Commit fe27cb35 authored by Venkatesh Pallipadi's avatar Venkatesh Pallipadi Committed by Dave Jones

[CPUFREQ][2/8] acpi: reorganize code to make MSR support addition easier

Some clean up and redsign of the driver. Mainly making it easier to add
support for multiple sub-mechanisms of changing frequency. Currently this
driver supports only ACPI SYSTEM_IO address space. With the changes
below it is easier to add support for other address spaces like Intel
Enhanced Speedstep which uses MSR (ACPI FIXED_FEATURE_HARDWARE) to do the
transitions.
Signed-off-by: default avatarDenis Sadykov <denis.m.sadykov@intel.com>
Signed-off-by: default avatarVenkatesh Pallipadi <venkatesh.pallipadi@intel.com>
Signed-off-by: default avatarAlexey Starikovskiy <alexey.y.starikovskiy@intel.com>
Signed-off-by: default avatarDave Jones <davej@redhat.com>
parent 519ce3ec
/* /*
* acpi-cpufreq.c - ACPI Processor P-States Driver ($Revision: 1.3 $) * acpi-cpufreq.c - ACPI Processor P-States Driver ($Revision: 1.4 $)
* *
* Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com> * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
* Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com> * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
* Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de> * Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
* Copyright (C) 2006 Denis Sadykov <denis.m.sadykov@intel.com>
* *
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* *
...@@ -27,19 +28,22 @@ ...@@ -27,19 +28,22 @@
#include <linux/kernel.h> #include <linux/kernel.h>
#include <linux/module.h> #include <linux/module.h>
#include <linux/init.h> #include <linux/init.h>
#include <linux/smp.h>
#include <linux/sched.h>
#include <linux/cpufreq.h> #include <linux/cpufreq.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/compiler.h> #include <linux/compiler.h>
#include <linux/sched.h> /* current */ #include <linux/sched.h> /* current */
#include <linux/dmi.h> #include <linux/dmi.h>
#include <asm/io.h>
#include <asm/delay.h>
#include <asm/uaccess.h>
#include <linux/acpi.h> #include <linux/acpi.h>
#include <acpi/processor.h> #include <acpi/processor.h>
#include <asm/io.h>
#include <asm/processor.h>
#include <asm/cpufeature.h>
#include <asm/delay.h>
#include <asm/uaccess.h>
#define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, "acpi-cpufreq", msg) #define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, "acpi-cpufreq", msg)
MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski"); MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
...@@ -47,24 +51,35 @@ MODULE_DESCRIPTION("ACPI Processor P-States Driver"); ...@@ -47,24 +51,35 @@ MODULE_DESCRIPTION("ACPI Processor P-States Driver");
MODULE_LICENSE("GPL"); MODULE_LICENSE("GPL");
struct cpufreq_acpi_io { struct acpi_cpufreq_data {
struct acpi_processor_performance *acpi_data; struct acpi_processor_performance *acpi_data;
struct cpufreq_frequency_table *freq_table; struct cpufreq_frequency_table *freq_table;
unsigned int resume; unsigned int resume;
}; };
static struct cpufreq_acpi_io *acpi_io_data[NR_CPUS]; static struct acpi_cpufreq_data *drv_data[NR_CPUS];
static struct acpi_processor_performance *acpi_perf_data[NR_CPUS]; static struct acpi_processor_performance *acpi_perf_data[NR_CPUS];
static struct cpufreq_driver acpi_cpufreq_driver; static struct cpufreq_driver acpi_cpufreq_driver;
static unsigned int acpi_pstate_strict; static unsigned int acpi_pstate_strict;
static int static unsigned extract_freq(u32 value, struct acpi_cpufreq_data *data)
acpi_processor_write_port( {
u16 port, struct acpi_processor_performance *perf;
u8 bit_width, int i;
u32 value)
perf = data->acpi_data;
for (i = 0; i < perf->state_count; i++) {
if (value == perf->states[i].status)
return data->freq_table[i].frequency;
}
return 0;
}
static void wrport(u16 port, u8 bit_width, u32 value)
{ {
if (bit_width <= 8) { if (bit_width <= 8) {
outb(value, port); outb(value, port);
...@@ -72,17 +87,10 @@ acpi_processor_write_port( ...@@ -72,17 +87,10 @@ acpi_processor_write_port(
outw(value, port); outw(value, port);
} else if (bit_width <= 32) { } else if (bit_width <= 32) {
outl(value, port); outl(value, port);
} else {
return -ENODEV;
} }
return 0;
} }
static int static void rdport(u16 port, u8 bit_width, u32 *ret)
acpi_processor_read_port(
u16 port,
u8 bit_width,
u32 *ret)
{ {
*ret = 0; *ret = 0;
if (bit_width <= 8) { if (bit_width <= 8) {
...@@ -91,139 +99,141 @@ acpi_processor_read_port( ...@@ -91,139 +99,141 @@ acpi_processor_read_port(
*ret = inw(port); *ret = inw(port);
} else if (bit_width <= 32) { } else if (bit_width <= 32) {
*ret = inl(port); *ret = inl(port);
} else {
return -ENODEV;
} }
return 0;
} }
static int struct io_addr {
acpi_processor_set_performance ( u16 port;
struct cpufreq_acpi_io *data, u8 bit_width;
unsigned int cpu, };
int state)
struct drv_cmd {
cpumask_t mask;
struct io_addr addr;
u32 val;
};
static void do_drv_read(struct drv_cmd *cmd)
{ {
u16 port = 0; rdport(cmd->addr.port, cmd->addr.bit_width, &cmd->val);
u8 bit_width = 0; return;
int i = 0; }
int ret = 0;
u32 value = 0;
int retval;
struct acpi_processor_performance *perf;
dprintk("acpi_processor_set_performance\n"); static void do_drv_write(struct drv_cmd *cmd)
{
wrport(cmd->addr.port, cmd->addr.bit_width, cmd->val);
return;
}
retval = 0; static inline void drv_read(struct drv_cmd *cmd)
perf = data->acpi_data; {
if (state == perf->state) { cpumask_t saved_mask = current->cpus_allowed;
if (unlikely(data->resume)) { cmd->val = 0;
dprintk("Called after resume, resetting to P%d\n", state);
data->resume = 0; set_cpus_allowed(current, cmd->mask);
} else { do_drv_read(cmd);
dprintk("Already at target state (P%d)\n", state); set_cpus_allowed(current, saved_mask);
return (retval);
} }
static void drv_write(struct drv_cmd *cmd)
{
cpumask_t saved_mask = current->cpus_allowed;
unsigned int i;
for_each_cpu_mask(i, cmd->mask) {
set_cpus_allowed(current, cpumask_of_cpu(i));
do_drv_write(cmd);
} }
dprintk("Transitioning from P%d to P%d\n", perf->state, state); set_cpus_allowed(current, saved_mask);
return;
}
/* static u32 get_cur_val(cpumask_t mask)
* First we write the target state's 'control' value to the {
* control_register. struct acpi_processor_performance *perf;
*/ struct drv_cmd cmd;
port = perf->control_register.address; if (unlikely(cpus_empty(mask)))
bit_width = perf->control_register.bit_width; return 0;
value = (u32) perf->states[state].control;
dprintk("Writing 0x%08x to port 0x%04x\n", value, port); perf = drv_data[first_cpu(mask)]->acpi_data;
cmd.addr.port = perf->control_register.address;
cmd.addr.bit_width = perf->control_register.bit_width;
cmd.mask = mask;
ret = acpi_processor_write_port(port, bit_width, value); drv_read(&cmd);
if (ret) {
dprintk("Invalid port width 0x%04x\n", bit_width);
return (ret);
}
/* dprintk("get_cur_val = %u\n", cmd.val);
* Assume the write went through when acpi_pstate_strict is not used.
* As read status_register is an expensive operation and there return cmd.val;
* are no specific error cases where an IO port write will fail. }
*/
if (acpi_pstate_strict) {
/* Then we read the 'status_register' and compare the value
* with the target state's 'status' to make sure the
* transition was successful.
* Note that we'll poll for up to 1ms (100 cycles of 10us)
* before giving up.
*/
port = perf->status_register.address;
bit_width = perf->status_register.bit_width;
dprintk("Looking for 0x%08x from port 0x%04x\n",
(u32) perf->states[state].status, port);
for (i = 0; i < 100; i++) {
ret = acpi_processor_read_port(port, bit_width, &value);
if (ret) {
dprintk("Invalid port width 0x%04x\n", bit_width);
return (ret);
}
if (value == (u32) perf->states[state].status)
break;
udelay(10);
}
} else {
value = (u32) perf->states[state].status;
}
if (unlikely(value != (u32) perf->states[state].status)) { static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
printk(KERN_WARNING "acpi-cpufreq: Transition failed\n"); {
retval = -ENODEV; struct acpi_cpufreq_data *data = drv_data[cpu];
return (retval); unsigned int freq;
dprintk("get_cur_freq_on_cpu (%d)\n", cpu);
if (unlikely(data == NULL ||
data->acpi_data == NULL ||
data->freq_table == NULL)) {
return 0;
} }
dprintk("Transition successful after %d microseconds\n", i * 10); freq = extract_freq(get_cur_val(cpumask_of_cpu(cpu)), data);
dprintk("cur freq = %u\n", freq);
perf->state = state; return freq;
return (retval);
} }
static unsigned int check_freqs(cpumask_t mask, unsigned int freq,
struct acpi_cpufreq_data *data)
{
unsigned int cur_freq;
unsigned int i;
static int for (i = 0; i < 100; i++) {
acpi_cpufreq_target ( cur_freq = extract_freq(get_cur_val(mask), data);
struct cpufreq_policy *policy, if (cur_freq == freq)
unsigned int target_freq, return 1;
unsigned int relation) udelay(10);
}
return 0;
}
static int acpi_cpufreq_target(struct cpufreq_policy *policy,
unsigned int target_freq,
unsigned int relation)
{ {
struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu]; struct acpi_cpufreq_data *data = drv_data[policy->cpu];
struct cpufreq_acpi_io *cpudata; struct acpi_processor_performance *perf;
struct acpi_processor_performance *perf; struct cpufreq_freqs freqs;
struct cpufreq_freqs freqs; cpumask_t online_policy_cpus;
cpumask_t online_policy_cpus; struct drv_cmd cmd;
cpumask_t saved_mask; unsigned int next_state = 0;
cpumask_t set_mask; unsigned int next_perf_state = 0;
cpumask_t covered_cpus; unsigned int i;
unsigned int cur_state = 0; int result = 0;
unsigned int next_state = 0;
unsigned int result = 0; dprintk("acpi_cpufreq_target %d (%d)\n", target_freq, policy->cpu);
unsigned int j;
unsigned int tmp; if (unlikely(data == NULL ||
data->acpi_data == NULL ||
dprintk("acpi_cpufreq_setpolicy\n"); data->freq_table == NULL)) {
return -ENODEV;
}
perf = data->acpi_data;
result = cpufreq_frequency_table_target(policy, result = cpufreq_frequency_table_target(policy,
data->freq_table, data->freq_table,
target_freq, target_freq,
relation, relation,
&next_state); &next_state);
if (unlikely(result)) if (unlikely(result))
return (result); return -ENODEV;
perf = data->acpi_data;
cur_state = perf->state;
freqs.old = data->freq_table[cur_state].frequency;
freqs.new = data->freq_table[next_state].frequency;
#ifdef CONFIG_HOTPLUG_CPU #ifdef CONFIG_HOTPLUG_CPU
/* cpufreq holds the hotplug lock, so we are safe from here on */ /* cpufreq holds the hotplug lock, so we are safe from here on */
...@@ -232,85 +242,53 @@ acpi_cpufreq_target ( ...@@ -232,85 +242,53 @@ acpi_cpufreq_target (
online_policy_cpus = policy->cpus; online_policy_cpus = policy->cpus;
#endif #endif
for_each_cpu_mask(j, online_policy_cpus) { cmd.val = get_cur_val(online_policy_cpus);
freqs.cpu = j; freqs.old = extract_freq(cmd.val, data);
cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE); freqs.new = data->freq_table[next_state].frequency;
next_perf_state = data->freq_table[next_state].index;
if (freqs.new == freqs.old) {
if (unlikely(data->resume)) {
dprintk("Called after resume, resetting to P%d\n", next_perf_state);
data->resume = 0;
} else {
dprintk("Already at target state (P%d)\n", next_perf_state);
return 0;
}
} }
/* cmd.addr.port = perf->control_register.address;
* We need to call driver->target() on all or any CPU in cmd.addr.bit_width = perf->control_register.bit_width;
* policy->cpus, depending on policy->shared_type. cmd.val = (u32) perf->states[next_perf_state].control;
*/
saved_mask = current->cpus_allowed;
cpus_clear(covered_cpus);
for_each_cpu_mask(j, online_policy_cpus) {
/*
* Support for SMP systems.
* Make sure we are running on CPU that wants to change freq
*/
cpus_clear(set_mask);
if (policy->shared_type == CPUFREQ_SHARED_TYPE_ANY)
cpus_or(set_mask, set_mask, online_policy_cpus);
else
cpu_set(j, set_mask);
set_cpus_allowed(current, set_mask);
if (unlikely(!cpu_isset(smp_processor_id(), set_mask))) {
dprintk("couldn't limit to CPUs in this domain\n");
result = -EAGAIN;
break;
}
cpudata = acpi_io_data[j]; cpus_clear(cmd.mask);
result = acpi_processor_set_performance(cpudata, j, next_state);
if (result) {
result = -EAGAIN;
break;
}
if (policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) if (policy->shared_type != CPUFREQ_SHARED_TYPE_ANY)
break; cmd.mask = online_policy_cpus;
else
cpu_set(j, covered_cpus); cpu_set(policy->cpu, cmd.mask);
}
for_each_cpu_mask(j, online_policy_cpus) { for_each_cpu_mask(i, cmd.mask) {
freqs.cpu = j; freqs.cpu = i;
cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE); cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
} }
if (unlikely(result)) { drv_write(&cmd);
/*
* We have failed halfway through the frequency change.
* We have sent callbacks to online_policy_cpus and
* acpi_processor_set_performance() has been called on
* coverd_cpus. Best effort undo..
*/
if (!cpus_empty(covered_cpus)) {
for_each_cpu_mask(j, covered_cpus) {
cpus_clear(set_mask);
cpu_set(j, set_mask);
set_cpus_allowed(current, set_mask);
cpudata = acpi_io_data[j];
acpi_processor_set_performance(cpudata,
j,
cur_state);
}
}
tmp = freqs.new; if (acpi_pstate_strict) {
freqs.new = freqs.old; if (!check_freqs(cmd.mask, freqs.new, data)) {
freqs.old = tmp; dprintk("acpi_cpufreq_target failed (%d)\n",
for_each_cpu_mask(j, online_policy_cpus) { policy->cpu);
freqs.cpu = j; return -EAGAIN;
cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
} }
} }
set_cpus_allowed(current, saved_mask); for_each_cpu_mask(i, cmd.mask) {
return (result); freqs.cpu = i;
cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
}
perf->state = next_perf_state;
return result;
} }
...@@ -318,21 +296,17 @@ static int ...@@ -318,21 +296,17 @@ static int
acpi_cpufreq_verify ( acpi_cpufreq_verify (
struct cpufreq_policy *policy) struct cpufreq_policy *policy)
{ {
unsigned int result = 0; struct acpi_cpufreq_data *data = drv_data[policy->cpu];
struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu];
dprintk("acpi_cpufreq_verify\n"); dprintk("acpi_cpufreq_verify\n");
result = cpufreq_frequency_table_verify(policy, return cpufreq_frequency_table_verify(policy, data->freq_table);
data->freq_table);
return (result);
} }
static unsigned long static unsigned long
acpi_cpufreq_guess_freq ( acpi_cpufreq_guess_freq (
struct cpufreq_acpi_io *data, struct acpi_cpufreq_data *data,
unsigned int cpu) unsigned int cpu)
{ {
struct acpi_processor_performance *perf = data->acpi_data; struct acpi_processor_performance *perf = data->acpi_data;
...@@ -369,9 +343,10 @@ acpi_cpufreq_guess_freq ( ...@@ -369,9 +343,10 @@ acpi_cpufreq_guess_freq (
* do _PDC and _PSD and find out the processor dependency for the * do _PDC and _PSD and find out the processor dependency for the
* actual init that will happen later... * actual init that will happen later...
*/ */
static int acpi_cpufreq_early_init_acpi(void) static int acpi_cpufreq_early_init(void)
{ {
struct acpi_processor_performance *data; struct acpi_processor_performance *data;
cpumask_t covered;
unsigned int i, j; unsigned int i, j;
dprintk("acpi_cpufreq_early_init\n"); dprintk("acpi_cpufreq_early_init\n");
...@@ -380,17 +355,19 @@ static int acpi_cpufreq_early_init_acpi(void) ...@@ -380,17 +355,19 @@ static int acpi_cpufreq_early_init_acpi(void)
data = kzalloc(sizeof(struct acpi_processor_performance), data = kzalloc(sizeof(struct acpi_processor_performance),
GFP_KERNEL); GFP_KERNEL);
if (!data) { if (!data) {
for_each_possible_cpu(j) { for_each_cpu_mask(j, covered) {
kfree(acpi_perf_data[j]); kfree(acpi_perf_data[j]);
acpi_perf_data[j] = NULL; acpi_perf_data[j] = NULL;
} }
return (-ENOMEM); return (-ENOMEM);
} }
acpi_perf_data[i] = data; acpi_perf_data[i] = data;
cpu_set(i, covered);
} }
/* Do initialization in ACPI core */ /* Do initialization in ACPI core */
return acpi_processor_preregister_performance(acpi_perf_data); acpi_processor_preregister_performance(acpi_perf_data);
return 0;
} }
/* /*
...@@ -424,11 +401,12 @@ static int ...@@ -424,11 +401,12 @@ static int
acpi_cpufreq_cpu_init ( acpi_cpufreq_cpu_init (
struct cpufreq_policy *policy) struct cpufreq_policy *policy)
{ {
unsigned int i; unsigned int i;
unsigned int cpu = policy->cpu; unsigned int valid_states = 0;
struct cpufreq_acpi_io *data; unsigned int cpu = policy->cpu;
unsigned int result = 0; struct acpi_cpufreq_data *data;
struct cpuinfo_x86 *c = &cpu_data[policy->cpu]; unsigned int result = 0;
struct cpuinfo_x86 *c = &cpu_data[policy->cpu];
struct acpi_processor_performance *perf; struct acpi_processor_performance *perf;
dprintk("acpi_cpufreq_cpu_init\n"); dprintk("acpi_cpufreq_cpu_init\n");
...@@ -436,15 +414,18 @@ acpi_cpufreq_cpu_init ( ...@@ -436,15 +414,18 @@ acpi_cpufreq_cpu_init (
if (!acpi_perf_data[cpu]) if (!acpi_perf_data[cpu])
return (-ENODEV); return (-ENODEV);
data = kzalloc(sizeof(struct cpufreq_acpi_io), GFP_KERNEL); data = kzalloc(sizeof(struct acpi_cpufreq_data), GFP_KERNEL);
if (!data) if (!data)
return (-ENOMEM); return (-ENOMEM);
data->acpi_data = acpi_perf_data[cpu]; data->acpi_data = acpi_perf_data[cpu];
acpi_io_data[cpu] = data; drv_data[cpu] = data;
result = acpi_processor_register_performance(data->acpi_data, cpu); if (cpu_has(c, X86_FEATURE_CONSTANT_TSC)) {
acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
}
result = acpi_processor_register_performance(data->acpi_data, cpu);
if (result) if (result)
goto err_free; goto err_free;
...@@ -467,10 +448,6 @@ acpi_cpufreq_cpu_init ( ...@@ -467,10 +448,6 @@ acpi_cpufreq_cpu_init (
} }
#endif #endif
if (cpu_has(c, X86_FEATURE_CONSTANT_TSC)) {
acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
}
/* capability check */ /* capability check */
if (perf->state_count <= 1) { if (perf->state_count <= 1) {
dprintk("No P-States\n"); dprintk("No P-States\n");
...@@ -478,16 +455,22 @@ acpi_cpufreq_cpu_init ( ...@@ -478,16 +455,22 @@ acpi_cpufreq_cpu_init (
goto err_unreg; goto err_unreg;
} }
if ((perf->control_register.space_id != ACPI_ADR_SPACE_SYSTEM_IO) || if (perf->control_register.space_id != perf->status_register.space_id) {
(perf->status_register.space_id != ACPI_ADR_SPACE_SYSTEM_IO)) { result = -ENODEV;
dprintk("Unsupported address space [%d, %d]\n", goto err_unreg;
(u32) (perf->control_register.space_id), }
(u32) (perf->status_register.space_id));
switch (perf->control_register.space_id) {
case ACPI_ADR_SPACE_SYSTEM_IO:
dprintk("SYSTEM IO addr space\n");
break;
default:
dprintk("Unknown addr space %d\n",
(u32) (perf->control_register.space_id));
result = -ENODEV; result = -ENODEV;
goto err_unreg; goto err_unreg;
} }
/* alloc freq_table */
data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) * (perf->state_count + 1), GFP_KERNEL); data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) * (perf->state_count + 1), GFP_KERNEL);
if (!data->freq_table) { if (!data->freq_table) {
result = -ENOMEM; result = -ENOMEM;
...@@ -506,14 +489,18 @@ acpi_cpufreq_cpu_init ( ...@@ -506,14 +489,18 @@ acpi_cpufreq_cpu_init (
policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu); policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
/* table init */ /* table init */
for (i=0; i<=perf->state_count; i++) for (i=0; i<perf->state_count; i++)
{ {
data->freq_table[i].index = i; if ( i > 0 && perf->states[i].core_frequency ==
if (i<perf->state_count) perf->states[i - 1].core_frequency)
data->freq_table[i].frequency = perf->states[i].core_frequency * 1000; continue;
else
data->freq_table[i].frequency = CPUFREQ_TABLE_END; data->freq_table[valid_states].index = i;
data->freq_table[valid_states].frequency =
perf->states[i].core_frequency * 1000;
valid_states++;
} }
data->freq_table[perf->state_count].frequency = CPUFREQ_TABLE_END;
result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table); result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table);
if (result) { if (result) {
...@@ -523,8 +510,7 @@ acpi_cpufreq_cpu_init ( ...@@ -523,8 +510,7 @@ acpi_cpufreq_cpu_init (
/* notify BIOS that we exist */ /* notify BIOS that we exist */
acpi_processor_notify_smm(THIS_MODULE); acpi_processor_notify_smm(THIS_MODULE);
printk(KERN_INFO "acpi-cpufreq: CPU%u - ACPI performance management activated.\n", dprintk("CPU%u - ACPI performance management activated.\n", cpu);
cpu);
for (i = 0; i < perf->state_count; i++) for (i = 0; i < perf->state_count; i++)
dprintk(" %cP%d: %d MHz, %d mW, %d uS\n", dprintk(" %cP%d: %d MHz, %d mW, %d uS\n",
(i == perf->state?'*':' '), i, (i == perf->state?'*':' '), i,
...@@ -540,7 +526,7 @@ acpi_cpufreq_cpu_init ( ...@@ -540,7 +526,7 @@ acpi_cpufreq_cpu_init (
*/ */
data->resume = 1; data->resume = 1;
return (result); return result;
err_freqfree: err_freqfree:
kfree(data->freq_table); kfree(data->freq_table);
...@@ -548,7 +534,7 @@ acpi_cpufreq_cpu_init ( ...@@ -548,7 +534,7 @@ acpi_cpufreq_cpu_init (
acpi_processor_unregister_performance(perf, cpu); acpi_processor_unregister_performance(perf, cpu);
err_free: err_free:
kfree(data); kfree(data);
acpi_io_data[cpu] = NULL; drv_data[cpu] = NULL;
return (result); return (result);
} }
...@@ -558,14 +544,14 @@ static int ...@@ -558,14 +544,14 @@ static int
acpi_cpufreq_cpu_exit ( acpi_cpufreq_cpu_exit (
struct cpufreq_policy *policy) struct cpufreq_policy *policy)
{ {
struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu]; struct acpi_cpufreq_data *data = drv_data[policy->cpu];
dprintk("acpi_cpufreq_cpu_exit\n"); dprintk("acpi_cpufreq_cpu_exit\n");
if (data) { if (data) {
cpufreq_frequency_table_put_attr(policy->cpu); cpufreq_frequency_table_put_attr(policy->cpu);
acpi_io_data[policy->cpu] = NULL; drv_data[policy->cpu] = NULL;
acpi_processor_unregister_performance(data->acpi_data, policy->cpu); acpi_processor_unregister_performance(data->acpi_data, policy->cpu);
kfree(data); kfree(data);
} }
...@@ -577,7 +563,7 @@ static int ...@@ -577,7 +563,7 @@ static int
acpi_cpufreq_resume ( acpi_cpufreq_resume (
struct cpufreq_policy *policy) struct cpufreq_policy *policy)
{ {
struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu]; struct acpi_cpufreq_data *data = drv_data[policy->cpu];
dprintk("acpi_cpufreq_resume\n"); dprintk("acpi_cpufreq_resume\n");
...@@ -596,6 +582,7 @@ static struct freq_attr* acpi_cpufreq_attr[] = { ...@@ -596,6 +582,7 @@ static struct freq_attr* acpi_cpufreq_attr[] = {
static struct cpufreq_driver acpi_cpufreq_driver = { static struct cpufreq_driver acpi_cpufreq_driver = {
.verify = acpi_cpufreq_verify, .verify = acpi_cpufreq_verify,
.target = acpi_cpufreq_target, .target = acpi_cpufreq_target,
.get = get_cur_freq_on_cpu,
.init = acpi_cpufreq_cpu_init, .init = acpi_cpufreq_cpu_init,
.exit = acpi_cpufreq_cpu_exit, .exit = acpi_cpufreq_cpu_exit,
.resume = acpi_cpufreq_resume, .resume = acpi_cpufreq_resume,
...@@ -610,7 +597,7 @@ acpi_cpufreq_init (void) ...@@ -610,7 +597,7 @@ acpi_cpufreq_init (void)
{ {
dprintk("acpi_cpufreq_init\n"); dprintk("acpi_cpufreq_init\n");
acpi_cpufreq_early_init_acpi(); acpi_cpufreq_early_init();
return cpufreq_register_driver(&acpi_cpufreq_driver); return cpufreq_register_driver(&acpi_cpufreq_driver);
} }
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment