Commit 5ba95400 authored by jbr's avatar jbr

cosmetics: rename all AC3DecodeContext variables from ctx to s

git-svn-id: file:///var/local/repositories/ffmpeg/trunk@11355 9553f0bf-9b14-0410-a0b8-cfaf0461ba5b
parent 0a2b8149
...@@ -291,24 +291,24 @@ static void ac3_tables_init(void) ...@@ -291,24 +291,24 @@ static void ac3_tables_init(void)
*/ */
static int ac3_decode_init(AVCodecContext *avctx) static int ac3_decode_init(AVCodecContext *avctx)
{ {
AC3DecodeContext *ctx = avctx->priv_data; AC3DecodeContext *s = avctx->priv_data;
ctx->avctx = avctx; s->avctx = avctx;
ac3_common_init(); ac3_common_init();
ac3_tables_init(); ac3_tables_init();
ff_mdct_init(&ctx->imdct_256, 8, 1); ff_mdct_init(&s->imdct_256, 8, 1);
ff_mdct_init(&ctx->imdct_512, 9, 1); ff_mdct_init(&s->imdct_512, 9, 1);
ac3_window_init(ctx->window); ac3_window_init(s->window);
dsputil_init(&ctx->dsp, avctx); dsputil_init(&s->dsp, avctx);
av_init_random(0, &ctx->dith_state); av_init_random(0, &s->dith_state);
/* set bias values for float to int16 conversion */ /* set bias values for float to int16 conversion */
if(ctx->dsp.float_to_int16 == ff_float_to_int16_c) { if(s->dsp.float_to_int16 == ff_float_to_int16_c) {
ctx->add_bias = 385.0f; s->add_bias = 385.0f;
ctx->mul_bias = 1.0f; s->mul_bias = 1.0f;
} else { } else {
ctx->add_bias = 0.0f; s->add_bias = 0.0f;
ctx->mul_bias = 32767.0f; s->mul_bias = 32767.0f;
} }
return 0; return 0;
...@@ -319,10 +319,10 @@ static int ac3_decode_init(AVCodecContext *avctx) ...@@ -319,10 +319,10 @@ static int ac3_decode_init(AVCodecContext *avctx)
* GetBitContext within AC3DecodeContext must point to * GetBitContext within AC3DecodeContext must point to
* start of the synchronized ac3 bitstream. * start of the synchronized ac3 bitstream.
*/ */
static int ac3_parse_header(AC3DecodeContext *ctx) static int ac3_parse_header(AC3DecodeContext *s)
{ {
AC3HeaderInfo hdr; AC3HeaderInfo hdr;
GetBitContext *gbc = &ctx->gbc; GetBitContext *gbc = &s->gbc;
float center_mix_level, surround_mix_level; float center_mix_level, surround_mix_level;
int err, i; int err, i;
...@@ -331,42 +331,42 @@ static int ac3_parse_header(AC3DecodeContext *ctx) ...@@ -331,42 +331,42 @@ static int ac3_parse_header(AC3DecodeContext *ctx)
return err; return err;
/* get decoding parameters from header info */ /* get decoding parameters from header info */
ctx->bit_alloc_params.sr_code = hdr.sr_code; s->bit_alloc_params.sr_code = hdr.sr_code;
ctx->channel_mode = hdr.channel_mode; s->channel_mode = hdr.channel_mode;
center_mix_level = gain_levels[center_levels[hdr.center_mix_level]]; center_mix_level = gain_levels[center_levels[hdr.center_mix_level]];
surround_mix_level = gain_levels[surround_levels[hdr.surround_mix_level]]; surround_mix_level = gain_levels[surround_levels[hdr.surround_mix_level]];
ctx->lfe_on = hdr.lfe_on; s->lfe_on = hdr.lfe_on;
ctx->bit_alloc_params.sr_shift = hdr.sr_shift; s->bit_alloc_params.sr_shift = hdr.sr_shift;
ctx->sampling_rate = hdr.sample_rate; s->sampling_rate = hdr.sample_rate;
ctx->bit_rate = hdr.bit_rate; s->bit_rate = hdr.bit_rate;
ctx->channels = hdr.channels; s->channels = hdr.channels;
ctx->fbw_channels = ctx->channels - ctx->lfe_on; s->fbw_channels = s->channels - s->lfe_on;
ctx->lfe_ch = ctx->fbw_channels + 1; s->lfe_ch = s->fbw_channels + 1;
ctx->frame_size = hdr.frame_size; s->frame_size = hdr.frame_size;
/* set default output to all source channels */ /* set default output to all source channels */
ctx->out_channels = ctx->channels; s->out_channels = s->channels;
ctx->output_mode = ctx->channel_mode; s->output_mode = s->channel_mode;
if(ctx->lfe_on) if(s->lfe_on)
ctx->output_mode |= AC3_OUTPUT_LFEON; s->output_mode |= AC3_OUTPUT_LFEON;
/* skip over portion of header which has already been read */ /* skip over portion of header which has already been read */
skip_bits(gbc, 16); // skip the sync_word skip_bits(gbc, 16); // skip the sync_word
skip_bits(gbc, 16); // skip crc1 skip_bits(gbc, 16); // skip crc1
skip_bits(gbc, 8); // skip fscod and frmsizecod skip_bits(gbc, 8); // skip fscod and frmsizecod
skip_bits(gbc, 11); // skip bsid, bsmod, and acmod skip_bits(gbc, 11); // skip bsid, bsmod, and acmod
if(ctx->channel_mode == AC3_CHMODE_STEREO) { if(s->channel_mode == AC3_CHMODE_STEREO) {
skip_bits(gbc, 2); // skip dsurmod skip_bits(gbc, 2); // skip dsurmod
} else { } else {
if((ctx->channel_mode & 1) && ctx->channel_mode != AC3_CHMODE_MONO) if((s->channel_mode & 1) && s->channel_mode != AC3_CHMODE_MONO)
skip_bits(gbc, 2); // skip cmixlev skip_bits(gbc, 2); // skip cmixlev
if(ctx->channel_mode & 4) if(s->channel_mode & 4)
skip_bits(gbc, 2); // skip surmixlev skip_bits(gbc, 2); // skip surmixlev
} }
skip_bits1(gbc); // skip lfeon skip_bits1(gbc); // skip lfeon
/* read the rest of the bsi. read twice for dual mono mode. */ /* read the rest of the bsi. read twice for dual mono mode. */
i = !(ctx->channel_mode); i = !(s->channel_mode);
do { do {
skip_bits(gbc, 5); // skip dialog normalization skip_bits(gbc, 5); // skip dialog normalization
if (get_bits1(gbc)) if (get_bits1(gbc))
...@@ -396,20 +396,20 @@ static int ac3_parse_header(AC3DecodeContext *ctx) ...@@ -396,20 +396,20 @@ static int ac3_parse_header(AC3DecodeContext *ctx)
/* set stereo downmixing coefficients /* set stereo downmixing coefficients
reference: Section 7.8.2 Downmixing Into Two Channels */ reference: Section 7.8.2 Downmixing Into Two Channels */
for(i=0; i<ctx->fbw_channels; i++) { for(i=0; i<s->fbw_channels; i++) {
ctx->downmix_coeffs[i][0] = gain_levels[ac3_default_coeffs[ctx->channel_mode][i][0]]; s->downmix_coeffs[i][0] = gain_levels[ac3_default_coeffs[s->channel_mode][i][0]];
ctx->downmix_coeffs[i][1] = gain_levels[ac3_default_coeffs[ctx->channel_mode][i][1]]; s->downmix_coeffs[i][1] = gain_levels[ac3_default_coeffs[s->channel_mode][i][1]];
} }
if(ctx->channel_mode > 1 && ctx->channel_mode & 1) { if(s->channel_mode > 1 && s->channel_mode & 1) {
ctx->downmix_coeffs[1][0] = ctx->downmix_coeffs[1][1] = center_mix_level; s->downmix_coeffs[1][0] = s->downmix_coeffs[1][1] = center_mix_level;
} }
if(ctx->channel_mode == AC3_CHMODE_2F1R || ctx->channel_mode == AC3_CHMODE_3F1R) { if(s->channel_mode == AC3_CHMODE_2F1R || s->channel_mode == AC3_CHMODE_3F1R) {
int nf = ctx->channel_mode - 2; int nf = s->channel_mode - 2;
ctx->downmix_coeffs[nf][0] = ctx->downmix_coeffs[nf][1] = surround_mix_level * LEVEL_MINUS_3DB; s->downmix_coeffs[nf][0] = s->downmix_coeffs[nf][1] = surround_mix_level * LEVEL_MINUS_3DB;
} }
if(ctx->channel_mode == AC3_CHMODE_2F2R || ctx->channel_mode == AC3_CHMODE_3F2R) { if(s->channel_mode == AC3_CHMODE_2F2R || s->channel_mode == AC3_CHMODE_3F2R) {
int nf = ctx->channel_mode - 4; int nf = s->channel_mode - 4;
ctx->downmix_coeffs[nf][0] = ctx->downmix_coeffs[nf+1][1] = surround_mix_level; s->downmix_coeffs[nf][0] = s->downmix_coeffs[nf+1][1] = surround_mix_level;
} }
return 0; return 0;
...@@ -450,23 +450,23 @@ static void decode_exponents(GetBitContext *gbc, int exp_strategy, int ngrps, ...@@ -450,23 +450,23 @@ static void decode_exponents(GetBitContext *gbc, int exp_strategy, int ngrps,
* range using the coupling coefficients and coupling coordinates. * range using the coupling coefficients and coupling coordinates.
* reference: Section 7.4.3 Coupling Coordinate Format * reference: Section 7.4.3 Coupling Coordinate Format
*/ */
static void uncouple_channels(AC3DecodeContext *ctx) static void uncouple_channels(AC3DecodeContext *s)
{ {
int i, j, ch, bnd, subbnd; int i, j, ch, bnd, subbnd;
subbnd = -1; subbnd = -1;
i = ctx->start_freq[CPL_CH]; i = s->start_freq[CPL_CH];
for(bnd=0; bnd<ctx->num_cpl_bands; bnd++) { for(bnd=0; bnd<s->num_cpl_bands; bnd++) {
do { do {
subbnd++; subbnd++;
for(j=0; j<12; j++) { for(j=0; j<12; j++) {
for(ch=1; ch<=ctx->fbw_channels; ch++) { for(ch=1; ch<=s->fbw_channels; ch++) {
if(ctx->channel_in_cpl[ch]) if(s->channel_in_cpl[ch])
ctx->transform_coeffs[ch][i] = ctx->transform_coeffs[CPL_CH][i] * ctx->cpl_coords[ch][bnd] * 8.0f; s->transform_coeffs[ch][i] = s->transform_coeffs[CPL_CH][i] * s->cpl_coords[ch][bnd] * 8.0f;
} }
i++; i++;
} }
} while(ctx->cpl_band_struct[subbnd]); } while(s->cpl_band_struct[subbnd]);
} }
} }
...@@ -486,25 +486,25 @@ typedef struct { ...@@ -486,25 +486,25 @@ typedef struct {
* Get the transform coefficients for a particular channel * Get the transform coefficients for a particular channel
* reference: Section 7.3 Quantization and Decoding of Mantissas * reference: Section 7.3 Quantization and Decoding of Mantissas
*/ */
static int get_transform_coeffs_ch(AC3DecodeContext *ctx, int ch_index, mant_groups *m) static int get_transform_coeffs_ch(AC3DecodeContext *s, int ch_index, mant_groups *m)
{ {
GetBitContext *gbc = &ctx->gbc; GetBitContext *gbc = &s->gbc;
int i, gcode, tbap, start, end; int i, gcode, tbap, start, end;
uint8_t *exps; uint8_t *exps;
uint8_t *bap; uint8_t *bap;
float *coeffs; float *coeffs;
exps = ctx->dexps[ch_index]; exps = s->dexps[ch_index];
bap = ctx->bap[ch_index]; bap = s->bap[ch_index];
coeffs = ctx->transform_coeffs[ch_index]; coeffs = s->transform_coeffs[ch_index];
start = ctx->start_freq[ch_index]; start = s->start_freq[ch_index];
end = ctx->end_freq[ch_index]; end = s->end_freq[ch_index];
for (i = start; i < end; i++) { for (i = start; i < end; i++) {
tbap = bap[i]; tbap = bap[i];
switch (tbap) { switch (tbap) {
case 0: case 0:
coeffs[i] = ((av_random(&ctx->dith_state) & 0xFFFF) / 65535.0f) - 0.5f; coeffs[i] = ((av_random(&s->dith_state) & 0xFFFF) / 65535.0f) - 0.5f;
break; break;
case 1: case 1:
...@@ -562,27 +562,27 @@ static int get_transform_coeffs_ch(AC3DecodeContext *ctx, int ch_index, mant_gro ...@@ -562,27 +562,27 @@ static int get_transform_coeffs_ch(AC3DecodeContext *ctx, int ch_index, mant_gro
* Remove random dithering from coefficients with zero-bit mantissas * Remove random dithering from coefficients with zero-bit mantissas
* reference: Section 7.3.4 Dither for Zero Bit Mantissas (bap=0) * reference: Section 7.3.4 Dither for Zero Bit Mantissas (bap=0)
*/ */
static void remove_dithering(AC3DecodeContext *ctx) { static void remove_dithering(AC3DecodeContext *s) {
int ch, i; int ch, i;
int end=0; int end=0;
float *coeffs; float *coeffs;
uint8_t *bap; uint8_t *bap;
for(ch=1; ch<=ctx->fbw_channels; ch++) { for(ch=1; ch<=s->fbw_channels; ch++) {
if(!ctx->dither_flag[ch]) { if(!s->dither_flag[ch]) {
coeffs = ctx->transform_coeffs[ch]; coeffs = s->transform_coeffs[ch];
bap = ctx->bap[ch]; bap = s->bap[ch];
if(ctx->channel_in_cpl[ch]) if(s->channel_in_cpl[ch])
end = ctx->start_freq[CPL_CH]; end = s->start_freq[CPL_CH];
else else
end = ctx->end_freq[ch]; end = s->end_freq[ch];
for(i=0; i<end; i++) { for(i=0; i<end; i++) {
if(bap[i] == 0) if(bap[i] == 0)
coeffs[i] = 0.0f; coeffs[i] = 0.0f;
} }
if(ctx->channel_in_cpl[ch]) { if(s->channel_in_cpl[ch]) {
bap = ctx->bap[CPL_CH]; bap = s->bap[CPL_CH];
for(; i<ctx->end_freq[CPL_CH]; i++) { for(; i<s->end_freq[CPL_CH]; i++) {
if(bap[i] == 0) if(bap[i] == 0)
coeffs[i] = 0.0f; coeffs[i] = 0.0f;
} }
...@@ -594,7 +594,7 @@ static void remove_dithering(AC3DecodeContext *ctx) { ...@@ -594,7 +594,7 @@ static void remove_dithering(AC3DecodeContext *ctx) {
/** /**
* Get the transform coefficients. * Get the transform coefficients.
*/ */
static int get_transform_coeffs(AC3DecodeContext * ctx) static int get_transform_coeffs(AC3DecodeContext *s)
{ {
int ch, end; int ch, end;
int got_cplchan = 0; int got_cplchan = 0;
...@@ -602,33 +602,33 @@ static int get_transform_coeffs(AC3DecodeContext * ctx) ...@@ -602,33 +602,33 @@ static int get_transform_coeffs(AC3DecodeContext * ctx)
m.b1ptr = m.b2ptr = m.b4ptr = 3; m.b1ptr = m.b2ptr = m.b4ptr = 3;
for (ch = 1; ch <= ctx->channels; ch++) { for (ch = 1; ch <= s->channels; ch++) {
/* transform coefficients for full-bandwidth channel */ /* transform coefficients for full-bandwidth channel */
if (get_transform_coeffs_ch(ctx, ch, &m)) if (get_transform_coeffs_ch(s, ch, &m))
return -1; return -1;
/* tranform coefficients for coupling channel come right after the /* tranform coefficients for coupling channel come right after the
coefficients for the first coupled channel*/ coefficients for the first coupled channel*/
if (ctx->channel_in_cpl[ch]) { if (s->channel_in_cpl[ch]) {
if (!got_cplchan) { if (!got_cplchan) {
if (get_transform_coeffs_ch(ctx, CPL_CH, &m)) { if (get_transform_coeffs_ch(s, CPL_CH, &m)) {
av_log(ctx->avctx, AV_LOG_ERROR, "error in decoupling channels\n"); av_log(s->avctx, AV_LOG_ERROR, "error in decoupling channels\n");
return -1; return -1;
} }
uncouple_channels(ctx); uncouple_channels(s);
got_cplchan = 1; got_cplchan = 1;
} }
end = ctx->end_freq[CPL_CH]; end = s->end_freq[CPL_CH];
} else { } else {
end = ctx->end_freq[ch]; end = s->end_freq[ch];
} }
do do
ctx->transform_coeffs[ch][end] = 0; s->transform_coeffs[ch][end] = 0;
while(++end < 256); while(++end < 256);
} }
/* if any channel doesn't use dithering, zero appropriate coefficients */ /* if any channel doesn't use dithering, zero appropriate coefficients */
if(!ctx->dither_all) if(!s->dither_all)
remove_dithering(ctx); remove_dithering(s);
return 0; return 0;
} }
...@@ -637,22 +637,22 @@ static int get_transform_coeffs(AC3DecodeContext * ctx) ...@@ -637,22 +637,22 @@ static int get_transform_coeffs(AC3DecodeContext * ctx)
* Stereo rematrixing. * Stereo rematrixing.
* reference: Section 7.5.4 Rematrixing : Decoding Technique * reference: Section 7.5.4 Rematrixing : Decoding Technique
*/ */
static void do_rematrixing(AC3DecodeContext *ctx) static void do_rematrixing(AC3DecodeContext *s)
{ {
int bnd, i; int bnd, i;
int end, bndend; int end, bndend;
float tmp0, tmp1; float tmp0, tmp1;
end = FFMIN(ctx->end_freq[1], ctx->end_freq[2]); end = FFMIN(s->end_freq[1], s->end_freq[2]);
for(bnd=0; bnd<ctx->num_rematrixing_bands; bnd++) { for(bnd=0; bnd<s->num_rematrixing_bands; bnd++) {
if(ctx->rematrixing_flags[bnd]) { if(s->rematrixing_flags[bnd]) {
bndend = FFMIN(end, rematrix_band_tab[bnd+1]); bndend = FFMIN(end, rematrix_band_tab[bnd+1]);
for(i=rematrix_band_tab[bnd]; i<bndend; i++) { for(i=rematrix_band_tab[bnd]; i<bndend; i++) {
tmp0 = ctx->transform_coeffs[1][i]; tmp0 = s->transform_coeffs[1][i];
tmp1 = ctx->transform_coeffs[2][i]; tmp1 = s->transform_coeffs[2][i];
ctx->transform_coeffs[1][i] = tmp0 + tmp1; s->transform_coeffs[1][i] = tmp0 + tmp1;
ctx->transform_coeffs[2][i] = tmp0 - tmp1; s->transform_coeffs[2][i] = tmp0 - tmp1;
} }
} }
} }
...@@ -661,21 +661,21 @@ static void do_rematrixing(AC3DecodeContext *ctx) ...@@ -661,21 +661,21 @@ static void do_rematrixing(AC3DecodeContext *ctx)
/** /**
* Perform the 256-point IMDCT * Perform the 256-point IMDCT
*/ */
static void do_imdct_256(AC3DecodeContext *ctx, int chindex) static void do_imdct_256(AC3DecodeContext *s, int chindex)
{ {
int i, k; int i, k;
DECLARE_ALIGNED_16(float, x[128]); DECLARE_ALIGNED_16(float, x[128]);
FFTComplex z[2][64]; FFTComplex z[2][64];
float *o_ptr = ctx->tmp_output; float *o_ptr = s->tmp_output;
for(i=0; i<2; i++) { for(i=0; i<2; i++) {
/* de-interleave coefficients */ /* de-interleave coefficients */
for(k=0; k<128; k++) { for(k=0; k<128; k++) {
x[k] = ctx->transform_coeffs[chindex][2*k+i]; x[k] = s->transform_coeffs[chindex][2*k+i];
} }
/* run standard IMDCT */ /* run standard IMDCT */
ctx->imdct_256.fft.imdct_calc(&ctx->imdct_256, o_ptr, x, ctx->tmp_imdct); s->imdct_256.fft.imdct_calc(&s->imdct_256, o_ptr, x, s->tmp_imdct);
/* reverse the post-rotation & reordering from standard IMDCT */ /* reverse the post-rotation & reordering from standard IMDCT */
for(k=0; k<32; k++) { for(k=0; k<32; k++) {
...@@ -704,32 +704,32 @@ static void do_imdct_256(AC3DecodeContext *ctx, int chindex) ...@@ -704,32 +704,32 @@ static void do_imdct_256(AC3DecodeContext *ctx, int chindex)
* Convert frequency domain coefficients to time-domain audio samples. * Convert frequency domain coefficients to time-domain audio samples.
* reference: Section 7.9.4 Transformation Equations * reference: Section 7.9.4 Transformation Equations
*/ */
static inline void do_imdct(AC3DecodeContext *ctx) static inline void do_imdct(AC3DecodeContext *s)
{ {
int ch; int ch;
int channels; int channels;
/* Don't perform the IMDCT on the LFE channel unless it's used in the output */ /* Don't perform the IMDCT on the LFE channel unless it's used in the output */
channels = ctx->fbw_channels; channels = s->fbw_channels;
if(ctx->output_mode & AC3_OUTPUT_LFEON) if(s->output_mode & AC3_OUTPUT_LFEON)
channels++; channels++;
for (ch=1; ch<=channels; ch++) { for (ch=1; ch<=channels; ch++) {
if (ctx->block_switch[ch]) { if (s->block_switch[ch]) {
do_imdct_256(ctx, ch); do_imdct_256(s, ch);
} else { } else {
ctx->imdct_512.fft.imdct_calc(&ctx->imdct_512, ctx->tmp_output, s->imdct_512.fft.imdct_calc(&s->imdct_512, s->tmp_output,
ctx->transform_coeffs[ch], s->transform_coeffs[ch],
ctx->tmp_imdct); s->tmp_imdct);
} }
/* For the first half of the block, apply the window, add the delay /* For the first half of the block, apply the window, add the delay
from the previous block, and send to output */ from the previous block, and send to output */
ctx->dsp.vector_fmul_add_add(ctx->output[ch-1], ctx->tmp_output, s->dsp.vector_fmul_add_add(s->output[ch-1], s->tmp_output,
ctx->window, ctx->delay[ch-1], 0, 256, 1); s->window, s->delay[ch-1], 0, 256, 1);
/* For the second half of the block, apply the window and store the /* For the second half of the block, apply the window and store the
samples to delay, to be combined with the next block */ samples to delay, to be combined with the next block */
ctx->dsp.vector_fmul_reverse(ctx->delay[ch-1], ctx->tmp_output+256, s->dsp.vector_fmul_reverse(s->delay[ch-1], s->tmp_output+256,
ctx->window, 256); s->window, 256);
} }
} }
...@@ -764,182 +764,182 @@ static void ac3_downmix(float samples[AC3_MAX_CHANNELS][256], int fbw_channels, ...@@ -764,182 +764,182 @@ static void ac3_downmix(float samples[AC3_MAX_CHANNELS][256], int fbw_channels,
/** /**
* Parse an audio block from AC-3 bitstream. * Parse an audio block from AC-3 bitstream.
*/ */
static int ac3_parse_audio_block(AC3DecodeContext *ctx, int blk) static int ac3_parse_audio_block(AC3DecodeContext *s, int blk)
{ {
int fbw_channels = ctx->fbw_channels; int fbw_channels = s->fbw_channels;
int channel_mode = ctx->channel_mode; int channel_mode = s->channel_mode;
int i, bnd, seg, ch; int i, bnd, seg, ch;
GetBitContext *gbc = &ctx->gbc; GetBitContext *gbc = &s->gbc;
uint8_t bit_alloc_stages[AC3_MAX_CHANNELS]; uint8_t bit_alloc_stages[AC3_MAX_CHANNELS];
memset(bit_alloc_stages, 0, AC3_MAX_CHANNELS); memset(bit_alloc_stages, 0, AC3_MAX_CHANNELS);
/* block switch flags */ /* block switch flags */
for (ch = 1; ch <= fbw_channels; ch++) for (ch = 1; ch <= fbw_channels; ch++)
ctx->block_switch[ch] = get_bits1(gbc); s->block_switch[ch] = get_bits1(gbc);
/* dithering flags */ /* dithering flags */
ctx->dither_all = 1; s->dither_all = 1;
for (ch = 1; ch <= fbw_channels; ch++) { for (ch = 1; ch <= fbw_channels; ch++) {
ctx->dither_flag[ch] = get_bits1(gbc); s->dither_flag[ch] = get_bits1(gbc);
if(!ctx->dither_flag[ch]) if(!s->dither_flag[ch])
ctx->dither_all = 0; s->dither_all = 0;
} }
/* dynamic range */ /* dynamic range */
i = !(ctx->channel_mode); i = !(s->channel_mode);
do { do {
if(get_bits1(gbc)) { if(get_bits1(gbc)) {
ctx->dynamic_range[i] = ((dynamic_range_tab[get_bits(gbc, 8)]-1.0) * s->dynamic_range[i] = ((dynamic_range_tab[get_bits(gbc, 8)]-1.0) *
ctx->avctx->drc_scale)+1.0; s->avctx->drc_scale)+1.0;
} else if(blk == 0) { } else if(blk == 0) {
ctx->dynamic_range[i] = 1.0f; s->dynamic_range[i] = 1.0f;
} }
} while(i--); } while(i--);
/* coupling strategy */ /* coupling strategy */
if (get_bits1(gbc)) { if (get_bits1(gbc)) {
memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS); memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS);
ctx->cpl_in_use = get_bits1(gbc); s->cpl_in_use = get_bits1(gbc);
if (ctx->cpl_in_use) { if (s->cpl_in_use) {
/* coupling in use */ /* coupling in use */
int cpl_begin_freq, cpl_end_freq; int cpl_begin_freq, cpl_end_freq;
/* determine which channels are coupled */ /* determine which channels are coupled */
for (ch = 1; ch <= fbw_channels; ch++) for (ch = 1; ch <= fbw_channels; ch++)
ctx->channel_in_cpl[ch] = get_bits1(gbc); s->channel_in_cpl[ch] = get_bits1(gbc);
/* phase flags in use */ /* phase flags in use */
if (channel_mode == AC3_CHMODE_STEREO) if (channel_mode == AC3_CHMODE_STEREO)
ctx->phase_flags_in_use = get_bits1(gbc); s->phase_flags_in_use = get_bits1(gbc);
/* coupling frequency range and band structure */ /* coupling frequency range and band structure */
cpl_begin_freq = get_bits(gbc, 4); cpl_begin_freq = get_bits(gbc, 4);
cpl_end_freq = get_bits(gbc, 4); cpl_end_freq = get_bits(gbc, 4);
if (3 + cpl_end_freq - cpl_begin_freq < 0) { if (3 + cpl_end_freq - cpl_begin_freq < 0) {
av_log(ctx->avctx, AV_LOG_ERROR, "3+cplendf = %d < cplbegf = %d\n", 3+cpl_end_freq, cpl_begin_freq); av_log(s->avctx, AV_LOG_ERROR, "3+cplendf = %d < cplbegf = %d\n", 3+cpl_end_freq, cpl_begin_freq);
return -1; return -1;
} }
ctx->num_cpl_bands = ctx->num_cpl_subbands = 3 + cpl_end_freq - cpl_begin_freq; s->num_cpl_bands = s->num_cpl_subbands = 3 + cpl_end_freq - cpl_begin_freq;
ctx->start_freq[CPL_CH] = cpl_begin_freq * 12 + 37; s->start_freq[CPL_CH] = cpl_begin_freq * 12 + 37;
ctx->end_freq[CPL_CH] = cpl_end_freq * 12 + 73; s->end_freq[CPL_CH] = cpl_end_freq * 12 + 73;
for (bnd = 0; bnd < ctx->num_cpl_subbands - 1; bnd++) { for (bnd = 0; bnd < s->num_cpl_subbands - 1; bnd++) {
if (get_bits1(gbc)) { if (get_bits1(gbc)) {
ctx->cpl_band_struct[bnd] = 1; s->cpl_band_struct[bnd] = 1;
ctx->num_cpl_bands--; s->num_cpl_bands--;
} }
} }
} else { } else {
/* coupling not in use */ /* coupling not in use */
for (ch = 1; ch <= fbw_channels; ch++) for (ch = 1; ch <= fbw_channels; ch++)
ctx->channel_in_cpl[ch] = 0; s->channel_in_cpl[ch] = 0;
} }
} }
/* coupling coordinates */ /* coupling coordinates */
if (ctx->cpl_in_use) { if (s->cpl_in_use) {
int cpl_coords_exist = 0; int cpl_coords_exist = 0;
for (ch = 1; ch <= fbw_channels; ch++) { for (ch = 1; ch <= fbw_channels; ch++) {
if (ctx->channel_in_cpl[ch]) { if (s->channel_in_cpl[ch]) {
if (get_bits1(gbc)) { if (get_bits1(gbc)) {
int master_cpl_coord, cpl_coord_exp, cpl_coord_mant; int master_cpl_coord, cpl_coord_exp, cpl_coord_mant;
cpl_coords_exist = 1; cpl_coords_exist = 1;
master_cpl_coord = 3 * get_bits(gbc, 2); master_cpl_coord = 3 * get_bits(gbc, 2);
for (bnd = 0; bnd < ctx->num_cpl_bands; bnd++) { for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
cpl_coord_exp = get_bits(gbc, 4); cpl_coord_exp = get_bits(gbc, 4);
cpl_coord_mant = get_bits(gbc, 4); cpl_coord_mant = get_bits(gbc, 4);
if (cpl_coord_exp == 15) if (cpl_coord_exp == 15)
ctx->cpl_coords[ch][bnd] = cpl_coord_mant / 16.0f; s->cpl_coords[ch][bnd] = cpl_coord_mant / 16.0f;
else else
ctx->cpl_coords[ch][bnd] = (cpl_coord_mant + 16.0f) / 32.0f; s->cpl_coords[ch][bnd] = (cpl_coord_mant + 16.0f) / 32.0f;
ctx->cpl_coords[ch][bnd] *= scale_factors[cpl_coord_exp + master_cpl_coord]; s->cpl_coords[ch][bnd] *= scale_factors[cpl_coord_exp + master_cpl_coord];
} }
} }
} }
} }
/* phase flags */ /* phase flags */
if (channel_mode == AC3_CHMODE_STEREO && ctx->phase_flags_in_use && cpl_coords_exist) { if (channel_mode == AC3_CHMODE_STEREO && s->phase_flags_in_use && cpl_coords_exist) {
for (bnd = 0; bnd < ctx->num_cpl_bands; bnd++) { for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
if (get_bits1(gbc)) if (get_bits1(gbc))
ctx->cpl_coords[2][bnd] = -ctx->cpl_coords[2][bnd]; s->cpl_coords[2][bnd] = -s->cpl_coords[2][bnd];
} }
} }
} }
/* stereo rematrixing strategy and band structure */ /* stereo rematrixing strategy and band structure */
if (channel_mode == AC3_CHMODE_STEREO) { if (channel_mode == AC3_CHMODE_STEREO) {
ctx->rematrixing_strategy = get_bits1(gbc); s->rematrixing_strategy = get_bits1(gbc);
if (ctx->rematrixing_strategy) { if (s->rematrixing_strategy) {
ctx->num_rematrixing_bands = 4; s->num_rematrixing_bands = 4;
if(ctx->cpl_in_use && ctx->start_freq[CPL_CH] <= 61) if(s->cpl_in_use && s->start_freq[CPL_CH] <= 61)
ctx->num_rematrixing_bands -= 1 + (ctx->start_freq[CPL_CH] == 37); s->num_rematrixing_bands -= 1 + (s->start_freq[CPL_CH] == 37);
for(bnd=0; bnd<ctx->num_rematrixing_bands; bnd++) for(bnd=0; bnd<s->num_rematrixing_bands; bnd++)
ctx->rematrixing_flags[bnd] = get_bits1(gbc); s->rematrixing_flags[bnd] = get_bits1(gbc);
} }
} }
/* exponent strategies for each channel */ /* exponent strategies for each channel */
ctx->exp_strategy[CPL_CH] = EXP_REUSE; s->exp_strategy[CPL_CH] = EXP_REUSE;
ctx->exp_strategy[ctx->lfe_ch] = EXP_REUSE; s->exp_strategy[s->lfe_ch] = EXP_REUSE;
for (ch = !ctx->cpl_in_use; ch <= ctx->channels; ch++) { for (ch = !s->cpl_in_use; ch <= s->channels; ch++) {
if(ch == ctx->lfe_ch) if(ch == s->lfe_ch)
ctx->exp_strategy[ch] = get_bits(gbc, 1); s->exp_strategy[ch] = get_bits(gbc, 1);
else else
ctx->exp_strategy[ch] = get_bits(gbc, 2); s->exp_strategy[ch] = get_bits(gbc, 2);
if(ctx->exp_strategy[ch] != EXP_REUSE) if(s->exp_strategy[ch] != EXP_REUSE)
bit_alloc_stages[ch] = 3; bit_alloc_stages[ch] = 3;
} }
/* channel bandwidth */ /* channel bandwidth */
for (ch = 1; ch <= fbw_channels; ch++) { for (ch = 1; ch <= fbw_channels; ch++) {
ctx->start_freq[ch] = 0; s->start_freq[ch] = 0;
if (ctx->exp_strategy[ch] != EXP_REUSE) { if (s->exp_strategy[ch] != EXP_REUSE) {
int prev = ctx->end_freq[ch]; int prev = s->end_freq[ch];
if (ctx->channel_in_cpl[ch]) if (s->channel_in_cpl[ch])
ctx->end_freq[ch] = ctx->start_freq[CPL_CH]; s->end_freq[ch] = s->start_freq[CPL_CH];
else { else {
int bandwidth_code = get_bits(gbc, 6); int bandwidth_code = get_bits(gbc, 6);
if (bandwidth_code > 60) { if (bandwidth_code > 60) {
av_log(ctx->avctx, AV_LOG_ERROR, "bandwidth code = %d > 60", bandwidth_code); av_log(s->avctx, AV_LOG_ERROR, "bandwidth code = %d > 60", bandwidth_code);
return -1; return -1;
} }
ctx->end_freq[ch] = bandwidth_code * 3 + 73; s->end_freq[ch] = bandwidth_code * 3 + 73;
} }
if(blk > 0 && ctx->end_freq[ch] != prev) if(blk > 0 && s->end_freq[ch] != prev)
memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS); memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS);
} }
} }
ctx->start_freq[ctx->lfe_ch] = 0; s->start_freq[s->lfe_ch] = 0;
ctx->end_freq[ctx->lfe_ch] = 7; s->end_freq[s->lfe_ch] = 7;
/* decode exponents for each channel */ /* decode exponents for each channel */
for (ch = !ctx->cpl_in_use; ch <= ctx->channels; ch++) { for (ch = !s->cpl_in_use; ch <= s->channels; ch++) {
if (ctx->exp_strategy[ch] != EXP_REUSE) { if (s->exp_strategy[ch] != EXP_REUSE) {
int group_size, num_groups; int group_size, num_groups;
group_size = 3 << (ctx->exp_strategy[ch] - 1); group_size = 3 << (s->exp_strategy[ch] - 1);
if(ch == CPL_CH) if(ch == CPL_CH)
num_groups = (ctx->end_freq[ch] - ctx->start_freq[ch]) / group_size; num_groups = (s->end_freq[ch] - s->start_freq[ch]) / group_size;
else if(ch == ctx->lfe_ch) else if(ch == s->lfe_ch)
num_groups = 2; num_groups = 2;
else else
num_groups = (ctx->end_freq[ch] + group_size - 4) / group_size; num_groups = (s->end_freq[ch] + group_size - 4) / group_size;
ctx->dexps[ch][0] = get_bits(gbc, 4) << !ch; s->dexps[ch][0] = get_bits(gbc, 4) << !ch;
decode_exponents(gbc, ctx->exp_strategy[ch], num_groups, ctx->dexps[ch][0], decode_exponents(gbc, s->exp_strategy[ch], num_groups, s->dexps[ch][0],
&ctx->dexps[ch][ctx->start_freq[ch]+!!ch]); &s->dexps[ch][s->start_freq[ch]+!!ch]);
if(ch != CPL_CH && ch != ctx->lfe_ch) if(ch != CPL_CH && ch != s->lfe_ch)
skip_bits(gbc, 2); /* skip gainrng */ skip_bits(gbc, 2); /* skip gainrng */
} }
} }
/* bit allocation information */ /* bit allocation information */
if (get_bits1(gbc)) { if (get_bits1(gbc)) {
ctx->bit_alloc_params.slow_decay = ff_ac3_slow_decay_tab[get_bits(gbc, 2)] >> ctx->bit_alloc_params.sr_shift; s->bit_alloc_params.slow_decay = ff_ac3_slow_decay_tab[get_bits(gbc, 2)] >> s->bit_alloc_params.sr_shift;
ctx->bit_alloc_params.fast_decay = ff_ac3_fast_decay_tab[get_bits(gbc, 2)] >> ctx->bit_alloc_params.sr_shift; s->bit_alloc_params.fast_decay = ff_ac3_fast_decay_tab[get_bits(gbc, 2)] >> s->bit_alloc_params.sr_shift;
ctx->bit_alloc_params.slow_gain = ff_ac3_slow_gain_tab[get_bits(gbc, 2)]; s->bit_alloc_params.slow_gain = ff_ac3_slow_gain_tab[get_bits(gbc, 2)];
ctx->bit_alloc_params.db_per_bit = ff_ac3_db_per_bit_tab[get_bits(gbc, 2)]; s->bit_alloc_params.db_per_bit = ff_ac3_db_per_bit_tab[get_bits(gbc, 2)];
ctx->bit_alloc_params.floor = ff_ac3_floor_tab[get_bits(gbc, 3)]; s->bit_alloc_params.floor = ff_ac3_floor_tab[get_bits(gbc, 3)];
for(ch=!ctx->cpl_in_use; ch<=ctx->channels; ch++) { for(ch=!s->cpl_in_use; ch<=s->channels; ch++) {
bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2); bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
} }
} }
...@@ -948,73 +948,73 @@ static int ac3_parse_audio_block(AC3DecodeContext *ctx, int blk) ...@@ -948,73 +948,73 @@ static int ac3_parse_audio_block(AC3DecodeContext *ctx, int blk)
if (get_bits1(gbc)) { if (get_bits1(gbc)) {
int csnr; int csnr;
csnr = (get_bits(gbc, 6) - 15) << 4; csnr = (get_bits(gbc, 6) - 15) << 4;
for (ch = !ctx->cpl_in_use; ch <= ctx->channels; ch++) { /* snr offset and fast gain */ for (ch = !s->cpl_in_use; ch <= s->channels; ch++) { /* snr offset and fast gain */
ctx->snr_offset[ch] = (csnr + get_bits(gbc, 4)) << 2; s->snr_offset[ch] = (csnr + get_bits(gbc, 4)) << 2;
ctx->fast_gain[ch] = ff_ac3_fast_gain_tab[get_bits(gbc, 3)]; s->fast_gain[ch] = ff_ac3_fast_gain_tab[get_bits(gbc, 3)];
} }
memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS); memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS);
} }
/* coupling leak information */ /* coupling leak information */
if (ctx->cpl_in_use && get_bits1(gbc)) { if (s->cpl_in_use && get_bits1(gbc)) {
ctx->bit_alloc_params.cpl_fast_leak = get_bits(gbc, 3); s->bit_alloc_params.cpl_fast_leak = get_bits(gbc, 3);
ctx->bit_alloc_params.cpl_slow_leak = get_bits(gbc, 3); s->bit_alloc_params.cpl_slow_leak = get_bits(gbc, 3);
bit_alloc_stages[CPL_CH] = FFMAX(bit_alloc_stages[CPL_CH], 2); bit_alloc_stages[CPL_CH] = FFMAX(bit_alloc_stages[CPL_CH], 2);
} }
/* delta bit allocation information */ /* delta bit allocation information */
if (get_bits1(gbc)) { if (get_bits1(gbc)) {
/* delta bit allocation exists (strategy) */ /* delta bit allocation exists (strategy) */
for (ch = !ctx->cpl_in_use; ch <= fbw_channels; ch++) { for (ch = !s->cpl_in_use; ch <= fbw_channels; ch++) {
ctx->dba_mode[ch] = get_bits(gbc, 2); s->dba_mode[ch] = get_bits(gbc, 2);
if (ctx->dba_mode[ch] == DBA_RESERVED) { if (s->dba_mode[ch] == DBA_RESERVED) {
av_log(ctx->avctx, AV_LOG_ERROR, "delta bit allocation strategy reserved\n"); av_log(s->avctx, AV_LOG_ERROR, "delta bit allocation strategy reserved\n");
return -1; return -1;
} }
bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2); bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
} }
/* channel delta offset, len and bit allocation */ /* channel delta offset, len and bit allocation */
for (ch = !ctx->cpl_in_use; ch <= fbw_channels; ch++) { for (ch = !s->cpl_in_use; ch <= fbw_channels; ch++) {
if (ctx->dba_mode[ch] == DBA_NEW) { if (s->dba_mode[ch] == DBA_NEW) {
ctx->dba_nsegs[ch] = get_bits(gbc, 3); s->dba_nsegs[ch] = get_bits(gbc, 3);
for (seg = 0; seg <= ctx->dba_nsegs[ch]; seg++) { for (seg = 0; seg <= s->dba_nsegs[ch]; seg++) {
ctx->dba_offsets[ch][seg] = get_bits(gbc, 5); s->dba_offsets[ch][seg] = get_bits(gbc, 5);
ctx->dba_lengths[ch][seg] = get_bits(gbc, 4); s->dba_lengths[ch][seg] = get_bits(gbc, 4);
ctx->dba_values[ch][seg] = get_bits(gbc, 3); s->dba_values[ch][seg] = get_bits(gbc, 3);
} }
} }
} }
} else if(blk == 0) { } else if(blk == 0) {
for(ch=0; ch<=ctx->channels; ch++) { for(ch=0; ch<=s->channels; ch++) {
ctx->dba_mode[ch] = DBA_NONE; s->dba_mode[ch] = DBA_NONE;
} }
} }
/* Bit allocation */ /* Bit allocation */
for(ch=!ctx->cpl_in_use; ch<=ctx->channels; ch++) { for(ch=!s->cpl_in_use; ch<=s->channels; ch++) {
if(bit_alloc_stages[ch] > 2) { if(bit_alloc_stages[ch] > 2) {
/* Exponent mapping into PSD and PSD integration */ /* Exponent mapping into PSD and PSD integration */
ff_ac3_bit_alloc_calc_psd(ctx->dexps[ch], ff_ac3_bit_alloc_calc_psd(s->dexps[ch],
ctx->start_freq[ch], ctx->end_freq[ch], s->start_freq[ch], s->end_freq[ch],
ctx->psd[ch], ctx->band_psd[ch]); s->psd[ch], s->band_psd[ch]);
} }
if(bit_alloc_stages[ch] > 1) { if(bit_alloc_stages[ch] > 1) {
/* Compute excitation function, Compute masking curve, and /* Compute excitation function, Compute masking curve, and
Apply delta bit allocation */ Apply delta bit allocation */
ff_ac3_bit_alloc_calc_mask(&ctx->bit_alloc_params, ctx->band_psd[ch], ff_ac3_bit_alloc_calc_mask(&s->bit_alloc_params, s->band_psd[ch],
ctx->start_freq[ch], ctx->end_freq[ch], s->start_freq[ch], s->end_freq[ch],
ctx->fast_gain[ch], (ch == ctx->lfe_ch), s->fast_gain[ch], (ch == s->lfe_ch),
ctx->dba_mode[ch], ctx->dba_nsegs[ch], s->dba_mode[ch], s->dba_nsegs[ch],
ctx->dba_offsets[ch], ctx->dba_lengths[ch], s->dba_offsets[ch], s->dba_lengths[ch],
ctx->dba_values[ch], ctx->mask[ch]); s->dba_values[ch], s->mask[ch]);
} }
if(bit_alloc_stages[ch] > 0) { if(bit_alloc_stages[ch] > 0) {
/* Compute bit allocation */ /* Compute bit allocation */
ff_ac3_bit_alloc_calc_bap(ctx->mask[ch], ctx->psd[ch], ff_ac3_bit_alloc_calc_bap(s->mask[ch], s->psd[ch],
ctx->start_freq[ch], ctx->end_freq[ch], s->start_freq[ch], s->end_freq[ch],
ctx->snr_offset[ch], s->snr_offset[ch],
ctx->bit_alloc_params.floor, s->bit_alloc_params.floor,
ctx->bap[ch]); s->bap[ch]);
} }
} }
...@@ -1027,43 +1027,43 @@ static int ac3_parse_audio_block(AC3DecodeContext *ctx, int blk) ...@@ -1027,43 +1027,43 @@ static int ac3_parse_audio_block(AC3DecodeContext *ctx, int blk)
/* unpack the transform coefficients /* unpack the transform coefficients
this also uncouples channels if coupling is in use. */ this also uncouples channels if coupling is in use. */
if (get_transform_coeffs(ctx)) { if (get_transform_coeffs(s)) {
av_log(ctx->avctx, AV_LOG_ERROR, "Error in routine get_transform_coeffs\n"); av_log(s->avctx, AV_LOG_ERROR, "Error in routine get_transform_coeffs\n");
return -1; return -1;
} }
/* recover coefficients if rematrixing is in use */ /* recover coefficients if rematrixing is in use */
if(ctx->channel_mode == AC3_CHMODE_STEREO) if(s->channel_mode == AC3_CHMODE_STEREO)
do_rematrixing(ctx); do_rematrixing(s);
/* apply scaling to coefficients (headroom, dynrng) */ /* apply scaling to coefficients (headroom, dynrng) */
for(ch=1; ch<=ctx->channels; ch++) { for(ch=1; ch<=s->channels; ch++) {
float gain = 2.0f * ctx->mul_bias; float gain = 2.0f * s->mul_bias;
if(ctx->channel_mode == AC3_CHMODE_DUALMONO) { if(s->channel_mode == AC3_CHMODE_DUALMONO) {
gain *= ctx->dynamic_range[ch-1]; gain *= s->dynamic_range[ch-1];
} else { } else {
gain *= ctx->dynamic_range[0]; gain *= s->dynamic_range[0];
} }
for(i=0; i<ctx->end_freq[ch]; i++) { for(i=0; i<s->end_freq[ch]; i++) {
ctx->transform_coeffs[ch][i] *= gain; s->transform_coeffs[ch][i] *= gain;
} }
} }
do_imdct(ctx); do_imdct(s);
/* downmix output if needed */ /* downmix output if needed */
if(ctx->channels != ctx->out_channels && !((ctx->output_mode & AC3_OUTPUT_LFEON) && if(s->channels != s->out_channels && !((s->output_mode & AC3_OUTPUT_LFEON) &&
ctx->fbw_channels == ctx->out_channels)) { s->fbw_channels == s->out_channels)) {
ac3_downmix(ctx->output, ctx->fbw_channels, ctx->output_mode, ac3_downmix(s->output, s->fbw_channels, s->output_mode,
ctx->downmix_coeffs); s->downmix_coeffs);
} }
/* convert float to 16-bit integer */ /* convert float to 16-bit integer */
for(ch=0; ch<ctx->out_channels; ch++) { for(ch=0; ch<s->out_channels; ch++) {
for(i=0; i<256; i++) { for(i=0; i<256; i++) {
ctx->output[ch][i] += ctx->add_bias; s->output[ch][i] += s->add_bias;
} }
ctx->dsp.float_to_int16(ctx->int_output[ch], ctx->output[ch], 256); s->dsp.float_to_int16(s->int_output[ch], s->output[ch], 256);
} }
return 0; return 0;
...@@ -1074,15 +1074,15 @@ static int ac3_parse_audio_block(AC3DecodeContext *ctx, int blk) ...@@ -1074,15 +1074,15 @@ static int ac3_parse_audio_block(AC3DecodeContext *ctx, int blk)
*/ */
static int ac3_decode_frame(AVCodecContext * avctx, void *data, int *data_size, uint8_t *buf, int buf_size) static int ac3_decode_frame(AVCodecContext * avctx, void *data, int *data_size, uint8_t *buf, int buf_size)
{ {
AC3DecodeContext *ctx = (AC3DecodeContext *)avctx->priv_data; AC3DecodeContext *s = (AC3DecodeContext *)avctx->priv_data;
int16_t *out_samples = (int16_t *)data; int16_t *out_samples = (int16_t *)data;
int i, blk, ch, err; int i, blk, ch, err;
/* initialize the GetBitContext with the start of valid AC-3 Frame */ /* initialize the GetBitContext with the start of valid AC-3 Frame */
init_get_bits(&ctx->gbc, buf, buf_size * 8); init_get_bits(&s->gbc, buf, buf_size * 8);
/* parse the syncinfo */ /* parse the syncinfo */
err = ac3_parse_header(ctx); err = ac3_parse_header(s);
if(err) { if(err) {
switch(err) { switch(err) {
case AC3_PARSE_ERROR_SYNC: case AC3_PARSE_ERROR_SYNC:
...@@ -1104,37 +1104,37 @@ static int ac3_decode_frame(AVCodecContext * avctx, void *data, int *data_size, ...@@ -1104,37 +1104,37 @@ static int ac3_decode_frame(AVCodecContext * avctx, void *data, int *data_size,
return -1; return -1;
} }
avctx->sample_rate = ctx->sampling_rate; avctx->sample_rate = s->sampling_rate;
avctx->bit_rate = ctx->bit_rate; avctx->bit_rate = s->bit_rate;
/* check that reported frame size fits in input buffer */ /* check that reported frame size fits in input buffer */
if(ctx->frame_size > buf_size) { if(s->frame_size > buf_size) {
av_log(avctx, AV_LOG_ERROR, "incomplete frame\n"); av_log(avctx, AV_LOG_ERROR, "incomplete frame\n");
return -1; return -1;
} }
/* channel config */ /* channel config */
ctx->out_channels = ctx->channels; s->out_channels = s->channels;
if (avctx->request_channels > 0 && avctx->request_channels <= 2 && if (avctx->request_channels > 0 && avctx->request_channels <= 2 &&
avctx->request_channels < ctx->channels) { avctx->request_channels < s->channels) {
ctx->out_channels = avctx->request_channels; s->out_channels = avctx->request_channels;
ctx->output_mode = avctx->request_channels == 1 ? AC3_CHMODE_MONO : AC3_CHMODE_STEREO; s->output_mode = avctx->request_channels == 1 ? AC3_CHMODE_MONO : AC3_CHMODE_STEREO;
} }
avctx->channels = ctx->out_channels; avctx->channels = s->out_channels;
/* parse the audio blocks */ /* parse the audio blocks */
for (blk = 0; blk < NB_BLOCKS; blk++) { for (blk = 0; blk < NB_BLOCKS; blk++) {
if (ac3_parse_audio_block(ctx, blk)) { if (ac3_parse_audio_block(s, blk)) {
av_log(avctx, AV_LOG_ERROR, "error parsing the audio block\n"); av_log(avctx, AV_LOG_ERROR, "error parsing the audio block\n");
*data_size = 0; *data_size = 0;
return ctx->frame_size; return s->frame_size;
} }
for (i = 0; i < 256; i++) for (i = 0; i < 256; i++)
for (ch = 0; ch < ctx->out_channels; ch++) for (ch = 0; ch < s->out_channels; ch++)
*(out_samples++) = ctx->int_output[ch][i]; *(out_samples++) = s->int_output[ch][i];
} }
*data_size = NB_BLOCKS * 256 * avctx->channels * sizeof (int16_t); *data_size = NB_BLOCKS * 256 * avctx->channels * sizeof (int16_t);
return ctx->frame_size; return s->frame_size;
} }
/** /**
...@@ -1142,9 +1142,9 @@ static int ac3_decode_frame(AVCodecContext * avctx, void *data, int *data_size, ...@@ -1142,9 +1142,9 @@ static int ac3_decode_frame(AVCodecContext * avctx, void *data, int *data_size,
*/ */
static int ac3_decode_end(AVCodecContext *avctx) static int ac3_decode_end(AVCodecContext *avctx)
{ {
AC3DecodeContext *ctx = (AC3DecodeContext *)avctx->priv_data; AC3DecodeContext *s = (AC3DecodeContext *)avctx->priv_data;
ff_mdct_end(&ctx->imdct_512); ff_mdct_end(&s->imdct_512);
ff_mdct_end(&ctx->imdct_256); ff_mdct_end(&s->imdct_256);
return 0; return 0;
} }
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment