Commit fcf11434 authored by Kevin Hilman's avatar Kevin Hilman

Merge branch 'davinci-orphaned' into davinci-reset

parents 779d33af b6d931f2
...@@ -178,6 +178,9 @@ static struct at24_platform_data eeprom_info = { ...@@ -178,6 +178,9 @@ static struct at24_platform_data eeprom_info = {
static struct snd_platform_data dm365_evm_snd_data; static struct snd_platform_data dm365_evm_snd_data;
static struct i2c_board_info i2c_info[] = { static struct i2c_board_info i2c_info[] = {
{
I2C_BOARD_INFO("dm365evm_keys", 0x25),
},
{ {
I2C_BOARD_INFO("24c256", 0x50), I2C_BOARD_INFO("24c256", 0x50),
.platform_data = &eeprom_info, .platform_data = &eeprom_info,
......
...@@ -311,6 +311,15 @@ config INPUT_DM355EVM ...@@ -311,6 +311,15 @@ config INPUT_DM355EVM
To compile this driver as a module, choose M here: the To compile this driver as a module, choose M here: the
module will be called dm355evm_keys. module will be called dm355evm_keys.
config INPUT_DM365EVM
tristate "TI DaVinci DM365 EVM IR Remote"
depends on MACH_DAVINCI_DM365_EVM
help
Supports the IR remote used with the DM365 EVM board.
To compile this driver as a module, choose M here: the
module will be called dm365evm_keys.
config INPUT_BFIN_ROTARY config INPUT_BFIN_ROTARY
tristate "Blackfin Rotary support" tristate "Blackfin Rotary support"
depends on BF54x || BF52x depends on BF54x || BF52x
......
...@@ -13,6 +13,7 @@ obj-$(CONFIG_INPUT_BFIN_ROTARY) += bfin_rotary.o ...@@ -13,6 +13,7 @@ obj-$(CONFIG_INPUT_BFIN_ROTARY) += bfin_rotary.o
obj-$(CONFIG_INPUT_CM109) += cm109.o obj-$(CONFIG_INPUT_CM109) += cm109.o
obj-$(CONFIG_INPUT_COBALT_BTNS) += cobalt_btns.o obj-$(CONFIG_INPUT_COBALT_BTNS) += cobalt_btns.o
obj-$(CONFIG_INPUT_DM355EVM) += dm355evm_keys.o obj-$(CONFIG_INPUT_DM355EVM) += dm355evm_keys.o
obj-$(CONFIG_INPUT_DM365EVM) += dm365evm_keys.o
obj-$(CONFIG_HP_SDC_RTC) += hp_sdc_rtc.o obj-$(CONFIG_HP_SDC_RTC) += hp_sdc_rtc.o
obj-$(CONFIG_INPUT_IXP4XX_BEEPER) += ixp4xx-beeper.o obj-$(CONFIG_INPUT_IXP4XX_BEEPER) += ixp4xx-beeper.o
obj-$(CONFIG_INPUT_KEYSPAN_REMOTE) += keyspan_remote.o obj-$(CONFIG_INPUT_KEYSPAN_REMOTE) += keyspan_remote.o
......
/*
* dm365evm_keys.c - support IR remote on DM365 EVM board
*
* Copyright (c) 2009 by David Brownell
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/input.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/gpio.h>
#include <linux/slab.h>
/*
* The MSP430 firmware on the DM365 EVM monitors an IR receptor used for
* the remote control. When any key is pressed, or its autorepeat kicks
* in, an event is sent. This driver read those events from the small
* event queue and reports them.
*
* Compared to the DM355 EVM: the MSP firmware does *only* IR. So this
* driver is simpler, and doesn't even need to use the MFD model.
*
* Note that physically there can only be one of these devices.
*
* This driver was tested with firmware revision 0xA1 (beta board).
*/
struct dm365evm_keys {
struct input_dev *input;
struct i2c_client *i2c;
};
#define DM365EVM_MSP_FIRMREV 0
#define DM365EVM_MSP_INPUT_LOW 1
#define DM365EVM_MSP_INPUT_HIGH 2
#define DM365EVM_MSP_INPUT_COUNT 3
#define DM365EVM_MSP_0x43 4
#define MSP430_GPIO 0
/* These initial keycodes can be remapped by dm365evm_setkeycode(). */
static struct {
u16 event;
u16 keycode;
} dm365evm_keys[] = {
/*
* IR buttons ... codes assigned to match the universal remote
* provided with the EVM (Philips PM4S) using DVD code 0020.
*
* These event codes match firmware documentation, but other
* remote controls could easily send more RC5-encoded events.
* The PM4S manual was used in several cases to help select
* a keycode reflecting the intended usage.
*
* RC5 codes are 14 bits, with two start bits (0x3 prefix)
* and a toggle bit (masked out below).
*/
{ 0x300c, KEY_POWER, }, /* NOTE: docs omit this */
{ 0x3000, KEY_NUMERIC_0, },
{ 0x3001, KEY_NUMERIC_1, },
{ 0x3002, KEY_NUMERIC_2, },
{ 0x3003, KEY_NUMERIC_3, },
{ 0x3004, KEY_NUMERIC_4, },
{ 0x3005, KEY_NUMERIC_5, },
{ 0x3006, KEY_NUMERIC_6, },
{ 0x3007, KEY_NUMERIC_7, },
{ 0x3008, KEY_NUMERIC_8, },
{ 0x3009, KEY_NUMERIC_9, },
{ 0x3022, KEY_ENTER, },
{ 0x30ec, KEY_MODE, }, /* "tv/vcr/..." */
{ 0x300f, KEY_SELECT, }, /* "info" */
{ 0x3020, KEY_CHANNELUP, }, /* "up" */
{ 0x302e, KEY_MENU, }, /* "in/out" */
{ 0x3011, KEY_VOLUMEDOWN, }, /* "left" */
{ 0x300d, KEY_MUTE, }, /* "ok" */
{ 0x3010, KEY_VOLUMEUP, }, /* "right" */
{ 0x301e, KEY_SUBTITLE, }, /* "cc" */
{ 0x3021, KEY_CHANNELDOWN, }, /* "down" */
{ 0x3022, KEY_PREVIOUS, },
{ 0x3026, KEY_SLEEP, },
{ 0x3172, KEY_REWIND, },
{ 0x3175, KEY_PLAY, },
{ 0x3174, KEY_FASTFORWARD, },
{ 0x3177, KEY_RECORD, },
{ 0x3176, KEY_STOP, },
{ 0x3169, KEY_PAUSE, },
/* NOTE: SW22, a pushbutton next to the IR sensor, is also
* wired to the MSP430 but is currently ignored; some other
* I/O pins are likewise wired but ignored.
*/
};
static irqreturn_t dm365evm_keys_irq(int irq, void *_keys)
{
struct dm365evm_keys *keys = _keys;
/* For simplicity we ignore INPUT_COUNT and just read
* events until the GPIO stops signaling data ready.
*/
while (gpio_get_value(MSP430_GPIO) == 0) {
static u16 last_event;
u16 event;
int keycode;
int i;
/* Read low, then high bytes; reading the high byte
* removes an entry from the input buffer.
*/
event = i2c_smbus_read_word_data(keys->i2c,
DM365EVM_MSP_INPUT_LOW);
if (event < 0) {
dev_dbg(&keys->i2c->dev, "input err %d\n", event);
break;
}
event = event;
/* Press and release a button: two events, same code.
* Press and hold (autorepeat), then release: N events
* (N > 2), same code. For RC5 buttons the toggle bits
* distinguish (for example) "1-autorepeat" from "1 1";
* but PCB buttons don't support that bit.
*
* So we must synthesize release events. We do that by
* mapping events to a press/release event pair; then
* to avoid adding extra events, skip the second event
* of each pair.
*/
if (event == last_event) {
last_event = 0;
continue;
}
last_event = event;
/* ignore the RC5 toggle bit */
event &= ~0x0800;
/* find the key, or leave it as unknown */
keycode = KEY_UNKNOWN;
for (i = 0; i < ARRAY_SIZE(dm365evm_keys); i++) {
if (dm365evm_keys[i].event != event)
continue;
keycode = dm365evm_keys[i].keycode;
break;
}
dev_dbg(&keys->i2c->dev,
"input event 0x%04x--> keycode %d\n",
event, keycode);
/* report press + release */
input_report_key(keys->input, keycode, 1);
input_sync(keys->input);
input_report_key(keys->input, keycode, 0);
input_sync(keys->input);
}
return IRQ_HANDLED;
}
/*
* Since we talk to the MSP using I2C, we need to delegate all real
* IRQ handling work to some task context. We'll use an IRQ thread.
*/
static irqreturn_t dm365evm_keys_hardirq(int irq, void *_keys)
{
return IRQ_WAKE_THREAD;
}
static int dm365evm_setkeycode(struct input_dev *dev, int index, int keycode)
{
u16 old_keycode;
unsigned i;
if (((unsigned)index) >= ARRAY_SIZE(dm365evm_keys))
return -EINVAL;
old_keycode = dm365evm_keys[index].keycode;
dm365evm_keys[index].keycode = keycode;
set_bit(keycode, dev->keybit);
for (i = 0; i < ARRAY_SIZE(dm365evm_keys); i++) {
if (dm365evm_keys[index].keycode == old_keycode)
goto done;
}
clear_bit(old_keycode, dev->keybit);
done:
return 0;
}
static int dm365evm_getkeycode(struct input_dev *dev, int index, int *keycode)
{
if (((unsigned)index) >= ARRAY_SIZE(dm365evm_keys))
return -EINVAL;
return dm365evm_keys[index].keycode;
}
/*----------------------------------------------------------------------*/
static int __devinit
dm365evm_keys_probe(struct i2c_client *i2c, const struct i2c_device_id *id)
{
struct dm365evm_keys *keys;
struct input_dev *input;
int status;
int i;
status = gpio_request(MSP430_GPIO, id->name);
if (status < 0)
return status;
status = gpio_direction_input(MSP430_GPIO);
if (status < 0) {
gpio_free(MSP430_GPIO);
return status;
}
/* allocate instance struct and input dev */
keys = kzalloc(sizeof *keys, GFP_KERNEL);
input = input_allocate_device();
if (!keys || !input) {
status = -ENOMEM;
goto fail1;
}
keys->i2c = i2c;
keys->input = input;
input_set_drvdata(input, keys);
input->name = "DM365 EVM Controls";
input->phys = "dm365evm/input0";
input->dev.parent = &i2c->dev;
input->id.bustype = BUS_I2C;
input->id.product = 0x0365;
input->id.version = i2c_smbus_read_byte_data(i2c,
DM365EVM_MSP_FIRMREV);
input->evbit[0] = BIT(EV_KEY);
for (i = 0; i < ARRAY_SIZE(dm365evm_keys); i++)
__set_bit(dm365evm_keys[i].keycode, input->keybit);
input->setkeycode = dm365evm_setkeycode;
input->getkeycode = dm365evm_getkeycode;
/* FIXME: flush the event queue */
status = request_threaded_irq(gpio_to_irq(MSP430_GPIO),
dm365evm_keys_hardirq, dm365evm_keys_irq,
IRQF_TRIGGER_FALLING,
id->name, keys);
if (status < 0)
goto fail1;
/* register */
status = input_register_device(input);
if (status < 0)
goto fail2;
i2c_set_clientdata(i2c, keys);
return 0;
fail2:
free_irq(gpio_to_irq(MSP430_GPIO), keys);
fail1:
input_free_device(input);
kfree(keys);
gpio_free(MSP430_GPIO);
dev_err(&i2c->dev, "can't register, err %d\n", status);
return status;
}
static int __devexit dm365evm_keys_remove(struct i2c_client *i2c)
{
struct dm365evm_keys *keys = i2c_get_clientdata(i2c);
free_irq(gpio_to_irq(MSP430_GPIO), keys);
input_unregister_device(keys->input);
kfree(keys);
gpio_free(MSP430_GPIO);
return 0;
}
/* REVISIT: add suspend/resume when DaVinci supports it. The IRQ should
* be able to wake up the system. When device_may_wakeup(&i2c->dev), call
* enable_irq_wake() on suspend, and disable_irq_wake() on resume.
*/
static const struct i2c_device_id ids[] = {
{ .name = "dm365evm_keys", },
{ },
};
MODULE_DEVICE_TABLE(i2c, ids);
static struct i2c_driver dm365evm_keys_driver = {
.driver.name = "dm365evm_keys",
.id_table = ids,
.probe = dm365evm_keys_probe,
.remove = __devexit_p(dm365evm_keys_remove),
};
static int __init dm365evm_keys_init(void)
{
return i2c_add_driver(&dm365evm_keys_driver);
}
module_init(dm365evm_keys_init);
static void __exit dm365evm_keys_exit(void)
{
i2c_del_driver(&dm365evm_keys_driver);
}
module_exit(dm365evm_keys_exit);
MODULE_LICENSE("GPL");
...@@ -2023,6 +2023,21 @@ config FB_IBM_GXT4500 ...@@ -2023,6 +2023,21 @@ config FB_IBM_GXT4500
Say Y here to enable support for the IBM GXT4500P display Say Y here to enable support for the IBM GXT4500P display
adaptor, found on some IBM System P (pSeries) machines. adaptor, found on some IBM System P (pSeries) machines.
config FB_DAVINCI
bool "Davinci Framebuffer support"
depends on FB && ARCH_DAVINCI
select FB_CFB_FILLRECT
select FB_CFB_COPYAREA
select FB_CFB_IMAGEBLIT
help
This is the frame buffer device driver for the DaVinci video
hardware found on the TI DaVinci EVM. If
unsure, say N.
config FB_VIRTUAL
tristate "Virtual Frame Buffer support (ONLY FOR TESTING!)"
depends on FB
config FB_PS3 config FB_PS3
tristate "PS3 GPU framebuffer driver" tristate "PS3 GPU framebuffer driver"
depends on FB && PS3_PS3AV depends on FB && PS3_PS3AV
......
...@@ -143,6 +143,7 @@ obj-$(CONFIG_FB_BFIN_LQ035Q1) += bfin-lq035q1-fb.o ...@@ -143,6 +143,7 @@ obj-$(CONFIG_FB_BFIN_LQ035Q1) += bfin-lq035q1-fb.o
obj-$(CONFIG_FB_BFIN_T350MCQB) += bfin-t350mcqb-fb.o obj-$(CONFIG_FB_BFIN_T350MCQB) += bfin-t350mcqb-fb.o
obj-$(CONFIG_FB_MX3) += mx3fb.o obj-$(CONFIG_FB_MX3) += mx3fb.o
obj-$(CONFIG_FB_DA8XX) += da8xx-fb.o obj-$(CONFIG_FB_DA8XX) += da8xx-fb.o
obj-$(CONFIG_FB_DAVINCI) += davincifb.o
# the test framebuffer is last # the test framebuffer is last
obj-$(CONFIG_FB_VIRTUAL) += vfb.o obj-$(CONFIG_FB_VIRTUAL) += vfb.o
......
/*
* drivers/video/davincifb.c
*
* Framebuffer driver for Texas Instruments DaVinci display controller.
*
* Copyright (C) 2006 Texas Instruments, Inc.
* Rishi Bhattacharya <support@ti.com>
*
* Leveraged from the framebuffer driver for OMAP24xx
* written by Andy Lowe (source@mvista.com)
* Copyright (C) 2004 MontaVista Software, Inc.
*
* This file is licensed under the terms of the GNU General Public License
* version 2. This program is licensed "as is" without any warranty of any
* kind, whether express or implied.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/tty.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/fb.h>
#include <linux/init.h>
#include <linux/dma-mapping.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <asm/irq.h>
#include <asm/uaccess.h>
#include <video/davincifb.h>
#include <asm/system.h>
#define MODULE_NAME "davincifb"
/* Output Format Selection */
#define MULTIPLE_BUFFERING 1
#ifdef MULTIPLE_BUFFERING
#define DOUBLE_BUF 2
#define TRIPLE_BUF 3
#else
#define DOUBLE_BUF 1
#define TRIPLE_BUF 1
#endif
/*
* display controller register I/O routines
*/
static __inline__ u32 dispc_reg_in(u32 reg)
{
return ioread32(IO_ADDRESS(reg));
}
static __inline__ u32 dispc_reg_out(u32 reg, u32 val)
{
iowrite32(val, IO_ADDRESS(reg));
return (val);
}
static __inline__ u32 dispc_reg_merge(u32 reg, u32 val, u32 mask)
{
u32 new_val = (ioread32(IO_ADDRESS(reg)) & ~mask) | (val & mask);
iowrite32(new_val, IO_ADDRESS(reg));
return (new_val);
}
/* There are 4 framebuffers, each represented by an fb_info and
* a dm_win_info structure */
#define OSD0_FBNAME "dm_osd0_fb"
#define OSD1_FBNAME "dm_osd1_fb"
#define VID0_FBNAME "dm_vid0_fb"
#define VID1_FBNAME "dm_vid1_fb"
/* usage: if (is_win(info->fix.id, OSD0)) ... */
#define is_win(name, x) ((strcmp(name, x ## _FBNAME) == 0) ? 1 : 0)
struct dm_win_info {
struct fb_info info;
/* X and Y position */
unsigned int x, y;
/* framebuffer area */
dma_addr_t fb_base_phys;
unsigned long fb_base;
unsigned long fb_size;
u32 pseudo_palette[17];
/* flag to identify if framebuffer area is fixed already or not */
int alloc_fb_mem;
unsigned long sdram_address;
struct dm_info *dm;
};
static struct dm_info {
struct dm_win_info *osd0;
struct dm_win_info *osd1;
struct dm_win_info *vid0;
struct dm_win_info *vid1;
/* to map the registers */
dma_addr_t mmio_base_phys;
unsigned long mmio_base;
unsigned long mmio_size;
wait_queue_head_t vsync_wait;
unsigned long vsync_cnt;
int timeout;
/* this is the function that configures the output device (NTSC/PAL/LCD)
* for the required output format (composite/s-video/component/rgb)
*/
void (*output_device_config) (int on);
struct device *dev;
} dm_static;
static struct dm_info *dm = &dm_static;
static struct fb_ops davincifb_ops;
#define BASEX 0x80
#define BASEY 0x12
#define DISP_XRES 720
#define DISP_YRES 480
#define DISP_MEMY 576
/* Random value chosen for now. Should be within the panel's supported range */
#define LCD_PANEL_CLOCK 180000
/* All window widths have to be rounded up to a multiple of 32 bytes */
/* The OSD0 window has to be always within VID0. Plus, since it is in RGB565
* mode, it _cannot_ overlap with VID1.
* For defaults, we are setting the OSD0 window to be displayed in the top
* left quadrant of the screen, and the VID1 in the bottom right quadrant.
* So the default 'xres' and 'yres' are set to half of the screen width and
* height respectively. Note however that the framebuffer size is allocated
* for the full screen size so the user can change the 'xres' and 'yres' by
* using the FBIOPUT_VSCREENINFO ioctl within the limits of the screen size.
*/
#define round_32(width) ((((width) + 31) / 32) * 32 )
#define OSD0_XRES round_32((DISP_XRES)*16/8) * 8/16 /* pixels */
#define OSD0_YRES DISP_YRES
#define OSD0_FB_PHY 0
#define OSD0_FB_SIZE (round_32((DISP_XRES)*16/8) * DISP_MEMY * DOUBLE_BUF)
/* 16 bpp, Double buffered */
static struct fb_var_screeninfo osd0_default_var = {
.xres = OSD0_XRES,
.yres = OSD0_YRES,
.xres_virtual = OSD0_XRES,
.yres_virtual = OSD0_YRES * DOUBLE_BUF,
.xoffset = 0,
.yoffset = 0,
.bits_per_pixel = 16,
.grayscale = 0,
.red = {11, 5, 0},
.green = {5, 6, 0},
.blue = {0, 5, 0},
.transp = {0, 0, 0},
.nonstd = 0,
.activate = FB_ACTIVATE_NOW,
.height = -1,
.width = -1,
.accel_flags = 0,
.pixclock = LCD_PANEL_CLOCK, /* picoseconds */
.left_margin = 40, /* pixclocks */
.right_margin = 4, /* pixclocks */
.upper_margin = 8, /* line clocks */
.lower_margin = 2, /* line clocks */
.hsync_len = 4, /* pixclocks */
.vsync_len = 2, /* line clocks */
.sync = 0,
.vmode = FB_VMODE_INTERLACED,
};
/* Using the full screen for OSD1 by default */
#define OSD1_XRES round_32(DISP_XRES*4/8) * 8/4 /* pixels */
#define OSD1_YRES DISP_YRES
#define OSD1_FB_PHY 0
#define OSD1_FB_SIZE (round_32(DISP_XRES*4/8) * DISP_MEMY * DOUBLE_BUF)
static struct fb_var_screeninfo osd1_default_var = {
.xres = DISP_XRES,
.yres = OSD1_YRES,
.xres_virtual = OSD1_XRES,
.yres_virtual = OSD1_YRES * DOUBLE_BUF,
.xoffset = 0,
.yoffset = 0,
.bits_per_pixel = 4,
.activate = FB_ACTIVATE_NOW,
.accel_flags = 0,
.pixclock = LCD_PANEL_CLOCK, /* picoseconds */
.vmode = FB_VMODE_INTERLACED,
};
/* Using the full screen for OSD0 by default */
#define VID0_XRES round_32(DISP_XRES*16/8) * 8/16 /* pixels */
#define VID0_YRES DISP_YRES
#define VID0_FB_PHY 0
#define VID0_FB_SIZE (round_32(DISP_XRES*16/8) * DISP_MEMY * TRIPLE_BUF)
static struct fb_var_screeninfo vid0_default_var = {
.xres = VID0_XRES,
.yres = VID0_YRES,
.xres_virtual = VID0_XRES,
.yres_virtual = VID0_YRES * TRIPLE_BUF,
.xoffset = 0,
.yoffset = 0,
.bits_per_pixel = 16,
.activate = FB_ACTIVATE_NOW,
.accel_flags = 0,
.pixclock = LCD_PANEL_CLOCK, /* picoseconds */
.vmode = FB_VMODE_INTERLACED,
};
/* Using the bottom right quadrant of the screen screen for VID1 by default,
* but keeping the framebuffer allocated for the full screen, so the user can
* change the 'xres' and 'yres' later using the FBIOPUT_VSCREENINFO ioctl.
*/
#define VID1_BPP 16 /* Video1 can be in YUV or RGB888 format */
#define VID1_XRES round_32(DISP_XRES*16/8) * 8/16 /* pixels */
#define VID1_YRES DISP_YRES
#define VID1_FB_PHY 0
#define VID1_FB_SIZE (round_32(DISP_XRES*16/8) * DISP_MEMY * TRIPLE_BUF)
static struct fb_var_screeninfo vid1_default_var = {
.xres = VID1_XRES,
.yres = VID1_YRES,
.xres_virtual = VID1_XRES,
.yres_virtual = VID1_YRES * TRIPLE_BUF,
.xoffset = 0,
.yoffset = 0,
.bits_per_pixel = VID1_BPP,
.activate = FB_ACTIVATE_NOW,
.accel_flags = 0,
.pixclock = LCD_PANEL_CLOCK, /* picoseconds */
.vmode = FB_VMODE_INTERLACED,
};
#define x_pos(w) ((w)->x)
#define y_pos(w) ((w)->y)
static struct dmparams_t {
u8 output;
u8 format;
u8 windows; /* bitmap flag based on VID0, VID1, OSD0, OSD1
* definitions in header file */
u32 vid0_xres;
u32 vid0_yres;
u32 vid0_xpos;
u32 vid0_ypos;
u32 vid1_xres;
u32 vid1_yres;
u32 vid1_xpos;
u32 vid1_ypos;
u32 osd0_xres;
u32 osd0_yres;
u32 osd0_xpos;
u32 osd0_ypos;
u32 osd1_xres;
u32 osd1_yres;
u32 osd1_xpos;
u32 osd1_ypos;
} dmparams = {
NTSC, /* output */
COMPOSITE, /* format */
(1 << VID0) | (1 << VID1) | (1 << OSD0) | (1 << OSD1),
/* windows registered */
720, 480, 0, 0, /* vid0 size and position */
720, 480, 0, 0, /* vid1 size and position */
720, 480, 0, 0, /* osd0 size and position */
720, 480, 0, 0, /* osd1 size and position */
};
/* Must do checks against the limits of the output device */
static int davincifb_venc_check_mode(const struct dm_win_info *w,
const struct fb_var_screeninfo *var)
{
return 0;
}
static void set_sdram_params(char *id, u32 addr, u32 line_length);
static irqreturn_t davincifb_isr(int irq, void *arg)
{
struct dm_info *dm = (struct dm_info *)arg;
unsigned long addr=0;
if ((dispc_reg_in(VENC_VSTAT) & 0x00000010) == 0x10) {
xchg(&addr, dm->osd0->sdram_address);
if (addr) {
set_sdram_params(dm->osd0->info.fix.id,
dm->osd0->sdram_address,
dm->osd0->info.fix.line_length);
dm->osd0->sdram_address = 0;
}
addr = 0;
xchg(&addr, dm->osd1->sdram_address);
if (addr) {
set_sdram_params(dm->osd1->info.fix.id,
dm->osd1->sdram_address,
dm->osd1->info.fix.line_length);
dm->osd1->sdram_address = 0;
}
addr = 0;
xchg(&addr, dm->vid0->sdram_address);
if (addr) {
set_sdram_params(dm->vid0->info.fix.id,
dm->vid0->sdram_address,
dm->vid0->info.fix.line_length);
dm->vid0->sdram_address = 0;
}
addr = 0;
xchg(&addr, dm->vid1->sdram_address);
if (addr) {
set_sdram_params(dm->vid1->info.fix.id,
dm->vid1->sdram_address,
dm->vid1->info.fix.line_length);
dm->vid1->sdram_address = 0;
}
return IRQ_HANDLED;
} else {
++dm->vsync_cnt;
wake_up_interruptible(&dm->vsync_wait);
return IRQ_HANDLED;
}
return IRQ_HANDLED;
}
/* Wait for a vsync interrupt. This routine sleeps so it can only be called
* from process context.
*/
static int davincifb_wait_for_vsync(struct dm_win_info *w)
{
struct dm_info *dm = w->dm;
wait_queue_t wq;
unsigned long cnt;
int ret;
init_waitqueue_entry(&wq, current);
cnt = dm->vsync_cnt;
ret = wait_event_interruptible_timeout(dm->vsync_wait,
cnt != dm->vsync_cnt,
dm->timeout);
if (ret < 0)
return (ret);
if (ret == 0)
return (-ETIMEDOUT);
return (0);
}
/* Sets a uniform attribute value over a rectangular area on the attribute
* window. The attribute value (0 to 7) is passed through the fb_fillrect's
* color parameter.
*/
static int davincifb_set_attr_blend(struct fb_fillrect *r)
{
struct fb_info *info = &dm->osd1->info;
struct fb_var_screeninfo *var = &dm->osd1->info.var;
unsigned long start = 0;
u8 blend;
u32 width_bytes;
if (r->dx + r->width > var->xres_virtual)
return -EINVAL;
if (r->dy + r->height > var->yres_virtual)
return -EINVAL;
if (r->color < 0 || r->color > 7)
return -EINVAL;
/* since bits_per_pixel = 4, this will truncate the width if it is
* not even. Similarly r->dx will be rounded down to an even pixel.
* ... Do we want to return an error otherwise?
*/
width_bytes = r->width * var->bits_per_pixel / 8;
start = dm->osd1->fb_base + r->dy * info->fix.line_length
+ r->dx * var->bits_per_pixel / 8;
blend = (((u8) r->color & 0xf) << 4) | ((u8) r->color);
while (r->height--) {
start += info->fix.line_length;
memset((void *)start, blend, width_bytes);
}
return 0;
}
/* These position parameters are given through fb_var_screeninfo.
* xp = var.reserved[0], yp = var.reserved[1],
* xl = var.xres, yl = var.yres
*/
static void set_win_position(char *id, u32 xp, u32 yp, u32 xl, u32 yl)
{
int i = 0;
if (is_win(id, VID0)) {
i = 0;
} else if (is_win(id, VID1)) {
i = 1;
} else if (is_win(id, OSD0)) {
i = 2;
} else if (is_win(id, OSD1)) {
i = 3;
}
dispc_reg_out(OSD_WINXP(i), xp);
dispc_reg_out(OSD_WINYP(i), yp);
dispc_reg_out(OSD_WINXL(i), xl);
dispc_reg_out(OSD_WINYL(i), yl);
}
static inline void get_win_position(struct dm_win_info *w,
u32 * xp, u32 * yp, u32 * xl, u32 * yl)
{
struct fb_var_screeninfo *v = &w->info.var;
*xp = x_pos(w);
*yp = y_pos(w);
*xl = v->xres;
*yl = v->yres;
}
/* Returns 1 if the windows overlap, 0 otherwise */
static int window_overlap(struct dm_win_info *w, u32 xp, u32 yp, u32 xl, u32 yl)
{
u32 _xp = 0, _yp = 0, _xl = 0, _yl = 0;
#define OVERLAP(x1, y1, x2, y2, x3, y3, x4, y4) \
(!( ((x1)<(x3) && (x2)<(x3)) || ((x1)>(x4) && (x2)>(x4)) || \
((y1)<(y3) && (y2)<(y3)) || ((y1)>(y4) && (y2)>(y4)) ) \
)
if (!w)
return (0);
get_win_position(w, &_xp, &_yp, &_xl, &_yl);
return (OVERLAP(xp, yp, xp + xl, yp + yl,
_xp, _yp, _xp + _xl, _yp + _yl));
#undef OVERLAP
}
/* Returns 1 if the window parameters are within VID0, 0 otherwise */
static int within_vid0_limits(u32 xp, u32 yp, u32 xl, u32 yl)
{
u32 vid0_xp = 0, vid0_yp = 0, vid0_xl = 0, vid0_yl = 0;
if (!dm->vid0)
return (1);
get_win_position(dm->vid0, &vid0_xp, &vid0_yp, &vid0_xl, &vid0_yl);
if ((xp >= vid0_xp) && (yp >= vid0_yp) &&
(xp + xl <= vid0_xp + vid0_xl) && (yp + yl <= vid0_yp + vid0_yl))
return (1);
return (0);
}
/* VID0 must be large enough to hold all other windows */
static int check_new_vid0_size(u32 xp0, u32 yp0, u32 xl0, u32 yl0)
{
u32 _xp = 0, _yp = 0, _xl = 0, _yl = 0;
#define WITHIN_LIMITS \
((_xp >= xp0) && (_yp >= yp0) && \
(_xp + _xl <= xp0 + xl0) && (_yp + _yl <= yp0 + yl0))
if (dm->osd0) {
get_win_position(dm->osd0, &_xp, &_yp, &_xl, &_yl);
if (!WITHIN_LIMITS)
return (-EINVAL);
}
if (dm->osd1) {
get_win_position(dm->osd1, &_xp, &_yp, &_xl, &_yl);
if (!WITHIN_LIMITS)
return (-EINVAL);
}
if (dm->vid1) {
get_win_position(dm->vid1, &_xp, &_yp, &_xl, &_yl);
if (!WITHIN_LIMITS)
return (-EINVAL);
}
return (0);
#undef WITHIN_LIMITS
}
/**
* davincifb_check_var - Validates a var passed in.
* @var: frame buffer variable screen structure
* @info: frame buffer structure that represents a single frame buffer
*
* Checks to see if the hardware supports the state requested by
* var passed in. This function does not alter the hardware state!!!
* This means the data stored in struct fb_info and struct xxx_par do
* not change. This includes the var inside of struct fb_info.
* Do NOT change these. This function can be called on its own if we
* intent to only test a mode and not actually set it.
* If the var passed in is slightly off by what the hardware can support
* then we alter the var PASSED in to what we can do.
*
* Returns negative errno on error, or zero on success.
*/
static int davincifb_check_var(struct fb_var_screeninfo *var,
struct fb_info *info)
{
const struct dm_win_info *w = (const struct dm_win_info *)info->par;
struct fb_var_screeninfo v;
/* Rules:
* 1) Vid1, OSD0, OSD1 and Cursor must be fully contained inside of Vid0.
* 2) Vid0 and Vid1 are both set to accept YUV 4:2:2 (for now).
* 3) OSD window data is always packed into 32-bit words and left justified.
* 4) Each horizontal line of window data must be a multiple of 32 bytes.
* 32 bytes = 32 bytes / 2 bytes per pixel = 16 pixels.
* This implies that 'xres' must be a multiple of 32 bytes.
* 5) The offset registers hold the distance between the start of one line and
* the start of the next. This offset value must be a multiple of 32 bytes.
* This implies that 'xres_virtual' is also a multiple of 32 bytes. Note
* that 'xoffset' needn't be a multiple of 32 bytes.
* 6) OSD0 is set to accept RGB565.
* dispc_reg_merge(OSD_OSDWIN0ND, OSD_OSDWIN0ND_RGB0E, OSD_OSDWIN0ND_RGB0E)
* 7) OSD1 is set to be the attribute window.
* 8) Vid1 startX = Vid0 startX + N * 16 pixels (32 bytes)
* 9) Vid1 width = (16*N - 8) pixels
* 10) When one of the OSD windows is in RGB565, it cannot overlap with Vid1.
* 11) Vid1 start X position must be offset a multiple of 16 pixels from the
* left edge of Vid0.
*/
memcpy(&v, var, sizeof(v));
return (0);
/* do board-specific checks on the var */
if (davincifb_venc_check_mode(w, &v))
return (-EINVAL);
if (v.xres_virtual < v.xres || v.yres_virtual < v.yres)
return (-EINVAL);
if (v.xoffset > v.xres_virtual - v.xres)
return (-EINVAL);
if (v.yoffset > v.yres_virtual - v.yres)
return (-EINVAL);
if ((v.xres * v.bits_per_pixel / 8) % 32 || (v.xres_virtual * v.bits_per_pixel / 8) % 32) /* Rules 4, 5 */
return (-EINVAL);
if (v.xres_virtual * v.yres_virtual * v.bits_per_pixel / 8 > w->fb_size)
return (-EINVAL);
if (!is_win(info->fix.id, VID0)) {
/* Rule 1 */
if (!within_vid0_limits(x_pos(w), y_pos(w), v.xres, v.yres))
return (-EINVAL);
}
if (is_win(info->fix.id, OSD0)) {
/* Rule 10 */
if (window_overlap(w->dm->vid1,
x_pos(w), y_pos(w), v.xres, v.yres))
return (-EINVAL);
/* Rule 5 */
v.bits_per_pixel = 16;
v.red.offset = 11;
v.green.offset = 5;
v.blue.offset = 0;
v.red.length = 5;
v.green.length = 6;
v.blue.length = 5;
v.transp.offset = v.transp.length = 0;
v.red.msb_right = v.green.msb_right = v.blue.msb_right
= v.transp.msb_right = 0;
v.nonstd = 0;
v.accel_flags = 0;
} else if (is_win(info->fix.id, OSD1)) {
v.bits_per_pixel = 4;
} else if (is_win(info->fix.id, VID0)) {
if (check_new_vid0_size(x_pos(w), y_pos(w), v.xres, v.yres))
return (-EINVAL);
v.bits_per_pixel = 16;
} else if (is_win(info->fix.id, VID1)) {
/* Rule 11 */
if ((x_pos(w->dm->vid0) - x_pos(w)) % 16)
return (-EINVAL);
/* Video1 may be in YUV or RGB888 format */
if ((v.bits_per_pixel != 16) && (v.bits_per_pixel != 32))
return (-EINVAL);
} else
return (-EINVAL);
memcpy(var, &v, sizeof(v));
return (0);
}
/* Interlaced = Frame mode, Non-interlaced = Field mode */
static void set_interlaced(char *id, unsigned int on)
{
on = (on == 0) ? 0 : ~0;
if (is_win(id, VID0))
dispc_reg_merge(OSD_VIDWINMD, on, OSD_VIDWINMD_VFF0);
else if (is_win(id, VID1))
dispc_reg_merge(OSD_VIDWINMD, on, OSD_VIDWINMD_VFF1);
else if (is_win(id, OSD0))
dispc_reg_merge(OSD_OSDWIN0MD, on, OSD_OSDWIN0MD_OFF0);
else if (is_win(id, OSD1))
dispc_reg_merge(OSD_OSDWIN1MD, on, OSD_OSDWIN1MD_OFF1);
}
/* For zooming, we just have to set the start of framebuffer, the zoom factors
* and the display size. The hardware will then read only
* (display size / zoom factor) area of the framebuffer and zoom and
* display it. In the following function, we assume that the start of
* framebuffer and the display size parameters are set already.
*/
static void set_zoom(int WinID, int h_factor, int v_factor)
{
switch (WinID) {
case 0: //VID0
dispc_reg_merge(OSD_VIDWINMD,
h_factor << OSD_VIDWINMD_VHZ0_SHIFT,
OSD_VIDWINMD_VHZ0);
dispc_reg_merge(OSD_VIDWINMD,
v_factor << OSD_VIDWINMD_VVZ0_SHIFT,
OSD_VIDWINMD_VVZ0);
break;
case 1: //VID1
dispc_reg_merge(OSD_VIDWINMD,
h_factor << OSD_VIDWINMD_VHZ1_SHIFT,
OSD_VIDWINMD_VHZ1);
dispc_reg_merge(OSD_VIDWINMD,
v_factor << OSD_VIDWINMD_VVZ1_SHIFT,
OSD_VIDWINMD_VVZ1);
break;
case 2: //OSD0
dispc_reg_merge(OSD_OSDWIN0MD,
h_factor << OSD_OSDWIN0MD_OHZ0_SHIFT,
OSD_OSDWIN0MD_OHZ0);
dispc_reg_merge(OSD_OSDWIN0MD,
v_factor << OSD_OSDWIN0MD_OVZ0_SHIFT,
OSD_OSDWIN0MD_OVZ0);
break;
case 3:
dispc_reg_merge(OSD_OSDWIN1MD,
h_factor << OSD_OSDWIN1MD_OHZ1_SHIFT,
OSD_OSDWIN1MD_OHZ1);
dispc_reg_merge(OSD_OSDWIN1MD,
v_factor << OSD_OSDWIN1MD_OVZ1_SHIFT,
OSD_OSDWIN1MD_OVZ1);
break;
}
}
/* Chooses the ROM CLUT for now. Can be extended later. */
static void set_bg_color(u8 clut, u8 color_offset)
{
clut = 0; /* 0 = ROM, 1 = RAM */
dispc_reg_merge(OSD_MODE, OSD_MODE_BCLUT & clut, OSD_MODE_BCLUT);
dispc_reg_merge(OSD_MODE, color_offset << OSD_MODE_CABG_SHIFT,
OSD_MODE_CABG);
}
static void set_sdram_params(char *id, u32 addr, u32 line_length)
{
/* The parameters to be written to the registers should be in
* multiple of 32 bytes
*/
addr = addr; /* div by 32 */
line_length = line_length / 32;
if (is_win(id, VID0)) {
dispc_reg_out(OSD_VIDWIN0ADR, addr);
dispc_reg_out(OSD_VIDWIN0OFST, line_length);
} else if (is_win(id, VID1)) {
dispc_reg_out(OSD_VIDWIN1ADR, addr);
dispc_reg_out(OSD_VIDWIN1OFST, line_length);
} else if (is_win(id, OSD0)) {
dispc_reg_out(OSD_OSDWIN0ADR, addr);
dispc_reg_out(OSD_OSDWIN0OFST, line_length);
} else if (is_win(id, OSD1)) {
dispc_reg_out(OSD_OSDWIN1ADR, addr);
dispc_reg_out(OSD_OSDWIN1OFST, line_length);
}
}
static void set_win_enable(char *id, unsigned int on)
{
on = (on == 0) ? 0 : ~0;
if (is_win(id, VID0))
/* Turning off VID0 use due to field inversion issue */
dispc_reg_merge(OSD_VIDWINMD, 0, OSD_VIDWINMD_ACT0);
else if (is_win(id, VID1))
dispc_reg_merge(OSD_VIDWINMD, on, OSD_VIDWINMD_ACT1);
else if (is_win(id, OSD0))
dispc_reg_merge(OSD_OSDWIN0MD, on, OSD_OSDWIN0MD_OACT0);
else if (is_win(id, OSD1)) {
/* The OACT1 bit is applicable only if OSD1 is not used as
* the attribute window
*/
if (!(dispc_reg_in(OSD_OSDWIN1MD) & OSD_OSDWIN1MD_OASW))
dispc_reg_merge(OSD_OSDWIN1MD, on, OSD_OSDWIN1MD_OACT1);
}
}
static void set_win_mode(char *id)
{
if (is_win(id, VID0)) ;
else if (is_win(id, VID1)) {
if (dm->vid1->info.var.bits_per_pixel == 32)
dispc_reg_merge(OSD_MISCCT, ~0,
OSD_MISCCT_RGBWIN | OSD_MISCCT_RGBEN);
} else if (is_win(id, OSD0))
/* Set RGB565 mode */
dispc_reg_merge(OSD_OSDWIN0MD, OSD_OSDWIN0MD_RGB0E,
OSD_OSDWIN0MD_RGB0E);
else if (is_win(id, OSD1)) {
/* Set as attribute window */
dispc_reg_merge(OSD_OSDWIN1MD, OSD_OSDWIN1MD_OASW,
OSD_OSDWIN1MD_OASW);
}
}
/**
* davincifb_set_par - Optional function. Alters the hardware state.
* @info: frame buffer structure that represents a single frame buffer
*
* Using the fb_var_screeninfo in fb_info we set the resolution of the
* this particular framebuffer. This function alters the par AND the
* fb_fix_screeninfo stored in fb_info. It doesn't not alter var in
* fb_info since we are using that data. This means we depend on the
* data in var inside fb_info to be supported by the hardware.
* davincifb_check_var is always called before dmfb_set_par to ensure this.
* Again if you can't can't the resolution you don't need this function.
*
*/
static int davincifb_set_par(struct fb_info *info)
{
struct dm_win_info *w = (struct dm_win_info *)info->par;
struct fb_var_screeninfo *v = &info->var;
u32 start = 0, offset = 0;
info->fix.line_length = v->xres_virtual * v->bits_per_pixel / 8;
offset = v->yoffset * info->fix.line_length +
v->xoffset * v->bits_per_pixel / 8;
start = (u32) w->fb_base_phys + offset;
set_sdram_params(info->fix.id, start, info->fix.line_length);
set_interlaced(info->fix.id, 1);
set_win_position(info->fix.id,
x_pos(w), y_pos(w), v->xres, v->yres / 2);
set_win_mode(info->fix.id);
set_win_enable(info->fix.id, 1);
return (0);
}
/**
* davincifb_ioctl - handler for private ioctls.
*/
static int davincifb_ioctl(struct fb_info *info, unsigned int cmd,
unsigned long arg)
{
struct dm_win_info *w = (struct dm_win_info *)info->par;
void __user *argp = (void __user *)arg;
struct fb_fillrect rect;
struct zoom_params zoom;
long std = 0;
switch (cmd) {
case FBIO_WAITFORVSYNC:
/* This ioctl accepts an integer argument to specify a
* display. We only support one display, so we will
* simply ignore the argument.
*/
return (davincifb_wait_for_vsync(w));
break;
case FBIO_SETATTRIBUTE:
if (copy_from_user(&rect, argp, sizeof(rect)))
return -EFAULT;
return (davincifb_set_attr_blend(&rect));
break;
case FBIO_SETPOSX:
if (arg >= 0 && arg <= DISP_XRES) {
w->x = arg;
davincifb_check_var(&w->info.var, &w->info);
davincifb_set_par(&w->info);
return 0;
} else
return -EINVAL;
break;
case FBIO_SETPOSY:
if (arg >= 0 && arg <= DISP_YRES) {
w->y = arg;
davincifb_check_var(&w->info.var, &w->info);
davincifb_set_par(&w->info);
return 0;
} else
return -EINVAL;
break;
case FBIO_SETZOOM:
if (copy_from_user(&zoom, argp, sizeof(zoom)))
return -EFAULT;
if ((zoom.zoom_h == 2) || (zoom.zoom_h == 0)
|| (zoom.zoom_h == 1) || (zoom.zoom_v == 2)
|| (zoom.zoom_v == 0) || (zoom.zoom_v == 1)) {
set_zoom(zoom.window_id, zoom.zoom_h, zoom.zoom_v);
return 0;
} else {
return -EINVAL;
}
break;
case FBIO_GETSTD:
std = ((dmparams.output << 16) | (dmparams.format)); //(NTSC <<16) | (COPOSITE);
if (copy_to_user(argp, &std, sizeof(u_int32_t)))
return -EFAULT;
return 0;
break;
}
return (-EINVAL);
}
/**
* davincifb_setcolreg - Optional function. Sets a color register.
* @regno: Which register in the CLUT we are programming
* @red: The red value which can be up to 16 bits wide
* @green: The green value which can be up to 16 bits wide
* @blue: The blue value which can be up to 16 bits wide.
* @transp: If supported the alpha value which can be up to 16 bits wide.
* @info: frame buffer info structure
*
* Set a single color register. The values supplied have a 16 bit
* magnitude which needs to be scaled in this function for the hardware.
* Things to take into consideration are how many color registers, if
* any, are supported with the current color visual. With truecolor mode
* no color palettes are supported. Here a psuedo palette is created
* which we store the value in pseudo_palette in struct fb_info. For
* pseudocolor mode we have a limited color palette. To deal with this
* we can program what color is displayed for a particular pixel value.
* DirectColor is similar in that we can program each color field. If
* we have a static colormap we don't need to implement this function.
*
* Returns negative errno on error, or zero on success.
*/
static int davincifb_setcolreg(unsigned regno, unsigned red, unsigned green,
unsigned blue, unsigned transp,
struct fb_info *info)
{
/* only pseudo-palette (16 bpp) allowed */
if (regno >= 16) /* maximum number of palette entries */
return (1);
if (info->var.grayscale) {
/* grayscale = 0.30*R + 0.59*G + 0.11*B */
red = green = blue = (red * 77 + green * 151 + blue * 28) >> 8;
}
/* Truecolor has hardware-independent 16-entry pseudo-palette */
if (info->fix.visual == FB_VISUAL_TRUECOLOR) {
u32 v;
if (regno >= 16)
return (1);
red >>= (16 - info->var.red.length);
green >>= (16 - info->var.green.length);
blue >>= (16 - info->var.blue.length);
v = (red << info->var.red.offset) |
(green << info->var.green.offset) |
(blue << info->var.blue.offset);
switch (info->var.bits_per_pixel) {
case 16:
((u16 *) (info->pseudo_palette))[regno] = v;
break;
default:
return (1);
}
return (0);
}
return (0);
}
/**
* davincifb_pan_display - NOT a required function. Pans the display.
* @var: frame buffer variable screen structure
* @info: frame buffer structure that represents a single frame buffer
*
* Pan (or wrap, depending on the `vmode' field) the display using the
* `xoffset' and `yoffset' fields of the `var' structure.
* If the values don't fit, return -EINVAL.
*
* Returns negative errno on error, or zero on success.
*/
static int davincifb_pan_display(struct fb_var_screeninfo *var,
struct fb_info *info)
{
struct dm_win_info *w = (struct dm_win_info *)info->par;
u32 start = 0, offset = 0;
if (var->xoffset > var->xres_virtual - var->xres)
return (-EINVAL);
if (var->yoffset > var->yres_virtual - var->yres)
return (-EINVAL);
if ((var->xres_virtual * var->bits_per_pixel / 8) % 32)
return (-EINVAL);
offset = var->yoffset * info->fix.line_length +
var->xoffset * var->bits_per_pixel / 8;
start = (u32) w->fb_base_phys + offset;
if ((dispc_reg_in(VENC_VSTAT) & 0x00000010)==0x10)
set_sdram_params(info->fix.id, start, info->fix.line_length);
else
w->sdram_address = start;
return (0);
}
/**
* davincifb_blank - NOT a required function. Blanks the display.
* @blank_mode: the blank mode we want.
* @info: frame buffer structure that represents a single frame buffer
*
* Blank the screen if blank_mode != 0, else unblank. Return 0 if
* blanking succeeded, != 0 if un-/blanking failed due to e.g. a
* video mode which doesn't support it. Implements VESA suspend
* and powerdown modes on hardware that supports disabling hsync/vsync:
* blank_mode == 2: suspend vsync
* blank_mode == 3: suspend hsync
* blank_mode == 4: powerdown
*
* Returns negative errno on error, or zero on success.
*
*/
static int davincifb_blank(int blank_mode, struct fb_info *info)
{
return 0;
}
static int parse_win_params(char *wp,
int *xres, int *yres, int *xpos, int *ypos)
{
char *s;
if ((s = strsep(&wp, "x")) == NULL)
return -EINVAL;
*xres = simple_strtoul(s, NULL, 0);
if ((s = strsep(&wp, "@")) == NULL)
return -EINVAL;
*yres = simple_strtoul(s, NULL, 0);
if ((s = strsep(&wp, ",")) == NULL)
return -EINVAL;
*xpos = simple_strtoul(s, NULL, 0);
if ((s = strsep(&wp, ":")) == NULL)
return -EINVAL;
*ypos = simple_strtoul(s, NULL, 0);
return 0;
}
/*
* Pass boot-time options by adding the following string to the boot params:
* video=davincifb:[option[:option]]
* Valid options:
* output=[lcd|ntsc|pal]
* format=[composite|s-video|component|rgb]
* vid0=[off|MxN@X,Y]
* vid1=[off|MxN@X,Y]
* osd0=[off|MxN@X,Y]
* osd1=[off|MxN@X,Y]
* MxN specify the window resolution (displayed size)
* X,Y specify the window position
* M, N, X, Y are integers
* M, X should be multiples of 16
*/
#ifndef MODULE
int __init davincifb_setup(char *options)
{
char *this_opt;
u32 xres, yres, xpos, ypos;
int format_yres = 480;
pr_debug("davincifb: Options \"%s\"\n", options);
if (!options || !*options)
return 0;
while ((this_opt = strsep(&options, ":")) != NULL) {
if (!*this_opt)
continue;
if (!strncmp(this_opt, "output=", 7)) {
if (!strncmp(this_opt + 7, "lcd", 3)) {
dmparams.output = LCD;
dmparams.format = 0;
} else if (!strncmp(this_opt + 7, "ntsc", 4))
dmparams.output = NTSC;
else if (!strncmp(this_opt + 7, "pal", 3))
dmparams.output = PAL;
} else if (!strncmp(this_opt, "format=", 7)) {
if (dmparams.output == LCD)
continue;
if (!strncmp(this_opt + 7, "composite", 9))
dmparams.format = COMPOSITE;
else if (!strncmp(this_opt + 7, "s-video", 7))
dmparams.format = SVIDEO;
else if (!strncmp(this_opt + 7, "component", 9))
dmparams.format = COMPONENT;
else if (!strncmp(this_opt + 7, "rgb", 3))
dmparams.format = RGB;
} else if (!strncmp(this_opt, "vid0=", 5)) {
if (!strncmp(this_opt + 5, "off", 3))
dmparams.windows &= ~(1 << VID0);
else if (!parse_win_params(this_opt + 5,
&xres, &yres, &xpos,
&ypos)) {
dmparams.vid0_xres = xres;
dmparams.vid0_yres = yres;
dmparams.vid0_xpos = xpos;
dmparams.vid0_ypos = ypos;
}
} else if (!strncmp(this_opt, "vid1=", 5)) {
if (!strncmp(this_opt + 5, "off", 3))
dmparams.windows &= ~(1 << VID1);
else if (!parse_win_params(this_opt + 5,
&xres, &yres, &xpos,
&ypos)) {
dmparams.vid1_xres = xres;
dmparams.vid1_yres = yres;
dmparams.vid1_xpos = xpos;
dmparams.vid1_ypos = ypos;
}
} else if (!strncmp(this_opt, "osd0=", 5)) {
if (!strncmp(this_opt + 5, "off", 3))
dmparams.windows &= ~(1 << OSD0);
else if (!parse_win_params(this_opt + 5,
&xres, &yres, &xpos,
&ypos)) {
dmparams.osd0_xres = xres;
dmparams.osd0_yres = yres;
dmparams.osd0_xpos = xpos;
dmparams.osd0_ypos = ypos;
}
} else if (!strncmp(this_opt, "osd1=", 5)) {
if (!strncmp(this_opt + 5, "off", 3))
dmparams.windows &= ~(1 << OSD1);
else if (!parse_win_params(this_opt + 5,
&xres, &yres, &xpos,
&ypos)) {
dmparams.osd1_xres = xres;
dmparams.osd1_yres = yres;
dmparams.osd1_xpos = xpos;
dmparams.osd1_ypos = ypos;
}
}
}
printk(KERN_INFO "DaVinci: "
"Output on %s%s, Enabled windows: %s %s %s %s\n",
(dmparams.output == LCD) ? "LCD" :
(dmparams.output == NTSC) ? "NTSC" :
(dmparams.output == PAL) ? "PAL" : "unknown device!",
(dmparams.format == 0) ? "" :
(dmparams.format == COMPOSITE) ? " in COMPOSITE format" :
(dmparams.format == SVIDEO) ? " in SVIDEO format" :
(dmparams.format == COMPONENT) ? " in COMPONENT format" :
(dmparams.format == RGB) ? " in RGB format" : "",
(dmparams.windows & (1 << VID0)) ? "Video0" : "",
(dmparams.windows & (1 << VID1)) ? "Video1" : "",
(dmparams.windows & (1 << OSD0)) ? "OSD0" : "",
(dmparams.windows & (1 << OSD1)) ? "OSD1" : "");
if (dmparams.output == NTSC) {
format_yres = 480;
} else if (dmparams.output == PAL) {
format_yres = 576;
} else {
printk(KERN_INFO
"DaVinci:invalid format..defaulting width to 480\n");
}
dmparams.osd0_yres = osd0_default_var.yres = format_yres;
dmparams.osd1_yres = osd1_default_var.yres = format_yres;
dmparams.vid0_yres = vid0_default_var.yres = format_yres;
dmparams.vid1_yres = vid1_default_var.yres = format_yres;
osd0_default_var.yres_virtual = format_yres * DOUBLE_BUF;
osd1_default_var.yres_virtual = format_yres * DOUBLE_BUF;
vid0_default_var.yres_virtual = format_yres * TRIPLE_BUF;
vid1_default_var.yres_virtual = format_yres * TRIPLE_BUF;
if (dmparams.windows & (1 << VID0))
printk(KERN_INFO "Setting Video0 size %dx%d, "
"position (%d,%d)\n",
dmparams.vid0_xres, dmparams.vid0_yres,
dmparams.vid0_xpos, dmparams.vid0_ypos);
if (dmparams.windows & (1 << VID1))
printk(KERN_INFO "Setting Video1 size %dx%d, "
"position (%d,%d)\n",
dmparams.vid1_xres, dmparams.vid1_yres,
dmparams.vid1_xpos, dmparams.vid1_ypos);
if (dmparams.windows & (1 << OSD0))
printk(KERN_INFO "Setting OSD0 size %dx%d, "
"position (%d,%d)\n",
dmparams.osd0_xres, dmparams.osd0_yres,
dmparams.osd0_xpos, dmparams.osd0_ypos);
if (dmparams.windows & (1 << OSD1))
printk(KERN_INFO "Setting OSD1 size %dx%d, "
"position (%d,%d)\n",
dmparams.osd1_xres, dmparams.osd1_yres,
dmparams.osd1_xpos, dmparams.osd1_ypos);
return (0);
}
#endif
static int mem_release(struct dm_win_info *w)
{
if (!w->alloc_fb_mem) {
iounmap((void *)w->fb_base);
release_mem_region(w->fb_base_phys, w->fb_size);
} else
dma_free_coherent(NULL, w->fb_size, (void *)w->fb_base,
w->fb_base_phys);
kfree(w);
return (0);
}
static int mem_alloc(struct dm_win_info **win, dma_addr_t fb_base_phys,
unsigned long fb_size, char *fbname)
{
struct dm_win_info *w;
struct device *dev = dm->dev;
w = kmalloc(sizeof(struct dm_win_info), GFP_KERNEL);
if (!w) {
dev_err(dev, "%s: could not allocate memory\n", fbname);
return (-ENOMEM);
}
memset(w, 0, sizeof(struct dm_win_info));
w->fb_base_phys = fb_base_phys;
w->fb_size = fb_size;
/* A null base address indicates that the framebuffer memory should be
* dynamically allocated.
*/
if (!w->fb_base_phys)
w->alloc_fb_mem = 1;
if (!w->alloc_fb_mem) {
if (!request_mem_region(w->fb_base_phys, w->fb_size, fbname)) {
dev_err(dev, "%s: cannot reserve FB region\n", fbname);
goto free_par;
}
w->fb_base =
(unsigned long)ioremap(w->fb_base_phys, w->fb_size);
if (!w->fb_base) {
dev_err(dev, "%s: cannot map framebuffer\n", fbname);
goto release_fb;
}
} else {
/* allocate coherent memory for the framebuffer */
w->fb_base = (unsigned long)dma_alloc_coherent(dev,
w->fb_size,
&w->fb_base_phys,
GFP_KERNEL |
GFP_DMA);
if (!w->fb_base) {
dev_err(dev, "%s: cannot allocate framebuffer\n",
fbname);
goto free_par;
}
dev_dbg(dev, "Framebuffer allocated at 0x%x "
"mapped to 0x%x, size %dk\n",
(unsigned)w->fb_base_phys, (unsigned)w->fb_base,
(unsigned)w->fb_size / 1024);
}
*win = w;
return (0);
release_fb:
if (!w->alloc_fb_mem)
release_mem_region(w->fb_base_phys, w->fb_size);
free_par:
kfree(w);
return (-ENOMEM);
}
static struct fb_info *init_fb_info(struct dm_win_info *w,
struct fb_var_screeninfo *var, char *id)
{
struct fb_info *info = &(w->info);
struct dm_info *dm = w->dm;
/* initialize the fb_info structure */
info->flags = FBINFO_DEFAULT;
info->fbops = &davincifb_ops;
info->screen_base = (char *)(w->fb_base);
info->pseudo_palette = w->pseudo_palette;
info->par = w;
/* Initialize variable screeninfo.
* The variable screeninfo can be directly specified by the user
* via an ioctl.
*/
memcpy(&info->var, var, sizeof(info->var));
info->var.activate = FB_ACTIVATE_NOW;
/* Initialize fixed screeninfo.
* The fixed screeninfo cannot be directly specified by the user, but
* it may change to reflect changes to the var info.
*/
strlcpy(info->fix.id, id, sizeof(info->fix.id));
info->fix.smem_start = w->fb_base_phys;
info->fix.line_length =
(info->var.xres_virtual * info->var.bits_per_pixel) / 8;
info->fix.smem_len = w->fb_size;
info->fix.type = FB_TYPE_PACKED_PIXELS;
info->fix.visual = (info->var.bits_per_pixel <= 8) ?
FB_VISUAL_PSEUDOCOLOR : FB_VISUAL_TRUECOLOR;
info->fix.xpanstep = 0;
info->fix.ypanstep = 1;
info->fix.ywrapstep = 0;
info->fix.type_aux = 0;
info->fix.mmio_start = dm->mmio_base_phys;
info->fix.mmio_len = dm->mmio_size;
info->fix.accel = FB_ACCEL_NONE;
w->sdram_address = 0;
return info;
}
static void davincifb_ntsc_composite_config(int on)
{
if (on) {
/* Reset video encoder module */
dispc_reg_out(VENC_VMOD, 0);
/* Enable Composite output and start video encoder */
dispc_reg_out(VENC_VMOD, (VENC_VMOD_VIE | VENC_VMOD_VENC));
/* Set REC656 Mode */
dispc_reg_out(VENC_YCCCTL, 0x1);
/* Enable output mode and NTSC */
dispc_reg_out(VENC_VMOD, 0x1003);
/* Enable all DACs */
dispc_reg_out(VENC_DACTST, 0);
} else {
/* Reset video encoder module */
dispc_reg_out(VENC_VMOD, 0);
}
}
static void davincifb_ntsc_svideo_config(int on)
{
if (on) {
/* Reset video encoder module */
dispc_reg_out(VENC_VMOD, 0);
/* Enable Composite output and start video encoder */
dispc_reg_out(VENC_VMOD, (VENC_VMOD_VIE | VENC_VMOD_VENC));
/* Set REC656 Mode */
dispc_reg_out(VENC_YCCCTL, 0x1);
/* Enable output mode and NTSC */
dispc_reg_out(VENC_VMOD, 0x1003);
/* Enable S-Video Output; DAC B: S-Video Y, DAC C: S-Video C */
dispc_reg_out(VENC_DACSEL, 0x210);
/* Enable all DACs */
dispc_reg_out(VENC_DACTST, 0);
} else {
/* Reset video encoder module */
dispc_reg_out(VENC_VMOD, 0);
}
}
static void davincifb_ntsc_component_config(int on)
{
if (on) {
/* Reset video encoder module */
dispc_reg_out(VENC_VMOD, 0);
/* Enable Composite output and start video encoder */
dispc_reg_out(VENC_VMOD, (VENC_VMOD_VIE | VENC_VMOD_VENC));
/* Set REC656 Mode */
dispc_reg_out(VENC_YCCCTL, 0x1);
/* Enable output mode and NTSC */
dispc_reg_out(VENC_VMOD, 0x1003);
/* Enable Component output; DAC A: Y, DAC B: Pb, DAC C: Pr */
dispc_reg_out(VENC_DACSEL, 0x543);
/* Enable all DACs */
dispc_reg_out(VENC_DACTST, 0);
} else {
/* Reset video encoder module */
dispc_reg_out(VENC_VMOD, 0);
}
}
static void davincifb_pal_composite_config(int on)
{
if (on) {
/* Reset video encoder module */
dispc_reg_out(VENC_VMOD, 0);
/* Enable Composite output and start video encoder */
dispc_reg_out(VENC_VMOD, (VENC_VMOD_VIE | VENC_VMOD_VENC));
/* Set REC656 Mode */
dispc_reg_out(VENC_YCCCTL, 0x1);
/* Enable output mode and PAL */
dispc_reg_out(VENC_VMOD, 0x1043);
/* Enable all DACs */
dispc_reg_out(VENC_DACTST, 0);
} else {
/* Reset video encoder module */
dispc_reg_out(VENC_VMOD, 0);
}
}
static void davincifb_pal_svideo_config(int on)
{
if (on) {
/* Reset video encoder module */
dispc_reg_out(VENC_VMOD, 0);
/* Enable Composite output and start video encoder */
dispc_reg_out(VENC_VMOD, (VENC_VMOD_VIE | VENC_VMOD_VENC));
/* Set REC656 Mode */
dispc_reg_out(VENC_YCCCTL, 0x1);
/* Enable output mode and PAL */
dispc_reg_out(VENC_VMOD, 0x1043);
/* Enable S-Video Output; DAC B: S-Video Y, DAC C: S-Video C */
dispc_reg_out(VENC_DACSEL, 0x210);
/* Enable all DACs */
dispc_reg_out(VENC_DACTST, 0);
} else {
/* Reset video encoder module */
dispc_reg_out(VENC_VMOD, 0);
}
}
static void davincifb_pal_component_config(int on)
{
if (on) {
/* Reset video encoder module */
dispc_reg_out(VENC_VMOD, 0);
/* Enable Composite output and start video encoder */
dispc_reg_out(VENC_VMOD, (VENC_VMOD_VIE | VENC_VMOD_VENC));
/* Set REC656 Mode */
dispc_reg_out(VENC_YCCCTL, 0x1);
/* Enable output mode and PAL */
dispc_reg_out(VENC_VMOD, 0x1043);
/* Enable Component output; DAC A: Y, DAC B: Pb, DAC C: Pr */
dispc_reg_out(VENC_DACSEL, 0x543);
/* Enable all DACs */
dispc_reg_out(VENC_DACTST, 0);
} else {
/* Reset video encoder module */
dispc_reg_out(VENC_VMOD, 0);
}
}
static inline void fix_default_var(struct dm_win_info *w,
u32 xres, u32 yres, u32 xpos, u32 ypos,
int n_buf)
{
struct fb_var_screeninfo *v = &w->info.var;
v->xres = xres;
v->yres = yres;
v->xres_virtual = v->xres;
v->yres_virtual = v->yres * n_buf;
x_pos(w) = xpos;
y_pos(w) = ypos;
}
/*
* Cleanup
*/
static int davincifb_remove(struct platform_device *pdev)
{
free_irq(IRQ_VENCINT, &dm);
/* Cleanup all framebuffers */
if (dm->osd0) {
unregister_framebuffer(&dm->osd0->info);
mem_release(dm->osd0);
}
if (dm->osd1) {
unregister_framebuffer(&dm->osd1->info);
mem_release(dm->osd1);
}
if (dm->vid0) {
unregister_framebuffer(&dm->vid0->info);
mem_release(dm->vid0);
}
if (dm->vid1) {
unregister_framebuffer(&dm->vid1->info);
mem_release(dm->vid1);
}
/* Turn OFF the output device */
dm->output_device_config(0);
if (dm->mmio_base)
iounmap((void *)dm->mmio_base);
release_mem_region(dm->mmio_base_phys, dm->mmio_size);
return 0;
}
/*
* Initialization
*/
static int davincifb_probe(struct platform_device *pdev)
{
struct fb_info *info;
if (dmparams.windows == 0)
return 0; /* user disabled all windows through bootargs */
dm->dev = &pdev->dev;
dm->mmio_base_phys = OSD_REG_BASE;
dm->mmio_size = OSD_REG_SIZE;
if (!request_mem_region
(dm->mmio_base_phys, dm->mmio_size, MODULE_NAME)) {
dev_err(dm->dev, ": cannot reserve MMIO region\n");
return (-ENODEV);
}
/* map the regions */
dm->mmio_base =
(unsigned long)ioremap(dm->mmio_base_phys, dm->mmio_size);
if (!dm->mmio_base) {
dev_err(dm->dev, ": cannot map MMIO\n");
goto release_mmio;
}
/* initialize the vsync wait queue */
init_waitqueue_head(&dm->vsync_wait);
dm->timeout = HZ / 5;
if ((dmparams.output == NTSC) && (dmparams.format == COMPOSITE))
dm->output_device_config = davincifb_ntsc_composite_config;
else if ((dmparams.output == NTSC) && (dmparams.format == SVIDEO))
dm->output_device_config = davincifb_ntsc_svideo_config;
else if ((dmparams.output == NTSC) && (dmparams.format == COMPONENT))
dm->output_device_config = davincifb_ntsc_component_config;
else if ((dmparams.output == PAL) && (dmparams.format == COMPOSITE))
dm->output_device_config = davincifb_pal_composite_config;
else if ((dmparams.output == PAL) && (dmparams.format == SVIDEO))
dm->output_device_config = davincifb_pal_svideo_config;
else if ((dmparams.output == PAL) && (dmparams.format == COMPONENT))
dm->output_device_config = davincifb_pal_component_config;
/* Add support for other displays here */
else {
printk(KERN_WARNING "Unsupported output device!\n");
dm->output_device_config = NULL;
}
printk("Setting Up Clocks for DM420 OSD\n");
/* Initialize the VPSS Clock Control register */
dispc_reg_out(VPSS_CLKCTL, 0x18);
/* Set Base Pixel X and Base Pixel Y */
dispc_reg_out(OSD_BASEPX, BASEX);
dispc_reg_out(OSD_BASEPY, BASEY);
/* Reset OSD registers to default. */
dispc_reg_out(OSD_MODE, 0);
dispc_reg_out(OSD_OSDWIN0MD, 0);
/* Set blue background color */
set_bg_color(0, 162);
/* Field Inversion Workaround */
dispc_reg_out(OSD_MODE, 0x200);
/* Setup VID0 framebuffer */
if (!(dmparams.windows & (1 << VID0))) {
printk(KERN_WARNING "No video/osd windows will be enabled "
"because Video0 is disabled\n");
return 0; /* background will still be shown */
}
/* Setup VID0 framebuffer */
if (!mem_alloc(&dm->vid0, VID0_FB_PHY, VID0_FB_SIZE, VID0_FBNAME)) {
dm->vid0->dm = dm;
fix_default_var(dm->vid0,
dmparams.vid0_xres, dmparams.vid0_yres,
dmparams.vid0_xpos, dmparams.vid0_ypos,
TRIPLE_BUF);
info = init_fb_info(dm->vid0, &vid0_default_var, VID0_FBNAME);
if (davincifb_check_var(&info->var, info)) {
dev_err(dm->dev, ": invalid default video mode\n");
goto exit;
}
memset((void *)dm->vid0->fb_base, 0x88, dm->vid0->fb_size);
} else
goto exit;
/* Setup OSD0 framebuffer */
if ((dmparams.windows & (1 << OSD0)) &&
(!mem_alloc(&dm->osd0, OSD0_FB_PHY, OSD0_FB_SIZE, OSD0_FBNAME))) {
dm->osd0->dm = dm;
fix_default_var(dm->osd0,
dmparams.osd0_xres, dmparams.osd0_yres,
dmparams.osd0_xpos, dmparams.osd0_ypos,
DOUBLE_BUF);
info = init_fb_info(dm->osd0, &osd0_default_var, OSD0_FBNAME);
if (davincifb_check_var(&info->var, info)) {
dev_err(dm->dev, ": invalid default video mode\n");
mem_release(dm->osd0);
} else
memset((void *)dm->osd0->fb_base, 0, dm->osd0->fb_size);
}
/* Setup OSD1 framebuffer */
if ((dmparams.windows & (1 << OSD1)) &&
(!mem_alloc(&dm->osd1, OSD1_FB_PHY, OSD1_FB_SIZE, OSD1_FBNAME))) {
dm->osd1->dm = dm;
fix_default_var(dm->osd1,
dmparams.osd1_xres, dmparams.osd1_yres,
dmparams.osd1_xpos, dmparams.osd1_ypos,
DOUBLE_BUF);
info = init_fb_info(dm->osd1, &osd1_default_var, OSD1_FBNAME);
if (davincifb_check_var(&info->var, info)) {
dev_err(dm->dev, ": invalid default video mode\n");
mem_release(dm->osd1);
} else
/* Set blend factor to show OSD windows */
memset((void *)dm->osd1->fb_base, 0xff,
dm->osd1->fb_size);
}
/* Setup VID1 framebuffer */
if ((dmparams.windows & (1 << VID1)) &&
(!mem_alloc(&dm->vid1, VID1_FB_PHY, VID1_FB_SIZE, VID1_FBNAME))) {
dm->vid1->dm = dm;
fix_default_var(dm->vid1,
dmparams.vid1_xres, dmparams.vid1_yres,
dmparams.vid1_xpos, dmparams.vid1_ypos,
TRIPLE_BUF);
info = init_fb_info(dm->vid1, &vid1_default_var, VID1_FBNAME);
if (davincifb_check_var(&info->var, info)) {
dev_err(dm->dev,
VID1_FBNAME ": invalid default video mode\n");
mem_release(dm->vid1);
} else
memset((void *)dm->vid1->fb_base, 0x88,
dm->vid1->fb_size);
}
/* Register OSD0 framebuffer */
if (dm->osd0) {
info = &dm->osd0->info;
if (register_framebuffer(info) < 0) {
dev_err(dm->dev, OSD0_FBNAME
"Unable to register OSD0 framebuffer\n");
mem_release(dm->osd0);
} else {
printk(KERN_INFO "fb%d: %s frame buffer device\n",
info->node, info->fix.id);
davincifb_set_par(info);
}
}
/* Register VID0 framebuffer */
info = &dm->vid0->info;
if (register_framebuffer(info) < 0) {
dev_err(dm->dev,
VID0_FBNAME "Unable to register VID0 framebuffer\n");
goto exit;
} else {
printk(KERN_INFO "fb%d: %s frame buffer device\n",
info->node, info->fix.id);
davincifb_set_par(info);
}
/* Register OSD1 framebuffer */
if (dm->osd1) {
info = &dm->osd1->info;
if (register_framebuffer(info) < 0) {
dev_err(dm->dev, OSD1_FBNAME
"Unable to register OSD1 framebuffer\n");
mem_release(dm->osd1);
} else {
printk(KERN_INFO "fb%d: %s frame buffer device\n",
info->node, info->fix.id);
davincifb_set_par(info);
}
}
/* Register VID1 framebuffer */
if (dm->vid1) {
info = &dm->vid1->info;
if (register_framebuffer(info) < 0) {
mem_release(dm->vid1);
dev_err(dm->dev, VID1_FBNAME
"Unable to register VID1 framebuffer\n");
mem_release(dm->vid1);
} else {
printk(KERN_INFO "fb%d: %s frame buffer device\n",
info->node, info->fix.id);
davincifb_set_par(info);
}
}
/* install our interrupt service routine */
if (request_irq(IRQ_VENCINT, davincifb_isr, IRQF_SHARED, MODULE_NAME,
dm)) {
dev_err(dm->dev, MODULE_NAME
": could not install interrupt service routine\n");
goto exit;
}
/* Turn ON the output device */
dm->output_device_config(1);
return (0);
exit:
davincifb_remove(pdev);
iounmap((void *)dm->mmio_base);
release_mmio:
release_mem_region(dm->mmio_base_phys, dm->mmio_size);
return (-ENODEV);
}
/* ------------------------------------------------------------------------- */
/*
* Frame buffer operations
*/
static struct fb_ops davincifb_ops = {
.owner = THIS_MODULE,
.fb_check_var = davincifb_check_var,
.fb_set_par = davincifb_set_par,
.fb_setcolreg = davincifb_setcolreg,
.fb_blank = davincifb_blank,
.fb_pan_display = davincifb_pan_display,
.fb_fillrect = cfb_fillrect,
.fb_copyarea = cfb_copyarea,
.fb_imageblit = cfb_imageblit,
.fb_rotate = NULL,
.fb_sync = NULL,
.fb_ioctl = davincifb_ioctl,
};
static struct platform_driver davincifb_driver = {
.probe = davincifb_probe,
.remove = davincifb_remove,
.driver = {
.name = MODULE_NAME,
.owner = THIS_MODULE,
},
};
/* Register both the driver and the device */
int __init davincifb_init(void)
{
#ifndef MODULE
/* boot-line options */
/* handle options for "dm64xxfb" for backwards compatability */
char *option;
char *names[] = { "davincifb", "dm64xxfb" };
int i, num_names = 2, done = 0;
for (i = 0; i < num_names && !done; i++) {
if (fb_get_options(names[i], &option)) {
printk(MODULE_NAME
": Disabled on command-line.\n");
return -ENODEV;
} else if (option) {
davincifb_setup(option);
done = 1;
}
}
#endif
/* Register the driver with LDM */
if (platform_driver_register(&davincifb_driver)) {
pr_debug("failed to register omapfb driver\n");
return -ENODEV;
}
return 0;
}
static void __exit davincifb_cleanup(void)
{
platform_driver_unregister(&davincifb_driver);
}
module_init(davincifb_init);
module_exit(davincifb_cleanup);
MODULE_DESCRIPTION("Framebuffer driver for TI DaVinci");
MODULE_AUTHOR("Texas Instruments");
MODULE_LICENSE("GPL");
/*
* include/video/davincifb.h
*
* Framebuffer driver for Texas Instruments DM644x display controller.
*
* Copyright (C) 2006 Texas Instruments, Inc.
* Rishi Bhattacharya <support@ti.com>
*
* This file is licensed under the terms of the GNU General Public License
* version 2. This program is licensed "as is" without any warranty of any
* kind, whether express or implied.
*/
#ifndef _DAVINCIFB_H_
#define _DAVINCIFB_H_
#include <mach/io.h>
/* Base registers */
#define VPBE_REG_BASE 0x01c72780
#define VENC_REG_BASE 0x01c72400
#define OSD_REG_BASE 0x01c72600
#define OSD_REG_SIZE 0x00000180
/* VPBE Global Registers */
#define VPBE_PID (VPBE_BASE + 0x0)
#define VPBE_PCR (VPBE_BASE + 0x4)
/* VPSS Clock Control Register */
#define VPSS_CLKCTL 0x01c40044
/* VPBE Video Encoder / Digital LCD Subsystem Registers (VENC) */
#define VENC_VMOD (VENC_REG_BASE + 0x00)
#define VENC_VIDCTL (VENC_REG_BASE + 0x04)
#define VENC_VDPRO (VENC_REG_BASE + 0x08)
#define VENC_SYNCCTL (VENC_REG_BASE + 0x0C)
#define VENC_HSPLS (VENC_REG_BASE + 0x10)
#define VENC_VSPLS (VENC_REG_BASE + 0x14)
#define VENC_HINT (VENC_REG_BASE + 0x18)
#define VENC_HSTART (VENC_REG_BASE + 0x1C)
#define VENC_HVALID (VENC_REG_BASE + 0x20)
#define VENC_VINT (VENC_REG_BASE + 0x24)
#define VENC_VSTART (VENC_REG_BASE + 0x28)
#define VENC_VVALID (VENC_REG_BASE + 0x2C)
#define VENC_HSDLY (VENC_REG_BASE + 0x30)
#define VENC_VSDLY (VENC_REG_BASE + 0x34)
#define VENC_YCCCTL (VENC_REG_BASE + 0x38)
#define VENC_RGBCTL (VENC_REG_BASE + 0x3C)
#define VENC_RGBCLP (VENC_REG_BASE + 0x40)
#define VENC_LINECTL (VENC_REG_BASE + 0x44)
#define VENC_CULLLINE (VENC_REG_BASE + 0x48)
#define VENC_LCDOUT (VENC_REG_BASE + 0x4C)
#define VENC_BRTS (VENC_REG_BASE + 0x50)
#define VENC_BRTW (VENC_REG_BASE + 0x54)
#define VENC_ACCTL (VENC_REG_BASE + 0x58)
#define VENC_PWMP (VENC_REG_BASE + 0x5C)
#define VENC_PWMW (VENC_REG_BASE + 0x60)
#define VENC_DCLKCTL (VENC_REG_BASE + 0x64)
#define VENC_DCLKPTN0 (VENC_REG_BASE + 0x68)
#define VENC_DCLKPTN1 (VENC_REG_BASE + 0x6C)
#define VENC_DCLKPTN2 (VENC_REG_BASE + 0x70)
#define VENC_DCLKPTN3 (VENC_REG_BASE + 0x74)
#define VENC_DCLKPTN0A (VENC_REG_BASE + 0x78)
#define VENC_DCLKPTN1A (VENC_REG_BASE + 0x7C)
#define VENC_DCLKPTN2A (VENC_REG_BASE + 0x80)
#define VENC_DCLKPTN3A (VENC_REG_BASE + 0x84)
#define VENC_DCLKHS (VENC_REG_BASE + 0x88)
#define VENC_DCLKHSA (VENC_REG_BASE + 0x8C)
#define VENC_DCLKHR (VENC_REG_BASE + 0x90)
#define VENC_DCLKVS (VENC_REG_BASE + 0x94)
#define VENC_DCLKVR (VENC_REG_BASE + 0x98)
#define VENC_CAPCTL (VENC_REG_BASE + 0x9C)
#define VENC_CAPDO (VENC_REG_BASE + 0xA0)
#define VENC_CAPDE (VENC_REG_BASE + 0xA4)
#define VENC_ATR0 (VENC_REG_BASE + 0xA8)
#define VENC_ATR1 (VENC_REG_BASE + 0xAC)
#define VENC_ATR2 (VENC_REG_BASE + 0xB0)
#define VENC_EPSON_LCDCTL (VENC_REG_BASE + 0xB4)
#define VENC_CASIO_LCDCTL (VENC_REG_BASE + 0xB4)
#define VENC_UDISP_LCDCT (VENC_REG_BASE + 0xB4)
#define VENC_STN_LCDCT (VENC_REG_BASE + 0xB4)
#define VENC_VSTAT (VENC_REG_BASE + 0xB8)
#define VENC_RAMADR (VENC_REG_BASE + 0xBC)
#define VENC_RAMPORT (VENC_REG_BASE + 0xC0)
#define VENC_DACTST (VENC_REG_BASE + 0xC4)
#define VENC_YCOLVL (VENC_REG_BASE + 0xC8)
#define VENC_SCPROG (VENC_REG_BASE + 0xCC)
#define VENC_CVBS (VENC_REG_BASE + 0xDC)
#define VENC_CMPNT (VENC_REG_BASE + 0xE0)
#define VENC_ETMG0 (VENC_REG_BASE + 0xE4)
#define VENC_ETMG1 (VENC_REG_BASE + 0xE8)
#define VENC_ETMG2 (VENC_REG_BASE + 0xEC)
#define VENC_ETMG3 (VENC_REG_BASE + 0xF0)
#define VENC_DACSEL (VENC_REG_BASE + 0xF4)
#define VENC_ARGBX0 (VENC_REG_BASE + 0x100)
#define VENC_ARGBX1 (VENC_REG_BASE + 0x104)
#define VENC_ARGBX2 (VENC_REG_BASE + 0x108)
#define VENC_ARGBX3 (VENC_REG_BASE + 0x10C)
#define VENC_ARGBX4 (VENC_REG_BASE + 0x110)
#define VENC_DRGBX0 (VENC_REG_BASE + 0x114)
#define VENC_DRGBX1 (VENC_REG_BASE + 0x118)
#define VENC_DRGBX2 (VENC_REG_BASE + 0x11C)
#define VENC_DRGBX3 (VENC_REG_BASE + 0x120)
#define VENC_DRGBX4 (VENC_REG_BASE + 0x124)
#define VENC_VSTARTA (VENC_REG_BASE + 0x128)
#define VENC_OSDCLK0 (VENC_REG_BASE + 0x12C)
#define VENC_OSDCLK1 (VENC_REG_BASE + 0x130)
#define VENC_HVLDCL0 (VENC_REG_BASE + 0x134)
#define VENC_HVLDCL1 (VENC_REG_BASE + 0x138)
#define VENC_OSDHAD (VENC_REG_BASE + 0x13C)
#define VID0 0
#define VID1 1
#define OSD0 3
#define OSD1 4
/* VPBE On-Screen Display Subsystem Registers (OSD) */
#define OSD_MODE (OSD_REG_BASE + 0x00)
#define OSD_VIDWINMD (OSD_REG_BASE + 0x04)
#define OSD_OSDWIN0MD (OSD_REG_BASE + 0x08)
#define OSD_OSDWIN1MD (OSD_REG_BASE + 0x0C)
#define OSD_OSDATRMD (OSD_REG_BASE + 0x0C)
#define OSD_RECTCUR (OSD_REG_BASE + 0x10)
#define OSD_WINOFST(i) (OSD_REG_BASE + 0x18 + (i)*0x4)
#define OSD_VIDWIN0OFST (OSD_REG_BASE + 0x18)
#define OSD_VIDWIN1OFST (OSD_REG_BASE + 0x1C)
#define OSD_OSDWIN0OFST (OSD_REG_BASE + 0x20)
#define OSD_OSDWIN1OFST (OSD_REG_BASE + 0x24)
#define OSD_WINADR(i) (OSD_REG_BASE + 0x2C + (i)*0x4)
#define OSD_VIDWIN0ADR (OSD_REG_BASE + 0x2C)
#define OSD_VIDWIN1ADR (OSD_REG_BASE + 0x30)
#define OSD_OSDWIN0ADR (OSD_REG_BASE + 0x38)
#define OSD_OSDWIN1ADR (OSD_REG_BASE + 0x3C)
#define OSD_BASEPX (OSD_REG_BASE + 0x40)
#define OSD_BASEPY (OSD_REG_BASE + 0x44)
#define OSD_WINXP(i) (OSD_REG_BASE + 0x48 + (i)*0x10)
#define OSD_WINYP(i) (OSD_REG_BASE + 0x4C + (i)*0x10)
#define OSD_WINXL(i) (OSD_REG_BASE + 0x50 + (i)*0x10)
#define OSD_WINYL(i) (OSD_REG_BASE + 0x54 + (i)*0x10)
#define OSD_VIDWIN0XP (OSD_REG_BASE + 0x48)
#define OSD_VIDWIN0YP (OSD_REG_BASE + 0x4C)
#define OSD_VIDWIN0XL (OSD_REG_BASE + 0x50)
#define OSD_VIDWIN0YL (OSD_REG_BASE + 0x54)
#define OSD_VIDWIN1XP (OSD_REG_BASE + 0x58)
#define OSD_VIDWIN1YP (OSD_REG_BASE + 0x5C)
#define OSD_VIDWIN1XL (OSD_REG_BASE + 0x60)
#define OSD_VIDWIN1YL (OSD_REG_BASE + 0x64)
#define OSD_OSDWIN0XP (OSD_REG_BASE + 0x68)
#define OSD_OSDWIN0YP (OSD_REG_BASE + 0x6C)
#define OSD_OSDWIN0XL (OSD_REG_BASE + 0x70)
#define OSD_OSDWIN0YL (OSD_REG_BASE + 0x74)
#define OSD_OSDWIN1XP (OSD_REG_BASE + 0x78)
#define OSD_OSDWIN1YP (OSD_REG_BASE + 0x7C)
#define OSD_OSDWIN1XL (OSD_REG_BASE + 0x80)
#define OSD_OSDWIN1YL (OSD_REG_BASE + 0x84)
#define OSD_CURXP (OSD_REG_BASE + 0x88)
#define OSD_CURYP (OSD_REG_BASE + 0x8C)
#define OSD_CURXL (OSD_REG_BASE + 0x90)
#define OSD_CURYL (OSD_REG_BASE + 0x94)
#define OSD_W0BMP01 (OSD_REG_BASE + 0xA0)
#define OSD_W0BMP23 (OSD_REG_BASE + 0xA4)
#define OSD_W0BMP45 (OSD_REG_BASE + 0xA8)
#define OSD_W0BMP67 (OSD_REG_BASE + 0xAC)
#define OSD_W0BMP89 (OSD_REG_BASE + 0xB0)
#define OSD_W0BMPAB (OSD_REG_BASE + 0xB4)
#define OSD_W0BMPCD (OSD_REG_BASE + 0xB8)
#define OSD_W0BMPEF (OSD_REG_BASE + 0xBC)
#define OSD_W1BMP0 (OSD_REG_BASE + 0xC0)
#define OSD_W1BMP2 (OSD_REG_BASE + 0xC4)
#define OSD_W1BMP4 (OSD_REG_BASE + 0xC8)
#define OSD_W1BMP6 (OSD_REG_BASE + 0xCC)
#define OSD_W1BMP8 (OSD_REG_BASE + 0xD0)
#define OSD_W1BMPA (OSD_REG_BASE + 0xD4)
#define OSD_W1BMPC (OSD_REG_BASE + 0xD8)
#define OSD_W1BMPE (OSD_REG_BASE + 0xDC)
#define OSD_TI_TES (OSD_REG_BASE + 0xE0)
#define OSD_MISCCT (OSD_REG_BASE + 0xE8)
#define OSD_CLUTRAMYC (OSD_REG_BASE + 0xEC)
#define OSD_CLUTRAMC (OSD_REG_BASE + 0xF0)
#define OSD_TRANSPVA (OSD_REG_BASE + 0xF0)
#define OSD_PPVWIN0AD (OSD_REG_BASE + 0xFC)
/* bit definitions */
#define VPBE_PCR_VENC_DIV (1 << 1)
#define VPBE_PCR_CLK_OFF (1 << 0)
#define VENC_VMOD_VDMD_SHIFT 12
#define VENC_VMOD_VDMD_YCBCR16 0
#define VENC_VMOD_VDMD_YCBCR8 1
#define VENC_VMOD_VDMD_RGB666 2
#define VENC_VMOD_VDMD_RGB8 3
#define VENC_VMOD_VDMD_EPSON 4
#define VENC_VMOD_VDMD_CASIO 5
#define VENC_VMOD_VDMD_UDISPQVGA 6
#define VENC_VMOD_VDMD_STNLCD 7
#define VENC_VMOD_VDMD (7 << 12)
#define VENC_VMOD_ITLCL (1 << 11)
#define VENC_VMOD_ITLC (1 << 10)
#define VENC_VMOD_NSIT (1 << 9)
#define VENC_VMOD_HDMD (1 << 8)
#define VENC_VMOD_TVTYP (3 << 6)
#define VENC_VMOD_SLAVE (1 << 5)
#define VENC_VMOD_VMD (1 << 4)
#define VENC_VMOD_BLNK (1 << 3)
#define VENC_VMOD_VIE (1 << 1)
#define VENC_VMOD_VENC (1 << 0)
/* other VENC registers' bit positions not defined yet */
#define OSD_MODE_CS (1 << 15)
#define OSD_MODE_OVRSZ (1 << 14)
#define OSD_MODE_OHRSZ (1 << 13)
#define OSD_MODE_EF (1 << 12)
#define OSD_MODE_VVRSZ (1 << 11)
#define OSD_MODE_VHRSZ (1 << 10)
#define OSD_MODE_FSINV (1 << 9)
#define OSD_MODE_BCLUT (1 << 8)
#define OSD_MODE_CABG (0xff << 0)
#define OSD_MODE_CABG_SHIFT 0
#define OSD_VIDWINMD_VFINV (1 << 15)
#define OSD_VIDWINMD_V1EFC (1 << 14)
#define OSD_VIDWINMD_VHZ1 (3 << 12)
#define OSD_VIDWINMD_VHZ1_SHIFT 12
#define OSD_VIDWINMD_VVZ1 (3 << 10)
#define OSD_VIDWINMD_VVZ1_SHIFT 10
#define OSD_VIDWINMD_VFF1 (1 << 9)
#define OSD_VIDWINMD_ACT1 (1 << 8)
#define OSD_VIDWINMD_V0EFC (1 << 6)
#define OSD_VIDWINMD_VHZ0 (3 << 4)
#define OSD_VIDWINMD_VHZ0_SHIFT 4
#define OSD_VIDWINMD_VVZ0 (3 << 2)
#define OSD_VIDWINMD_VVZ0_SHIFT 2
#define OSD_VIDWINMD_VFF0 (1 << 1)
#define OSD_VIDWINMD_ACT0 (1 << 0)
#define OSD_OSDWIN0MD_ATN0E (1 << 14)
#define OSD_OSDWIN0MD_RGB0E (1 << 13)
#define OSD_OSDWIN0MD_CLUTS0 (1 << 12)
#define OSD_OSDWIN0MD_OHZ0 (3 << 10)
#define OSD_OSDWIN0MD_OHZ0_SHIFT 10
#define OSD_OSDWIN0MD_OVZ0 (3 << 8)
#define OSD_OSDWIN0MD_OVZ0_SHIFT 8
#define OSD_OSDWIN0MD_BMW0 (3 << 6)
#define OSD_OSDWIN0MD_BMW0_SHIFT 6
#define OSD_OSDWIN0MD_BLND0 (3 << 3)
#define OSD_OSDWIN0MD_BLND0_SHIFT 3
#define OSD_OSDWIN0MD_TE0 (1 << 2)
#define OSD_OSDWIN0MD_OFF0 (1 << 1)
#define OSD_OSDWIN0MD_OACT0 (1 << 0)
#define OSD_OSDWIN1MD_OASW (1 << 15)
#define OSD_OSDWIN1MD_ATN1E (1 << 14)
#define OSD_OSDWIN1MD_RGB1E (1 << 13)
#define OSD_OSDWIN1MD_CLUTS1 (1 << 12)
#define OSD_OSDWIN1MD_OHZ1 (3 << 10)
#define OSD_OSDWIN1MD_OHZ1_SHIFT 10
#define OSD_OSDWIN1MD_OVZ1 (3 << 8)
#define OSD_OSDWIN1MD_OVZ1_SHIFT 8
#define OSD_OSDWIN1MD_BMW1 (3 << 6)
#define OSD_OSDWIN1MD_BMW1_SHIFT 6
#define OSD_OSDWIN1MD_BLND1 (3 << 3)
#define OSD_OSDWIN1MD_BLND1_SHIFT 3
#define OSD_OSDWIN1MD_TE1 (1 << 2)
#define OSD_OSDWIN1MD_OFF1 (1 << 1)
#define OSD_OSDWIN1MD_OACT1 (1 << 0)
#define OSD_OSDATRMD_OASW (1 << 15)
#define OSD_OSDATRMD_OHZA (3 << 10)
#define OSD_OSDATRMD_OHZA_SHIFT 10
#define OSD_OSDATRMD_OVZA (3 << 8)
#define OSD_OSDATRMD_OVZA_SHIFT 8
#define OSD_OSDATRMD_BLNKINT (3 << 6)
#define OSD_OSDATRMD_BLNKINT_SHIFT 6
#define OSD_OSDATRMD_OFFA (1 << 1)
#define OSD_OSDATRMD_BLNK (1 << 0)
#define OSD_RECTCUR_RCAD (0xff << 8)
#define OSD_RECTCUR_RCAD_SHIFT 8
#define OSD_RECTCUR_CLUTSR (1 << 7)
#define OSD_RECTCUR_RCHW (3 << 4)
#define OSD_RECTCUR_RCHW_SHIFT 4
#define OSD_RECTCUR_RCVW (3 << 1)
#define OSD_RECTCUR_RCVW_SHIFT 1
#define OSD_RECTCUR_RCACT (1 << 0)
#define OSD_VIDWIN0OFST_V0LO (0x1ff << 0)
#define OSD_VIDWIN0OFST_V0LO_SHIFT 0
#define OSD_VIDWIN1OFST_V1LO (0x1ff << 0)
#define OSD_VIDWIN1OFST_V1LO_SHIFT 0
#define OSD_OSDWIN0OFST_O0LO (0x1ff << 0)
#define OSD_OSDWIN0OFST_O0LO_SHIFT 0
#define OSD_OSDWIN1OFST_O1LO (0x1ff << 0)
#define OSD_OSDWIN1OFST_O1LO_SHIFT 0
#define OSD_BASEPX_BPX (0x3ff << 0)
#define OSD_BASEPX_BPX_SHIFT 0
#define OSD_BASEPY_BPY (0x1ff << 0)
#define OSD_BASEPY_BPY_SHIFT 0
#define OSD_VIDWIN0XP_V0X (0x3ff << 0)
#define OSD_VIDWIN0XP_V0X_SHIFT 0
#define OSD_VIDWIN0YP_V0Y (0x1ff << 0)
#define OSD_VIDWIN0YP_V0Y_SHIFT 0
#define OSD_VIDWIN0XL_V0W (0xfff << 0)
#define OSD_VIDWIN0XL_V0W_SHIFT 0
#define OSD_VIDWIN0YL_V0H (0x7ff << 0)
#define OSD_VIDWIN0YL_V0H_SHIFT 0
#define OSD_VIDWIN1XP_V1X (0x3ff << 0)
#define OSD_VIDWIN1XP_V1X_SHIFT 0
#define OSD_VIDWIN1YP_V1Y (0x1ff << 0)
#define OSD_VIDWIN1YP_V1Y_SHIFT 0
#define OSD_VIDWIN1XL_V1W (0xfff << 0)
#define OSD_VIDWIN1XL_V1W_SHIFT 0
#define OSD_VIDWIN1YL_V1H (0x7ff << 0)
#define OSD_VIDWIN1YL_V1H_SHIFT 0
#define OSD_OSDWIN0XP_W0X (0x3ff << 0)
#define OSD_OSDWIN0XP_W0X_SHIFT 0
#define OSD_OSDWIN0YP_W0Y (0x1ff << 0)
#define OSD_OSDWIN0YP_W0Y_SHIFT 0
#define OSD_OSDWIN0XL_W0W (0xfff << 0)
#define OSD_OSDWIN0XL_W0W_SHIFT 0
#define OSD_OSDWIN0YL_W0H (0x7ff << 0)
#define OSD_OSDWIN0YL_W0H_SHIFT 0
#define OSD_OSDWIN1XP_W1X (0x3ff << 0)
#define OSD_OSDWIN1XP_W1X_SHIFT 0
#define OSD_OSDWIN1YP_W1Y (0x1ff << 0)
#define OSD_OSDWIN1YP_W1Y_SHIFT 0
#define OSD_OSDWIN1XL_W1W (0xfff << 0)
#define OSD_OSDWIN1XL_W1W_SHIFT 0
#define OSD_OSDWIN1YL_W1H (0x7ff << 0)
#define OSD_OSDWIN1YL_W1H_SHIFT 0
#define OSD_CURXP_RCSX (0x3ff << 0)
#define OSD_CURXP_RCSX_SHIFT 0
#define OSD_CURYP_RCSY (0x1ff << 0)
#define OSD_CURYP_RCSY_SHIFT 0
#define OSD_CURYL_RCSH (0x7ff << 0)
#define OSD_CURYL_RCSH_SHIFT 0
#define OSD_W0BMP01_PAL01 (0xff << 8)
#define OSD_W0BMP01_PAL01_SHIFT 8
#define OSD_W0BMP01_PAL00 (0xff << 0)
#define OSD_W0BMP01_PAL00_SHIFT 0
#define OSD_W0BMP23_PAL03 (0xff << 8)
#define OSD_W0BMP23_PAL03_SHIFT 8
#define OSD_W0BMP23_PAL02 (0xff << 0)
#define OSD_W0BMP23_PAL02_SHIFT 0
#define OSD_W0BMP45_PAL05 (0xff << 8)
#define OSD_W0BMP45_PAL05_SHIFT 8
#define OSD_W0BMP45_PAL04 (0xff << 0)
#define OSD_W0BMP45_PAL04_SHIFT 0
#define OSD_W0BMP67_PAL07 (0xff << 8)
#define OSD_W0BMP67_PAL07_SHIFT 8
#define OSD_W0BMP67_PAL06 (0xff << 0)
#define OSD_W0BMP67_PAL06_SHIFT 0
#define OSD_W0BMP89_PAL09 (0xff << 8)
#define OSD_W0BMP89_PAL09_SHIFT 8
#define OSD_W0BMP89_PAL08 (0xff << 0)
#define OSD_W0BMP89_PAL08_SHIFT 0
#define OSD_W0BMPAB_PAL11 (0xff << 8)
#define OSD_W0BMPAB_PAL11_SHIFT 8
#define OSD_W0BMPAB_PAL10 (0xff << 0)
#define OSD_W0BMPAB_PAL10_SHIFT 0
#define OSD_W0BMPCD_PAL13 (0xff << 8)
#define OSD_W0BMPCD_PAL13_SHIFT 8
#define OSD_W0BMPCD_PAL12 (0xff << 0)
#define OSD_W0BMPCD_PAL12_SHIFT 0
#define OSD_W0BMPEF_PAL15 (0xff << 8)
#define OSD_W0BMPEF_PAL15_SHIFT 8
#define OSD_W0BMPEF_PAL14 (0xff << 0)
#define OSD_W0BMPEF_PAL14_SHIFT 0
#define OSD_W1BMP0_PAL01 (0xff << 8)
#define OSD_W1BMP0_PAL01_SHIFT 8
#define OSD_W1BMP0_PAL00 (0xff << 0)
#define OSD_W1BMP0_PAL00_SHIFT 0
#define OSD_W1BMP2_PAL03 (0xff << 8)
#define OSD_W1BMP2_PAL03_SHIFT 8
#define OSD_W1BMP2_PAL02 (0xff << 0)
#define OSD_W1BMP2_PAL02_SHIFT 0
#define OSD_W1BMP4_PAL05 (0xff << 8)
#define OSD_W1BMP4_PAL05_SHIFT 8
#define OSD_W1BMP4_PAL04 (0xff << 0)
#define OSD_W1BMP4_PAL04_SHIFT 0
#define OSD_W1BMP6_PAL07 (0xff << 8)
#define OSD_W1BMP6_PAL07_SHIFT 8
#define OSD_W1BMP6_PAL06 (0xff << 0)
#define OSD_W1BMP6_PAL06_SHIFT 0
#define OSD_W1BMP8_PAL09 (0xff << 8)
#define OSD_W1BMP8_PAL09_SHIFT 8
#define OSD_W1BMP8_PAL08 (0xff << 0)
#define OSD_W1BMP8_PAL08_SHIFT 0
#define OSD_W1BMPA_PAL11 (0xff << 8)
#define OSD_W1BMPA_PAL11_SHIFT 8
#define OSD_W1BMPA_PAL10 (0xff << 0)
#define OSD_W1BMPA_PAL10_SHIFT 0
#define OSD_W1BMPC_PAL13 (0xff << 8)
#define OSD_W1BMPC_PAL13_SHIFT 8
#define OSD_W1BMPC_PAL12 (0xff << 0)
#define OSD_W1BMPC_PAL12_SHIFT 0
#define OSD_W1BMPE_PAL15 (0xff << 8)
#define OSD_W1BMPE_PAL15_SHIFT 8
#define OSD_W1BMPE_PAL14 (0xff << 0)
#define OSD_W1BMPE_PAL14_SHIFT 0
#define OSD_MISCCT_RGBEN (1 << 7)
#define OSD_MISCCT_RGBWIN (1 << 6)
#define OSD_MISCCT_TMON (1 << 5)
#define OSD_MISCCT_RSEL (1 << 4)
#define OSD_MISCCT_CPBSY (1 << 3)
#define OSD_MISCCT_PPSW (1 << 2)
#define OSD_MISCCT_PPRV (1 << 1)
#define OSD_CLUTRAMY_Y (0xff << 8)
#define OSD_CLUTRAMY_Y_SHIFT 8
#define OSD_CLUTRAMY_CB (0xff << 0)
#define OSD_CLUTRAMY_CB_SHIFT 0
#define OSD_CLUTRAM_CR (0xff << 8)
#define OSD_CLUTRAM_CR_SHIFT 8
#define OSD_CLUTRAM_CADDR (0xff << 0)
#define OSD_CLUTRAM_CADDR_SHIFT 0
#define OSD_TRANSPVA_RGBTRANS (0xff << 0)
#define OSD_TRANSPVA_RGBTRANS_SHIFT 0
#define LCD 0
#define NTSC 1
#define PAL 2
#define COMPOSITE 1
#define SVIDEO 2
#define COMPONENT 3
#define RGB 4
/* define the custom FBIO_WAITFORVSYNC ioctl */
#define FBIO_WAITFORVSYNC _IOW('F', 0x20, u_int32_t)
#define FBIO_SETATTRIBUTE _IOW('F', 0x21, struct fb_fillrect)
#define FBIO_SETPOSX _IOW('F', 0x22, u_int32_t)
#define FBIO_SETPOSY _IOW('F', 0x23, u_int32_t)
struct zoom_params
{
u_int32_t window_id;
u_int32_t zoom_h;
u_int32_t zoom_v;
};
#define FBIO_SETZOOM _IOW('F', 0x24, struct zoom_params)
#define FBIO_GETSTD _IOR('F', 0x25, u_int32_t)
#endif /* _DAVINCIFB_H_ */
...@@ -29,7 +29,7 @@ ...@@ -29,7 +29,7 @@
#include <asm/plat-sffsdr/sffsdr-fpga.h> #include <asm/plat-sffsdr/sffsdr-fpga.h>
#endif #endif
#include <mach/mcbsp.h> #include <mach/asp.h>
#include <mach/edma.h> #include <mach/edma.h>
#include "../codecs/pcm3008.h" #include "../codecs/pcm3008.h"
...@@ -63,8 +63,13 @@ static int sffsdr_hw_params(struct snd_pcm_substream *substream, ...@@ -63,8 +63,13 @@ static int sffsdr_hw_params(struct snd_pcm_substream *substream,
} }
#endif #endif
/* set cpu DAI configuration */ /* Set cpu DAI configuration:
ret = snd_soc_dai_set_fmt(cpu_dai, AUDIO_FORMAT); * CLKX and CLKR are the inputs for the Sample Rate Generator.
* FSX and FSR are outputs, driven by the sample Rate Generator. */
ret = snd_soc_dai_set_fmt(cpu_dai,
SND_SOC_DAIFMT_RIGHT_J |
SND_SOC_DAIFMT_CBM_CFS |
SND_SOC_DAIFMT_IB_NF);
if (ret < 0) if (ret < 0)
return ret; return ret;
...@@ -115,15 +120,15 @@ static struct snd_soc_device sffsdr_snd_devdata = { ...@@ -115,15 +120,15 @@ static struct snd_soc_device sffsdr_snd_devdata = {
static struct resource sffsdr_snd_resources[] = { static struct resource sffsdr_snd_resources[] = {
{ {
.start = DAVINCI_MCBSP_BASE, .start = DAVINCI_ASP0_BASE,
.end = DAVINCI_MCBSP_BASE + SZ_8K - 1, .end = DAVINCI_ASP0_BASE + SZ_8K - 1,
.flags = IORESOURCE_MEM, .flags = IORESOURCE_MEM,
}, },
}; };
static struct evm_snd_platform_data sffsdr_snd_data = { static struct evm_snd_platform_data sffsdr_snd_data = {
.tx_dma_ch = DAVINCI_DMA_MCBSP_TX, .tx_dma_ch = DAVINCI_DMA_ASP0_TX,
.rx_dma_ch = DAVINCI_DMA_MCBSP_RX, .rx_dma_ch = DAVINCI_DMA_ASP0_RX,
}; };
static struct platform_device *sffsdr_snd_device; static struct platform_device *sffsdr_snd_device;
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment