElement *sce
cost_stay_here = path[swb][cb].cost + rd;
cost_get_here = minrd + rd + run_bits + 4;
if ( run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run]
!= run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run+1])
!= run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run+1])
cost_stay_here += run_bits;
if (cost_get_here < cost_stay_here) {
path[swb+1][cb].prev_idx = mincb;
......@@ -424,13 +428,13 @@ static void encode_window_bands_info(AACEncContext *s, SingleChannelElement *sce
//convert resulting path from backward-linked list
stack_len = 0;
idx = 0;
idx = 0;
for (cb = 1; cb < 12; cb++) {
if (path[max_sfb][cb].cost < path[max_sfb][idx].cost)
idx = cb;
}
ppos = max_sfb;
while(ppos > 0) {
while (ppos > 0) {
cb = idx;
stackrun[stack_len] = path[ppos][cb].run;
stackcb [stack_len] = cb;
......@@ -449,7 +453,7 @@ static void encode_window_bands_info(AACEncContext *s, SingleChannelElement *sce
sce->band_type[win*16 + start] = stackcb[i];
start++;
}
while(count >= run_esc) {
while (count >= run_esc) {
put_bits(&s->pb, run_bits, run_esc);
count -= run_esc;
}
......@@ -457,8 +461,10 @@ static void encode_window_bands_info(AACEncContext *s, SingleChannelElement *sce
}
}
static void encode_window_bands_info_fixed(AACEncContext *s, SingleChannelElement *sce,
int win, int group_len, const float lambda)
static void encode_window_bands_info_fixed(AACEncContext *s,
SingleChannelElement *sce,
int win, int group_len,
const float lambda)
{
encode_window_bands_info(s, sce, win, group_len, 1.0f);
}
......@@ -472,7 +478,8 @@ typedef struct TrellisPath {
} TrellisPath;
static void search_for_quantizers_anmr(AVCodecContext *avctx, AACEncContext *s,
SingleChannelElement *sce, const float lambda)
SingleChannelElement *sce,
const float lambda)
{
int q, w, w2, g, start = 0;
int i;
......@@ -483,14 +490,14 @@ static void search_for_quantizers_anmr(AVCodecContext *avctx, AACEncContext *s,
float mincost;
for (i = 0; i < 256; i++) {
paths[i].cost = 0.0f;
paths[i].prev = -1;
paths[i].cost = 0.0f;
paths[i].prev = -1;
paths[i].min_val = i;
paths[i].max_val = i;
}
for (i = 256; i < 256*121; i++) {
paths[i].cost = INFINITY;
paths[i].prev = -2;
paths[i].cost = INFINITY;
paths[i].prev = -2;
paths[i].min_val = INT_MAX;
paths[i].max_val = 0;
}
......@@ -503,7 +510,7 @@ static void search_for_quantizers_anmr(AVCodecContext *avctx, AACEncContext *s,
float qmin, qmax;
int nz = 0;
bandaddr[idx >> 8] = w*16+g;
bandaddr[idx >> 8] = w * 16 + g;
qmin = INT_MAX;
qmax = 0.0f;
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
......@@ -553,8 +560,8 @@ static void search_for_quantizers_anmr(AVCodecContext *avctx, AACEncContext *s,
minv = FFMIN(paths[idx - 256 + i].min_val, q);
maxv = FFMAX(paths[idx - 256 + i].max_val, q);
if (cost < paths[idx + q].cost && maxv-minv < SCALE_MAX_DIFF) {
paths[idx + q].cost = cost;
paths[idx + q].prev = idx - 256 + i;
paths[idx + q].cost = cost;
paths[idx + q].prev = idx - 256 + i;
paths[idx + q].min_val = minv;
paths[idx + q].max_val = maxv;
}
......@@ -578,8 +585,8 @@ static void search_for_quantizers_anmr(AVCodecContext *avctx, AACEncContext *s,
minv = FFMIN(paths[idx - 256 + i].min_val, q);
maxv = FFMAX(paths[idx - 256 + i].max_val, q);
if (cost < paths[idx + q].cost && maxv-minv < SCALE_MAX_DIFF) {
paths[idx + q].cost = cost;
paths[idx + q].prev = idx - 256 + i;
paths[idx + q].cost = cost;
paths[idx + q].prev = idx - 256 + i;
paths[idx + q].min_val = minv;
paths[idx + q].max_val = maxv;
}
......@@ -588,19 +595,19 @@ static void search_for_quantizers_anmr(AVCodecContext *avctx, AACEncContext *s,
}
sce->zeroes[w*16+g] = !nz;
start += sce->ics.swb_sizes[g];
idx += 256;
idx += 256;
}
}
idx -= 256;
mincost = paths[idx].cost;
minq = idx;
minq = idx;
for (i = 1; i < 256; i++) {
if (paths[idx + i].cost < mincost) {
mincost = paths[idx + i].cost;
minq = idx + i;
}
}
while(minq >= 256) {
while (minq >= 256) {
sce->sf_idx[bandaddr[minq>>8]] = minq & 0xFF;
minq = paths[minq].prev;
}
......@@ -614,14 +621,16 @@ static void search_for_quantizers_anmr(AVCodecContext *avctx, AACEncContext *s,
/**
* two-loop quantizers search taken from ISO 13818-7 Appendix C
*/
static void search_for_quantizers_twoloop(AVCodecContext *avctx, AACEncContext *s,
SingleChannelElement *sce, const float lambda)
static void search_for_quantizers_twoloop(AVCodecContext *avctx,
AACEncContext *s,
SingleChannelElement *sce,
const float lambda)
{
int start = 0, i, w, w2, g;
int destbits = avctx->bit_rate * 1024.0 / avctx->sample_rate / avctx->channels;
float dists[128], uplims[128];
int fflag, minscaler;
int its = 0;
int its = 0;
int allz = 0;
float minthr = INFINITY;
......@@ -663,12 +672,12 @@ static void search_for_quantizers_twoloop(AVCodecContext *avctx, AACEncContext *
abs_pow34_v(s->scoefs, sce->coeffs, 1024);
//perform two-loop search
//outer loop - improve quality
do{
do {
int tbits, qstep;
minscaler = sce->sf_idx[0];
//inner loop - quantize spectrum to fit into given number of bits
qstep = its ? 1 : 32;
do{
do {
int prev = -1;
tbits = 0;
fflag = 0;
......@@ -732,7 +741,7 @@ static void search_for_quantizers_twoloop(AVCodecContext *avctx, AACEncContext *
if (!qstep && tbits > destbits*1.02)
qstep = 1;
if (sce->sf_idx[0] >= 217)break;
}while(qstep);
} while (qstep);
fflag = 0;
minscaler = av_clip(minscaler, 60, 255 - SCALE_MAX_DIFF);
......@@ -749,11 +758,12 @@ static void search_for_quantizers_twoloop(AVCodecContext *avctx, AACEncContext *
}
}
its++;
}while(fflag && its < 10);
} while (fflag && its < 10);
}
static void search_for_quantizers_faac(AVCodecContext *avctx, AACEncContext *s,
SingleChannelElement *sce, const float lambda)
SingleChannelElement *sce,
const float lambda)
{
int start = 0, i, w, w2, g;
float uplim[128], maxq[128];
......@@ -801,7 +811,7 @@ static void search_for_quantizers_faac(AVCodecContext *avctx, AACEncContext *s,
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
start = w*128;
for (g = 0; g < sce->ics.num_swb; g++) {
float *coefs = sce->coeffs + start;
float *coefs = sce->coeffs + start;
const int size = sce->ics.swb_sizes[g];
int start2 = start, end2 = start + size, peakpos = start;
float maxval = -1, thr = 0.0f, t;
......@@ -819,7 +829,7 @@ static void search_for_quantizers_faac(AVCodecContext *avctx, AACEncContext *s,
maxq[w*16+g] = fmaxf(maxq[w*16+g], fabsf(coefs[w2*128 + i]));
thr += t;
if (sce->ics.num_windows == 1 && maxval < t) {
maxval = t;
maxval = t;
peakpos = start+i;
}
}
......@@ -833,7 +843,7 @@ static void search_for_quantizers_faac(AVCodecContext *avctx, AACEncContext *s,
}
start += size;
thr = pow(thr / (avg_energy * (end2 - start2)), 0.3 + 0.1*(lastband - g) / lastband);
t = 1.0 - (1.0 * start2 / last);
t = 1.0 - (1.0 * start2 / last);
uplim[w*16+g] = distfact / (1.4 * thr + t*t*t + 0.075);
}
}
......@@ -842,9 +852,9 @@ static void search_for_quantizers_faac(AVCodecContext *avctx, AACEncContext *s,
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
start = w*128;
for (g = 0; g < sce->ics.num_swb; g++) {
const float *coefs = sce->coeffs + start;
const float *scaled = s->scoefs + start;
const int size = sce->ics.swb_sizes[g];
const float *coefs = sce->coeffs + start;
const float *scaled = s->scoefs + start;
const int size = sce->ics.swb_sizes[g];
int scf, prev_scf, step;
int min_scf = 0, max_scf = 255;
float curdiff;
......@@ -854,7 +864,7 @@ static void search_for_quantizers_faac(AVCodecContext *avctx, AACEncContext *s,
continue;
}
sce->zeroes[w*16+g] = 0;
scf = prev_scf = av_clip(SCALE_ONE_POS - SCALE_DIV_512 - log2(1/maxq[w*16+g])*16/3, 60, 218);
scf = prev_scf = av_clip(SCALE_ONE_POS - SCALE_DIV_512 - log2(1/maxq[w*16+g])*16/3, 60, 218);
step = 16;
for (;;) {
float dist = 0.0f;
......@@ -917,7 +927,8 @@ static void search_for_quantizers_faac(AVCodecContext *avctx, AACEncContext *s,
}
static void search_for_quantizers_fast(AVCodecContext *avctx, AACEncContext *s,
SingleChannelElement *sce, const float lambda)
SingleChannelElement *sce,
const float lambda)
{
int start = 0, i, w, w2, g;
int minq = 255;
......@@ -949,7 +960,8 @@ static void search_for_quantizers_fast(AVCodecContext *avctx, AACEncContext *s,
sce->sf_idx[(w+w2)*16+g] = sce->sf_idx[w*16+g];
}
static void search_for_ms(AACEncContext *s, ChannelElement *cpe, const float lambda)
static void search_for_ms(AACEncContext *s, ChannelElement *cpe,
const float lambda)
{
int start = 0, i, w, w2, g;
float M[128], S[128];
......@@ -969,7 +981,7 @@ static void search_for_ms(AACEncContext *s, ChannelElement *cpe, const float lam
float maxthr = fmaxf(band0->threshold, band1->threshold);
for (i = 0; i < sce0->ics.swb_sizes[g]; i++) {
M[i] = (sce0->coeffs[start+w2*128+i]
+ sce1->coeffs[start+w2*128+i])*0.5;
+ sce1->coeffs[start+w2*128+i]) * 0.5;
S[i] = sce0->coeffs[start+w2*128+i]
- sce1->coeffs[start+w2*128+i];
}
......
......@@ -181,14 +181,14 @@ static av_cold int aac_encode_init(AVCodecContext *avctx)
ff_sine_window_init(ff_sine_1024, 1024);
ff_sine_window_init(ff_sine_128, 128);
s->samples = av_malloc(2 * 1024 * avctx->channels * sizeof(s->samples[0]));
s->cpe = av_mallocz(sizeof(ChannelElement) * aac_chan_configs[avctx->channels-1][0]);
avctx->extradata = av_malloc(2);
s->samples = av_malloc(2 * 1024 * avctx->channels * sizeof(s->samples[0]));
s->cpe = av_mallocz(sizeof(ChannelElement) * aac_chan_configs[avctx->channels-1][0]);
avctx->extradata = av_malloc(2);
avctx->extradata_size = 2;
put_audio_specific_config(avctx);
sizes[0] = swb_size_1024[i];
sizes[1] = swb_size_128[i];
sizes[0] = swb_size_1024[i];
sizes[1] = swb_size_128[i];
lengths[0] = ff_aac_num_swb_1024[i];
lengths[1] = ff_aac_num_swb_128[i];
ff_psy_init(&s->psy, avctx, 2, sizes, lengths);
......@@ -353,8 +353,10 @@ static void adjust_frame_information(AACEncContext *apc, ChannelElement *cpe, in
for (w = 0; w < ics0->num_windows*16; w += 16)
for (i = 0; i < ics0->max_sfb; i++)
if (cpe->ms_mask[w+i]) msc++;
if (msc == 0 || ics0->max_sfb == 0) cpe->ms_mode = 0;
else cpe->ms_mode = msc < ics0->max_sfb ? 1 : 2;
if (msc == 0 || ics0->max_sfb == 0)
cpe->ms_mode = 0;
else
cpe->ms_mode = msc < ics0->max_sfb ? 1 : 2;
}
}
......@@ -373,7 +375,8 @@ static void encode_band_info(AACEncContext *s, SingleChannelElement *sce)
/**
* Encode scalefactors.
*/
static void encode_scale_factors(AVCodecContext *avctx, AACEncContext *s, SingleChannelElement *sce)
static void encode_scale_factors(AVCodecContext *avctx, AACEncContext *s,
SingleChannelElement *sce)
{
int off = sce->sf_idx[0], diff;
int i, w;
......@@ -382,7 +385,8 @@ static void encode_scale_factors(AVCodecContext *avctx, AACEncContext *s, Single
for (i = 0; i < sce->ics.max_sfb; i++) {
if (!sce->zeroes[w*16 + i]) {
diff = sce->sf_idx[w*16 + i] - off + SCALE_DIFF_ZERO;
if (diff < 0 || diff > 120) av_log(avctx, AV_LOG_ERROR, "Scalefactor difference is too big to be coded\n");
if (diff < 0 || diff > 120)
av_log(avctx, AV_LOG_ERROR, "Scalefactor difference is too big to be coded\n");
off = sce->sf_idx[w*16 + i];
put_bits(&s->pb, ff_aac_scalefactor_bits[diff], ff_aac_scalefactor_code[diff]);
}
......@@ -398,7 +402,8 @@ static void encode_pulses(AACEncContext *s, Pulse *pulse)
int i;
put_bits(&s->pb, 1, !!pulse->num_pulse);
if (!pulse->num_pulse) return;
if (!pulse->num_pulse)
return;
put_bits(&s->pb, 2, pulse->num_pulse - 1);
put_bits(&s->pb, 6, pulse->start);
......@@ -424,10 +429,10 @@ static void encode_spectral_coeffs(AACEncContext *s, SingleChannelElement *sce)
}
for (w2 = w; w2 < w + sce->ics.group_len[w]; w2++) {
s->coder->quantize_and_encode_band(s, &s->pb, sce->coeffs + start + w2*128,
sce->ics.swb_sizes[i],
sce->sf_idx[w*16 + i],
sce->band_type[w*16 + i],
s->lambda);
sce->ics.swb_sizes[i],
sce->sf_idx[w*16 + i],
sce->band_type[w*16 + i],
s->lambda);
}
start += sce->ics.swb_sizes[i];
}
......@@ -437,10 +442,13 @@ static void encode_spectral_coeffs(AACEncContext *s, SingleChannelElement *sce)
/**
* Encode one channel of audio data.
*/
static int encode_individual_channel(AVCodecContext *avctx, AACEncContext *s, SingleChannelElement *sce, int common_window)
static int encode_individual_channel(AVCodecContext *avctx, AACEncContext *s,
SingleChannelElement *sce,
int common_window)
{
put_bits(&s->pb, 8, sce->sf_idx[0]);
if (!common_window) put_ics_info(s, &sce->ics);
if (!common_window)
put_ics_info(s, &sce->ics);
encode_band_info(s, sce);
encode_scale_factors(avctx, s, sce);
encode_pulses(s, &sce->pulse);
......@@ -453,7 +461,8 @@ static int encode_individual_channel(AVCodecContext *avctx, AACEncContext *s, Si
/**
* Write some auxiliary information about the created AAC file.
*/
static void put_bitstream_info(AVCodecContext *avctx, AACEncContext *s, const char *name)
static void put_bitstream_info(AVCodecContext *avctx, AACEncContext *s,
const char *name)
{
int i, namelen, padbits;
......@@ -484,20 +493,23 @@ static int aac_encode_frame(AVCodecContext *avctx,
return 0;
if (data) {
if (!s->psypp) {
memcpy(s->samples + 1024 * avctx->channels, data, 1024 * avctx->channels * sizeof(s->samples[0]));
memcpy(s->samples + 1024 * avctx->channels, data,
1024 * avctx->channels * sizeof(s->samples[0]));
} else {
start_ch = 0;
samples2 = s->samples + 1024 * avctx->channels;
for (i = 0; i < chan_map[0]; i++) {
tag = chan_map[i+1];
chans = tag == TYPE_CPE ? 2 : 1;
ff_psy_preprocess(s->psypp, (uint16_t*)data + start_ch, samples2 + start_ch, start_ch, chans);
ff_psy_preprocess(s->psypp, (uint16_t*)data + start_ch,
samples2 + start_ch, start_ch, chans);
start_ch += chans;
}
}
}
if (!avctx->frame_number) {
memcpy(s->samples, s->samples + 1024 * avctx->channels, 1024 * avctx->channels * sizeof(s->samples[0]));
memcpy(s->samples, s->samples + 1024 * avctx->channels,
1024 * avctx->channels * sizeof(s->samples[0]));
return 0;
}
......@@ -509,11 +521,11 @@ static int aac_encode_frame(AVCodecContext *avctx,
memset(chan_el_counter, 0, sizeof(chan_el_counter));
for (i = 0; i < chan_map[0]; i++) {
FFPsyWindowInfo wi[2];
tag = chan_map[i+1];
chans = tag == TYPE_CPE ? 2 : 1;
cpe = &s->cpe[i];
tag = chan_map[i+1];
chans = tag == TYPE_CPE ? 2 : 1;
cpe = &s->cpe[i];
samples2 = samples + start_ch;
la = samples2 + 1024 * avctx->channels + start_ch;
la = samples2 + 1024 * avctx->channels + start_ch;
if (!data) la = NULL;
for (j = 0; j < chans; j++) {
IndividualChannelStream *ics = &cpe->ch[j].ics;
......@@ -577,12 +589,14 @@ static int aac_encode_frame(AVCodecContext *avctx,
}
if (avctx->frame_bits > 6144*avctx->channels) {
av_log(avctx, AV_LOG_ERROR, "input buffer violation %d > %d.\n", avctx->frame_bits, 6144*avctx->channels);
av_log(avctx, AV_LOG_ERROR, "input buffer violation %d > %d.\n",
avctx->frame_bits, 6144*avctx->channels);
}
if (!data)
s->last_frame = 1;
memcpy(s->samples, s->samples + 1024 * avctx->channels, 1024 * avctx->channels * sizeof(s->samples[0]));
memcpy(s->samples, s->samples + 1024 * avctx->channels,
1024 * avctx->channels * sizeof(s->samples[0]));
return put_bits_count(&s->pb)>>3;
}
......
......@@ -106,7 +106,7 @@ static av_cold float calc_bark(float f)
static av_cold float ath(float f, float add)
{
f /= 1000.0f;
return 3.64 * pow(f, -0.8)
return 3.64 * pow(f, -0.8)
- 6.8 * exp(-0.6 * (f - 3.4) * (f - 3.4))
+ 6.0 * exp(-0.15 * (f - 8.7) * (f - 8.7))
+ (0.6 + 0.04 * add) * 0.001 * f * f * f * f;
......@@ -181,11 +181,11 @@ static FFPsyWindowInfo psy_3gpp_window(FFPsyContext *ctx,
int channel, int prev_type)
{
int i, j;
int br = ctx->avctx->bit_rate / ctx->avctx->channels;
int attack_ratio = br <= 16000 ? 18 : 10;
int br = ctx->avctx->bit_rate / ctx->avctx->channels;
int attack_ratio = br <= 16000 ? 18 : 10;
Psy3gppContext *pctx = (Psy3gppContext*) ctx->model_priv_data;
Psy3gppChannel *pch = &pctx->ch[channel];
uint8_t grouping = 0;
Psy3gppChannel *pch = &pctx->ch[channel];
uint8_t grouping = 0;
FFPsyWindowInfo wi;
memset(&wi, 0, sizeof(wi));
......@@ -199,12 +199,12 @@ static FFPsyWindowInfo psy_3gpp_window(FFPsyContext *ctx,
v = iir_filter(audio[(i*128+j)*ctx->avctx->channels], pch->iir_state);
sum += v*v;
}
s[i] = sum;
s[i] = sum;
sum2 += sum;
}
for (i = 0; i < 8; i++) {
if (s[i] > pch->win_energy * attack_ratio) {
attack_n = i + 1;
attack_n = i + 1;
switch_to_eight = 1;
break;
}
......@@ -255,16 +255,16 @@ static FFPsyWindowInfo psy_3gpp_window(FFPsyContext *ctx,
/**
* Calculate band thresholds as suggested in 3GPP TS26.403
*/
static void psy_3gpp_analyze(FFPsyContext *ctx, int channel, const float *coefs,
FFPsyWindowInfo *wi)
static void psy_3gpp_analyze(FFPsyContext *ctx, int channel,
const float *coefs, FFPsyWindowInfo *wi)
{
Psy3gppContext *pctx = (Psy3gppContext*) ctx->model_priv_data;
Psy3gppChannel *pch = &pctx->ch[channel];
Psy3gppChannel *pch = &pctx->ch[channel];
int start = 0;
int i, w, g;
const int num_bands = ctx->num_bands[wi->num_windows == 8];
const int num_bands = ctx->num_bands[wi->num_windows == 8];
const uint8_t* band_sizes = ctx->bands[wi->num_windows == 8];
Psy3gppCoeffs *coeffs = &pctx->psy_coef[wi->num_windows == 8];
Psy3gppCoeffs *coeffs = &pctx->psy_coef[wi->num_windows == 8];
//calculate energies, initial thresholds and related values - 5.4.2 "Threshold Calculation"
for (w = 0; w < wi->num_windows*16; w += 16) {
......@@ -274,8 +274,8 @@ static void psy_3gpp_analyze(FFPsyContext *ctx, int channel, const float *coefs,
for (i = 0; i < band_sizes[g]; i++)
band->energy += coefs[start+i] * coefs[start+i];
band->energy *= 1.0f / (512*512);
band->thr = band->energy * 0.001258925f;
start += band_sizes[g];
band->thr = band->energy * 0.001258925f;
start += band_sizes[g];
ctx->psy_bands[channel*PSY_MAX_BANDS+w+g].energy = band->energy;
}
......
......@@ -81,7 +81,7 @@ av_cold struct FFPsyPreprocessContext* ff_psy_preprocess_init(AVCodecContext *av
FFPsyPreprocessContext *ctx;
int i;
float cutoff_coeff;
ctx = av_mallocz(sizeof(FFPsyPreprocessContext));
ctx = av_mallocz(sizeof(FFPsyPreprocessContext));
ctx->avctx = avctx;
if (avctx->flags & CODEC_FLAG_QSCALE)
......@@ -90,7 +90,7 @@ av_cold struct FFPsyPreprocessContext* ff_psy_preprocess_init(AVCodecContext *av
cutoff_coeff = avctx->bit_rate / (4.0f * avctx->sample_rate * avctx->channels);
ctx->fcoeffs = ff_iir_filter_init_coeffs(FF_FILTER_TYPE_BUTTERWORTH, FF_FILTER_MODE_LOWPASS,
FILT_ORDER, cutoff_coeff, 0.0, 0.0);
FILT_ORDER, cutoff_coeff, 0.0, 0.0);
if (ctx->fcoeffs) {
ctx->fstate = av_mallocz(sizeof(ctx->fstate[0]) * avctx->channels);
for (i = 0; i < avctx->channels; i++)
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment