Commit f91e3bd8 authored by Stefan Richter's avatar Stefan Richter

firewire: net: style changes

Change names of types, variables, functions.
Omit debug code.
Use get_unaligned*, put_unaligned*.
Annotate big endian data.
Handle errors in __init.
Change whitespace.
Signed-off-by: default avatarStefan Richter <stefanr@s5r6.in-berlin.de>
parent b9530fd6
...@@ -430,7 +430,7 @@ void fw_card_initialize(struct fw_card *card, ...@@ -430,7 +430,7 @@ void fw_card_initialize(struct fw_card *card,
INIT_DELAYED_WORK(&card->work, fw_card_bm_work); INIT_DELAYED_WORK(&card->work, fw_card_bm_work);
card->netdev = NULL; card->netdev = NULL;
INIT_LIST_HEAD(&card->ipv4_nodes); INIT_LIST_HEAD(&card->peer_list);
} }
EXPORT_SYMBOL(fw_card_initialize); EXPORT_SYMBOL(fw_card_initialize);
......
...@@ -6,6 +6,7 @@ ...@@ -6,6 +6,7 @@
* based on eth1394 by Ben Collins et al * based on eth1394 by Ben Collins et al
*/ */
#include <linux/bug.h>
#include <linux/device.h> #include <linux/device.h>
#include <linux/ethtool.h> #include <linux/ethtool.h>
#include <linux/firewire.h> #include <linux/firewire.h>
...@@ -13,6 +14,7 @@ ...@@ -13,6 +14,7 @@
#include <linux/highmem.h> #include <linux/highmem.h>
#include <linux/in.h> #include <linux/in.h>
#include <linux/ip.h> #include <linux/ip.h>
#include <linux/jiffies.h>
#include <linux/mod_devicetable.h> #include <linux/mod_devicetable.h>
#include <linux/module.h> #include <linux/module.h>
#include <linux/moduleparam.h> #include <linux/moduleparam.h>
...@@ -22,181 +24,109 @@ ...@@ -22,181 +24,109 @@
#include <asm/unaligned.h> #include <asm/unaligned.h>
#include <net/arp.h> #include <net/arp.h>
/* Things to potentially make runtime cofigurable */ #define FWNET_MAX_FRAGMENTS 25 /* arbitrary limit */
/* must be at least as large as our maximum receive size */ #define FWNET_ISO_PAGE_COUNT (PAGE_SIZE < 16 * 1024 ? 4 : 2)
#define FIFO_SIZE 4096
/* Network timeout in glibbles */
#define IPV4_TIMEOUT 100000
/* Runitme configurable paramaters */ #define IEEE1394_BROADCAST_CHANNEL 31
static int ipv4_mpd = 25; #define IEEE1394_ALL_NODES (0xffc0 | 0x003f)
static int ipv4_max_xmt = 0; #define IEEE1394_MAX_PAYLOAD_S100 512
/* 16k for receiving arp and broadcast packets. Enough? */ #define FWNET_NO_FIFO_ADDR (~0ULL)
static int ipv4_iso_page_count = 4;
MODULE_AUTHOR("Jay Fenlason (fenlason@redhat.com)"); #define IANA_SPECIFIER_ID 0x00005eU
MODULE_DESCRIPTION("Firewire IPv4 Driver (IPv4-over-IEEE1394 as per RFC 2734)"); #define RFC2734_SW_VERSION 0x000001U
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(ieee1394, ipv4_id_table); #define IEEE1394_GASP_HDR_SIZE 8
module_param_named(max_partial_datagrams, ipv4_mpd, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(max_partial_datagrams, "Maximum number of received" #define RFC2374_UNFRAG_HDR_SIZE 4
" incomplete fragmented datagrams (default = 25)."); #define RFC2374_FRAG_HDR_SIZE 8
#define RFC2374_FRAG_OVERHEAD 4
/* Max xmt is useful for forcing fragmentation, which makes testing easier. */
module_param_named(max_transmit, ipv4_max_xmt, int, S_IRUGO | S_IWUSR); #define RFC2374_HDR_UNFRAG 0 /* unfragmented */
MODULE_PARM_DESC(max_transmit, "Maximum datagram size to transmit" #define RFC2374_HDR_FIRSTFRAG 1 /* first fragment */
" (larger datagrams will be fragmented) (default = 0 (use hardware defaults)."); #define RFC2374_HDR_LASTFRAG 2 /* last fragment */
#define RFC2374_HDR_INTFRAG 3 /* interior fragment */
/* iso page count controls how many pages will be used for receiving broadcast packets. */
module_param_named(iso_pages, ipv4_iso_page_count, int, S_IRUGO | S_IWUSR); #define RFC2734_HW_ADDR_LEN 16
MODULE_PARM_DESC(iso_pages, "Number of pages to use for receiving broadcast packets"
" (default = 4)."); struct rfc2734_arp {
__be16 hw_type; /* 0x0018 */
/* uncomment this line to do debugging */ __be16 proto_type; /* 0x0806 */
#define fw_debug(s, args...) printk(KERN_DEBUG KBUILD_MODNAME ": " s, ## args)
/* comment out these lines to do debugging. */
/* #undef fw_debug */
/* #define fw_debug(s...) */
/* #define print_hex_dump(l...) */
/* Define a fake hardware header format for the networking core. Note that
* header size cannot exceed 16 bytes as that is the size of the header cache.
* Also, we do not need the source address in the header so we omit it and
* keep the header to under 16 bytes */
#define IPV4_ALEN (8)
/* This must equal sizeof(struct ipv4_ether_hdr) */
#define IPV4_HLEN (10)
/* FIXME: what's a good size for this? */
#define INVALID_FIFO_ADDR (u64)~0ULL
/* Things specified by standards */
#define BROADCAST_CHANNEL 31
#define S100_BUFFER_SIZE 512
#define MAX_BUFFER_SIZE 4096
#define IPV4_GASP_SPECIFIER_ID 0x00005EU
#define IPV4_GASP_VERSION 0x00000001U
#define IPV4_GASP_OVERHEAD (2 * sizeof(u32)) /* for GASP header */
#define IPV4_UNFRAG_HDR_SIZE sizeof(u32)
#define IPV4_FRAG_HDR_SIZE (2 * sizeof(u32))
#define IPV4_FRAG_OVERHEAD sizeof(u32)
#define ALL_NODES (0xffc0 | 0x003f)
#define IPV4_HDR_UNFRAG 0 /* unfragmented */
#define IPV4_HDR_FIRSTFRAG 1 /* first fragment */
#define IPV4_HDR_LASTFRAG 2 /* last fragment */
#define IPV4_HDR_INTFRAG 3 /* interior fragment */
/* Our arp packet (ARPHRD_IEEE1394) */
/* FIXME: note that this is probably bogus on weird-endian machines */
struct ipv4_arp {
u16 hw_type; /* 0x0018 */
u16 proto_type; /* 0x0806 */
u8 hw_addr_len; /* 16 */ u8 hw_addr_len; /* 16 */
u8 ip_addr_len; /* 4 */ u8 ip_addr_len; /* 4 */
u16 opcode; /* ARP Opcode */ __be16 opcode; /* ARP Opcode */
/* Above is exactly the same format as struct arphdr */ /* Above is exactly the same format as struct arphdr */
u64 s_uniq_id; /* Sender's 64bit EUI */ __be64 s_uniq_id; /* Sender's 64bit EUI */
u8 max_rec; /* Sender's max packet size */ u8 max_rec; /* Sender's max packet size */
u8 sspd; /* Sender's max speed */ u8 sspd; /* Sender's max speed */
u16 fifo_hi; /* hi 16bits of sender's FIFO addr */ __be16 fifo_hi; /* hi 16bits of sender's FIFO addr */
u32 fifo_lo; /* lo 32bits of sender's FIFO addr */ __be32 fifo_lo; /* lo 32bits of sender's FIFO addr */
u32 sip; /* Sender's IP Address */ __be32 sip; /* Sender's IP Address */
u32 tip; /* IP Address of requested hw addr */ __be32 tip; /* IP Address of requested hw addr */
} __attribute__((packed)); } __attribute__((packed));
struct ipv4_ether_hdr { /* This header format is specific to this driver implementation. */
unsigned char h_dest[IPV4_ALEN]; /* destination address */ #define FWNET_ALEN 8
unsigned short h_proto; /* packet type ID field */ #define FWNET_HLEN 10
struct fwnet_header {
u8 h_dest[FWNET_ALEN]; /* destination address */
__be16 h_proto; /* packet type ID field */
} __attribute__((packed)); } __attribute__((packed));
static inline struct ipv4_ether_hdr *ipv4_ether_hdr(const struct sk_buff *skb) /* IPv4 and IPv6 encapsulation header */
{ struct rfc2734_header {
return (struct ipv4_ether_hdr *)skb_mac_header(skb); u32 w0;
} u32 w1;
enum ipv4_tx_type {
IPV4_UNKNOWN = 0,
IPV4_GASP = 1,
IPV4_WRREQ = 2,
};
enum ipv4_broadcast_state {
IPV4_BROADCAST_ERROR,
IPV4_BROADCAST_RUNNING,
IPV4_BROADCAST_STOPPED,
}; };
#define ipv4_get_hdr_lf(h) (((h)->w0&0xC0000000)>>30) #define fwnet_get_hdr_lf(h) (((h)->w0 & 0xc0000000) >> 30)
#define ipv4_get_hdr_ether_type(h) (((h)->w0&0x0000FFFF) ) #define fwnet_get_hdr_ether_type(h) (((h)->w0 & 0x0000ffff))
#define ipv4_get_hdr_dg_size(h) (((h)->w0&0x0FFF0000)>>16) #define fwnet_get_hdr_dg_size(h) (((h)->w0 & 0x0fff0000) >> 16)
#define ipv4_get_hdr_fg_off(h) (((h)->w0&0x00000FFF) ) #define fwnet_get_hdr_fg_off(h) (((h)->w0 & 0x00000fff))
#define ipv4_get_hdr_dgl(h) (((h)->w1&0xFFFF0000)>>16) #define fwnet_get_hdr_dgl(h) (((h)->w1 & 0xffff0000) >> 16)
#define ipv4_set_hdr_lf(lf) (( lf)<<30)
#define ipv4_set_hdr_ether_type(et) (( et) )
#define ipv4_set_hdr_dg_size(dgs) ((dgs)<<16)
#define ipv4_set_hdr_fg_off(fgo) ((fgo) )
#define ipv4_set_hdr_dgl(dgl) ((dgl)<<16) #define fwnet_set_hdr_lf(lf) ((lf) << 30)
#define fwnet_set_hdr_ether_type(et) (et)
#define fwnet_set_hdr_dg_size(dgs) ((dgs) << 16)
#define fwnet_set_hdr_fg_off(fgo) (fgo)
struct ipv4_hdr { #define fwnet_set_hdr_dgl(dgl) ((dgl) << 16)
u32 w0;
u32 w1;
};
static inline void ipv4_make_uf_hdr( struct ipv4_hdr *hdr, unsigned ether_type) { static inline void fwnet_make_uf_hdr(struct rfc2734_header *hdr,
hdr->w0 = ipv4_set_hdr_lf(IPV4_HDR_UNFRAG) unsigned ether_type)
|ipv4_set_hdr_ether_type(ether_type); {
fw_debug ( "Setting unfragmented header %p to %x\n", hdr, hdr->w0 ); hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_UNFRAG)
| fwnet_set_hdr_ether_type(ether_type);
} }
static inline void ipv4_make_ff_hdr ( struct ipv4_hdr *hdr, unsigned ether_type, unsigned dg_size, unsigned dgl ) { static inline void fwnet_make_ff_hdr(struct rfc2734_header *hdr,
hdr->w0 = ipv4_set_hdr_lf(IPV4_HDR_FIRSTFRAG) unsigned ether_type, unsigned dg_size, unsigned dgl)
|ipv4_set_hdr_dg_size(dg_size) {
|ipv4_set_hdr_ether_type(ether_type); hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_FIRSTFRAG)
hdr->w1 = ipv4_set_hdr_dgl(dgl); | fwnet_set_hdr_dg_size(dg_size)
fw_debug ( "Setting fragmented header %p to first_frag %x,%x (et %x, dgs %x, dgl %x)\n", hdr, hdr->w0, hdr->w1, | fwnet_set_hdr_ether_type(ether_type);
ether_type, dg_size, dgl ); hdr->w1 = fwnet_set_hdr_dgl(dgl);
} }
static inline void ipv4_make_sf_hdr ( struct ipv4_hdr *hdr, unsigned lf, unsigned dg_size, unsigned fg_off, unsigned dgl) { static inline void fwnet_make_sf_hdr(struct rfc2734_header *hdr,
hdr->w0 = ipv4_set_hdr_lf(lf) unsigned lf, unsigned dg_size, unsigned fg_off, unsigned dgl)
|ipv4_set_hdr_dg_size(dg_size) {
|ipv4_set_hdr_fg_off(fg_off); hdr->w0 = fwnet_set_hdr_lf(lf)
hdr->w1 = ipv4_set_hdr_dgl(dgl); | fwnet_set_hdr_dg_size(dg_size)
fw_debug ( "Setting fragmented header %p to %x,%x (lf %x, dgs %x, fo %x dgl %x)\n", | fwnet_set_hdr_fg_off(fg_off);
hdr, hdr->w0, hdr->w1, hdr->w1 = fwnet_set_hdr_dgl(dgl);
lf, dg_size, fg_off, dgl );
} }
/* End of IP1394 headers */
/* Fragment types */
#define ETH1394_HDR_LF_UF 0 /* unfragmented */
#define ETH1394_HDR_LF_FF 1 /* first fragment */
#define ETH1394_HDR_LF_LF 2 /* last fragment */
#define ETH1394_HDR_LF_IF 3 /* interior fragment */
#define IP1394_HW_ADDR_LEN 16 /* As per RFC */
/* This list keeps track of what parts of the datagram have been filled in */ /* This list keeps track of what parts of the datagram have been filled in */
struct ipv4_fragment_info { struct fwnet_fragment_info {
struct list_head fragment_info; struct list_head fi_link;
u16 offset; u16 offset;
u16 len; u16 len;
}; };
struct ipv4_partial_datagram { struct fwnet_partial_datagram {
struct list_head pdg_list; struct list_head pd_link;
struct list_head fragment_info; struct list_head fi_list;
struct sk_buff *skb; struct sk_buff *skb;
/* FIXME Why not use skb->data? */ /* FIXME Why not use skb->data? */
char *pbuf; char *pbuf;
...@@ -208,40 +138,43 @@ struct ipv4_partial_datagram { ...@@ -208,40 +138,43 @@ struct ipv4_partial_datagram {
/* /*
* We keep one of these for each IPv4 capable device attached to a fw_card. * We keep one of these for each IPv4 capable device attached to a fw_card.
* The list of them is stored in the fw_card structure rather than in the * The list of them is stored in the fw_card structure rather than in the
* ipv4_priv because the remote IPv4 nodes may be probed before the card is, * fwnet_device because the remote IPv4 nodes may be probed before the card is,
* so we need a place to store them before the ipv4_priv structure is * so we need a place to store them before the fwnet_device structure is
* allocated. * allocated.
*/ */
struct ipv4_node { struct fwnet_peer {
struct list_head ipv4_nodes; struct list_head peer_link;
/* guid of the remote node */ /* guid of the remote peer */
u64 guid; u64 guid;
/* FIFO address to transmit datagrams to, or INVALID_FIFO_ADDR */ /* FIFO address to transmit datagrams to, or FWNET_NO_FIFO_ADDR */
u64 fifo; u64 fifo;
spinlock_t pdg_lock; /* partial datagram lock */ spinlock_t pdg_lock; /* partial datagram lock */
/* List of partial datagrams received from this node */ /* List of partial datagrams received from this peer */
struct list_head pdg_list; struct list_head pd_list;
/* Number of entries in pdg_list at the moment */ /* Number of entries in pd_list at the moment */
unsigned pdg_size; unsigned pdg_size;
/* max payload to transmit to this remote node */ /* max payload to transmit to this remote peer */
/* This already includes the IPV4_FRAG_HDR_SIZE overhead */ /* This already includes the RFC2374_FRAG_HDR_SIZE overhead */
u16 max_payload; u16 max_payload;
/* outgoing datagram label */ /* outgoing datagram label */
u16 datagram_label; u16 datagram_label;
/* Current node_id of the remote node */ /* Current node_id of the remote peer */
u16 nodeid; u16 node_id;
/* current generation of the remote node */ /* current generation of the remote peer */
u8 generation; u8 generation;
/* max speed that this node can receive at */ /* max speed that this peer can receive at */
u8 xmt_speed; u8 xmt_speed;
}; };
struct ipv4_priv { struct fwnet_device {
spinlock_t lock; spinlock_t lock;
enum {
enum ipv4_broadcast_state broadcast_state; FWNET_BROADCAST_ERROR,
FWNET_BROADCAST_RUNNING,
FWNET_BROADCAST_STOPPED,
} broadcast_state;
struct fw_iso_context *broadcast_rcv_context; struct fw_iso_context *broadcast_rcv_context;
struct fw_iso_buffer broadcast_rcv_buffer; struct fw_iso_buffer broadcast_rcv_buffer;
void **broadcast_rcv_buffer_ptrs; void **broadcast_rcv_buffer_ptrs;
...@@ -257,14 +190,12 @@ struct ipv4_priv { ...@@ -257,14 +190,12 @@ struct ipv4_priv {
u16 broadcast_xmt_datagramlabel; u16 broadcast_xmt_datagramlabel;
/* /*
* The csr address that remote nodes must send datagrams to for us to * The CSR address that remote nodes must send datagrams to for us to
* receive them. * receive them.
*/ */
struct fw_address_handler handler; struct fw_address_handler handler;
u64 local_fifo; u64 local_fifo;
/* Wake up to xmt */
/* struct work_struct wake;*/
/* List of packets to be sent */ /* List of packets to be sent */
struct list_head packet_list; struct list_head packet_list;
/* /*
...@@ -279,17 +210,17 @@ struct ipv4_priv { ...@@ -279,17 +210,17 @@ struct ipv4_priv {
}; };
/* This is our task struct. It's used for the packet complete callback. */ /* This is our task struct. It's used for the packet complete callback. */
struct ipv4_packet_task { struct fwnet_packet_task {
/* /*
* ptask can actually be on priv->packet_list, priv->broadcasted_list, * ptask can actually be on dev->packet_list, dev->broadcasted_list,
* or priv->sent_list depending on its current state. * or dev->sent_list depending on its current state.
*/ */
struct list_head packet_list; struct list_head pt_link;
struct fw_transaction transaction; struct fw_transaction transaction;
struct ipv4_hdr hdr; struct rfc2734_header hdr;
struct sk_buff *skb; struct sk_buff *skb;
struct ipv4_priv *priv; struct fwnet_device *dev;
enum ipv4_tx_type tx_type;
int outstanding_pkts; int outstanding_pkts;
unsigned max_payload; unsigned max_payload;
u64 fifo_addr; u64 fifo_addr;
...@@ -298,243 +229,192 @@ struct ipv4_packet_task { ...@@ -298,243 +229,192 @@ struct ipv4_packet_task {
u8 speed; u8 speed;
}; };
static struct kmem_cache *ipv4_packet_task_cache; /*
* saddr == NULL means use device source address.
static const char ipv4_driver_name[] = "firewire-ipv4"; * daddr == NULL means leave destination address (eg unresolved arp).
*/
static const struct ieee1394_device_id ipv4_id_table[] = { static int fwnet_header_create(struct sk_buff *skb, struct net_device *net,
{
.match_flags = IEEE1394_MATCH_SPECIFIER_ID |
IEEE1394_MATCH_VERSION,
.specifier_id = IPV4_GASP_SPECIFIER_ID,
.version = IPV4_GASP_VERSION,
},
{ }
};
static u32 ipv4_unit_directory_data[] = {
0x00040000, /* unit directory */
0x12000000 | IPV4_GASP_SPECIFIER_ID, /* specifier ID */
0x81000003, /* text descriptor */
0x13000000 | IPV4_GASP_VERSION, /* version */
0x81000005, /* text descriptor */
0x00030000, /* Three quadlets */
0x00000000, /* Text */
0x00000000, /* Language 0 */
0x49414e41, /* I A N A */
0x00030000, /* Three quadlets */
0x00000000, /* Text */
0x00000000, /* Language 0 */
0x49507634, /* I P v 4 */
};
static struct fw_descriptor ipv4_unit_directory = {
.length = ARRAY_SIZE(ipv4_unit_directory_data),
.key = 0xd1000000,
.data = ipv4_unit_directory_data
};
static int ipv4_send_packet(struct ipv4_packet_task *ptask );
/* ------------------------------------------------------------------ */
/******************************************
* HW Header net device functions
******************************************/
/* These functions have been adapted from net/ethernet/eth.c */
/* Create a fake MAC header for an arbitrary protocol layer.
* saddr=NULL means use device source address
* daddr=NULL means leave destination address (eg unresolved arp). */
static int ipv4_header ( struct sk_buff *skb, struct net_device *dev,
unsigned short type, const void *daddr, unsigned short type, const void *daddr,
const void *saddr, unsigned len) { const void *saddr, unsigned len)
struct ipv4_ether_hdr *eth; {
struct fwnet_header *h;
eth = (struct ipv4_ether_hdr *)skb_push(skb, sizeof(*eth)); h = (struct fwnet_header *)skb_push(skb, sizeof(*h));
eth->h_proto = htons(type); put_unaligned_be16(type, &h->h_proto);
if (dev->flags & (IFF_LOOPBACK | IFF_NOARP)) { if (net->flags & (IFF_LOOPBACK | IFF_NOARP)) {
memset(eth->h_dest, 0, dev->addr_len); memset(h->h_dest, 0, net->addr_len);
return dev->hard_header_len;
return net->hard_header_len;
} }
if (daddr) { if (daddr) {
memcpy(eth->h_dest, daddr, dev->addr_len); memcpy(h->h_dest, daddr, net->addr_len);
return dev->hard_header_len;
return net->hard_header_len;
} }
return -dev->hard_header_len; return -net->hard_header_len;
} }
/* Rebuild the faked MAC header. This is called after an ARP static int fwnet_header_rebuild(struct sk_buff *skb)
* (or in future other address resolution) has completed on this
* sk_buff. We now let ARP fill in the other fields.
*
* This routine CANNOT use cached dst->neigh!
* Really, it is used only when dst->neigh is wrong.
*/
static int ipv4_rebuild_header(struct sk_buff *skb)
{ {
struct ipv4_ether_hdr *eth; struct fwnet_header *h = (struct fwnet_header *)skb->data;
eth = (struct ipv4_ether_hdr *)skb->data; if (get_unaligned_be16(&h->h_proto) == ETH_P_IP)
if (eth->h_proto == htons(ETH_P_IP)) return arp_find((unsigned char *)&h->h_dest, skb);
return arp_find((unsigned char *)&eth->h_dest, skb);
fw_notify ( "%s: unable to resolve type %04x addresses\n", fw_notify("%s: unable to resolve type %04x addresses\n",
skb->dev->name,ntohs(eth->h_proto) ); skb->dev->name, be16_to_cpu(h->h_proto));
return 0; return 0;
} }
static int ipv4_header_cache(const struct neighbour *neigh, struct hh_cache *hh) { static int fwnet_header_cache(const struct neighbour *neigh,
unsigned short type = hh->hh_type; struct hh_cache *hh)
struct net_device *dev; {
struct ipv4_ether_hdr *eth; struct net_device *net;
struct fwnet_header *h;
if (type == htons(ETH_P_802_3)) if (hh->hh_type == cpu_to_be16(ETH_P_802_3))
return -1; return -1;
dev = neigh->dev; net = neigh->dev;
eth = (struct ipv4_ether_hdr *)((u8 *)hh->hh_data + 16 - sizeof(*eth)); h = (struct fwnet_header *)((u8 *)hh->hh_data + 16 - sizeof(*h));
eth->h_proto = type; h->h_proto = hh->hh_type;
memcpy(eth->h_dest, neigh->ha, dev->addr_len); memcpy(h->h_dest, neigh->ha, net->addr_len);
hh->hh_len = FWNET_HLEN;
hh->hh_len = IPV4_HLEN;
return 0; return 0;
} }
/* Called by Address Resolution module to notify changes in address. */ /* Called by Address Resolution module to notify changes in address. */
static void ipv4_header_cache_update(struct hh_cache *hh, const struct net_device *dev, const unsigned char * haddr ) { static void fwnet_header_cache_update(struct hh_cache *hh,
memcpy((u8 *)hh->hh_data + 16 - IPV4_HLEN, haddr, dev->addr_len); const struct net_device *net, const unsigned char *haddr)
{
memcpy((u8 *)hh->hh_data + 16 - FWNET_HLEN, haddr, net->addr_len);
} }
static int ipv4_header_parse(const struct sk_buff *skb, unsigned char *haddr) { static int fwnet_header_parse(const struct sk_buff *skb, unsigned char *haddr)
memcpy(haddr, skb->dev->dev_addr, IPV4_ALEN); {
return IPV4_ALEN; memcpy(haddr, skb->dev->dev_addr, FWNET_ALEN);
return FWNET_ALEN;
} }
static const struct header_ops ipv4_header_ops = { static const struct header_ops fwnet_header_ops = {
.create = ipv4_header, .create = fwnet_header_create,
.rebuild = ipv4_rebuild_header, .rebuild = fwnet_header_rebuild,
.cache = ipv4_header_cache, .cache = fwnet_header_cache,
.cache_update = ipv4_header_cache_update, .cache_update = fwnet_header_cache_update,
.parse = ipv4_header_parse, .parse = fwnet_header_parse,
}; };
/* ------------------------------------------------------------------ */
/* FIXME: is this correct for all cases? */ /* FIXME: is this correct for all cases? */
static bool ipv4_frag_overlap(struct ipv4_partial_datagram *pd, unsigned offset, unsigned len) static bool fwnet_frag_overlap(struct fwnet_partial_datagram *pd,
unsigned offset, unsigned len)
{ {
struct ipv4_fragment_info *fi; struct fwnet_fragment_info *fi;
unsigned end = offset + len; unsigned end = offset + len;
list_for_each_entry(fi, &pd->fragment_info, fragment_info) { list_for_each_entry(fi, &pd->fi_list, fi_link)
if (offset < fi->offset + fi->len && end > fi->offset) { if (offset < fi->offset + fi->len && end > fi->offset)
fw_debug ( "frag_overlap pd %p fi %p (%x@%x) with %x@%x\n", pd, fi, fi->len, fi->offset, len, offset );
return true; return true;
}
}
fw_debug ( "frag_overlap %p does not overlap with %x@%x\n", pd, len, offset );
return false; return false;
} }
/* Assumes that new fragment does not overlap any existing fragments */ /* Assumes that new fragment does not overlap any existing fragments */
static struct ipv4_fragment_info *ipv4_frag_new ( struct ipv4_partial_datagram *pd, unsigned offset, unsigned len ) { static struct fwnet_fragment_info *fwnet_frag_new(
struct ipv4_fragment_info *fi, *fi2, *new; struct fwnet_partial_datagram *pd, unsigned offset, unsigned len)
{
struct fwnet_fragment_info *fi, *fi2, *new;
struct list_head *list; struct list_head *list;
fw_debug ( "frag_new pd %p %x@%x\n", pd, len, offset ); list = &pd->fi_list;
list = &pd->fragment_info; list_for_each_entry(fi, &pd->fi_list, fi_link) {
list_for_each_entry(fi, &pd->fragment_info, fragment_info) {
if (fi->offset + fi->len == offset) { if (fi->offset + fi->len == offset) {
/* The new fragment can be tacked on to the end */ /* The new fragment can be tacked on to the end */
/* Did the new fragment plug a hole? */ /* Did the new fragment plug a hole? */
fi2 = list_entry(fi->fragment_info.next, struct ipv4_fragment_info, fragment_info); fi2 = list_entry(fi->fi_link.next,
struct fwnet_fragment_info, fi_link);
if (fi->offset + fi->len == fi2->offset) { if (fi->offset + fi->len == fi2->offset) {
fw_debug ( "pd %p: hole filling %p (%x@%x) and %p(%x@%x): now %x@%x\n", pd, fi, fi->len, fi->offset,
fi2, fi2->len, fi2->offset, fi->len + len + fi2->len, fi->offset );
/* glue fragments together */ /* glue fragments together */
fi->len += len + fi2->len; fi->len += len + fi2->len;
list_del(&fi2->fragment_info); list_del(&fi2->fi_link);
kfree(fi2); kfree(fi2);
} else { } else {
fw_debug ( "pd %p: extending %p from %x@%x to %x@%x\n", pd, fi, fi->len, fi->offset, fi->len+len, fi->offset );
fi->len += len; fi->len += len;
} }
return fi; return fi;
} }
if (offset + len == fi->offset) { if (offset + len == fi->offset) {
/* The new fragment can be tacked on to the beginning */ /* The new fragment can be tacked on to the beginning */
/* Did the new fragment plug a hole? */ /* Did the new fragment plug a hole? */
fi2 = list_entry(fi->fragment_info.prev, struct ipv4_fragment_info, fragment_info); fi2 = list_entry(fi->fi_link.prev,
struct fwnet_fragment_info, fi_link);
if (fi2->offset + fi2->len == fi->offset) { if (fi2->offset + fi2->len == fi->offset) {
/* glue fragments together */ /* glue fragments together */
fw_debug ( "pd %p: extending %p and merging with %p from %x@%x to %x@%x\n",
pd, fi2, fi, fi2->len, fi2->offset, fi2->len + fi->len + len, fi2->offset );
fi2->len += fi->len + len; fi2->len += fi->len + len;
list_del(&fi->fragment_info); list_del(&fi->fi_link);
kfree(fi); kfree(fi);
return fi2; return fi2;
} }
fw_debug ( "pd %p: extending %p from %x@%x to %x@%x\n", pd, fi, fi->len, fi->offset, offset, fi->len + len );
fi->offset = offset; fi->offset = offset;
fi->len += len; fi->len += len;
return fi; return fi;
} }
if (offset > fi->offset + fi->len) { if (offset > fi->offset + fi->len) {
list = &fi->fragment_info; list = &fi->fi_link;
break; break;
} }
if (offset + len < fi->offset) { if (offset + len < fi->offset) {
list = fi->fragment_info.prev; list = fi->fi_link.prev;
break; break;
} }
} }
new = kmalloc(sizeof(*new), GFP_ATOMIC); new = kmalloc(sizeof(*new), GFP_ATOMIC);
if (!new) { if (!new) {
fw_error ( "out of memory in fragment handling!\n" ); fw_error("out of memory\n");
return NULL; return NULL;
} }
new->offset = offset; new->offset = offset;
new->len = len; new->len = len;
list_add(&new->fragment_info, list); list_add(&new->fi_link, list);
fw_debug ( "pd %p: new frag %p %x@%x\n", pd, new, new->len, new->offset );
list_for_each_entry( fi, &pd->fragment_info, fragment_info )
fw_debug ( "fi %p %x@%x\n", fi, fi->len, fi->offset );
return new; return new;
} }
/* ------------------------------------------------------------------ */ static struct fwnet_partial_datagram *fwnet_pd_new(struct net_device *net,
struct fwnet_peer *peer, u16 datagram_label, unsigned dg_size,
static struct ipv4_partial_datagram *ipv4_pd_new(struct net_device *netdev, void *frag_buf, unsigned frag_off, unsigned frag_len)
struct ipv4_node *node, u16 datagram_label, unsigned dg_size, u32 *frag_buf, {
unsigned frag_off, unsigned frag_len) { struct fwnet_partial_datagram *new;
struct ipv4_partial_datagram *new; struct fwnet_fragment_info *fi;
struct ipv4_fragment_info *fi;
new = kmalloc(sizeof(*new), GFP_ATOMIC); new = kmalloc(sizeof(*new), GFP_ATOMIC);
if (!new) if (!new)
goto fail; goto fail;
INIT_LIST_HEAD(&new->fragment_info);
fi = ipv4_frag_new ( new, frag_off, frag_len); INIT_LIST_HEAD(&new->fi_list);
if ( fi == NULL ) fi = fwnet_frag_new(new, frag_off, frag_len);
if (fi == NULL)
goto fail_w_new; goto fail_w_new;
new->datagram_label = datagram_label; new->datagram_label = datagram_label;
new->datagram_size = dg_size; new->datagram_size = dg_size;
new->skb = dev_alloc_skb(dg_size + netdev->hard_header_len + 15); new->skb = dev_alloc_skb(dg_size + net->hard_header_len + 15);
if ( new->skb == NULL ) if (new->skb == NULL)
goto fail_w_fi; goto fail_w_fi;
skb_reserve(new->skb, (netdev->hard_header_len + 15) & ~15);
skb_reserve(new->skb, (net->hard_header_len + 15) & ~15);
new->pbuf = skb_put(new->skb, dg_size); new->pbuf = skb_put(new->skb, dg_size);
memcpy(new->pbuf + frag_off, frag_buf, frag_len); memcpy(new->pbuf + frag_off, frag_buf, frag_len);
list_add_tail(&new->pdg_list, &node->pdg_list); list_add_tail(&new->pd_link, &peer->pd_list);
fw_debug ( "pd_new: new pd %p { dgl %u, dg_size %u, skb %p, pbuf %p } on node %p\n",
new, new->datagram_label, new->datagram_size, new->skb, new->pbuf, node );
return new; return new;
fail_w_fi: fail_w_fi:
...@@ -542,174 +422,171 @@ fail_w_fi: ...@@ -542,174 +422,171 @@ fail_w_fi:
fail_w_new: fail_w_new:
kfree(new); kfree(new);
fail: fail:
fw_error("ipv4_pd_new: no memory\n"); fw_error("out of memory\n");
return NULL; return NULL;
} }
static struct ipv4_partial_datagram *ipv4_pd_find(struct ipv4_node *node, u16 datagram_label) { static struct fwnet_partial_datagram *fwnet_pd_find(struct fwnet_peer *peer,
struct ipv4_partial_datagram *pd; u16 datagram_label)
{
struct fwnet_partial_datagram *pd;
list_for_each_entry(pd, &node->pdg_list, pdg_list) { list_for_each_entry(pd, &peer->pd_list, pd_link)
if ( pd->datagram_label == datagram_label ) { if (pd->datagram_label == datagram_label)
fw_debug ( "pd_find(node %p, label %u): pd %p\n", node, datagram_label, pd );
return pd; return pd;
}
}
fw_debug ( "pd_find(node %p, label %u) no entry\n", node, datagram_label );
return NULL; return NULL;
} }
static void ipv4_pd_delete ( struct ipv4_partial_datagram *old ) { static void fwnet_pd_delete(struct fwnet_partial_datagram *old)
struct ipv4_fragment_info *fi, *n; {
struct fwnet_fragment_info *fi, *n;
fw_debug ( "pd_delete %p\n", old ); list_for_each_entry_safe(fi, n, &old->fi_list, fi_link)
list_for_each_entry_safe(fi, n, &old->fragment_info, fragment_info) {
fw_debug ( "Freeing fi %p\n", fi );
kfree(fi); kfree(fi);
}
list_del(&old->pdg_list); list_del(&old->pd_link);
dev_kfree_skb_any(old->skb); dev_kfree_skb_any(old->skb);
kfree(old); kfree(old);
} }
static bool ipv4_pd_update ( struct ipv4_node *node, struct ipv4_partial_datagram *pd, static bool fwnet_pd_update(struct fwnet_peer *peer,
u32 *frag_buf, unsigned frag_off, unsigned frag_len) { struct fwnet_partial_datagram *pd, void *frag_buf,
fw_debug ( "pd_update node %p, pd %p, frag_buf %p, %x@%x\n", node, pd, frag_buf, frag_len, frag_off ); unsigned frag_off, unsigned frag_len)
if ( ipv4_frag_new ( pd, frag_off, frag_len ) == NULL) {
if (fwnet_frag_new(pd, frag_off, frag_len) == NULL)
return false; return false;
memcpy(pd->pbuf + frag_off, frag_buf, frag_len); memcpy(pd->pbuf + frag_off, frag_buf, frag_len);
/* /*
* Move list entry to beginnig of list so that oldest partial * Move list entry to beginnig of list so that oldest partial
* datagrams percolate to the end of the list * datagrams percolate to the end of the list
*/ */
list_move_tail(&pd->pdg_list, &node->pdg_list); list_move_tail(&pd->pd_link, &peer->pd_list);
fw_debug ( "New pd list:\n" );
list_for_each_entry ( pd, &node->pdg_list, pdg_list ) {
fw_debug ( "pd %p\n", pd );
}
return true; return true;
} }
static bool ipv4_pd_is_complete ( struct ipv4_partial_datagram *pd ) { static bool fwnet_pd_is_complete(struct fwnet_partial_datagram *pd)
struct ipv4_fragment_info *fi; {
bool ret; struct fwnet_fragment_info *fi;
fi = list_entry(pd->fragment_info.next, struct ipv4_fragment_info, fragment_info); fi = list_entry(pd->fi_list.next, struct fwnet_fragment_info, fi_link);
ret = (fi->len == pd->datagram_size); return fi->len == pd->datagram_size;
fw_debug ( "pd_is_complete (pd %p, dgs %x): fi %p (%x@%x) %s\n", pd, pd->datagram_size, fi, fi->len, fi->offset, ret ? "yes" : "no" );
return ret;
} }
/* ------------------------------------------------------------------ */ static int fwnet_peer_new(struct fw_card *card, struct fw_device *device)
{
struct fwnet_peer *peer;
static int ipv4_node_new ( struct fw_card *card, struct fw_device *device ) { peer = kmalloc(sizeof(*peer), GFP_KERNEL);
struct ipv4_node *node; if (!peer) {
fw_error("out of memory\n");
node = kmalloc ( sizeof(*node), GFP_KERNEL );
if ( ! node ) {
fw_error ( "allocate new node failed\n" );
return -ENOMEM; return -ENOMEM;
} }
node->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4]; peer->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
node->fifo = INVALID_FIFO_ADDR; peer->fifo = FWNET_NO_FIFO_ADDR;
INIT_LIST_HEAD(&node->pdg_list); INIT_LIST_HEAD(&peer->pd_list);
spin_lock_init(&node->pdg_lock); spin_lock_init(&peer->pdg_lock);
node->pdg_size = 0; peer->pdg_size = 0;
node->generation = device->generation; peer->generation = device->generation;
rmb(); rmb();
node->nodeid = device->node_id; peer->node_id = device->node_id;
/* FIXME what should it really be? */ /* FIXME what should it really be? */
node->max_payload = S100_BUFFER_SIZE - IPV4_UNFRAG_HDR_SIZE; peer->max_payload = IEEE1394_MAX_PAYLOAD_S100 - RFC2374_UNFRAG_HDR_SIZE;
node->datagram_label = 0U; peer->datagram_label = 0U;
node->xmt_speed = device->max_speed; peer->xmt_speed = device->max_speed;
list_add_tail ( &node->ipv4_nodes, &card->ipv4_nodes ); list_add_tail(&peer->peer_link, &card->peer_list);
fw_debug ( "node_new: %p { guid %016llx, generation %u, nodeid %x, max_payload %x, xmt_speed %x } added\n",
node, (unsigned long long)node->guid, node->generation, node->nodeid, node->max_payload, node->xmt_speed );
return 0; return 0;
} }
static struct ipv4_node *ipv4_node_find_by_guid(struct ipv4_priv *priv, u64 guid) { /* FIXME caller must take the lock, or peer needs to be reference-counted */
struct ipv4_node *node; static struct fwnet_peer *fwnet_peer_find_by_guid(struct fwnet_device *dev,
u64 guid)
{
struct fwnet_peer *p, *peer = NULL;
unsigned long flags; unsigned long flags;
spin_lock_irqsave(&priv->lock, flags); spin_lock_irqsave(&dev->lock, flags);
list_for_each_entry(node, &priv->card->ipv4_nodes, ipv4_nodes) list_for_each_entry(p, &dev->card->peer_list, peer_link)
if (node->guid == guid) { if (p->guid == guid) {
/* FIXME: lock the node first? */ peer = p;
spin_unlock_irqrestore ( &priv->lock, flags ); break;
fw_debug ( "node_find_by_guid (%016llx) found %p\n", (unsigned long long)guid, node );
return node;
} }
spin_unlock_irqrestore(&dev->lock, flags);
spin_unlock_irqrestore ( &priv->lock, flags ); return peer;
fw_debug ( "node_find_by_guid (%016llx) not found\n", (unsigned long long)guid );
return NULL;
} }
static struct ipv4_node *ipv4_node_find_by_nodeid(struct ipv4_priv *priv, u16 nodeid) { /* FIXME caller must take the lock, or peer needs to be reference-counted */
struct ipv4_node *node; /* FIXME node_id doesn't mean anything without generation */
static struct fwnet_peer *fwnet_peer_find_by_node_id(struct fwnet_device *dev,
u16 node_id)
{
struct fwnet_peer *p, *peer = NULL;
unsigned long flags; unsigned long flags;
spin_lock_irqsave(&priv->lock, flags); spin_lock_irqsave(&dev->lock, flags);
list_for_each_entry(node, &priv->card->ipv4_nodes, ipv4_nodes) list_for_each_entry(p, &dev->card->peer_list, peer_link)
if (node->nodeid == nodeid) { if (p->node_id == node_id) {
/* FIXME: lock the node first? */ peer = p;
spin_unlock_irqrestore ( &priv->lock, flags ); break;
fw_debug ( "node_find_by_nodeid (%x) found %p\n", nodeid, node );
return node;
} }
fw_debug ( "node_find_by_nodeid (%x) not found\n", nodeid ); spin_unlock_irqrestore(&dev->lock, flags);
spin_unlock_irqrestore ( &priv->lock, flags );
return NULL; return peer;
} }
/* This is only complicated because we can't assume priv exists */ /* FIXME */
static void ipv4_node_delete ( struct fw_card *card, struct fw_device *device ) { static void fwnet_peer_delete(struct fw_card *card, struct fw_device *device)
struct net_device *netdev; {
struct ipv4_priv *priv; struct net_device *net;
struct ipv4_node *node; struct fwnet_device *dev;
struct fwnet_peer *peer;
u64 guid; u64 guid;
unsigned long flags; unsigned long flags;
struct ipv4_partial_datagram *pd, *pd_next; struct fwnet_partial_datagram *pd, *pd_next;
guid = (u64)device->config_rom[3] << 32 | device->config_rom[4]; guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
netdev = card->netdev; net = card->netdev;
if ( netdev ) if (net)
priv = netdev_priv ( netdev ); dev = netdev_priv(net);
else else
priv = NULL; dev = NULL;
if ( priv ) if (dev)
spin_lock_irqsave ( &priv->lock, flags ); spin_lock_irqsave(&dev->lock, flags);
list_for_each_entry( node, &card->ipv4_nodes, ipv4_nodes ) {
if ( node->guid == guid ) { list_for_each_entry(peer, &card->peer_list, peer_link) {
list_del ( &node->ipv4_nodes ); if (peer->guid == guid) {
list_for_each_entry_safe( pd, pd_next, &node->pdg_list, pdg_list ) list_del(&peer->peer_link);
ipv4_pd_delete ( pd ); list_for_each_entry_safe(pd, pd_next, &peer->pd_list,
pd_link)
fwnet_pd_delete(pd);
break; break;
} }
} }
if ( priv ) if (dev)
spin_unlock_irqrestore ( &priv->lock, flags ); spin_unlock_irqrestore(&dev->lock, flags);
} }
/* ------------------------------------------------------------------ */ static int fwnet_finish_incoming_packet(struct net_device *net,
struct sk_buff *skb, u16 source_node_id,
bool is_broadcast, u16 ether_type)
static int ipv4_finish_incoming_packet ( struct net_device *netdev, {
struct sk_buff *skb, u16 source_node_id, bool is_broadcast, u16 ether_type ) { struct fwnet_device *dev;
struct ipv4_priv *priv; static const __be64 broadcast_hw = cpu_to_be64(~0ULL);
static u64 broadcast_hw = ~0ULL;
int status; int status;
u64 guid; __be64 guid;
fw_debug ( "ipv4_finish_incoming_packet(%p, %p, %x, %s, %x\n", dev = netdev_priv(net);
netdev, skb, source_node_id, is_broadcast ? "true" : "false", ether_type );
priv = netdev_priv(netdev);
/* Write metadata, and then pass to the receive level */ /* Write metadata, and then pass to the receive level */
skb->dev = netdev; skb->dev = net;
skb->ip_summed = CHECKSUM_UNNECESSARY; /* don't check it */ skb->ip_summed = CHECKSUM_UNNECESSARY; /* don't check it */
/* /*
...@@ -724,73 +601,75 @@ static int ipv4_finish_incoming_packet ( struct net_device *netdev, ...@@ -724,73 +601,75 @@ static int ipv4_finish_incoming_packet ( struct net_device *netdev,
* about the sending machine. * about the sending machine.
*/ */
if (ether_type == ETH_P_ARP) { if (ether_type == ETH_P_ARP) {
struct ipv4_arp *arp1394; struct rfc2734_arp *arp1394;
struct arphdr *arp; struct arphdr *arp;
unsigned char *arp_ptr; unsigned char *arp_ptr;
u64 fifo_addr; u64 fifo_addr;
u64 peer_guid;
u8 max_rec; u8 max_rec;
u8 sspd; u8 sspd;
u16 max_payload; u16 max_payload;
struct ipv4_node *node; struct fwnet_peer *peer;
static const u16 ipv4_speed_to_max_payload[] = { static const u16 fwnet_speed_to_max_payload[] = {
/* S100, S200, S400, S800, S1600, S3200 */ /* S100, S200, S400, S800, S1600, S3200 */
512, 1024, 2048, 4096, 4096, 4096 512, 1024, 2048, 4096, 4096, 4096
}; };
/* fw_debug ( "ARP packet\n" ); */ arp1394 = (struct rfc2734_arp *)skb->data;
arp1394 = (struct ipv4_arp *)skb->data;
arp = (struct arphdr *)skb->data; arp = (struct arphdr *)skb->data;
arp_ptr = (unsigned char *)(arp + 1); arp_ptr = (unsigned char *)(arp + 1);
fifo_addr = (u64)ntohs(arp1394->fifo_hi) << 32 | fifo_addr = (u64)ntohs(arp1394->fifo_hi) << 32
ntohl(arp1394->fifo_lo); | ntohl(arp1394->fifo_lo);
max_rec = priv->card->max_receive; max_rec = dev->card->max_receive;
if ( arp1394->max_rec < max_rec ) if (arp1394->max_rec < max_rec)
max_rec = arp1394->max_rec; max_rec = arp1394->max_rec;
sspd = arp1394->sspd; sspd = arp1394->sspd;
/* /* Sanity check. OS X 10.3 PPC reportedly sends 131. */
* Sanity check. MacOSX seems to be sending us 131 in this if (sspd > SCODE_3200) {
* field (atleast on my Panther G5). Not sure why. fw_notify("sspd %x out of range\n", sspd);
*/
if (sspd > 5 ) {
fw_notify ( "sspd %x out of range\n", sspd );
sspd = 0; sspd = 0;
} }
max_payload = min(ipv4_speed_to_max_payload[sspd], max_payload = min(fwnet_speed_to_max_payload[sspd],
(u16)(1 << (max_rec + 1))) - IPV4_UNFRAG_HDR_SIZE; (u16)(1 << (max_rec + 1))) - RFC2374_UNFRAG_HDR_SIZE;
guid = be64_to_cpu(get_unaligned(&arp1394->s_uniq_id)); peer_guid = get_unaligned_be64(&arp1394->s_uniq_id);
node = ipv4_node_find_by_guid(priv, guid); peer = fwnet_peer_find_by_guid(dev, peer_guid);
if (!node) { if (!peer) {
fw_notify ( "No node for ARP packet from %llx\n", guid ); fw_notify("No peer for ARP packet from %016llx\n",
(unsigned long long)peer_guid);
goto failed_proto; goto failed_proto;
} }
if ( node->nodeid != source_node_id || node->generation != priv->card->generation ) {
fw_notify ( "Internal error: node->nodeid (%x) != soucre_node_id (%x) or node->generation (%x) != priv->card->generation(%x)\n", /* FIXME don't use card->generation */
node->nodeid, source_node_id, node->generation, priv->card->generation ); if (peer->node_id != source_node_id ||
node->nodeid = source_node_id; peer->generation != dev->card->generation) {
node->generation = priv->card->generation; fw_notify("Internal error: peer->node_id (%x) != "
"source_node_id (%x) or peer->generation (%x)"
" != dev->card->generation(%x)\n",
peer->node_id, source_node_id,
peer->generation, dev->card->generation);
peer->node_id = source_node_id;
peer->generation = dev->card->generation;
} }
/* FIXME: for debugging */ /* FIXME: for debugging */
if ( sspd > SCODE_400 ) if (sspd > SCODE_400)
sspd = SCODE_400; sspd = SCODE_400;
/* Update our speed/payload/fifo_offset table */ /* Update our speed/payload/fifo_offset table */
/* /*
* FIXME: this does not handle cases where two high-speed endpoints must use a slower speed because of * FIXME: this does not handle cases where two high-speed endpoints must use a slower speed because of
* a lower speed hub between them. We need to look at the actual topology map here. * a lower speed hub between them. We need to look at the actual topology map here.
*/ */
fw_debug ( "Setting node %p fifo %llx (was %llx), max_payload %x (was %x), speed %x (was %x)\n", peer->fifo = fifo_addr;
node, fifo_addr, node->fifo, max_payload, node->max_payload, sspd, node->xmt_speed ); peer->max_payload = max_payload;
node->fifo = fifo_addr;
node->max_payload = max_payload;
/* /*
* Only allow speeds to go down from their initial value. * Only allow speeds to go down from their initial value.
* Otherwise a local node that can only do S400 or slower may * Otherwise a local peer that can only do S400 or slower may
* be told to transmit at S800 to a faster remote node. * be told to transmit at S800 to a faster remote peer.
*/ */
if ( node->xmt_speed > sspd ) if (peer->xmt_speed > sspd)
node->xmt_speed = sspd; peer->xmt_speed = sspd;
/* /*
* Now that we're done with the 1394 specific stuff, we'll * Now that we're done with the 1394 specific stuff, we'll
...@@ -805,248 +684,257 @@ static int ipv4_finish_incoming_packet ( struct net_device *netdev, ...@@ -805,248 +684,257 @@ static int ipv4_finish_incoming_packet ( struct net_device *netdev,
*/ */
arp->ar_hln = 8; arp->ar_hln = 8;
arp_ptr += arp->ar_hln; /* skip over sender unique id */ /* skip over sender unique id */
*(u32 *)arp_ptr = arp1394->sip; /* move sender IP addr */ arp_ptr += arp->ar_hln;
arp_ptr += arp->ar_pln; /* skip over sender IP addr */ /* move sender IP addr */
put_unaligned(arp1394->sip, (u32 *)arp_ptr);
/* skip over sender IP addr */
arp_ptr += arp->ar_pln;
if (arp->ar_op == htons(ARPOP_REQUEST)) if (arp->ar_op == htons(ARPOP_REQUEST))
memset(arp_ptr, 0, sizeof(u64)); memset(arp_ptr, 0, sizeof(u64));
else else
memcpy(arp_ptr, netdev->dev_addr, sizeof(u64)); memcpy(arp_ptr, net->dev_addr, sizeof(u64));
} }
/* Now add the ethernet header. */ /* Now add the ethernet header. */
guid = cpu_to_be64(priv->card->guid); guid = cpu_to_be64(dev->card->guid);
if (dev_hard_header(skb, netdev, ether_type, is_broadcast ? &broadcast_hw : &guid, NULL, if (dev_hard_header(skb, net, ether_type,
skb->len) >= 0) { is_broadcast ? &broadcast_hw : &guid,
struct ipv4_ether_hdr *eth; NULL, skb->len) >= 0) {
struct fwnet_header *eth;
u16 *rawp; u16 *rawp;
__be16 protocol; __be16 protocol;
skb_reset_mac_header(skb); skb_reset_mac_header(skb);
skb_pull(skb, sizeof(*eth)); skb_pull(skb, sizeof(*eth));
eth = ipv4_ether_hdr(skb); eth = (struct fwnet_header *)skb_mac_header(skb);
if (*eth->h_dest & 1) { if (*eth->h_dest & 1) {
if (memcmp(eth->h_dest, netdev->broadcast, netdev->addr_len) == 0) { if (memcmp(eth->h_dest, net->broadcast,
fw_debug ( "Broadcast\n" ); net->addr_len) == 0)
skb->pkt_type = PACKET_BROADCAST; skb->pkt_type = PACKET_BROADCAST;
}
#if 0 #if 0
else else
skb->pkt_type = PACKET_MULTICAST; skb->pkt_type = PACKET_MULTICAST;
#endif #endif
} else { } else {
if (memcmp(eth->h_dest, netdev->dev_addr, netdev->addr_len)) { if (memcmp(eth->h_dest, net->dev_addr, net->addr_len)) {
u64 a1, a2; u64 a1, a2;
memcpy ( &a1, eth->h_dest, sizeof(u64)); memcpy(&a1, eth->h_dest, sizeof(u64));
memcpy ( &a2, netdev->dev_addr, sizeof(u64)); memcpy(&a2, net->dev_addr, sizeof(u64));
fw_debug ( "Otherhost %llx %llx %x\n", a1, a2, netdev->addr_len );
skb->pkt_type = PACKET_OTHERHOST; skb->pkt_type = PACKET_OTHERHOST;
} }
} }
if (ntohs(eth->h_proto) >= 1536) { if (ntohs(eth->h_proto) >= 1536) {
fw_debug ( " proto %x %x\n", eth->h_proto, ntohs(eth->h_proto) );
protocol = eth->h_proto; protocol = eth->h_proto;
} else { } else {
rawp = (u16 *)skb->data; rawp = (u16 *)skb->data;
if (*rawp == 0xFFFF) { if (*rawp == 0xffff)
fw_debug ( "proto 802_3\n" );
protocol = htons(ETH_P_802_3); protocol = htons(ETH_P_802_3);
} else { else
fw_debug ( "proto 802_2\n" );
protocol = htons(ETH_P_802_2); protocol = htons(ETH_P_802_2);
} }
}
skb->protocol = protocol; skb->protocol = protocol;
} }
status = netif_rx(skb); status = netif_rx(skb);
if ( status == NET_RX_DROP) { if (status == NET_RX_DROP) {
netdev->stats.rx_errors++; net->stats.rx_errors++;
netdev->stats.rx_dropped++; net->stats.rx_dropped++;
} else { } else {
netdev->stats.rx_packets++; net->stats.rx_packets++;
netdev->stats.rx_bytes += skb->len; net->stats.rx_bytes += skb->len;
} }
if (netif_queue_stopped(netdev)) if (netif_queue_stopped(net))
netif_wake_queue(netdev); netif_wake_queue(net);
return 0; return 0;
failed_proto: failed_proto:
netdev->stats.rx_errors++; net->stats.rx_errors++;
netdev->stats.rx_dropped++; net->stats.rx_dropped++;
dev_kfree_skb_any(skb); dev_kfree_skb_any(skb);
if (netif_queue_stopped(netdev)) if (netif_queue_stopped(net))
netif_wake_queue(netdev); netif_wake_queue(net);
netdev->last_rx = jiffies;
net->last_rx = jiffies;
return 0; return 0;
} }
/* ------------------------------------------------------------------ */ static int fwnet_incoming_packet(struct fwnet_device *dev, __be32 *buf, int len,
u16 source_node_id, bool is_broadcast)
static int ipv4_incoming_packet ( struct ipv4_priv *priv, u32 *buf, int len, u16 source_node_id, bool is_broadcast ) { {
struct sk_buff *skb; struct sk_buff *skb;
struct net_device *netdev; struct net_device *net;
struct ipv4_hdr hdr; struct rfc2734_header hdr;
unsigned lf; unsigned lf;
unsigned long flags; unsigned long flags;
struct ipv4_node *node; struct fwnet_peer *peer;
struct ipv4_partial_datagram *pd; struct fwnet_partial_datagram *pd;
int fg_off; int fg_off;
int dg_size; int dg_size;
u16 datagram_label; u16 datagram_label;
int retval; int retval;
u16 ether_type; u16 ether_type;
fw_debug ( "ipv4_incoming_packet(%p, %p, %d, %x, %s)\n", priv, buf, len, source_node_id, is_broadcast ? "true" : "false" ); net = dev->card->netdev;
netdev = priv->card->netdev;
hdr.w0 = ntohl(buf[0]); hdr.w0 = be32_to_cpu(buf[0]);
lf = ipv4_get_hdr_lf(&hdr); lf = fwnet_get_hdr_lf(&hdr);
if ( lf == IPV4_HDR_UNFRAG ) { if (lf == RFC2374_HDR_UNFRAG) {
/* /*
* An unfragmented datagram has been received by the ieee1394 * An unfragmented datagram has been received by the ieee1394
* bus. Build an skbuff around it so we can pass it to the * bus. Build an skbuff around it so we can pass it to the
* high level network layer. * high level network layer.
*/ */
ether_type = ipv4_get_hdr_ether_type(&hdr); ether_type = fwnet_get_hdr_ether_type(&hdr);
fw_debug ( "header w0 = %x, lf = %x, ether_type = %x\n", hdr.w0, lf, ether_type );
buf++; buf++;
len -= IPV4_UNFRAG_HDR_SIZE; len -= RFC2374_UNFRAG_HDR_SIZE;
skb = dev_alloc_skb(len + netdev->hard_header_len + 15); skb = dev_alloc_skb(len + net->hard_header_len + 15);
if (unlikely(!skb)) { if (unlikely(!skb)) {
fw_error ( "Out of memory for incoming packet\n"); fw_error("out of memory\n");
netdev->stats.rx_dropped++; net->stats.rx_dropped++;
return -1; return -1;
} }
skb_reserve(skb, (netdev->hard_header_len + 15) & ~15); skb_reserve(skb, (net->hard_header_len + 15) & ~15);
memcpy(skb_put(skb, len), buf, len ); memcpy(skb_put(skb, len), buf, len);
return ipv4_finish_incoming_packet(netdev, skb, source_node_id, is_broadcast, ether_type );
return fwnet_finish_incoming_packet(net, skb, source_node_id,
is_broadcast, ether_type);
} }
/* A datagram fragment has been received, now the fun begins. */ /* A datagram fragment has been received, now the fun begins. */
hdr.w1 = ntohl(buf[1]); hdr.w1 = ntohl(buf[1]);
buf +=2; buf += 2;
len -= IPV4_FRAG_HDR_SIZE; len -= RFC2374_FRAG_HDR_SIZE;
if ( lf ==IPV4_HDR_FIRSTFRAG ) { if (lf == RFC2374_HDR_FIRSTFRAG) {
ether_type = ipv4_get_hdr_ether_type(&hdr); ether_type = fwnet_get_hdr_ether_type(&hdr);
fg_off = 0; fg_off = 0;
} else { } else {
fg_off = ipv4_get_hdr_fg_off(&hdr); ether_type = 0;
ether_type = 0; /* Shut up compiler! */ fg_off = fwnet_get_hdr_fg_off(&hdr);
} }
datagram_label = ipv4_get_hdr_dgl(&hdr); datagram_label = fwnet_get_hdr_dgl(&hdr);
dg_size = ipv4_get_hdr_dg_size(&hdr); /* ??? + 1 */ dg_size = fwnet_get_hdr_dg_size(&hdr); /* ??? + 1 */
fw_debug ( "fragmented: %x.%x = lf %x, ether_type %x, fg_off %x, dgl %x, dg_size %x\n", hdr.w0, hdr.w1, lf, ether_type, fg_off, datagram_label, dg_size ); peer = fwnet_peer_find_by_node_id(dev, source_node_id);
node = ipv4_node_find_by_nodeid ( priv, source_node_id);
spin_lock_irqsave(&node->pdg_lock, flags); spin_lock_irqsave(&peer->pdg_lock, flags);
pd = ipv4_pd_find( node, datagram_label );
pd = fwnet_pd_find(peer, datagram_label);
if (pd == NULL) { if (pd == NULL) {
while ( node->pdg_size >= ipv4_mpd ) { while (peer->pdg_size >= FWNET_MAX_FRAGMENTS) {
/* remove the oldest */ /* remove the oldest */
ipv4_pd_delete ( list_first_entry(&node->pdg_list, struct ipv4_partial_datagram, pdg_list) ); fwnet_pd_delete(list_first_entry(&peer->pd_list,
node->pdg_size--; struct fwnet_partial_datagram, pd_link));
peer->pdg_size--;
} }
pd = ipv4_pd_new ( netdev, node, datagram_label, dg_size, pd = fwnet_pd_new(net, peer, datagram_label,
buf, fg_off, len); dg_size, buf, fg_off, len);
if ( pd == NULL) { if (pd == NULL) {
retval = -ENOMEM; retval = -ENOMEM;
goto bad_proto; goto bad_proto;
} }
node->pdg_size++; peer->pdg_size++;
} else { } else {
if (ipv4_frag_overlap(pd, fg_off, len) || pd->datagram_size != dg_size) { if (fwnet_frag_overlap(pd, fg_off, len) ||
pd->datagram_size != dg_size) {
/* /*
* Differing datagram sizes or overlapping fragments, * Differing datagram sizes or overlapping fragments,
* Either way the remote machine is playing silly buggers * discard old datagram and start a new one.
* with us: obliterate the old datagram and start a new one.
*/ */
ipv4_pd_delete ( pd ); fwnet_pd_delete(pd);
pd = ipv4_pd_new ( netdev, node, datagram_label, pd = fwnet_pd_new(net, peer, datagram_label,
dg_size, buf, fg_off, len); dg_size, buf, fg_off, len);
if ( pd == NULL ) { if (pd == NULL) {
retval = -ENOMEM; retval = -ENOMEM;
node->pdg_size--; peer->pdg_size--;
goto bad_proto; goto bad_proto;
} }
} else { } else {
bool worked; if (!fwnet_pd_update(peer, pd, buf, fg_off, len)) {
worked = ipv4_pd_update ( node, pd,
buf, fg_off, len );
if ( ! worked ) {
/* /*
* Couldn't save off fragment anyway * Couldn't save off fragment anyway
* so might as well obliterate the * so might as well obliterate the
* datagram now. * datagram now.
*/ */
ipv4_pd_delete ( pd ); fwnet_pd_delete(pd);
node->pdg_size--; peer->pdg_size--;
goto bad_proto; goto bad_proto;
} }
} }
} /* new datagram or add to existing one */ } /* new datagram or add to existing one */
if ( lf == IPV4_HDR_FIRSTFRAG ) if (lf == RFC2374_HDR_FIRSTFRAG)
pd->ether_type = ether_type; pd->ether_type = ether_type;
if ( ipv4_pd_is_complete ( pd ) ) {
if (fwnet_pd_is_complete(pd)) {
ether_type = pd->ether_type; ether_type = pd->ether_type;
node->pdg_size--; peer->pdg_size--;
skb = skb_get(pd->skb); skb = skb_get(pd->skb);
ipv4_pd_delete ( pd ); fwnet_pd_delete(pd);
spin_unlock_irqrestore(&node->pdg_lock, flags);
return ipv4_finish_incoming_packet ( netdev, skb, source_node_id, false, ether_type ); spin_unlock_irqrestore(&peer->pdg_lock, flags);
return fwnet_finish_incoming_packet(net, skb, source_node_id,
false, ether_type);
} }
/* /*
* Datagram is not complete, we're done for the * Datagram is not complete, we're done for the
* moment. * moment.
*/ */
spin_unlock_irqrestore(&node->pdg_lock, flags); spin_unlock_irqrestore(&peer->pdg_lock, flags);
return 0; return 0;
bad_proto: bad_proto:
spin_unlock_irqrestore(&node->pdg_lock, flags); spin_unlock_irqrestore(&peer->pdg_lock, flags);
if (netif_queue_stopped(netdev))
netif_wake_queue(netdev); if (netif_queue_stopped(net))
netif_wake_queue(net);
return 0; return 0;
} }
static void ipv4_receive_packet ( struct fw_card *card, struct fw_request *r, static void fwnet_receive_packet(struct fw_card *card, struct fw_request *r,
int tcode, int destination, int source, int generation, int speed, int tcode, int destination, int source, int generation,
unsigned long long offset, void *payload, size_t length, void *callback_data ) { int speed, unsigned long long offset, void *payload,
struct ipv4_priv *priv; size_t length, void *callback_data)
{
struct fwnet_device *dev;
int status; int status;
fw_debug ( "ipv4_receive_packet(%p,%p,%x,%x,%x,%x,%x,%llx,%p,%lx,%p)\n", dev = callback_data;
card, r, tcode, destination, source, generation, speed, offset, payload, if (tcode != TCODE_WRITE_BLOCK_REQUEST
(unsigned long)length, callback_data); || destination != card->node_id /* <- FIXME */
print_hex_dump ( KERN_DEBUG, "header: ", DUMP_PREFIX_OFFSET, 32, 1, payload, length, false ); || generation != card->generation /* <- FIXME */
priv = callback_data; || offset != dev->handler.offset) {
if ( tcode != TCODE_WRITE_BLOCK_REQUEST
|| destination != card->node_id
|| generation != card->generation
|| offset != priv->handler.offset ) {
fw_send_response(card, r, RCODE_CONFLICT_ERROR); fw_send_response(card, r, RCODE_CONFLICT_ERROR);
fw_debug("Conflict error card node_id=%x, card generation=%x, local offset %llx\n",
card->node_id, card->generation, (unsigned long long)priv->handler.offset );
return; return;
} }
status = ipv4_incoming_packet ( priv, payload, length, source, false );
if ( status != 0 ) { status = fwnet_incoming_packet(dev, payload, length, source, false);
fw_error ( "Incoming packet failure\n" ); if (status != 0) {
fw_send_response ( card, r, RCODE_CONFLICT_ERROR ); fw_error("Incoming packet failure\n");
fw_send_response(card, r, RCODE_CONFLICT_ERROR);
return; return;
} }
fw_send_response ( card, r, RCODE_COMPLETE );
fw_send_response(card, r, RCODE_COMPLETE);
} }
static void ipv4_receive_broadcast(struct fw_iso_context *context, u32 cycle, static void fwnet_receive_broadcast(struct fw_iso_context *context,
size_t header_length, void *header, void *data) { u32 cycle, size_t header_length, void *header, void *data)
struct ipv4_priv *priv; {
struct fwnet_device *dev;
struct fw_iso_packet packet; struct fw_iso_packet packet;
struct fw_card *card; struct fw_card *card;
u16 *hdr_ptr; __be16 *hdr_ptr;
u32 *buf_ptr; __be32 *buf_ptr;
int retval; int retval;
u32 length; u32 length;
u16 source_node_id; u16 source_node_id;
...@@ -1055,70 +943,68 @@ static void ipv4_receive_broadcast(struct fw_iso_context *context, u32 cycle, ...@@ -1055,70 +943,68 @@ static void ipv4_receive_broadcast(struct fw_iso_context *context, u32 cycle,
unsigned long offset; unsigned long offset;
unsigned long flags; unsigned long flags;
fw_debug ( "ipv4_receive_broadcast ( context=%p, cycle=%x, header_length=%lx, header=%p, data=%p )\n", context, cycle, (unsigned long)header_length, header, data ); dev = data;
print_hex_dump ( KERN_DEBUG, "header: ", DUMP_PREFIX_OFFSET, 32, 1, header, header_length, false ); card = dev->card;
priv = data;
card = priv->card;
hdr_ptr = header; hdr_ptr = header;
length = ntohs(hdr_ptr[0]); length = be16_to_cpup(hdr_ptr);
spin_lock_irqsave(&priv->lock,flags);
offset = priv->rcv_buffer_size * priv->broadcast_rcv_next_ptr; spin_lock_irqsave(&dev->lock, flags);
buf_ptr = priv->broadcast_rcv_buffer_ptrs[priv->broadcast_rcv_next_ptr++];
if ( priv->broadcast_rcv_next_ptr == priv->num_broadcast_rcv_ptrs ) offset = dev->rcv_buffer_size * dev->broadcast_rcv_next_ptr;
priv->broadcast_rcv_next_ptr = 0; buf_ptr = dev->broadcast_rcv_buffer_ptrs[dev->broadcast_rcv_next_ptr++];
spin_unlock_irqrestore(&priv->lock,flags); if (dev->broadcast_rcv_next_ptr == dev->num_broadcast_rcv_ptrs)
fw_debug ( "length %u at %p\n", length, buf_ptr ); dev->broadcast_rcv_next_ptr = 0;
print_hex_dump ( KERN_DEBUG, "buffer: ", DUMP_PREFIX_OFFSET, 32, 1, buf_ptr, length, false );
spin_unlock_irqrestore(&dev->lock, flags);
specifier_id = (be32_to_cpu(buf_ptr[0]) & 0xffff) << 8 specifier_id = (be32_to_cpu(buf_ptr[0]) & 0xffff) << 8
| (be32_to_cpu(buf_ptr[1]) & 0xff000000) >> 24; | (be32_to_cpu(buf_ptr[1]) & 0xff000000) >> 24;
ver = be32_to_cpu(buf_ptr[1]) & 0xFFFFFF; ver = be32_to_cpu(buf_ptr[1]) & 0xffffff;
source_node_id = be32_to_cpu(buf_ptr[0]) >> 16; source_node_id = be32_to_cpu(buf_ptr[0]) >> 16;
/* fw_debug ( "source %x SpecID %x ver %x\n", source_node_id, specifier_id, ver ); */
if ( specifier_id == IPV4_GASP_SPECIFIER_ID && ver == IPV4_GASP_VERSION ) { if (specifier_id == IANA_SPECIFIER_ID && ver == RFC2734_SW_VERSION) {
buf_ptr += 2; buf_ptr += 2;
length -= IPV4_GASP_OVERHEAD; length -= IEEE1394_GASP_HDR_SIZE;
ipv4_incoming_packet(priv, buf_ptr, length, source_node_id, true); fwnet_incoming_packet(dev, buf_ptr, length,
} else source_node_id, true);
fw_debug ( "Ignoring packet: not GASP\n" ); }
packet.payload_length = priv->rcv_buffer_size;
packet.payload_length = dev->rcv_buffer_size;
packet.interrupt = 1; packet.interrupt = 1;
packet.skip = 0; packet.skip = 0;
packet.tag = 3; packet.tag = 3;
packet.sy = 0; packet.sy = 0;
packet.header_length = IPV4_GASP_OVERHEAD; packet.header_length = IEEE1394_GASP_HDR_SIZE;
spin_lock_irqsave(&priv->lock,flags);
retval = fw_iso_context_queue ( priv->broadcast_rcv_context, &packet, spin_lock_irqsave(&dev->lock, flags);
&priv->broadcast_rcv_buffer, offset );
spin_unlock_irqrestore(&priv->lock,flags);
if ( retval < 0 )
fw_error ( "requeue failed\n" );
}
static void debug_ptask ( struct ipv4_packet_task *ptask ) { retval = fw_iso_context_queue(dev->broadcast_rcv_context, &packet,
static const char *tx_types[] = { "Unknown", "GASP", "Write" }; &dev->broadcast_rcv_buffer, offset);
fw_debug ( "packet %p { hdr { w0 %x w1 %x }, skb %p, priv %p," spin_unlock_irqrestore(&dev->lock, flags);
" tx_type %s, outstanding_pkts %d, max_payload %x, fifo %llx,"
" speed %x, dest_node %x, generation %x }\n", if (retval < 0)
ptask, ptask->hdr.w0, ptask->hdr.w1, ptask->skb, ptask->priv, fw_error("requeue failed\n");
ptask->tx_type > IPV4_WRREQ ? "Invalid" : tx_types[ptask->tx_type],
ptask->outstanding_pkts, ptask->max_payload,
ptask->fifo_addr, ptask->speed, ptask->dest_node, ptask->generation );
print_hex_dump ( KERN_DEBUG, "packet :", DUMP_PREFIX_OFFSET, 32, 1,
ptask->skb->data, ptask->skb->len, false );
} }
static void ipv4_transmit_packet_done ( struct ipv4_packet_task *ptask ) { static struct kmem_cache *fwnet_packet_task_cache;
struct ipv4_priv *priv;
static int fwnet_send_packet(struct fwnet_packet_task *ptask);
static void fwnet_transmit_packet_done(struct fwnet_packet_task *ptask)
{
struct fwnet_device *dev;
unsigned long flags; unsigned long flags;
priv = ptask->priv; dev = ptask->dev;
spin_lock_irqsave ( &priv->lock, flags );
list_del ( &ptask->packet_list ); spin_lock_irqsave(&dev->lock, flags);
spin_unlock_irqrestore ( &priv->lock, flags ); list_del(&ptask->pt_link);
ptask->outstanding_pkts--; spin_unlock_irqrestore(&dev->lock, flags);
if ( ptask->outstanding_pkts > 0 ) {
ptask->outstanding_pkts--; /* FIXME access inside lock */
if (ptask->outstanding_pkts > 0) {
u16 dg_size; u16 dg_size;
u16 fg_off; u16 fg_off;
u16 datagram_label; u16 datagram_label;
...@@ -1126,133 +1012,139 @@ static void ipv4_transmit_packet_done ( struct ipv4_packet_task *ptask ) { ...@@ -1126,133 +1012,139 @@ static void ipv4_transmit_packet_done ( struct ipv4_packet_task *ptask ) {
struct sk_buff *skb; struct sk_buff *skb;
/* Update the ptask to point to the next fragment and send it */ /* Update the ptask to point to the next fragment and send it */
lf = ipv4_get_hdr_lf(&ptask->hdr); lf = fwnet_get_hdr_lf(&ptask->hdr);
switch (lf) { switch (lf) {
case IPV4_HDR_LASTFRAG: case RFC2374_HDR_LASTFRAG:
case IPV4_HDR_UNFRAG: case RFC2374_HDR_UNFRAG:
default: default:
fw_error ( "Outstanding packet %x lf %x, header %x,%x\n", ptask->outstanding_pkts, lf, ptask->hdr.w0, ptask->hdr.w1 ); fw_error("Outstanding packet %x lf %x, header %x,%x\n",
ptask->outstanding_pkts, lf, ptask->hdr.w0,
ptask->hdr.w1);
BUG(); BUG();
case IPV4_HDR_FIRSTFRAG: case RFC2374_HDR_FIRSTFRAG:
/* Set frag type here for future interior fragments */ /* Set frag type here for future interior fragments */
dg_size = ipv4_get_hdr_dg_size(&ptask->hdr); dg_size = fwnet_get_hdr_dg_size(&ptask->hdr);
fg_off = ptask->max_payload - IPV4_FRAG_HDR_SIZE; fg_off = ptask->max_payload - RFC2374_FRAG_HDR_SIZE;
datagram_label = ipv4_get_hdr_dgl(&ptask->hdr); datagram_label = fwnet_get_hdr_dgl(&ptask->hdr);
break; break;
case IPV4_HDR_INTFRAG: case RFC2374_HDR_INTFRAG:
dg_size = ipv4_get_hdr_dg_size(&ptask->hdr); dg_size = fwnet_get_hdr_dg_size(&ptask->hdr);
fg_off = ipv4_get_hdr_fg_off(&ptask->hdr) + ptask->max_payload - IPV4_FRAG_HDR_SIZE; fg_off = fwnet_get_hdr_fg_off(&ptask->hdr)
datagram_label = ipv4_get_hdr_dgl(&ptask->hdr); + ptask->max_payload - RFC2374_FRAG_HDR_SIZE;
datagram_label = fwnet_get_hdr_dgl(&ptask->hdr);
break; break;
} }
skb = ptask->skb; skb = ptask->skb;
skb_pull ( skb, ptask->max_payload ); skb_pull(skb, ptask->max_payload);
if ( ptask->outstanding_pkts > 1 ) { if (ptask->outstanding_pkts > 1) {
ipv4_make_sf_hdr ( &ptask->hdr, fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_INTFRAG,
IPV4_HDR_INTFRAG, dg_size, fg_off, datagram_label ); dg_size, fg_off, datagram_label);
} else { } else {
ipv4_make_sf_hdr ( &ptask->hdr, fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_LASTFRAG,
IPV4_HDR_LASTFRAG, dg_size, fg_off, datagram_label ); dg_size, fg_off, datagram_label);
ptask->max_payload = skb->len + IPV4_FRAG_HDR_SIZE; ptask->max_payload = skb->len + RFC2374_FRAG_HDR_SIZE;
} }
ipv4_send_packet ( ptask ); fwnet_send_packet(ptask);
} else { } else {
dev_kfree_skb_any ( ptask->skb ); dev_kfree_skb_any(ptask->skb);
kmem_cache_free( ipv4_packet_task_cache, ptask ); kmem_cache_free(fwnet_packet_task_cache, ptask);
} }
} }
static void ipv4_write_complete ( struct fw_card *card, int rcode, static void fwnet_write_complete(struct fw_card *card, int rcode,
void *payload, size_t length, void *data ) { void *payload, size_t length, void *data)
struct ipv4_packet_task *ptask; {
struct fwnet_packet_task *ptask;
ptask = data; ptask = data;
fw_debug ( "ipv4_write_complete ( %p, %x, %p, %lx, %p )\n",
card, rcode, payload, (unsigned long)length, data );
debug_ptask ( ptask );
if ( rcode == RCODE_COMPLETE ) { if (rcode == RCODE_COMPLETE)
ipv4_transmit_packet_done ( ptask ); fwnet_transmit_packet_done(ptask);
} else { else
fw_error ( "ipv4_write_complete: failed: %x\n", rcode ); fw_error("fwnet_write_complete: failed: %x\n", rcode);
/* ??? error recovery */ /* ??? error recovery */
}
} }
static int ipv4_send_packet ( struct ipv4_packet_task *ptask ) { static int fwnet_send_packet(struct fwnet_packet_task *ptask)
struct ipv4_priv *priv; {
struct fwnet_device *dev;
unsigned tx_len; unsigned tx_len;
struct ipv4_hdr *bufhdr; struct rfc2734_header *bufhdr;
unsigned long flags; unsigned long flags;
struct net_device *netdev; struct net_device *net;
#if 0 /* stefanr */
int retval;
#endif
fw_debug ( "ipv4_send_packet\n" ); dev = ptask->dev;
debug_ptask ( ptask );
priv = ptask->priv;
tx_len = ptask->max_payload; tx_len = ptask->max_payload;
switch (ipv4_get_hdr_lf(&ptask->hdr)) { switch (fwnet_get_hdr_lf(&ptask->hdr)) {
case IPV4_HDR_UNFRAG: case RFC2374_HDR_UNFRAG:
bufhdr = (struct ipv4_hdr *)skb_push(ptask->skb, IPV4_UNFRAG_HDR_SIZE); bufhdr = (struct rfc2734_header *)
bufhdr->w0 = htonl(ptask->hdr.w0); skb_push(ptask->skb, RFC2374_UNFRAG_HDR_SIZE);
put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0);
break; break;
case IPV4_HDR_FIRSTFRAG: case RFC2374_HDR_FIRSTFRAG:
case IPV4_HDR_INTFRAG: case RFC2374_HDR_INTFRAG:
case IPV4_HDR_LASTFRAG: case RFC2374_HDR_LASTFRAG:
bufhdr = (struct ipv4_hdr *)skb_push(ptask->skb, IPV4_FRAG_HDR_SIZE); bufhdr = (struct rfc2734_header *)
bufhdr->w0 = htonl(ptask->hdr.w0); skb_push(ptask->skb, RFC2374_FRAG_HDR_SIZE);
bufhdr->w1 = htonl(ptask->hdr.w1); put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0);
put_unaligned_be32(ptask->hdr.w1, &bufhdr->w1);
break; break;
default: default:
BUG(); BUG();
} }
if ( ptask->tx_type == IPV4_GASP ) { if (ptask->dest_node == IEEE1394_ALL_NODES) {
u32 *packets; u8 *p;
int generation; int generation;
int nodeid; int node_id;
/* ptask->generation may not have been set yet */ /* ptask->generation may not have been set yet */
generation = priv->card->generation; generation = dev->card->generation;
smp_rmb(); smp_rmb();
nodeid = priv->card->node_id; node_id = dev->card->node_id;
packets = (u32 *)skb_push(ptask->skb, sizeof(u32)*2);
packets[0] = htonl(nodeid << 16 | (IPV4_GASP_SPECIFIER_ID>>8)); p = skb_push(ptask->skb, 8);
packets[1] = htonl((IPV4_GASP_SPECIFIER_ID & 0xFF) << 24 | IPV4_GASP_VERSION); put_unaligned_be32(node_id << 16 | IANA_SPECIFIER_ID >> 8, p);
fw_send_request ( priv->card, &ptask->transaction, TCODE_STREAM_DATA, put_unaligned_be32((IANA_SPECIFIER_ID & 0xff) << 24
fw_stream_packet_destination_id(3, BROADCAST_CHANNEL, 0), | RFC2734_SW_VERSION, &p[4]);
generation, SCODE_100, 0ULL, ptask->skb->data, tx_len + 8, ipv4_write_complete, ptask );
spin_lock_irqsave(&priv->lock,flags); /* We should not transmit if broadcast_channel.valid == 0. */
list_add_tail ( &ptask->packet_list, &priv->broadcasted_list ); fw_send_request(dev->card, &ptask->transaction,
spin_unlock_irqrestore(&priv->lock,flags); TCODE_STREAM_DATA,
#if 0 /* stefanr */ fw_stream_packet_destination_id(3,
return retval; IEEE1394_BROADCAST_CHANNEL, 0),
#else generation, SCODE_100, 0ULL, ptask->skb->data,
tx_len + 8, fwnet_write_complete, ptask);
/* FIXME race? */
spin_lock_irqsave(&dev->lock, flags);
list_add_tail(&ptask->pt_link, &dev->broadcasted_list);
spin_unlock_irqrestore(&dev->lock, flags);
return 0; return 0;
#endif
} }
fw_debug("send_request (%p, %p, WRITE_BLOCK, %x, %x, %x, %llx, %p, %d, %p, %p\n",
priv->card, &ptask->transaction, ptask->dest_node, ptask->generation, fw_send_request(dev->card, &ptask->transaction,
ptask->speed, (unsigned long long)ptask->fifo_addr, ptask->skb->data, tx_len, TCODE_WRITE_BLOCK_REQUEST, ptask->dest_node,
ipv4_write_complete, ptask ); ptask->generation, ptask->speed, ptask->fifo_addr,
fw_send_request ( priv->card, &ptask->transaction, ptask->skb->data, tx_len, fwnet_write_complete, ptask);
TCODE_WRITE_BLOCK_REQUEST, ptask->dest_node, ptask->generation, ptask->speed,
ptask->fifo_addr, ptask->skb->data, tx_len, ipv4_write_complete, ptask ); /* FIXME race? */
spin_lock_irqsave(&priv->lock,flags); spin_lock_irqsave(&dev->lock, flags);
list_add_tail ( &ptask->packet_list, &priv->sent_list ); list_add_tail(&ptask->pt_link, &dev->sent_list);
spin_unlock_irqrestore(&priv->lock,flags); spin_unlock_irqrestore(&dev->lock, flags);
netdev = priv->card->netdev;
netdev->trans_start = jiffies; net = dev->card->netdev;
net->trans_start = jiffies;
return 0; return 0;
} }
static int ipv4_broadcast_start ( struct ipv4_priv *priv ) { static int fwnet_broadcast_start(struct fwnet_device *dev)
{
struct fw_iso_context *context; struct fw_iso_context *context;
int retval; int retval;
unsigned num_packets; unsigned num_packets;
...@@ -1260,150 +1152,151 @@ static int ipv4_broadcast_start ( struct ipv4_priv *priv ) { ...@@ -1260,150 +1152,151 @@ static int ipv4_broadcast_start ( struct ipv4_priv *priv ) {
struct fw_iso_packet packet; struct fw_iso_packet packet;
unsigned long offset; unsigned long offset;
unsigned u; unsigned u;
/* unsigned transmit_speed; */
#if 0 /* stefanr */ if (dev->local_fifo == FWNET_NO_FIFO_ADDR) {
if ( priv->card->broadcast_channel != (BROADCAST_CHANNEL_VALID|BROADCAST_CHANNEL_INITIAL)) { /* outside OHCI posted write area? */
fw_notify ( "Invalid broadcast channel %x\n", priv->card->broadcast_channel ); static const struct fw_address_region region = {
/* FIXME: try again later? */ .start = 0xffff00000000ULL,
/* return -EINVAL; */ .end = CSR_REGISTER_BASE,
} };
#endif
if ( priv->local_fifo == INVALID_FIFO_ADDR ) { dev->handler.length = 4096;
struct fw_address_region region; dev->handler.address_callback = fwnet_receive_packet;
dev->handler.callback_data = dev;
priv->handler.length = FIFO_SIZE;
priv->handler.address_callback = ipv4_receive_packet; retval = fw_core_add_address_handler(&dev->handler, &region);
priv->handler.callback_data = priv; if (retval < 0)
/* FIXME: this is OHCI, but what about others? */
region.start = 0xffff00000000ULL;
region.end = 0xfffffffffffcULL;
retval = fw_core_add_address_handler ( &priv->handler, &region );
if ( retval < 0 )
goto failed_initial; goto failed_initial;
priv->local_fifo = priv->handler.offset;
dev->local_fifo = dev->handler.offset;
} }
/* max_receive = 1U << (dev->card->max_receive + 1);
* FIXME: rawiso limits us to PAGE_SIZE. This only matters if we ever have num_packets = (FWNET_ISO_PAGE_COUNT * PAGE_SIZE) / max_receive;
* a machine with PAGE_SIZE < 4096
*/ if (!dev->broadcast_rcv_context) {
max_receive = 1U << (priv->card->max_receive + 1);
num_packets = ( ipv4_iso_page_count * PAGE_SIZE ) / max_receive;
if ( ! priv->broadcast_rcv_context ) {
void **ptrptr; void **ptrptr;
context = fw_iso_context_create ( priv->card, context = fw_iso_context_create(dev->card,
FW_ISO_CONTEXT_RECEIVE, BROADCAST_CHANNEL, FW_ISO_CONTEXT_RECEIVE, IEEE1394_BROADCAST_CHANNEL,
priv->card->link_speed, 8, ipv4_receive_broadcast, priv ); dev->card->link_speed, 8, fwnet_receive_broadcast, dev);
if (IS_ERR(context)) { if (IS_ERR(context)) {
retval = PTR_ERR(context); retval = PTR_ERR(context);
goto failed_context_create; goto failed_context_create;
} }
retval = fw_iso_buffer_init ( &priv->broadcast_rcv_buffer,
priv->card, ipv4_iso_page_count, DMA_FROM_DEVICE ); retval = fw_iso_buffer_init(&dev->broadcast_rcv_buffer,
if ( retval < 0 ) dev->card, FWNET_ISO_PAGE_COUNT, DMA_FROM_DEVICE);
if (retval < 0)
goto failed_buffer_init; goto failed_buffer_init;
ptrptr = kmalloc ( sizeof(void*)*num_packets, GFP_KERNEL );
if ( ! ptrptr ) { ptrptr = kmalloc(sizeof(void *) * num_packets, GFP_KERNEL);
if (!ptrptr) {
retval = -ENOMEM; retval = -ENOMEM;
goto failed_ptrs_alloc; goto failed_ptrs_alloc;
} }
priv->broadcast_rcv_buffer_ptrs = ptrptr;
for ( u = 0; u < ipv4_iso_page_count; u++ ) { dev->broadcast_rcv_buffer_ptrs = ptrptr;
for (u = 0; u < FWNET_ISO_PAGE_COUNT; u++) {
void *ptr; void *ptr;
unsigned v; unsigned v;
ptr = kmap ( priv->broadcast_rcv_buffer.pages[u] ); ptr = kmap(dev->broadcast_rcv_buffer.pages[u]);
for ( v = 0; v < num_packets / ipv4_iso_page_count; v++ ) for (v = 0; v < num_packets / FWNET_ISO_PAGE_COUNT; v++)
*ptrptr++ = (void *)((char *)ptr + v * max_receive); *ptrptr++ = (void *)
((char *)ptr + v * max_receive);
}
dev->broadcast_rcv_context = context;
} else {
context = dev->broadcast_rcv_context;
} }
priv->broadcast_rcv_context = context;
} else
context = priv->broadcast_rcv_context;
packet.payload_length = max_receive; packet.payload_length = max_receive;
packet.interrupt = 1; packet.interrupt = 1;
packet.skip = 0; packet.skip = 0;
packet.tag = 3; packet.tag = 3;
packet.sy = 0; packet.sy = 0;
packet.header_length = IPV4_GASP_OVERHEAD; packet.header_length = IEEE1394_GASP_HDR_SIZE;
offset = 0; offset = 0;
for ( u = 0; u < num_packets; u++ ) {
retval = fw_iso_context_queue ( context, &packet, for (u = 0; u < num_packets; u++) {
&priv->broadcast_rcv_buffer, offset ); retval = fw_iso_context_queue(context, &packet,
if ( retval < 0 ) &dev->broadcast_rcv_buffer, offset);
if (retval < 0)
goto failed_rcv_queue; goto failed_rcv_queue;
offset += max_receive; offset += max_receive;
} }
priv->num_broadcast_rcv_ptrs = num_packets; dev->num_broadcast_rcv_ptrs = num_packets;
priv->rcv_buffer_size = max_receive; dev->rcv_buffer_size = max_receive;
priv->broadcast_rcv_next_ptr = 0U; dev->broadcast_rcv_next_ptr = 0U;
retval = fw_iso_context_start ( context, -1, 0, FW_ISO_CONTEXT_MATCH_ALL_TAGS ); /* ??? sync */ retval = fw_iso_context_start(context, -1, 0,
if ( retval < 0 ) FW_ISO_CONTEXT_MATCH_ALL_TAGS); /* ??? sync */
if (retval < 0)
goto failed_rcv_queue; goto failed_rcv_queue;
/* FIXME: adjust this when we know the max receive speeds of all other IP nodes on the bus. */
/* since we only xmt at S100 ??? */ /* FIXME: adjust it according to the min. speed of all known peers? */
priv->broadcast_xmt_max_payload = S100_BUFFER_SIZE - IPV4_GASP_OVERHEAD - IPV4_UNFRAG_HDR_SIZE; dev->broadcast_xmt_max_payload = IEEE1394_MAX_PAYLOAD_S100
priv->broadcast_state = IPV4_BROADCAST_RUNNING; - IEEE1394_GASP_HDR_SIZE - RFC2374_UNFRAG_HDR_SIZE;
dev->broadcast_state = FWNET_BROADCAST_RUNNING;
return 0; return 0;
failed_rcv_queue: failed_rcv_queue:
kfree ( priv->broadcast_rcv_buffer_ptrs ); kfree(dev->broadcast_rcv_buffer_ptrs);
priv->broadcast_rcv_buffer_ptrs = NULL; dev->broadcast_rcv_buffer_ptrs = NULL;
failed_ptrs_alloc: failed_ptrs_alloc:
fw_iso_buffer_destroy ( &priv->broadcast_rcv_buffer, priv->card ); fw_iso_buffer_destroy(&dev->broadcast_rcv_buffer, dev->card);
failed_buffer_init: failed_buffer_init:
fw_iso_context_destroy ( context ); fw_iso_context_destroy(context);
priv->broadcast_rcv_context = NULL; dev->broadcast_rcv_context = NULL;
failed_context_create: failed_context_create:
fw_core_remove_address_handler ( &priv->handler ); fw_core_remove_address_handler(&dev->handler);
failed_initial: failed_initial:
priv->local_fifo = INVALID_FIFO_ADDR; dev->local_fifo = FWNET_NO_FIFO_ADDR;
return retval; return retval;
} }
/* This is called after an "ifup" */ /* ifup */
static int ipv4_open(struct net_device *dev) { static int fwnet_open(struct net_device *net)
struct ipv4_priv *priv; {
struct fwnet_device *dev = netdev_priv(net);
int ret; int ret;
priv = netdev_priv(dev); if (dev->broadcast_state == FWNET_BROADCAST_ERROR) {
if (priv->broadcast_state == IPV4_BROADCAST_ERROR) { ret = fwnet_broadcast_start(dev);
ret = ipv4_broadcast_start ( priv );
if (ret) if (ret)
return ret; return ret;
} }
netif_start_queue(dev); netif_start_queue(net);
return 0; return 0;
} }
/* This is called after an "ifdown" */ /* ifdown */
static int ipv4_stop(struct net_device *netdev) static int fwnet_stop(struct net_device *net)
{ {
/* flush priv->wake */ netif_stop_queue(net);
/* flush_scheduled_work(); */
/* Deallocate iso context for use by other applications? */
netif_stop_queue(netdev);
return 0; return 0;
} }
/* Transmit a packet (called by kernel) */ static int fwnet_tx(struct sk_buff *skb, struct net_device *net)
static int ipv4_tx(struct sk_buff *skb, struct net_device *netdev)
{ {
struct ipv4_ether_hdr hdr_buf; struct fwnet_header hdr_buf;
struct ipv4_priv *priv = netdev_priv(netdev); struct fwnet_device *dev = netdev_priv(net);
__be16 proto; __be16 proto;
u16 dest_node; u16 dest_node;
enum ipv4_tx_type tx_type;
unsigned max_payload; unsigned max_payload;
u16 dg_size; u16 dg_size;
u16 *datagram_label_ptr; u16 *datagram_label_ptr;
struct ipv4_packet_task *ptask; struct fwnet_packet_task *ptask;
struct ipv4_node *node = NULL; struct fwnet_peer *peer = NULL;
ptask = kmem_cache_alloc(ipv4_packet_task_cache, GFP_ATOMIC); ptask = kmem_cache_alloc(fwnet_packet_task_cache, GFP_ATOMIC);
if (ptask == NULL) if (ptask == NULL)
goto fail; goto fail;
...@@ -1412,7 +1305,7 @@ static int ipv4_tx(struct sk_buff *skb, struct net_device *netdev) ...@@ -1412,7 +1305,7 @@ static int ipv4_tx(struct sk_buff *skb, struct net_device *netdev)
goto fail; goto fail;
/* /*
* Get rid of the fake ipv4 header, but first make a copy. * Make a copy of the driver-specific header.
* We might need to rebuild the header on tx failure. * We might need to rebuild the header on tx failure.
*/ */
memcpy(&hdr_buf, skb->data, sizeof(hdr_buf)); memcpy(&hdr_buf, skb->data, sizeof(hdr_buf));
...@@ -1425,110 +1318,95 @@ static int ipv4_tx(struct sk_buff *skb, struct net_device *netdev) ...@@ -1425,110 +1318,95 @@ static int ipv4_tx(struct sk_buff *skb, struct net_device *netdev)
* Set the transmission type for the packet. ARP packets and IP * Set the transmission type for the packet. ARP packets and IP
* broadcast packets are sent via GASP. * broadcast packets are sent via GASP.
*/ */
if ( memcmp(hdr_buf.h_dest, netdev->broadcast, IPV4_ALEN) == 0 if (memcmp(hdr_buf.h_dest, net->broadcast, FWNET_ALEN) == 0
|| proto == htons(ETH_P_ARP) || proto == htons(ETH_P_ARP)
|| ( proto == htons(ETH_P_IP) || (proto == htons(ETH_P_IP)
&& IN_MULTICAST(ntohl(ip_hdr(skb)->daddr)) ) ) { && IN_MULTICAST(ntohl(ip_hdr(skb)->daddr)))) {
/* fw_debug ( "transmitting arp or multicast packet\n" );*/ max_payload = dev->broadcast_xmt_max_payload;
tx_type = IPV4_GASP; datagram_label_ptr = &dev->broadcast_xmt_datagramlabel;
dest_node = ALL_NODES;
max_payload = priv->broadcast_xmt_max_payload; ptask->fifo_addr = FWNET_NO_FIFO_ADDR;
/* BUG_ON(max_payload < S100_BUFFER_SIZE - IPV4_GASP_OVERHEAD); */ ptask->generation = 0;
datagram_label_ptr = &priv->broadcast_xmt_datagramlabel; ptask->dest_node = IEEE1394_ALL_NODES;
ptask->fifo_addr = INVALID_FIFO_ADDR; ptask->speed = SCODE_100;
ptask->generation = 0U;
ptask->dest_node = 0U;
ptask->speed = 0;
} else { } else {
__be64 guid = get_unaligned((u64 *)hdr_buf.h_dest); __be64 guid = get_unaligned((__be64 *)hdr_buf.h_dest);
u8 generation; u8 generation;
node = ipv4_node_find_by_guid(priv, be64_to_cpu(guid)); peer = fwnet_peer_find_by_guid(dev, be64_to_cpu(guid));
if (!node) { if (!peer)
fw_debug ( "Normal packet but no node\n" );
goto fail; goto fail;
}
if (node->fifo == INVALID_FIFO_ADDR) { if (peer->fifo == FWNET_NO_FIFO_ADDR)
fw_debug ( "Normal packet but no fifo addr\n" );
goto fail; goto fail;
}
/* fw_debug ( "Transmitting normal packet to %x at %llxx\n", node->nodeid, node->fifo ); */ generation = peer->generation;
generation = node->generation; smp_rmb();
dest_node = node->nodeid; dest_node = peer->node_id;
max_payload = node->max_payload;
/* BUG_ON(max_payload < S100_BUFFER_SIZE - IPV4_FRAG_HDR_SIZE); */ max_payload = peer->max_payload;
datagram_label_ptr = &peer->datagram_label;
datagram_label_ptr = &node->datagram_label; ptask->fifo_addr = peer->fifo;
tx_type = IPV4_WRREQ;
ptask->fifo_addr = node->fifo;
ptask->generation = generation; ptask->generation = generation;
ptask->dest_node = dest_node; ptask->dest_node = dest_node;
ptask->speed = node->xmt_speed; ptask->speed = peer->xmt_speed;
} }
/* If this is an ARP packet, convert it */ /* If this is an ARP packet, convert it */
if (proto == htons(ETH_P_ARP)) { if (proto == htons(ETH_P_ARP)) {
/* Convert a standard ARP packet to 1394 ARP. The first 8 bytes (the entire
* arphdr) is the same format as the ip1394 header, so they overlap. The rest
* needs to be munged a bit. The remainder of the arphdr is formatted based
* on hwaddr len and ipaddr len. We know what they'll be, so it's easy to
* judge.
*
* Now that the EUI is used for the hardware address all we need to do to make
* this work for 1394 is to insert 2 quadlets that contain max_rec size,
* speed, and unicast FIFO address information between the sender_unique_id
* and the IP addresses.
*/
struct arphdr *arp = (struct arphdr *)skb->data; struct arphdr *arp = (struct arphdr *)skb->data;
unsigned char *arp_ptr = (unsigned char *)(arp + 1); unsigned char *arp_ptr = (unsigned char *)(arp + 1);
struct ipv4_arp *arp1394 = (struct ipv4_arp *)skb->data; struct rfc2734_arp *arp1394 = (struct rfc2734_arp *)skb->data;
u32 ipaddr; __be32 ipaddr;
ipaddr = *(u32*)(arp_ptr + IPV4_ALEN); ipaddr = get_unaligned((__be32 *)(arp_ptr + FWNET_ALEN));
arp1394->hw_addr_len = 16;
arp1394->max_rec = priv->card->max_receive; arp1394->hw_addr_len = RFC2734_HW_ADDR_LEN;
arp1394->sspd = priv->card->link_speed; arp1394->max_rec = dev->card->max_receive;
arp1394->fifo_hi = htons(priv->local_fifo >> 32); arp1394->sspd = dev->card->link_speed;
arp1394->fifo_lo = htonl(priv->local_fifo & 0xFFFFFFFF);
arp1394->sip = ipaddr; put_unaligned_be16(dev->local_fifo >> 32,
&arp1394->fifo_hi);
put_unaligned_be32(dev->local_fifo & 0xffffffff,
&arp1394->fifo_lo);
put_unaligned(ipaddr, &arp1394->sip);
} }
if ( ipv4_max_xmt && max_payload > ipv4_max_xmt )
max_payload = ipv4_max_xmt;
ptask->hdr.w0 = 0; ptask->hdr.w0 = 0;
ptask->hdr.w1 = 0; ptask->hdr.w1 = 0;
ptask->skb = skb; ptask->skb = skb;
ptask->priv = priv; ptask->dev = dev;
ptask->tx_type = tx_type;
/* Does it all fit in one packet? */ /* Does it all fit in one packet? */
if ( dg_size <= max_payload ) { if (dg_size <= max_payload) {
ipv4_make_uf_hdr(&ptask->hdr, be16_to_cpu(proto)); fwnet_make_uf_hdr(&ptask->hdr, ntohs(proto));
ptask->outstanding_pkts = 1; ptask->outstanding_pkts = 1;
max_payload = dg_size + IPV4_UNFRAG_HDR_SIZE; max_payload = dg_size + RFC2374_UNFRAG_HDR_SIZE;
} else { } else {
u16 datagram_label; u16 datagram_label;
max_payload -= IPV4_FRAG_OVERHEAD; max_payload -= RFC2374_FRAG_OVERHEAD;
datagram_label = (*datagram_label_ptr)++; datagram_label = (*datagram_label_ptr)++;
ipv4_make_ff_hdr(&ptask->hdr, be16_to_cpu(proto), dg_size, datagram_label ); fwnet_make_ff_hdr(&ptask->hdr, ntohs(proto), dg_size,
datagram_label);
ptask->outstanding_pkts = DIV_ROUND_UP(dg_size, max_payload); ptask->outstanding_pkts = DIV_ROUND_UP(dg_size, max_payload);
max_payload += IPV4_FRAG_HDR_SIZE; max_payload += RFC2374_FRAG_HDR_SIZE;
} }
ptask->max_payload = max_payload; ptask->max_payload = max_payload;
ipv4_send_packet ( ptask ); fwnet_send_packet(ptask);
return NETDEV_TX_OK; return NETDEV_TX_OK;
fail: fail:
if (ptask) if (ptask)
kmem_cache_free(ipv4_packet_task_cache, ptask); kmem_cache_free(fwnet_packet_task_cache, ptask);
if (skb != NULL) if (skb != NULL)
dev_kfree_skb(skb); dev_kfree_skb(skb);
netdev->stats.tx_dropped++; net->stats.tx_dropped++;
netdev->stats.tx_errors++; net->stats.tx_errors++;
/* /*
* FIXME: According to a patch from 2003-02-26, "returning non-zero * FIXME: According to a patch from 2003-02-26, "returning non-zero
...@@ -1540,280 +1418,291 @@ static int ipv4_tx(struct sk_buff *skb, struct net_device *netdev) ...@@ -1540,280 +1418,291 @@ static int ipv4_tx(struct sk_buff *skb, struct net_device *netdev)
return NETDEV_TX_OK; return NETDEV_TX_OK;
} }
/* static void fwnet_tx_timeout(struct net_device *net)
* FIXME: What to do if we timeout? I think a host reset is probably in order, {
* so that's what we do. Should we increment the stat counters too? fw_error("%s: timeout\n", net->name);
*/
static void ipv4_tx_timeout(struct net_device *dev) {
struct ipv4_priv *priv;
priv = netdev_priv(dev); /* FIXME: What to do if we timeout? */
fw_error ( "%s: Timeout, resetting host\n", dev->name );
#if 0 /* stefanr */
fw_core_initiate_bus_reset ( priv->card, 1 );
#endif
} }
static int ipv4_change_mtu ( struct net_device *dev, int new_mtu ) { static int fwnet_change_mtu(struct net_device *net, int new_mtu)
#if 0 {
int max_mtu;
struct ipv4_priv *priv;
#endif
if (new_mtu < 68) if (new_mtu < 68)
return -EINVAL; return -EINVAL;
#if 0 net->mtu = new_mtu;
priv = netdev_priv(dev);
/* This is not actually true because we can fragment packets at the firewire layer */
max_mtu = (1 << (priv->card->max_receive + 1))
- sizeof(struct ipv4_hdr) - IPV4_GASP_OVERHEAD;
if (new_mtu > max_mtu) {
fw_notify ( "%s: Local node constrains MTU to %d\n", dev->name, max_mtu);
return -ERANGE;
}
#endif
dev->mtu = new_mtu;
return 0; return 0;
} }
static void ipv4_get_drvinfo(struct net_device *dev, static void fwnet_get_drvinfo(struct net_device *net,
struct ethtool_drvinfo *info) { struct ethtool_drvinfo *info)
strcpy(info->driver, ipv4_driver_name); {
strcpy(info->bus_info, "ieee1394"); /* FIXME provide more detail? */ strcpy(info->driver, KBUILD_MODNAME);
strcpy(info->bus_info, "ieee1394");
} }
static struct ethtool_ops ipv4_ethtool_ops = { static struct ethtool_ops fwnet_ethtool_ops = {
.get_drvinfo = ipv4_get_drvinfo, .get_drvinfo = fwnet_get_drvinfo,
}; };
static const struct net_device_ops ipv4_netdev_ops = { static const struct net_device_ops fwnet_netdev_ops = {
.ndo_open = ipv4_open, .ndo_open = fwnet_open,
.ndo_stop = ipv4_stop, .ndo_stop = fwnet_stop,
.ndo_start_xmit = ipv4_tx, .ndo_start_xmit = fwnet_tx,
.ndo_tx_timeout = ipv4_tx_timeout, .ndo_tx_timeout = fwnet_tx_timeout,
.ndo_change_mtu = ipv4_change_mtu, .ndo_change_mtu = fwnet_change_mtu,
}; };
static void ipv4_init_dev ( struct net_device *dev ) { static void fwnet_init_dev(struct net_device *net)
dev->header_ops = &ipv4_header_ops; {
dev->netdev_ops = &ipv4_netdev_ops; net->header_ops = &fwnet_header_ops;
SET_ETHTOOL_OPS(dev, &ipv4_ethtool_ops); net->netdev_ops = &fwnet_netdev_ops;
net->watchdog_timeo = 100000; /* ? FIXME */
dev->watchdog_timeo = IPV4_TIMEOUT; net->flags = IFF_BROADCAST | IFF_MULTICAST;
dev->flags = IFF_BROADCAST | IFF_MULTICAST; net->features = NETIF_F_HIGHDMA;
dev->features = NETIF_F_HIGHDMA; net->addr_len = FWNET_ALEN;
dev->addr_len = IPV4_ALEN; net->hard_header_len = FWNET_HLEN;
dev->hard_header_len = IPV4_HLEN; net->type = ARPHRD_IEEE1394;
dev->type = ARPHRD_IEEE1394; net->tx_queue_len = 1000; /* ? FIXME */
SET_ETHTOOL_OPS(net, &fwnet_ethtool_ops);
/* FIXME: This value was copied from ether_setup(). Is it too much? */
dev->tx_queue_len = 1000;
} }
static int ipv4_probe ( struct device *dev ) { /* FIXME create netdev upon first fw_unit of a card, not upon local fw_unit */
struct fw_unit * unit; static int fwnet_probe(struct device *_dev)
struct fw_device *device; {
struct fw_card *card; struct fw_unit *unit = fw_unit(_dev);
struct net_device *netdev; struct fw_device *device = fw_parent_device(unit);
struct ipv4_priv *priv; struct fw_card *card = device->card;
struct net_device *net;
struct fwnet_device *dev;
unsigned max_mtu; unsigned max_mtu;
__be64 guid;
fw_debug("ipv4 Probing\n" ); if (!device->is_local) {
unit = fw_unit ( dev );
device = fw_device ( unit->device.parent );
card = device->card;
if ( ! device->is_local ) {
int added; int added;
fw_debug ( "Non-local, adding remote node entry\n" ); added = fwnet_peer_new(card, device);
added = ipv4_node_new ( card, device );
return added; return added;
} }
fw_debug("ipv4 Local: adding netdev\n" ); net = alloc_netdev(sizeof(*dev), "firewire%d", fwnet_init_dev);
netdev = alloc_netdev ( sizeof(*priv), "firewire%d", ipv4_init_dev ); if (net == NULL) {
if ( netdev == NULL) { fw_error("out of memory\n");
fw_error( "Out of memory\n");
goto out; goto out;
} }
SET_NETDEV_DEV(netdev, card->device); SET_NETDEV_DEV(net, card->device);
priv = netdev_priv(netdev); dev = netdev_priv(net);
spin_lock_init(&priv->lock); spin_lock_init(&dev->lock);
priv->broadcast_state = IPV4_BROADCAST_ERROR; dev->broadcast_state = FWNET_BROADCAST_ERROR;
priv->broadcast_rcv_context = NULL; dev->broadcast_rcv_context = NULL;
priv->broadcast_xmt_max_payload = 0; dev->broadcast_xmt_max_payload = 0;
priv->broadcast_xmt_datagramlabel = 0; dev->broadcast_xmt_datagramlabel = 0;
priv->local_fifo = INVALID_FIFO_ADDR; dev->local_fifo = FWNET_NO_FIFO_ADDR;
/* INIT_WORK(&priv->wake, ipv4_handle_queue);*/ /* INIT_WORK(&dev->wake, fwnet_handle_queue);*/
INIT_LIST_HEAD(&priv->packet_list); INIT_LIST_HEAD(&dev->packet_list);
INIT_LIST_HEAD(&priv->broadcasted_list); INIT_LIST_HEAD(&dev->broadcasted_list);
INIT_LIST_HEAD(&priv->sent_list ); INIT_LIST_HEAD(&dev->sent_list);
priv->card = card; dev->card = card;
/* /*
* Use the RFC 2734 default 1500 octets or the maximum payload * Use the RFC 2734 default 1500 octets or the maximum payload
* as initial MTU * as initial MTU
*/ */
max_mtu = (1 << (card->max_receive + 1)) max_mtu = (1 << (card->max_receive + 1))
- sizeof(struct ipv4_hdr) - IPV4_GASP_OVERHEAD; - sizeof(struct rfc2734_header) - IEEE1394_GASP_HDR_SIZE;
netdev->mtu = min(1500U, max_mtu); net->mtu = min(1500U, max_mtu);
/* Set our hardware address while we're at it */ /* Set our hardware address while we're at it */
guid = cpu_to_be64(card->guid); put_unaligned_be64(card->guid, net->dev_addr);
memcpy(netdev->dev_addr, &guid, sizeof(u64)); put_unaligned_be64(~0ULL, net->broadcast);
memset(netdev->broadcast, 0xff, sizeof(u64)); if (register_netdev(net)) {
if ( register_netdev ( netdev ) ) { fw_error("Cannot register the driver\n");
fw_error ( "Cannot register the driver\n");
goto out; goto out;
} }
fw_notify ( "%s: IPv4 over Firewire on device %016llx\n", fw_notify("%s: IPv4 over FireWire on device %016llx\n",
netdev->name, card->guid ); net->name, (unsigned long long)card->guid);
card->netdev = netdev; card->netdev = net;
return 0 /* ipv4_new_node ( ud ) */; return 0;
out: out:
if ( netdev ) if (net)
free_netdev ( netdev ); free_netdev(net);
return -ENOENT; return -ENOENT;
} }
static int fwnet_remove(struct device *_dev)
{
struct fw_unit *unit = fw_unit(_dev);
struct fw_device *device = fw_parent_device(unit);
struct fw_card *card = device->card;
struct net_device *net;
struct fwnet_device *dev;
struct fwnet_peer *peer;
struct fwnet_partial_datagram *pd, *pd_next;
struct fwnet_packet_task *ptask, *pt_next;
if (!device->is_local) {
fwnet_peer_delete(card, device);
static int ipv4_remove ( struct device *dev ) {
struct fw_unit * unit;
struct fw_device *device;
struct fw_card *card;
struct net_device *netdev;
struct ipv4_priv *priv;
struct ipv4_node *node;
struct ipv4_partial_datagram *pd, *pd_next;
struct ipv4_packet_task *ptask, *pt_next;
fw_debug("ipv4 Removing\n" );
unit = fw_unit ( dev );
device = fw_device ( unit->device.parent );
card = device->card;
if ( ! device->is_local ) {
fw_debug ( "Node %x is non-local, removing remote node entry\n", device->node_id );
ipv4_node_delete ( card, device );
return 0; return 0;
} }
netdev = card->netdev;
if ( netdev ) { net = card->netdev;
fw_debug ( "Node %x is local: deleting netdev\n", device->node_id ); if (net) {
priv = netdev_priv ( netdev ); dev = netdev_priv(net);
unregister_netdev ( netdev ); unregister_netdev(net);
fw_debug ( "unregistered\n" );
if ( priv->local_fifo != INVALID_FIFO_ADDR ) if (dev->local_fifo != FWNET_NO_FIFO_ADDR)
fw_core_remove_address_handler ( &priv->handler ); fw_core_remove_address_handler(&dev->handler);
fw_debug ( "address handler gone\n" ); if (dev->broadcast_rcv_context) {
if ( priv->broadcast_rcv_context ) { fw_iso_context_stop(dev->broadcast_rcv_context);
fw_iso_context_stop ( priv->broadcast_rcv_context ); fw_iso_buffer_destroy(&dev->broadcast_rcv_buffer,
fw_iso_buffer_destroy ( &priv->broadcast_rcv_buffer, priv->card ); dev->card);
fw_iso_context_destroy ( priv->broadcast_rcv_context ); fw_iso_context_destroy(dev->broadcast_rcv_context);
fw_debug ( "rcv stopped\n" ); }
} list_for_each_entry_safe(ptask, pt_next,
list_for_each_entry_safe( ptask, pt_next, &priv->packet_list, packet_list ) { &dev->packet_list, pt_link) {
dev_kfree_skb_any ( ptask->skb ); dev_kfree_skb_any(ptask->skb);
kmem_cache_free( ipv4_packet_task_cache, ptask ); kmem_cache_free(fwnet_packet_task_cache, ptask);
} }
list_for_each_entry_safe( ptask, pt_next, &priv->broadcasted_list, packet_list ) { list_for_each_entry_safe(ptask, pt_next,
dev_kfree_skb_any ( ptask->skb ); &dev->broadcasted_list, pt_link) {
kmem_cache_free( ipv4_packet_task_cache, ptask ); dev_kfree_skb_any(ptask->skb);
} kmem_cache_free(fwnet_packet_task_cache, ptask);
list_for_each_entry_safe( ptask, pt_next, &priv->sent_list, packet_list ) { }
dev_kfree_skb_any ( ptask->skb ); list_for_each_entry_safe(ptask, pt_next,
kmem_cache_free( ipv4_packet_task_cache, ptask ); &dev->sent_list, pt_link) {
} dev_kfree_skb_any(ptask->skb);
fw_debug ( "lists emptied\n" ); kmem_cache_free(fwnet_packet_task_cache, ptask);
list_for_each_entry( node, &card->ipv4_nodes, ipv4_nodes ) { }
if ( node->pdg_size ) { list_for_each_entry(peer, &card->peer_list, peer_link) {
list_for_each_entry_safe( pd, pd_next, &node->pdg_list, pdg_list ) if (peer->pdg_size) {
ipv4_pd_delete ( pd ); list_for_each_entry_safe(pd, pd_next,
node->pdg_size = 0; &peer->pd_list, pd_link)
} fwnet_pd_delete(pd);
node->fifo = INVALID_FIFO_ADDR; peer->pdg_size = 0;
} }
fw_debug ( "nodes cleaned up\n" ); peer->fifo = FWNET_NO_FIFO_ADDR;
free_netdev ( netdev ); }
free_netdev(net);
card->netdev = NULL; card->netdev = NULL;
fw_debug ( "done\n" );
} }
return 0; return 0;
} }
static void ipv4_update ( struct fw_unit *unit ) { /*
struct fw_device *device; * FIXME abort partially sent fragmented datagrams,
struct fw_card *card; * discard partially received fragmented datagrams
*/
fw_debug ( "ipv4_update unit %p\n", unit ); static void fwnet_update(struct fw_unit *unit)
device = fw_device ( unit->device.parent ); {
card = device->card; struct fw_device *device = fw_parent_device(unit);
if ( ! device->is_local ) { struct net_device *net = device->card->netdev;
struct ipv4_node *node; struct fwnet_device *dev;
struct fwnet_peer *peer;
u64 guid; u64 guid;
struct net_device *netdev;
struct ipv4_priv *priv;
netdev = card->netdev; if (net && !device->is_local) {
if ( netdev ) { dev = netdev_priv(net);
priv = netdev_priv ( netdev );
guid = (u64)device->config_rom[3] << 32 | device->config_rom[4]; guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
node = ipv4_node_find_by_guid ( priv, guid ); peer = fwnet_peer_find_by_guid(dev, guid);
if ( ! node ) { if (!peer) {
fw_error ( "ipv4_update: no node for device %llx\n", guid ); fw_error("fwnet_update: no peer for device %016llx\n",
(unsigned long long)guid);
return; return;
} }
fw_debug ( "Non-local, updating remote node entry for guid %llx old generation %x, old nodeid %x\n", guid, node->generation, node->nodeid ); peer->generation = device->generation;
node->generation = device->generation;
rmb(); rmb();
node->nodeid = device->node_id; peer->node_id = device->node_id;
fw_debug ( "New generation %x, new nodeid %x\n", node->generation, node->nodeid );
} else
fw_error ( "nonlocal, but no netdev? How can that be?\n" );
} else {
/* FIXME: What do we need to do on bus reset? */
fw_debug ( "Local, doing nothing\n" );
} }
} }
static struct fw_driver ipv4_driver = { static const struct ieee1394_device_id fwnet_id_table[] = {
{
.match_flags = IEEE1394_MATCH_SPECIFIER_ID |
IEEE1394_MATCH_VERSION,
.specifier_id = IANA_SPECIFIER_ID,
.version = RFC2734_SW_VERSION,
},
{ }
};
static struct fw_driver fwnet_driver = {
.driver = { .driver = {
.owner = THIS_MODULE, .owner = THIS_MODULE,
.name = ipv4_driver_name, .name = "net",
.bus = &fw_bus_type, .bus = &fw_bus_type,
.probe = ipv4_probe, .probe = fwnet_probe,
.remove = ipv4_remove, .remove = fwnet_remove,
}, },
.update = ipv4_update, .update = fwnet_update,
.id_table = ipv4_id_table, .id_table = fwnet_id_table,
}; };
static int __init ipv4_init ( void ) { static const u32 rfc2374_unit_directory_data[] = {
int added; 0x00040000, /* directory_length */
0x1200005e, /* unit_specifier_id: IANA */
0x81000003, /* textual descriptor offset */
0x13000001, /* unit_sw_version: RFC 2734 */
0x81000005, /* textual descriptor offset */
0x00030000, /* descriptor_length */
0x00000000, /* text */
0x00000000, /* minimal ASCII, en */
0x49414e41, /* I A N A */
0x00030000, /* descriptor_length */
0x00000000, /* text */
0x00000000, /* minimal ASCII, en */
0x49507634, /* I P v 4 */
};
static struct fw_descriptor rfc2374_unit_directory = {
.length = ARRAY_SIZE(rfc2374_unit_directory_data),
.key = (CSR_DIRECTORY | CSR_UNIT) << 24,
.data = rfc2374_unit_directory_data
};
added = fw_core_add_descriptor ( &ipv4_unit_directory ); static int __init fwnet_init(void)
if ( added < 0 ) {
fw_error ( "Failed to add descriptor" ); int err;
ipv4_packet_task_cache = kmem_cache_create("packet_task",
sizeof(struct ipv4_packet_task), 0, 0, NULL); err = fw_core_add_descriptor(&rfc2374_unit_directory);
fw_debug("Adding ipv4 module\n" ); if (err)
return driver_register ( &ipv4_driver.driver ); return err;
fwnet_packet_task_cache = kmem_cache_create("packet_task",
sizeof(struct fwnet_packet_task), 0, 0, NULL);
if (!fwnet_packet_task_cache) {
err = -ENOMEM;
goto out;
}
err = driver_register(&fwnet_driver.driver);
if (!err)
return 0;
kmem_cache_destroy(fwnet_packet_task_cache);
out:
fw_core_remove_descriptor(&rfc2374_unit_directory);
return err;
} }
module_init(fwnet_init);
static void __exit ipv4_cleanup ( void ) { static void __exit fwnet_cleanup(void)
fw_core_remove_descriptor ( &ipv4_unit_directory ); {
fw_debug("Removing ipv4 module\n" ); driver_unregister(&fwnet_driver.driver);
driver_unregister ( &ipv4_driver.driver ); kmem_cache_destroy(fwnet_packet_task_cache);
fw_core_remove_descriptor(&rfc2374_unit_directory);
} }
module_exit(fwnet_cleanup);
module_init(ipv4_init); MODULE_AUTHOR("Jay Fenlason <fenlason@redhat.com>");
module_exit(ipv4_cleanup); MODULE_DESCRIPTION("IPv4 over IEEE1394 as per RFC 2734");
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(ieee1394, fwnet_id_table);
...@@ -131,13 +131,10 @@ struct fw_card { ...@@ -131,13 +131,10 @@ struct fw_card {
bool broadcast_channel_allocated; bool broadcast_channel_allocated;
u32 broadcast_channel; u32 broadcast_channel;
u32 topology_map[(CSR_TOPOLOGY_MAP_END - CSR_TOPOLOGY_MAP) / 4]; u32 topology_map[(CSR_TOPOLOGY_MAP_END - CSR_TOPOLOGY_MAP) / 4];
/* Only non-NULL if firewire-ipv4 is active on this card. */
/* firewire-net driver data */
void *netdev; void *netdev;
/* struct list_head peer_list;
* The nodes get probed before the card, so we need a place to store
* them independent of card->netdev
*/
struct list_head ipv4_nodes;
}; };
static inline struct fw_card *fw_card_get(struct fw_card *card) static inline struct fw_card *fw_card_get(struct fw_card *card)
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment