Commit df188ce4 authored by Tony Lindgren's avatar Tony Lindgren

i2c: Merge omap i2c drivers from omap-historic

Merge omap i2c drivers from omap-historic
Signed-off-by: default avatarTony Lindgren <tony@atomide.com>
parent b382f39b
......@@ -6,6 +6,7 @@ menu "I2C support"
config I2C
tristate "I2C support"
default y if MACH_OMAP_H3 || MACH_OMAP_OSK
---help---
I2C (pronounce: I-square-C) is a slow serial bus protocol used in
many micro controller applications and developed by Philips. SMBus,
......
......@@ -48,6 +48,7 @@ obj-$(CONFIG_I2C_VIAPRO) += i2c-viapro.o
obj-$(CONFIG_I2C_VOODOO3) += i2c-voodoo3.o
obj-$(CONFIG_SCx200_ACB) += scx200_acb.o
obj-$(CONFIG_SCx200_I2C) += scx200_i2c.o
obj-$(CONFIG_I2C_OMAP) += i2c-omap.o
ifeq ($(CONFIG_I2C_DEBUG_BUS),y)
EXTRA_CFLAGS += -DDEBUG
......
......@@ -36,6 +36,10 @@
#include <asm/io.h>
/* Hack to enable zero length transfers and smbus quick until clean fix
is available */
#define OMAP_HACK
/* timeout waiting for the controller to respond */
#define OMAP_I2C_TIMEOUT (msecs_to_jiffies(1000))
......@@ -285,12 +289,16 @@ static int omap_i2c_xfer_msg(struct i2c_adapter *adap,
struct i2c_msg *msg, int stop)
{
struct omap_i2c_dev *dev = i2c_get_adapdata(adap);
#ifdef OMAP_HACK
u8 zero_byte = 0;
#endif
int r;
u16 w;
dev_dbg(dev->dev, "addr: 0x%04x, len: %d, flags: 0x%x, stop: %d\n",
msg->addr, msg->len, msg->flags, stop);
#ifndef OMAP_HACK
if (msg->len == 0)
return -EINVAL;
......@@ -300,6 +308,27 @@ static int omap_i2c_xfer_msg(struct i2c_adapter *adap,
dev->buf = msg->buf;
dev->buf_len = msg->len;
#else
omap_i2c_write_reg(dev, OMAP_I2C_SA_REG, msg->addr);
/* REVISIT: Remove this hack when we can get I2C chips from board-*.c
* files
* Sigh, seems we can't do zero length transactions. Thus, we
* can't probe for devices w/o actually sending/receiving at least
* a single byte. So we'll set count to 1 for the zero length
* transaction case and hope we don't cause grief for some
* arbitrary device due to random byte write/read during
* probes.
*/
if (msg->len == 0) {
dev->buf = &zero_byte;
dev->buf_len = 1;
} else {
dev->buf = msg->buf;
dev->buf_len = msg->len;
}
#endif
omap_i2c_write_reg(dev, OMAP_I2C_CNT_REG, dev->buf_len);
init_completion(&dev->cmd_complete);
......@@ -314,8 +343,8 @@ static int omap_i2c_xfer_msg(struct i2c_adapter *adap,
w |= OMAP_I2C_CON_STP;
omap_i2c_write_reg(dev, OMAP_I2C_CON_REG, w);
r = wait_for_completion_interruptible_timeout(&dev->cmd_complete,
OMAP_I2C_TIMEOUT);
r = wait_for_completion_timeout(&dev->cmd_complete,
OMAP_I2C_TIMEOUT);
dev->buf_len = 0;
if (r < 0)
return r;
......@@ -383,7 +412,11 @@ out:
static u32
omap_i2c_func(struct i2c_adapter *adap)
{
#ifndef OMAP_HACK
return I2C_FUNC_I2C | (I2C_FUNC_SMBUS_EMUL & ~I2C_FUNC_SMBUS_QUICK);
#else
return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
#endif
}
static inline void
......@@ -478,9 +511,14 @@ omap_i2c_isr(int this_irq, void *dev_id)
if (dev->buf_len) {
*dev->buf++ = w;
dev->buf_len--;
if (dev->buf_len) {
*dev->buf++ = w >> 8;
dev->buf_len--;
/*
* Data reg in 2430 is 8 bit wide,
*/
if (!cpu_is_omap2430()) {
if (dev->buf_len) {
*dev->buf++ = w >> 8;
dev->buf_len--;
}
}
} else
dev_err(dev->dev, "RRDY IRQ while no data"
......@@ -493,9 +531,14 @@ omap_i2c_isr(int this_irq, void *dev_id)
if (dev->buf_len) {
w = *dev->buf++;
dev->buf_len--;
if (dev->buf_len) {
w |= *dev->buf++ << 8;
dev->buf_len--;
/*
* Data reg in 2430 is 8 bit wide,
*/
if (!cpu_is_omap2430()) {
if (dev->buf_len) {
w |= *dev->buf++ << 8;
dev->buf_len--;
}
}
} else
dev_err(dev->dev, "XRDY IRQ while no"
......
......@@ -101,6 +101,32 @@ config TPS65010
This driver can also be built as a module. If so, the module
will be called tps65010.
config SENSORS_TLV320AIC23
tristate "Texas Instruments TLV320AIC23 Codec"
depends on I2C && I2C_OMAP
help
If you say yes here you get support for the I2C control
interface for Texas Instruments TLV320AIC23 audio codec.
config GPIOEXPANDER_OMAP
bool "GPIO Expander PCF8574PWR for OMAP"
depends on I2C && (ARCH_OMAP16XX || ARCH_OMAP24XX)
help
If you say yes here you get support for I/O expander calls
to configure IrDA, Camera and audio devices.
config MENELAUS
bool "Menelaus PM chip"
depends on I2C=y && ARCH_OMAP24XX
help
Say yes here if you have Menelaus chip on your board
config TWL4030_CORE
bool "TI's TWL4030 companion chip Core Driver Support"
depends on I2C=y && ARCH_OMAP24XX
help
Say yes here if you have TWL4030 chip on your board
config SENSORS_M41T00
tristate "ST M41T00 RTC chip"
depends on I2C && PPC32
......
......@@ -12,6 +12,11 @@ obj-$(CONFIG_SENSORS_PCF8574) += pcf8574.o
obj-$(CONFIG_SENSORS_PCF8591) += pcf8591.o
obj-$(CONFIG_ISP1301_OMAP) += isp1301_omap.o
obj-$(CONFIG_TPS65010) += tps65010.o
obj-$(CONFIG_SENSORS_TLV320AIC23) += tlv320aic23.o
obj-$(CONFIG_GPIOEXPANDER_OMAP) += gpio_expander_omap.o
obj-$(CONFIG_MENELAUS) += menelaus.o
obj-$(CONFIG_TWL4030_CORE) += twl4030_core.o
obj-$(CONFIG_RTC_X1205_I2C) += x1205.o
ifeq ($(CONFIG_I2C_DEBUG_CHIP),y)
EXTRA_CFLAGS += -DDEBUG
......
/*
* drivers/i2c/chips/gpio_expander_omap.c
*
* Copyright (C) 2004 Texas Instruments Inc
* Author:
*
* gpio expander is used to configure IrDA, camera and audio devices on omap 1710 processor.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
*/
#include <linux/types.h>
#include <linux/i2c.h>
#include <linux/errno.h>
int read_gpio_expa(u8 * val, int addr);
int write_gpio_expa(u8 val, int addr);
int write_gpio_expa(u8 val, int addr)
{
struct i2c_adapter *adap;
int err;
struct i2c_msg msg[1];
unsigned char data[1];
adap = i2c_get_adapter(0);
if (!adap)
return -ENODEV;
msg->addr = addr; /* I2C address of GPIO EXPA */
msg->flags = 0;
msg->len = 1;
msg->buf = data;
data[0] = val;
err = i2c_transfer(adap, msg, 1);
if (err >= 0)
return 0;
return err;
}
/* Read from I/O EXPANDER on the H3 board.
* The IO expanders need an independent I2C client driver.
*/
int read_gpio_expa(u8 * val, int addr)
{
struct i2c_adapter *adap;
int err;
struct i2c_msg msg[1];
unsigned char data[1];
adap = i2c_get_adapter(0);
if (!adap)
return -ENODEV;
msg->addr = addr; /* I2C address of GPIO EXPA */
msg->flags = I2C_M_RD;
msg->len = 2;
msg->buf = data;
err = i2c_transfer(adap, msg, 1);
*val = data[0];
if (err >= 0)
return 0;
return err;
}
EXPORT_SYMBOL(read_gpio_expa);
EXPORT_SYMBOL(write_gpio_expa);
......@@ -35,7 +35,11 @@
#include <linux/workqueue.h>
#include <asm/irq.h>
#include <asm/mach-types.h>
#include <asm/arch/gpio.h>
#include <asm/arch/usb.h>
#include <asm/arch/mux.h>
#ifndef DEBUG
......@@ -44,7 +48,7 @@
#define DRIVER_VERSION "24 August 2004"
#define DRIVER_NAME (isp1301_driver.name)
#define DRIVER_NAME (isp1301_driver.driver.name)
MODULE_DESCRIPTION("ISP1301 USB OTG Transceiver Driver");
MODULE_LICENSE("GPL");
......@@ -55,6 +59,7 @@ struct isp1301 {
void (*i2c_release)(struct device *dev);
int irq;
int irq_type;
u32 last_otg_ctrl;
unsigned working:1;
......@@ -63,7 +68,7 @@ struct isp1301 {
/* use keventd context to change the state for us */
struct work_struct work;
unsigned long todo;
# define WORK_UPDATE_ISP 0 /* update ISP from OTG */
# define WORK_UPDATE_OTG 1 /* update OTG from ISP */
......@@ -90,14 +95,11 @@ struct isp1301 {
/*-------------------------------------------------------------------------*/
#ifdef CONFIG_MACH_OMAP_H2
#if defined(CONFIG_MACH_OMAP_H2) || \
defined(CONFIG_MACH_OMAP_H3)
/* board-specific PM hooks */
#include <asm/arch/gpio.h>
#include <asm/arch/mux.h>
#include <asm/mach-types.h>
#if defined(CONFIG_TPS65010) || defined(CONFIG_TPS65010_MODULE)
......@@ -128,17 +130,30 @@ static void enable_vbus_source(struct isp1301 *isp)
}
/* products will deliver OTG messages with LEDs, GUI, etc */
static inline void notresponding(struct isp1301 *isp)
#else
static void enable_vbus_draw(struct isp1301 *isp, unsigned mA)
{
printk(KERN_NOTICE "OTG device not responding.\n");
pr_debug("%s UNIMPL\n", __FUNCTION__);
}
static void enable_vbus_source(struct isp1301 *isp)
{
pr_debug("%s UNIMPL\n", __FUNCTION__);
}
#endif
/*-------------------------------------------------------------------------*/
/* products will deliver OTG messages with LEDs, GUI, etc */
static inline void notresponding(struct isp1301 *isp)
{
printk(KERN_NOTICE "OTG device not responding.\n");
}
/*-------------------------------------------------------------------------*/
/* only two addresses possible */
#define ISP_BASE 0x2c
static unsigned short normal_i2c[] = {
......@@ -291,7 +306,7 @@ static void power_up(struct isp1301 *isp)
{
// isp1301_clear_bits(isp, ISP1301_MODE_CONTROL_2, MC2_GLOBAL_PWR_DN);
isp1301_clear_bits(isp, ISP1301_MODE_CONTROL_1, MC1_SUSPEND_REG);
/* do this only when cpu is driving transceiver,
* so host won't see a low speed device...
*/
......@@ -514,6 +529,7 @@ static inline void check_state(struct isp1301 *isp, const char *tag) { }
static void update_otg1(struct isp1301 *isp, u8 int_src)
{
u32 otg_ctrl;
u8 int_id;
otg_ctrl = OTG_CTRL_REG
& OTG_CTRL_MASK
......@@ -527,7 +543,10 @@ static void update_otg1(struct isp1301 *isp, u8 int_src)
}
if (int_src & INTR_VBUS_VLD)
otg_ctrl |= OTG_VBUSVLD;
if (int_src & INTR_ID_GND) { /* default-A */
int_id = isp1301_get_u8(isp, ISP1301_INTERRUPT_SOURCE);
if (int_id & INTR_ID_GND) { /* default-A */
if (isp->otg.state == OTG_STATE_B_IDLE
|| isp->otg.state == OTG_STATE_UNDEFINED) {
a_idle(isp, "init");
......@@ -799,7 +818,7 @@ static irqreturn_t omap_otg_irq(int irq, void *_isp)
/* role is host */
} else {
if (!(otg_ctrl & OTG_ID)) {
otg_ctrl &= OTG_CTRL_MASK & ~OTG_XCEIV_INPUTS;
otg_ctrl &= OTG_CTRL_MASK & ~OTG_XCEIV_INPUTS;
OTG_CTRL_REG = otg_ctrl | OTG_A_BUSREQ;
}
......@@ -1082,7 +1101,7 @@ static void isp_update_otg(struct isp1301 *isp, u8 stat)
/* update the OTG controller state to match the isp1301; may
* trigger OPRT_CHG irqs for changes going to the isp1301.
*/
update_otg1(isp, isp_stat);
update_otg1(isp, stat); // pass the actual interrupt latch status
update_otg2(isp, isp_bstat);
check_state(isp, __FUNCTION__);
#endif
......@@ -1100,9 +1119,9 @@ static u8 isp1301_clear_latch(struct isp1301 *isp)
}
static void
isp1301_work(void *data)
isp1301_work(struct work_struct *work)
{
struct isp1301 *isp = data;
struct isp1301 *isp = container_of(work, struct isp1301, work);
int stop;
/* implicit lock: we're the only task using this device */
......@@ -1223,6 +1242,12 @@ static int isp1301_detach_client(struct i2c_client *i2c)
if (machine_is_omap_h2())
omap_free_gpio(2);
if (machine_is_omap_h3())
omap_free_gpio(14);
if (machine_is_omap_h4())
omap_free_gpio(125);
isp->timer.data = 0;
set_bit(WORK_STOP, &isp->todo);
del_timer_sync(&isp->timer);
......@@ -1244,7 +1269,7 @@ static int isp1301_detach_client(struct i2c_client *i2c)
* - DEVICE mode, for when there's a B/Mini-B (device) connector
*
* As a rule, you won't have an isp1301 chip unless it's there to
* support the OTG mode. Other modes help testing USB controllers
* support the OTG mode. Other modes help testing USB controllers
* in isolation from (full) OTG support, or maybe so later board
* revisions can help to support those feature.
*/
......@@ -1260,9 +1285,9 @@ static int isp1301_otg_enable(struct isp1301 *isp)
* a few more interrupts than are strictly needed.
*/
isp1301_set_bits(isp, ISP1301_INTERRUPT_RISING,
INTR_VBUS_VLD | INTR_SESS_VLD | INTR_ID_GND);
INTR_VBUS_VLD | INTR_SESS_VLD | INTR_ID_GND);
isp1301_set_bits(isp, ISP1301_INTERRUPT_FALLING,
INTR_VBUS_VLD | INTR_SESS_VLD | INTR_ID_GND);
INTR_VBUS_VLD | INTR_SESS_VLD | INTR_ID_GND);
dev_info(&isp->client.dev, "ready for dual-role USB ...\n");
......@@ -1301,14 +1326,15 @@ isp1301_set_host(struct otg_transceiver *otg, struct usb_bus *host)
power_up(isp);
if (machine_is_omap_h2())
// XXX h4 too?
if (machine_is_omap_h2() || machine_is_omap_h3())
isp1301_set_bits(isp, ISP1301_MODE_CONTROL_1, MC1_DAT_SE0);
dev_info(&isp->client.dev, "A-Host sessions ok\n");
isp1301_set_bits(isp, ISP1301_INTERRUPT_RISING,
INTR_ID_GND);
INTR_ID_GND);
isp1301_set_bits(isp, ISP1301_INTERRUPT_FALLING,
INTR_ID_GND);
INTR_ID_GND);
/* If this has a Mini-AB connector, this mode is highly
* nonstandard ... but can be handy for testing, especially with
......@@ -1364,13 +1390,14 @@ isp1301_set_peripheral(struct otg_transceiver *otg, struct usb_gadget *gadget)
power_up(isp);
isp->otg.state = OTG_STATE_B_IDLE;
if (machine_is_omap_h2())
// XXX h4 too?
if (machine_is_omap_h2() || machine_is_omap_h3())
isp1301_set_bits(isp, ISP1301_MODE_CONTROL_1, MC1_DAT_SE0);
isp1301_set_bits(isp, ISP1301_INTERRUPT_RISING,
INTR_SESS_VLD);
INTR_SESS_VLD | INTR_VBUS_VLD);
isp1301_set_bits(isp, ISP1301_INTERRUPT_FALLING,
INTR_VBUS_VLD);
INTR_VBUS_VLD | INTR_SESS_VLD);
dev_info(&isp->client.dev, "B-Peripheral sessions ok\n");
dump_regs(isp, __FUNCTION__);
......@@ -1447,6 +1474,10 @@ isp1301_start_hnp(struct otg_transceiver *dev)
* So do this part as early as possible...
*/
switch (isp->otg.state) {
case OTG_STATE_B_PERIPHERAL:
isp->otg.state = OTG_STATE_B_WAIT_ACON;
isp1301_defer_work(isp, WORK_UPDATE_ISP);
break;
case OTG_STATE_B_HOST:
isp->otg.state = OTG_STATE_B_PERIPHERAL;
/* caller will suspend next */
......@@ -1494,12 +1525,13 @@ static int isp1301_probe(struct i2c_adapter *bus, int address, int kind)
if (!isp)
return 0;
INIT_WORK(&isp->work, isp1301_work, isp);
INIT_WORK(&isp->work, isp1301_work);
init_timer(&isp->timer);
isp->timer.function = isp1301_timer;
isp->timer.data = (unsigned long) isp;
isp->irq = -1;
isp->irq_type = 0;
isp->client.addr = address;
i2c_set_clientdata(&isp->client, isp);
isp->client.adapter = bus;
......@@ -1562,23 +1594,44 @@ fail1:
}
#endif
if (machine_is_omap_h2()) {
// XXX h4 too?
if (machine_is_omap_h2() || machine_is_omap_h3()) {
/* full speed signaling by default */
isp1301_set_bits(isp, ISP1301_MODE_CONTROL_1,
MC1_SPEED_REG);
isp1301_set_bits(isp, ISP1301_MODE_CONTROL_2,
MC2_SPD_SUSP_CTRL);
}
if (machine_is_omap_h2()) {
/* IRQ wired at M14 */
omap_cfg_reg(M14_1510_GPIO2);
isp->irq = OMAP_GPIO_IRQ(2);
omap_request_gpio(2);
omap_set_gpio_direction(2, 1);
omap_set_gpio_edge_ctrl(2, OMAP_GPIO_FALLING_EDGE);
isp->irq_type = IRQF_TRIGGER_FALLING;
}
if (machine_is_omap_h3()) {
/* IRQ wired at N21 */
omap_cfg_reg(N21_1710_GPIO14);
isp->irq = OMAP_GPIO_IRQ(14);
omap_request_gpio(14);
omap_set_gpio_direction(14, 1);
isp->irq_type = IRQF_TRIGGER_FALLING;
}
if (machine_is_omap_h4()) {
/* IRQ wired at P14 */
omap_cfg_reg(P14_24XX_GPIO125);
isp->irq = OMAP_GPIO_IRQ(125);
omap_request_gpio(125);
omap_set_gpio_direction(125, 1);
isp->irq_type = IRQF_TRIGGER_LOW;
}
status = request_irq(isp->irq, isp1301_irq,
IRQF_SAMPLE_RANDOM, DRIVER_NAME, isp);
isp->irq_type, DRIVER_NAME, isp);
if (status < 0) {
dev_dbg(&i2c->dev, "can't get IRQ %d, err %d\n",
isp->irq, status);
......
/*
* drivers/i2c/chips/menelaus.c
*
* Copyright (C) 2004 Texas Instruments, Inc.
*
* Some parts based tps65010.c:
* Copyright (C) 2004 Texas Instruments and
* Copyright (C) 2004-2005 David Brownell
*
* Some parts based on tlv320aic24.c:
* Copyright (C) by Kai Svahn <kai.svahn@nokia.com>
*
* Changes for interrupt handling and clean-up by
* Tony Lindgren <tony@atomide.com> and Imre Deak <imre.deak@nokia.com>
* Cleanup and generalized support for voltage setting by
* Juha Yrjola
* Added support for controlling VCORE and regulator sleep states,
* Amit Kucheria <amit.kucheria@nokia.com>
* Copyright (C) 2005, 2006 Nokia Corporation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/module.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
#include <linux/mutex.h>
#include <linux/workqueue.h>
#include <asm/mach-types.h>
#include <asm/mach/irq.h>
#include <asm/arch/mux.h>
#include <asm/arch/gpio.h>
#include <asm/arch/menelaus.h>
#define DEBUG
#define DRIVER_NAME "menelaus"
#define pr_err(fmt, arg...) printk(KERN_ERR DRIVER_NAME ": ", ## arg);
#define MENELAUS_I2C_ADDRESS 0x72
#define MENELAUS_REV 0x01
#define MENELAUS_VCORE_CTRL1 0x02
#define MENELAUS_VCORE_CTRL2 0x03
#define MENELAUS_VCORE_CTRL3 0x04
#define MENELAUS_VCORE_CTRL4 0x05
#define MENELAUS_VCORE_CTRL5 0x06
#define MENELAUS_DCDC_CTRL1 0x07
#define MENELAUS_DCDC_CTRL2 0x08
#define MENELAUS_DCDC_CTRL3 0x09
#define MENELAUS_LDO_CTRL1 0x0A
#define MENELAUS_LDO_CTRL2 0x0B
#define MENELAUS_LDO_CTRL3 0x0C
#define MENELAUS_LDO_CTRL4 0x0D
#define MENELAUS_LDO_CTRL5 0x0E
#define MENELAUS_LDO_CTRL6 0x0F
#define MENELAUS_LDO_CTRL7 0x10
#define MENELAUS_LDO_CTRL8 0x11
#define MENELAUS_SLEEP_CTRL1 0x12
#define MENELAUS_SLEEP_CTRL2 0x13
#define MENELAUS_DEVICE_OFF 0x14
#define MENELAUS_OSC_CTRL 0x15
#define MENELAUS_DETECT_CTRL 0x16
#define MENELAUS_INT_MASK1 0x17
#define MENELAUS_INT_MASK2 0x18
#define MENELAUS_INT_STATUS1 0x19
#define MENELAUS_INT_STATUS2 0x1A
#define MENELAUS_INT_ACK1 0x1B
#define MENELAUS_INT_ACK2 0x1C
#define MENELAUS_GPIO_CTRL 0x1D
#define MENELAUS_GPIO_IN 0x1E
#define MENELAUS_GPIO_OUT 0x1F
#define MENELAUS_BBSMS 0x20
#define MENELAUS_RTC_CTRL 0x21
#define MENELAUS_RTC_UPDATE 0x22
#define MENELAUS_RTC_SEC 0x23
#define MENELAUS_RTC_MIN 0x24
#define MENELAUS_RTC_HR 0x25
#define MENELAUS_RTC_DAY 0x26
#define MENELAUS_RTC_MON 0x27
#define MENELAUS_RTC_YR 0x28
#define MENELAUS_RTC_WKDAY 0x29
#define MENELAUS_RTC_AL_SEC 0x2A
#define MENELAUS_RTC_AL_MIN 0x2B
#define MENELAUS_RTC_AL_HR 0x2C
#define MENELAUS_RTC_AL_DAY 0x2D
#define MENELAUS_RTC_AL_MON 0x2E
#define MENELAUS_RTC_AL_YR 0x2F
#define MENELAUS_RTC_COMP_MSB 0x30
#define MENELAUS_RTC_COMP_LSB 0x31
#define MENELAUS_S1_PULL_EN 0x32
#define MENELAUS_S1_PULL_DIR 0x33
#define MENELAUS_S2_PULL_EN 0x34
#define MENELAUS_S2_PULL_DIR 0x35
#define MENELAUS_MCT_CTRL1 0x36
#define MENELAUS_MCT_CTRL2 0x37
#define MENELAUS_MCT_CTRL3 0x38
#define MENELAUS_MCT_PIN_ST 0x39
#define MENELAUS_DEBOUNCE1 0x3A
#define IH_MENELAUS_IRQS 12
#define MENELAUS_MMC_S1CD_IRQ 0 /* MMC slot 1 card change */
#define MENELAUS_MMC_S2CD_IRQ 1 /* MMC slot 2 card change */
#define MENELAUS_MMC_S1D1_IRQ 2 /* MMC DAT1 low in slot 1 */
#define MENELAUS_MMC_S2D1_IRQ 3 /* MMC DAT1 low in slot 2 */
#define MENELAUS_LOWBAT_IRQ 4 /* Low battery */
#define MENELAUS_HOTDIE_IRQ 5 /* Hot die detect */
#define MENELAUS_UVLO_IRQ 6 /* UVLO detect */
#define MENELAUS_TSHUT_IRQ 7 /* Thermal shutdown */
#define MENELAUS_RTCTMR_IRQ 8 /* RTC timer */
#define MENELAUS_RTCALM_IRQ 9 /* RTC alarm */
#define MENELAUS_RTCERR_IRQ 10 /* RTC error */
#define MENELAUS_PSHBTN_IRQ 11 /* Push button */
#define MENELAUS_RESERVED12_IRQ 12 /* Reserved */
#define MENELAUS_RESERVED13_IRQ 13 /* Reserved */
#define MENELAUS_RESERVED14_IRQ 14 /* Reserved */
#define MENELAUS_RESERVED15_IRQ 15 /* Reserved */
static void menelaus_work(struct work_struct *_menelaus);
/* Initialized by menelaus_init */
static unsigned short normal_i2c[] = { MENELAUS_I2C_ADDRESS, I2C_CLIENT_END };
I2C_CLIENT_INSMOD;
struct menelaus_chip {
unsigned long initialized;
struct mutex lock;
struct i2c_client client;
struct work_struct work;
int irq;
unsigned vcore_hw_mode:1;
void *handlers[16];
void (*mmc_callback)(void *data, u8 mask);
void *mmc_callback_data;
};
static struct menelaus_chip menelaus;
static struct menelaus_platform_data *menelaus_pdata;
static int menelaus_write_reg(int reg, u8 value)
{
int val = i2c_smbus_write_byte_data(&menelaus.client, reg, value);
if (val < 0) {
pr_err("write error");
return val;
}
return 0;
}
static int menelaus_read_reg(int reg)
{
int val = i2c_smbus_read_byte_data(&menelaus.client, reg);
if (val < 0)
pr_err("read error");
return val;
}
static int menelaus_enable_irq(int irq)
{
if (irq > 7)
return menelaus_write_reg(MENELAUS_INT_MASK2,
menelaus_read_reg(MENELAUS_INT_MASK2)
& ~(1 << (irq - 8)));
else
return menelaus_write_reg(MENELAUS_INT_MASK1,
menelaus_read_reg(MENELAUS_INT_MASK1)
& ~(1 << irq));
}
static int menelaus_disable_irq(int irq)
{
if (irq > 7)
return menelaus_write_reg(menelaus_read_reg(MENELAUS_INT_MASK2)
| (1 << (irq - 8)),
MENELAUS_INT_MASK2);
else
return menelaus_write_reg(MENELAUS_INT_MASK1,
menelaus_read_reg(MENELAUS_INT_MASK1)
| (1 << irq));
}
static int menelaus_ack_irq(int irq)
{
if (irq > 7)
return menelaus_write_reg(MENELAUS_INT_ACK2, 1 << (irq - 8));
else
return menelaus_write_reg(MENELAUS_INT_ACK1, 1 << irq);
}
/* Adds a handler for an interrupt. Does not run in interrupt context */
static int menelaus_add_irq_work(int irq, void * handler)
{
int ret = 0;
mutex_lock(&menelaus.lock);
menelaus.handlers[irq] = handler;
ret = menelaus_enable_irq(irq);
mutex_unlock(&menelaus.lock);
return ret;
}
/* Removes handler for an interrupt */
static int menelaus_remove_irq_work(int irq)
{
int ret = 0;
mutex_lock(&menelaus.lock);
ret = menelaus_disable_irq(irq);
menelaus.handlers[irq] = NULL;
mutex_unlock(&menelaus.lock);
return ret;
}
/*
* Gets scheduled when a card detect interrupt happens. Note that in some cases
* this line is wired to card cover switch rather than the card detect switch
* in each slot. In this case the cards are not seen by menelaus.
* FIXME: Add handling for D1 too
*/
static int menelaus_mmc_cd_work(struct menelaus_chip * menelaus_hw)
{
int reg;
unsigned char card_mask = 0;
reg = menelaus_read_reg(MENELAUS_MCT_PIN_ST);
if (reg < 0)
return reg;
if (!(reg & 0x1))
card_mask |= (1 << 0);
if (!(reg & 0x2))
card_mask |= (1 << 1);
if (menelaus_hw->mmc_callback)
menelaus_hw->mmc_callback(menelaus_hw->mmc_callback_data,
card_mask);
return 0;
}
/*
* Toggles the MMC slots between open-drain and push-pull mode.
*/
int menelaus_set_mmc_opendrain(int slot, int enable)
{
int ret, val;
if (slot != 1 && slot != 2)
return -EINVAL;
mutex_lock(&menelaus.lock);
ret = menelaus_read_reg(MENELAUS_MCT_CTRL1);
if (ret < 0) {
mutex_unlock(&menelaus.lock);
return ret;
}
val = ret;
if (slot == 1) {
if (enable)
val |= 1 << 2;
else
val &= ~(1 << 2);
} else {
if (enable)
val |= 1 << 3;
else
val &= ~(1 << 3);
}
ret = menelaus_write_reg(MENELAUS_MCT_CTRL1, val);
mutex_unlock(&menelaus.lock);
return ret;
}
EXPORT_SYMBOL(menelaus_set_mmc_opendrain);
int menelaus_set_slot_sel(int enable)
{
int ret;
mutex_lock(&menelaus.lock);
ret = menelaus_read_reg(MENELAUS_GPIO_CTRL);
if (ret < 0)
goto out;
ret |= 0x02;
if (enable)
ret |= 1 << 5;
else
ret &= ~(1 << 5);
ret = menelaus_write_reg(MENELAUS_GPIO_CTRL, ret);
out:
mutex_unlock(&menelaus.lock);
return ret;
}
EXPORT_SYMBOL(menelaus_set_slot_sel);
int menelaus_set_mmc_slot(int slot, int enable, int power, int cd_en)
{
int ret, val;
if (slot != 1 && slot != 2)
return -EINVAL;
if (power >= 3)
return -EINVAL;
mutex_lock(&menelaus.lock);
ret = menelaus_read_reg(MENELAUS_MCT_CTRL2);
if (ret < 0)
goto out;
val = ret;
if (slot == 1) {
if (cd_en)
val |= (1 << 4) | (1 << 6);
else
val &= ~((1 << 4) | (1 << 6));
} else {
if (cd_en)
val |= (1 << 5) | (1 << 7);
else
val &= ~((1 << 5) | (1 << 7));
}
ret = menelaus_write_reg(MENELAUS_MCT_CTRL2, val);
if (ret < 0)
goto out;
ret = menelaus_read_reg(MENELAUS_MCT_CTRL3);
if (ret < 0)
goto out;
val = ret;
if (slot == 1) {
if (enable)
val |= 1 << 0;
else
val &= ~(1 << 0);
} else {
int b;
if (enable)
ret |= 1 << 1;
else
ret &= ~(1 << 1);
b = menelaus_read_reg(MENELAUS_MCT_CTRL2);
b &= ~0x03;
b |= power;
ret = menelaus_write_reg(MENELAUS_MCT_CTRL2, b);
if (ret < 0)
goto out;
}
/* Disable autonomous shutdown */
val &= ~(0x03 << 2);
ret = menelaus_write_reg(MENELAUS_MCT_CTRL3, val);
out:
mutex_unlock(&menelaus.lock);
return ret;
}
EXPORT_SYMBOL(menelaus_set_mmc_slot);
#include <linux/delay.h>
int menelaus_register_mmc_callback(void (*callback)(void *data, u8 card_mask),
void *data)
{
int ret = 0;
menelaus.mmc_callback_data = data;
menelaus.mmc_callback = callback;
ret = menelaus_add_irq_work(MENELAUS_MMC_S1CD_IRQ,
menelaus_mmc_cd_work);
if (ret < 0)
return ret;
ret = menelaus_add_irq_work(MENELAUS_MMC_S2CD_IRQ,
menelaus_mmc_cd_work);
if (ret < 0)
return ret;
ret = menelaus_add_irq_work(MENELAUS_MMC_S1D1_IRQ,
menelaus_mmc_cd_work);
if (ret < 0)
return ret;
ret = menelaus_add_irq_work(MENELAUS_MMC_S2D1_IRQ,
menelaus_mmc_cd_work);
return ret;
}
EXPORT_SYMBOL(menelaus_register_mmc_callback);
void menelaus_unregister_mmc_callback(void)
{
menelaus_remove_irq_work(MENELAUS_MMC_S1CD_IRQ);
menelaus_remove_irq_work(MENELAUS_MMC_S2CD_IRQ);
menelaus_remove_irq_work(MENELAUS_MMC_S1D1_IRQ);
menelaus_remove_irq_work(MENELAUS_MMC_S2D1_IRQ);
menelaus.mmc_callback = NULL;
menelaus.mmc_callback_data = 0;
}
EXPORT_SYMBOL(menelaus_unregister_mmc_callback);
struct menelaus_vtg {
const char *name;
u8 vtg_reg;
u8 vtg_shift;
u8 vtg_bits;
u8 mode_reg;
};
struct menelaus_vtg_value {
u16 vtg;
u16 val;
};
static int menelaus_set_voltage(const struct menelaus_vtg *vtg, int mV,
int vtg_val, int mode)
{
int val, ret;
mutex_lock(&menelaus.lock);
if (vtg == 0)
goto set_voltage;
ret = menelaus_read_reg(vtg->vtg_reg);
if (ret < 0)
goto out;
val = ret & ~(((1 << vtg->vtg_bits) - 1) << vtg->vtg_shift);
val |= vtg_val << vtg->vtg_shift;
#ifdef DEBUG
printk("menelaus: Setting voltage '%s' to %d mV (reg 0x%02x, val 0x%02x)\n",
vtg->name, mV, vtg->vtg_reg, val);
#endif
ret = menelaus_write_reg(vtg->vtg_reg, val);
if (ret < 0)
goto out;
set_voltage:
ret = menelaus_write_reg(vtg->mode_reg, mode);
out:
mutex_unlock(&menelaus.lock);
if (ret == 0) {
/* Wait for voltage to stabilize */
msleep(1);
}
return ret;
}
static int menelaus_get_vtg_value(int vtg, const struct menelaus_vtg_value *tbl,
int n)
{
int i;
for (i = 0; i < n; i++, tbl++)
if (tbl->vtg == vtg)
return tbl->val;
return -EINVAL;
}
/* Vcore can be programmed in two ways:
* SW-controlled: Required voltage is programmed into VCORE_CTRL1
* HW-controlled: Required range (roof-floor) is programmed into VCORE_CTRL3
* and VCORE_CTRL4
* Call correct 'set' function accordingly
*/
static const struct menelaus_vtg_value vcore_values[] = {
{ 1000, 0 },
{ 1025, 1 },
{ 1050, 2 },
{ 1075, 3 },
{ 1100, 4 },
{ 1125, 5 },
{ 1150, 6 },
{ 1175, 7 },
{ 1200, 8 },
{ 1225, 9 },
{ 1250, 10 },
{ 1275, 11 },
{ 1300, 12 },
{ 1325, 13 },
{ 1350, 14 },
{ 1375, 15 },
{ 1400, 16 },
{ 1425, 17 },
{ 1450, 18 },
};
int menelaus_set_vcore_sw(unsigned int mV)
{
int val, ret;
val = menelaus_get_vtg_value(mV, vcore_values, ARRAY_SIZE(vcore_values));
if (val < 0)
return -EINVAL;
#ifdef DEBUG
printk("menelaus: Setting VCORE to %d mV (val 0x%02x)\n", mV, val);
#endif
/* Set SW mode and the voltage in one go. */
mutex_lock(&menelaus.lock);
ret = menelaus_write_reg(MENELAUS_VCORE_CTRL1, val);
if (ret == 0)
menelaus.vcore_hw_mode = 0;
mutex_unlock(&menelaus.lock);
msleep(1);
return ret;
}
int menelaus_set_vcore_hw(unsigned int roof_mV, unsigned int floor_mV)
{
int fval, rval, val, ret;
rval = menelaus_get_vtg_value(roof_mV, vcore_values, ARRAY_SIZE(vcore_values));
if (rval < 0)
return -EINVAL;
fval = menelaus_get_vtg_value(floor_mV, vcore_values, ARRAY_SIZE(vcore_values));
if (fval < 0)
return -EINVAL;
#ifdef DEBUG
printk("menelaus: Setting VCORE FLOOR to %d mV and ROOF to %d mV\n",
floor_mV, roof_mV);
#endif
mutex_lock(&menelaus.lock);
ret = menelaus_write_reg(MENELAUS_VCORE_CTRL3, fval);
if (ret < 0)
goto out;
ret = menelaus_write_reg(MENELAUS_VCORE_CTRL4, rval);
if (ret < 0)
goto out;
if (!menelaus.vcore_hw_mode) {
val = menelaus_read_reg(MENELAUS_VCORE_CTRL1);
val |= ((1 << 7) | (1 << 5)); /* HW mode, turn OFF byte comparator */
ret = menelaus_write_reg(MENELAUS_VCORE_CTRL1, val);
menelaus.vcore_hw_mode = 1;
}
msleep(1);
out:
mutex_unlock(&menelaus.lock);
return ret;
}
static const struct menelaus_vtg vmem_vtg = {
.name = "VMEM",
.vtg_reg = MENELAUS_LDO_CTRL1,
.vtg_shift = 0,
.vtg_bits = 2,
.mode_reg = MENELAUS_LDO_CTRL3,
};
static const struct menelaus_vtg_value vmem_values[] = {
{ 1500, 0 },
{ 1800, 1 },
{ 1900, 2 },
{ 2500, 3 },
};
int menelaus_set_vmem(unsigned int mV)
{
int val;
if (mV == 0)
return menelaus_set_voltage(&vmem_vtg, 0, 0, 0);
val = menelaus_get_vtg_value(mV, vmem_values, ARRAY_SIZE(vmem_values));
if (val < 0)
return -EINVAL;
return menelaus_set_voltage(&vmem_vtg, mV, val, 0x02);
}
EXPORT_SYMBOL(menelaus_set_vmem);
static const struct menelaus_vtg vio_vtg = {
.name = "VIO",
.vtg_reg = MENELAUS_LDO_CTRL1,
.vtg_shift = 2,
.vtg_bits = 2,
.mode_reg = MENELAUS_LDO_CTRL4,
};
static const struct menelaus_vtg_value vio_values[] = {
{ 1500, 0 },
{ 1800, 1 },
{ 2500, 2 },
{ 2800, 3 },
};
int menelaus_set_vio(unsigned int mV)
{
int val;
if (mV == 0)
return menelaus_set_voltage(&vio_vtg, 0, 0, 0);
val = menelaus_get_vtg_value(mV, vio_values, ARRAY_SIZE(vio_values));
if (val < 0)
return -EINVAL;
return menelaus_set_voltage(&vio_vtg, mV, val, 0x02);
}
EXPORT_SYMBOL(menelaus_set_vio);
static const struct menelaus_vtg_value vdcdc_values[] = {
{ 1500, 0 },
{ 1800, 1 },
{ 2000, 2 },
{ 2200, 3 },
{ 2400, 4 },
{ 2800, 5 },
{ 3000, 6 },
{ 3300, 7 },
};
static const struct menelaus_vtg vdcdc2_vtg = {
.name = "VDCDC2",
.vtg_reg = MENELAUS_DCDC_CTRL1,
.vtg_shift = 0,
.vtg_bits = 3,
.mode_reg = MENELAUS_DCDC_CTRL2,
};
static const struct menelaus_vtg vdcdc3_vtg = {
.name = "VDCDC3",
.vtg_reg = MENELAUS_DCDC_CTRL1,
.vtg_shift = 3,
.vtg_bits = 3,
.mode_reg = MENELAUS_DCDC_CTRL3,
};
int menelaus_set_vdcdc(int dcdc, unsigned int mV)
{
const struct menelaus_vtg *vtg;
int val;
if (dcdc != 2 && dcdc != 3)
return -EINVAL;
if (dcdc == 2)
vtg = &vdcdc2_vtg;
else
vtg = &vdcdc3_vtg;
if (mV == 0)
return menelaus_set_voltage(vtg, 0, 0, 0);
val = menelaus_get_vtg_value(mV, vdcdc_values, ARRAY_SIZE(vdcdc_values));
if (val < 0)
return -EINVAL;
return menelaus_set_voltage(vtg, mV, val, 0x03);
}
static const struct menelaus_vtg_value vmmc_values[] = {
{ 1850, 0 },
{ 2800, 1 },
{ 3000, 2 },
{ 3100, 3 },
};
static const struct menelaus_vtg vmmc_vtg = {
.name = "VMMC",
.vtg_reg = MENELAUS_LDO_CTRL1,
.vtg_shift = 6,
.vtg_bits = 2,
.mode_reg = MENELAUS_LDO_CTRL7,
};
int menelaus_set_vmmc(unsigned int mV)
{
int val;
if (mV == 0)
return menelaus_set_voltage(&vmmc_vtg, 0, 0, 0);
val = menelaus_get_vtg_value(mV, vmmc_values, ARRAY_SIZE(vmmc_values));
if (val < 0)
return -EINVAL;
return menelaus_set_voltage(&vmmc_vtg, mV, val, 0x02);
}
EXPORT_SYMBOL(menelaus_set_vmmc);
static const struct menelaus_vtg_value vaux_values[] = {
{ 1500, 0 },
{ 1800, 1 },
{ 2500, 2 },
{ 2800, 3 },
};
static const struct menelaus_vtg vaux_vtg = {
.name = "VAUX",
.vtg_reg = MENELAUS_LDO_CTRL1,
.vtg_shift = 4,
.vtg_bits = 2,
.mode_reg = MENELAUS_LDO_CTRL6,
};
int menelaus_set_vaux(unsigned int mV)
{
int val;
if (mV == 0)
return menelaus_set_voltage(&vaux_vtg, 0, 0, 0);
val = menelaus_get_vtg_value(mV, vaux_values, ARRAY_SIZE(vaux_values));
if (val < 0)
return -EINVAL;
return menelaus_set_voltage(&vaux_vtg, mV, val, 0x02);
}
EXPORT_SYMBOL(menelaus_set_vaux);
int menelaus_get_slot_pin_states(void)
{
return menelaus_read_reg(MENELAUS_MCT_PIN_ST);
}
EXPORT_SYMBOL(menelaus_get_slot_pin_states);
int menelaus_set_regulator_sleep(int enable, u32 val)
{
int t, ret;
mutex_lock(&menelaus.lock);
ret = menelaus_write_reg(MENELAUS_SLEEP_CTRL2, val);
if (ret < 0)
goto out;
#ifdef DEBUG
printk("menelaus: regulator sleep configuration: %02x\n", val);
#endif
ret = menelaus_read_reg(MENELAUS_GPIO_CTRL);
if (ret < 0)
goto out;
t = ((1 << 6) | 0x04);
if (enable)
ret |= t;
else
ret &= ~t;
ret = menelaus_write_reg(MENELAUS_GPIO_CTRL, ret);
out:
mutex_unlock(&menelaus.lock);
return ret;
}
/*-----------------------------------------------------------------------*/
/* Handles Menelaus interrupts. Does not run in interrupt context */
static void menelaus_work(struct work_struct *_menelaus)
{
struct menelaus_chip *menelaus =
container_of(_menelaus, struct menelaus_chip, work);
int (*handler)(struct menelaus_chip *menelaus);
while (1) {
int i;
unsigned char isr;
isr = menelaus_read_reg(MENELAUS_INT_STATUS1) |
(menelaus_read_reg(MENELAUS_INT_STATUS2) << 8);
if (!isr)
break;
for (i = 0; i < IH_MENELAUS_IRQS; i++) {
if (isr & (1 << i)) {
mutex_lock(&menelaus->lock);
menelaus_disable_irq(i);
menelaus_ack_irq(i);
if (menelaus->handlers[i]) {
handler = menelaus->handlers[i];
handler(menelaus);
}
menelaus_enable_irq(i);
mutex_unlock(&menelaus->lock);
}
}
}
enable_irq(menelaus->irq);
}
/*
* We cannot use I2C in interrupt context, so we just schedule work.
*/
static irqreturn_t menelaus_irq(int irq, void *_menelaus)
{
struct menelaus_chip *menelaus = _menelaus;
disable_irq_nosync(irq);
(void)schedule_work(&menelaus->work);
return IRQ_HANDLED;
}
static struct i2c_driver menelaus_i2c_driver;
static int menelaus_probe(struct i2c_adapter *adapter, int address, int kind)
{
struct i2c_client *c;
int rev = 0, val;
int err = 0;
if (test_and_set_bit(0, &menelaus.initialized))
return -EBUSY;
c = &menelaus.client;
strncpy(c->name, DRIVER_NAME, sizeof(c->name));
c->addr = address;
c->adapter = adapter;
c->driver = &menelaus_i2c_driver;
c->flags = 0;
if ((err = i2c_attach_client(c)) < 0) {
pr_err("couldn't attach\n");
goto fail1;
}
/* If a true probe check the device */
if (kind < 0 && (rev = menelaus_read_reg(MENELAUS_REV)) < 0) {
pr_err("device not found");
err = -ENODEV;
goto fail2;
}
/* Most likely Menelaus interrupt is at SYS_NIRQ */
omap_cfg_reg(W19_24XX_SYS_NIRQ);
menelaus.irq = INT_24XX_SYS_NIRQ;
/* Ack and disable all Menelaus interrupts */
menelaus_write_reg(MENELAUS_INT_ACK1, 0xff);
menelaus_write_reg(MENELAUS_INT_ACK2, 0xff);
menelaus_write_reg(MENELAUS_INT_MASK1, 0xff);
menelaus_write_reg(MENELAUS_INT_MASK2, 0xff);
/* Set output buffer strengths */
menelaus_write_reg(MENELAUS_MCT_CTRL1, 0x73);
err = request_irq(menelaus.irq, menelaus_irq, IRQF_DISABLED,
DRIVER_NAME, &menelaus);
if (err) {
printk(KERN_ERR "Could not get Menelaus IRQ\n");
goto fail2;
}
mutex_init(&menelaus.lock);
INIT_WORK(&menelaus.work, menelaus_work);
if (kind < 0)
pr_info("Menelaus rev %d.%d\n", rev >> 4, rev & 0x0f);
val = menelaus_read_reg(MENELAUS_VCORE_CTRL1);
if (val < 0)
goto fail3;
if (val & (1 << 7))
menelaus.vcore_hw_mode = 1;
else
menelaus.vcore_hw_mode = 0;
if (menelaus_pdata != NULL && menelaus_pdata->late_init != NULL) {
err = menelaus_pdata->late_init(&c->dev);
if (err < 0)
goto fail3;
}
return 0;
fail3:
free_irq(menelaus.irq, &menelaus);
flush_scheduled_work();
fail2:
i2c_detach_client(c);
fail1:
clear_bit(0, &menelaus.initialized);
return err;
}
static int menelaus_remove(struct i2c_client *client)
{
int err;
free_irq(menelaus.irq, &menelaus);
if ((err = i2c_detach_client(client))) {
pr_err("client deregistration failed\n");
return err;
}
clear_bit(0, &menelaus.initialized);
return 0;
}
/*-----------------------------------------------------------------------*/
static int menelaus_scan_bus(struct i2c_adapter *bus)
{
if (!i2c_check_functionality(bus, I2C_FUNC_SMBUS_BYTE_DATA |
I2C_FUNC_SMBUS_WRITE_BYTE)) {
pr_err("invalid i2c bus functionality\n");
return -EINVAL;
}
return i2c_probe(bus, &addr_data, menelaus_probe);
}
static struct i2c_driver menelaus_i2c_driver = {
.driver = {
.name = DRIVER_NAME,
},
.id = I2C_DRIVERID_MISC, /*FIXME:accroding to i2c-ids.h */
.class = I2C_CLASS_HWMON,
.attach_adapter = menelaus_scan_bus,
.detach_client = menelaus_remove,
};
static int __init menelaus_init(void)
{
int res;
if ((res = i2c_add_driver(&menelaus_i2c_driver)) < 0) {
pr_err("driver registration failed\n");
return res;
}
return 0;
}
static void __exit menelaus_exit(void)
{
if (i2c_del_driver(&menelaus_i2c_driver) < 0)
pr_err("driver remove failed\n");
/* FIXME: Shutdown menelaus parts that can be shut down */
}
void __init menelaus_set_platform_data(struct menelaus_platform_data *pdata)
{
menelaus_pdata = pdata;
}
MODULE_AUTHOR("Texas Instruments, Inc.");
MODULE_DESCRIPTION("I2C interface for Menelaus.");
MODULE_LICENSE("GPL");
module_init(menelaus_init);
module_exit(menelaus_exit);
/*
* Texas Instrumens TLV320AIC23 audio codec's i2c interface.
*
* Copyright (c) by Kai Svahn <kai.svahn@nokia.com>
* Copyright (c) by Jussi Laako <jussi.laako@nokia.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/i2c.h>
#include <linux/slab.h>
#include <linux/device.h>
#include <linux/platform_device.h>
#include <asm/io.h>
#include <asm/arch/aic23.h>
#include <asm/arch/mcbsp.h>
#define TLV320AIC23_VERSION "1.8"
#define TLV320AIC23_DATE "10-Feb-2006"
#define MAX_VOL 100
#define MIN_VOL 0
#define MAX_GAIN 100
#define MIN_GAIN 0
#define OUTPUT_VOLUME_MIN LHV_MIN
#define OUTPUT_VOLUME_MAX LHV_MAX
#define OUTPUT_VOLUME_RANGE (OUTPUT_VOLUME_MAX - OUTPUT_VOLUME_MIN)
#define INPUT_VOLUME_MIN LIV_MIN
#define INPUT_VOLUME_MAX LIV_MAX
#define INPUT_VOLUME_RANGE (INPUT_VOLUME_MAX - INPUT_VOLUME_MIN)
/* I2C Addresses to scan */
static unsigned short normal_i2c[] = { TLV320AIC23ID1, TLV320AIC23ID2, \
I2C_CLIENT_END };
/*static unsigned short normal_i2c_range[] = { I2C_CLIENT_END };*/
/* This makes all addr_data:s */
I2C_CLIENT_INSMOD;
static struct i2c_driver aic23_driver;
static struct i2c_client *new_client;
static int selftest;
static struct aic23_info {
u16 volume_reg_left;
u16 volume_reg_right;
u16 input_gain_reg_left;
u16 input_gain_reg_right;
u16 power; /* For POWER_DOWN_CONTROL_ADDR */
u16 mask; /* For ANALOG_AUDIO_CONTROL_ADDR */
int mic_loopback;
int mic_enable;
int sta;
int power_down;
int initialized;
} aic23_info_l;
static int _aic23_write_value(struct i2c_client *client, u8 reg, u16 value)
{
u8 val, wreg;
/* TLV320AIC23 has 7 bit address and 9 bits of data
* so we need to switch one data bit into reg and rest
* of data into val
*/
wreg = (reg << 1);
val = (0x01 & (value >> 8));
wreg = (wreg | val);
val = (0x00ff & value);
return i2c_smbus_write_byte_data(client, wreg, val);
}
int aic23_write_value(u8 reg, u16 value)
{
static struct i2c_client *client;
client = new_client;
_aic23_write_value(client, reg, value);
return 0;
}
static int aic23_detect_client(struct i2c_adapter *adapter, int address,
int kind)
{
int err = 0;
const char *client_name = "TLV320AIC23 Audio Codec";
if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_WORD_DATA |
I2C_FUNC_SMBUS_WRITE_BYTE)) {
printk(KERN_WARNING "%s functinality check failed\n",
client_name);
return err;
}
if (!(new_client = kmalloc(sizeof(struct i2c_client),
GFP_KERNEL))) {
err = -ENOMEM;
printk(KERN_WARNING "Couldn't allocate memory for %s\n",
client_name);
return err;
}
memset(new_client, 0x00, sizeof(struct i2c_client));
new_client->addr = address;
new_client->adapter = adapter;
new_client->driver = &aic23_driver;
new_client->flags = 0;
strlcpy(new_client->name, client_name, I2C_NAME_SIZE);
if ((err = i2c_attach_client(new_client))) {
printk(KERN_WARNING "Couldn't attach %s\n", client_name);
kfree(new_client);
return err;
}
return 0;
}
static int aic23_detach_client(struct i2c_client *client)
{
int err;
if ((err = i2c_detach_client(client))) {
printk("aic23.o: Client deregistration failed, \
client not detached.\n");
return err;
}
kfree(client);
return 0;
}
static int aic23_attach_adapter(struct i2c_adapter *adapter)
{
int res;
res = i2c_probe(adapter, &addr_data, &aic23_detect_client);
return res;
}
static struct i2c_driver aic23_driver = {
.driver = {
.name = "OMAP+TLV320AIC23 codec",
/*.flags = I2C_DF_NOTIFY,*/
},
.id = I2C_DRIVERID_MISC, /* Experimental ID */
.attach_adapter = aic23_attach_adapter,
.detach_client = aic23_detach_client,
};
/*
* Configures the McBSP3 which is used to send clock to the AIC23 codec.
* The input clock rate from DSP is 12MHz.
* The DSP clock must be on before this is called.
*/
static int omap_mcbsp3_aic23_clock_init(void)
{
u16 w;
/* enable 12MHz clock to mcbsp 1 & 3 */
__raw_writew(__raw_readw(DSP_IDLECT2) | (1<<1), DSP_IDLECT2);
__raw_writew(__raw_readw(DSP_RSTCT2) | 1 | 1<<1, DSP_RSTCT2);
/* disable sample rate generator */
OMAP_MCBSP_WRITE(OMAP1610_MCBSP3_BASE, SPCR1, 0x0000);
OMAP_MCBSP_WRITE(OMAP1610_MCBSP3_BASE, SPCR2, 0x0000);
/* pin control register */
OMAP_MCBSP_WRITE(OMAP1610_MCBSP3_BASE, PCR0,(CLKXM | CLKXP | CLKRP));
/* configure srg to send 12MHz pulse from dsp peripheral clock */
OMAP_MCBSP_WRITE(OMAP1610_MCBSP3_BASE, SRGR1, 0x0000);
OMAP_MCBSP_WRITE(OMAP1610_MCBSP3_BASE, SRGR2, CLKSM);
/* enable sample rate generator */
w = OMAP_MCBSP_READ(OMAP1610_MCBSP3_BASE, SPCR2);
OMAP_MCBSP_WRITE(OMAP1610_MCBSP3_BASE, SPCR2, (w | FREE | GRST));
printk("Clock enabled to MCBSP1 & 3 \n");
return 0;
}
static void update_volume_left(int volume)
{
u16 val = 0;
val = ((volume * OUTPUT_VOLUME_RANGE) / 100) + OUTPUT_VOLUME_MIN;
aic23_write_value(LEFT_CHANNEL_VOLUME_ADDR, val);
aic23_info_l.volume_reg_left = volume;
}
static void update_volume_right(int volume)
{
u16 val = 0;
val = ((volume * OUTPUT_VOLUME_RANGE) / 100) + OUTPUT_VOLUME_MIN;
aic23_write_value(RIGHT_CHANNEL_VOLUME_ADDR, val);
aic23_info_l.volume_reg_right = volume;
}
static void set_mic(int mic_en)
{
u16 dg_ctrl;
if (mic_en) {
aic23_info_l.power = OSC_OFF | LINE_OFF;
dg_ctrl = ADCHP_ON;
aic23_info_l.mask &= ~MICM_MUTED;
aic23_info_l.mask |= MICB_20DB; /* STE_ENABLED */
} else {
aic23_info_l.power =
OSC_OFF | ADC_OFF | MIC_OFF | LINE_OFF;
dg_ctrl = 0x00;
aic23_info_l.mask =
DAC_SELECTED | INSEL_MIC | MICM_MUTED;
}
aic23_write_value(POWER_DOWN_CONTROL_ADDR,
aic23_info_l.power);
aic23_write_value(DIGITAL_AUDIO_CONTROL_ADDR, dg_ctrl);
aic23_write_value(ANALOG_AUDIO_CONTROL_ADDR,
aic23_info_l.mask);
aic23_info_l.mic_enable = mic_en;
printk(KERN_INFO "aic23 mic state: %i\n", mic_en);
}
static void aic23_init_power(void)
{
aic23_write_value(RESET_CONTROL_ADDR, 0x00);
if (aic23_info_l.initialized == 0) {
aic23_write_value(LEFT_CHANNEL_VOLUME_ADDR, LHV_MIN);
aic23_write_value(RIGHT_CHANNEL_VOLUME_ADDR, LHV_MIN);
}
else {
update_volume_left(aic23_info_l.volume_reg_left);
update_volume_right(aic23_info_l.volume_reg_right);
}
aic23_info_l.mask = DAC_SELECTED | INSEL_MIC | MICM_MUTED;
aic23_write_value(ANALOG_AUDIO_CONTROL_ADDR,
aic23_info_l.mask);
aic23_write_value(DIGITAL_AUDIO_CONTROL_ADDR, 0x00);
aic23_write_value(DIGITAL_AUDIO_FORMAT_ADDR, LRP_ON | FOR_DSP);
aic23_write_value(SAMPLE_RATE_CONTROL_ADDR, USB_CLK_ON);
aic23_write_value(DIGITAL_INTERFACE_ACT_ADDR, ACT_ON);
aic23_info_l.power = OSC_OFF | ADC_OFF | MIC_OFF | LINE_OFF;
aic23_write_value(POWER_DOWN_CONTROL_ADDR,
aic23_info_l.power);
/* enable mic input */
if (aic23_info_l.mic_enable)
set_mic(aic23_info_l.mic_enable);
printk(KERN_INFO "aic23_init_power() done\n");
}
void aic23_power_down(void)
{
if (aic23_info_l.initialized) {
printk("aic23 powering down\n");
aic23_write_value(POWER_DOWN_CONTROL_ADDR, 0xff);
}
aic23_info_l.power_down = 1;
}
void aic23_power_up(void)
{
if (aic23_info_l.initialized) {
printk("aic23 powering up\n");
aic23_init_power();
}
aic23_info_l.power_down = 0;
}
/*----------------------------------------------------------------------*/
/* sysfs initializations */
/*----------------------------------------------------------------------*/
static ssize_t store_volume_left(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
signed volume;
sscanf(buf, "%i", &volume);
if (volume < MIN_VOL) {
aic23_power_down();
return count;
} else if (volume > MIN_VOL && aic23_info_l.power_down) {
aic23_info_l.volume_reg_left = volume;
aic23_power_up();
return count;
}
if (volume > MAX_VOL)
volume = MAX_VOL;
update_volume_left(volume);
return count;
}
static ssize_t show_volume_left(struct device *dev,
struct device_attribute *attr, char *buf)
{
return sprintf(buf, "%u\n", aic23_info_l.volume_reg_left);
}
static DEVICE_ATTR(volume_left, S_IRUGO | S_IWUGO,
show_volume_left, store_volume_left);
static ssize_t store_volume_right(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
signed volume;
sscanf(buf, "%i", &volume);
if (volume < MIN_VOL) {
aic23_power_down();
return count;
} else if (volume > MIN_VOL && aic23_info_l.power_down) {
aic23_info_l.volume_reg_right = volume;
aic23_power_up();
return count;
}
if (volume > MAX_VOL)
volume = MAX_VOL;
update_volume_right(volume);
return count;
}
static ssize_t show_volume_right(struct device *dev,
struct device_attribute *attr, char *buf)
{
return sprintf(buf, "%u\n", aic23_info_l.volume_reg_right);
}
static DEVICE_ATTR(volume_right, S_IRUGO | S_IWUGO,
show_volume_right, store_volume_right);
static ssize_t store_gain_left(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
u16 val = 0;
unsigned gain;
sscanf(buf, "%u", &gain);
if (gain > MAX_VOL)
gain = MAX_VOL;
val = ((gain * INPUT_VOLUME_RANGE) / 100) + INPUT_VOLUME_MIN;
aic23_write_value(LEFT_LINE_VOLUME_ADDR, val);
aic23_info_l.input_gain_reg_left = gain;
return count;
}
static ssize_t show_gain_left(struct device *dev,
struct device_attribute *attr, char *buf)
{
return sprintf(buf, "%u\n", aic23_info_l.input_gain_reg_left);
}
static DEVICE_ATTR(gain_left, S_IRUGO | S_IWUSR, show_gain_left,
store_gain_left);
static ssize_t store_gain_right(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
u16 val = 0;
unsigned gain;
sscanf(buf, "%u", &gain);
if (gain > MAX_VOL)
gain = MAX_VOL;
val = ((gain * INPUT_VOLUME_RANGE) / 100) + INPUT_VOLUME_MIN;
aic23_write_value(RIGHT_LINE_VOLUME_ADDR, val);
aic23_info_l.input_gain_reg_right = gain;
return count;
}
static ssize_t show_gain_right(struct device *dev,
struct device_attribute *attr, char *buf)
{
return sprintf(buf, "%u\n", aic23_info_l.input_gain_reg_right);
}
static DEVICE_ATTR(gain_right, S_IRUGO | S_IWUSR, show_gain_right,
store_gain_right);
static ssize_t store_mic_loopback(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
int mic;
sscanf(buf, "%i", &mic);
if (mic > 0) {
aic23_write_value(POWER_DOWN_CONTROL_ADDR, \
OSC_OFF | ADC_OFF | LINE_OFF);
aic23_info_l.mask = STE_ENABLED | DAC_SELECTED \
| INSEL_MIC | MICB_20DB;
aic23_write_value(ANALOG_AUDIO_CONTROL_ADDR,
aic23_info_l.mask);
mic = 1;
}
else {
aic23_write_value(POWER_DOWN_CONTROL_ADDR, \
OSC_OFF | ADC_OFF | MIC_OFF | LINE_OFF);
mic = 0;
}
aic23_info_l.mic_loopback = mic;
return count;
}
static ssize_t show_mic_loopback(struct device *dev,
struct device_attribute *attr, char *buf)
{
return sprintf(buf, "%i\n", aic23_info_l.mic_loopback);
}
static DEVICE_ATTR(mic_loopback, S_IRUGO | S_IWUSR,
show_mic_loopback, store_mic_loopback);
static ssize_t store_st_attenuation(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
unsigned sta;
u16 tmp;
sscanf(buf, "%u", &sta);
if (sta > 3)
sta = 3;
tmp = aic23_info_l.mask;
tmp &= 0x3f;
aic23_info_l.mask = tmp | STA_REG(sta);
aic23_write_value(ANALOG_AUDIO_CONTROL_ADDR,
aic23_info_l.mask);
aic23_info_l.sta = sta;
return count;
}
static ssize_t show_st_attenuation(struct device *dev,
struct device_attribute *attr, char *buf)
{
return sprintf(buf, "%i\n", aic23_info_l.sta);
}
static DEVICE_ATTR(st_attenuation, S_IRUGO | S_IWUSR,
show_st_attenuation, store_st_attenuation);
static ssize_t store_mic_enable(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
int mic;
sscanf(buf, "%i", &mic);
set_mic(mic);
return count;
}
static ssize_t show_mic_enable(struct device *dev,
struct device_attribute *attr, char *buf)
{
return sprintf(buf, "%i\n", aic23_info_l.mic_enable);
}
static DEVICE_ATTR(mic_enable, S_IRUGO | S_IWUSR,
show_mic_enable, store_mic_enable);
static ssize_t show_audio_selftest(struct device *dev,
struct device_attribute *attr, char *buf)
{
return sprintf(buf, "%i\n", selftest);
}
static DEVICE_ATTR(audio_selftest, S_IRUGO | S_IWUSR,
show_audio_selftest, NULL);
static int audio_i2c_probe(struct platform_device *dev)
{
int r;
if ((r = device_create_file(&dev->dev, &dev_attr_volume_left)) != 0)
return r;
else if ((r = device_create_file(&dev->dev,
&dev_attr_volume_right)) != 0)
goto err_volume_left;
else if ((r = device_create_file(&dev->dev,
&dev_attr_gain_right)) != 0)
goto err_volume_right;
else if ((r = device_create_file(&dev->dev,
&dev_attr_gain_left)) != 0)
goto err_gain_right;
else if ((r = device_create_file(&dev->dev,
&dev_attr_mic_loopback)) != 0)
goto err_gain_left;
else if ((r = device_create_file(&dev->dev,
&dev_attr_mic_enable)) != 0)
goto err_mic_loopback;
else if ((r = device_create_file(&dev->dev,
&dev_attr_st_attenuation)) != 0)
goto err_mic_enable;
else if ((r = device_create_file(&dev->dev,
&dev_attr_audio_selftest)) != 0)
goto err_st_attenuation;
else
return r;
err_st_attenuation:
device_remove_file(&dev->dev, &dev_attr_st_attenuation);
err_mic_enable:
device_remove_file(&dev->dev, &dev_attr_mic_enable);
err_mic_loopback:
device_remove_file(&dev->dev, &dev_attr_mic_loopback);
err_gain_left:
device_remove_file(&dev->dev, &dev_attr_gain_left);
err_gain_right:
device_remove_file(&dev->dev, &dev_attr_gain_right);
err_volume_right:
device_remove_file(&dev->dev, &dev_attr_volume_right);
err_volume_left:
device_remove_file(&dev->dev, &dev_attr_volume_left);
return r;
}
static int audio_i2c_remove(struct platform_device *dev)
{
device_remove_file(&dev->dev, &dev_attr_st_attenuation);
device_remove_file(&dev->dev, &dev_attr_mic_enable);
device_remove_file(&dev->dev, &dev_attr_mic_loopback);
device_remove_file(&dev->dev, &dev_attr_gain_left);
device_remove_file(&dev->dev, &dev_attr_gain_right);
device_remove_file(&dev->dev, &dev_attr_volume_right);
device_remove_file(&dev->dev, &dev_attr_volume_left);
return 0;
}
/*----------------------------------------------------------------*/
/* PM functions */
/*----------------------------------------------------------------*/
static void audio_i2c_shutdown(struct platform_device *dev)
{
/* Let's mute the codec before powering off to prevent
* glitch in the sound
*/
aic23_write_value(LEFT_CHANNEL_VOLUME_ADDR, LHV_MIN);
aic23_write_value(RIGHT_CHANNEL_VOLUME_ADDR, LHV_MIN);
aic23_power_down();
}
static int audio_i2c_suspend(struct platform_device *dev, pm_message_t state)
{
/* Let's mute the codec before powering off to prevent
* glitch in the sound
*/
aic23_write_value(LEFT_CHANNEL_VOLUME_ADDR, LHV_MIN);
aic23_write_value(RIGHT_CHANNEL_VOLUME_ADDR, LHV_MIN);
aic23_power_down();
return 0;
}
static int audio_i2c_resume(struct platform_device *dev)
{
aic23_power_up();
return 0;
}
static struct platform_driver audio_i2c_driver = {
.driver = {
.owner = THIS_MODULE,
.name = "audio-i2c",
},
.shutdown = audio_i2c_shutdown,
.probe = audio_i2c_probe,
.remove = audio_i2c_remove,
.suspend = audio_i2c_suspend,
.resume = audio_i2c_resume,
};
static struct platform_device audio_i2c_device = {
.name = "audio-i2c",
.id = -1,
};
/*----------------------------------------------------------------*/
static int __init aic23_init(void)
{
selftest = 0;
aic23_info_l.initialized = 0;
if (i2c_add_driver(&aic23_driver)) {
printk("aic23 i2c: Driver registration failed, \
module not inserted.\n");
selftest = -ENODEV;
return selftest;
}
if (platform_driver_register(&audio_i2c_driver)) {
printk(KERN_WARNING "Failed to register audio i2c driver\n");
selftest = -ENODEV;
return selftest;
}
if (platform_device_register(&audio_i2c_device)) {
printk(KERN_WARNING "Failed to register audio i2c device\n");
platform_driver_unregister(&audio_i2c_driver);
selftest = -ENODEV;
return selftest;
}
/* FIXME: Do in board-specific file */
omap_mcbsp3_aic23_clock_init();
if (!aic23_info_l.power_down)
aic23_power_up();
aic23_info_l.initialized = 1;
printk("TLV320AIC23 I2C version %s (%s)\n",
TLV320AIC23_VERSION, TLV320AIC23_DATE);
return selftest;
}
static void __exit aic23_exit(void)
{
int res;
aic23_power_down();
if ((res = i2c_del_driver(&aic23_driver)))
printk("aic23 i2c: Driver remove failed, module not removed.\n");
platform_device_unregister(&audio_i2c_device);
platform_driver_unregister(&audio_i2c_driver);
}
MODULE_AUTHOR("Kai Svahn <kai.svahn@nokia.com>");
MODULE_DESCRIPTION("I2C interface for TLV320AIC23 codec.");
MODULE_LICENSE("GPL");
module_init(aic23_init)
module_exit(aic23_exit)
EXPORT_SYMBOL(aic23_write_value);
EXPORT_SYMBOL(aic23_power_up);
EXPORT_SYMBOL(aic23_power_down);
/*
* twl4030_core.c - driver for TWL4030 PM and audio CODEC device
*
* Copyright (C) 2005-2006 Texas Instruments, Inc.
*
* Modifications to defer interrupt handling to a kernel thread:
* Copyright (C) 2006 MontaVista Software, Inc.
*
* Based on tlv320aic23.c:
* Copyright (c) by Kai Svahn <kai.svahn@nokia.com>
*
* Code cleanup and modifications to IRQ handler.
* by syed khasim <x0khasim@ti.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#include <linux/module.h>
#include <linux/kernel_stat.h>
#include <linux/init.h>
#include <linux/time.h>
#include <linux/interrupt.h>
#include <linux/random.h>
#include <linux/syscalls.h>
#include <linux/kthread.h>
#include <linux/i2c.h>
#include <linux/slab.h>
#include <linux/clk.h>
#include <linux/device.h>
#include <asm/irq.h>
#include <asm/mach/irq.h>
#include <asm/arch/twl4030.h>
#include <asm/arch/gpio.h>
#include <asm/arch/mux.h>
/**** Macro Definitions */
#define TWL_CLIENT_STRING "TWL4030-ID"
#define TWL_CLIENT_USED 1
#define TWL_CLIENT_FREE 0
/* IRQ Flags */
#define FREE 0
#define USED 1
/** Primary Interrupt Handler on TWL4030 Registers */
/**** Register Definitions */
#define REG_PIH_ISR_P1 (0x1)
#define REG_PIH_ISR_P2 (0x2)
#define REG_PIH_SIR (0x3)
/* Triton Core internal information (BEGIN) */
/* Last - for index max*/
#define TWL4030_MODULE_LAST TWL4030_MODULE_SECURED_REG
/* Slave address */
#define TWL4030_NUM_SLAVES 0x04
#define TWL4030_SLAVENUM_NUM0 0x00
#define TWL4030_SLAVENUM_NUM1 0x01
#define TWL4030_SLAVENUM_NUM2 0x02
#define TWL4030_SLAVENUM_NUM3 0x03
#define TWL4030_SLAVEID_ID0 0x48
#define TWL4030_SLAVEID_ID1 0x49
#define TWL4030_SLAVEID_ID2 0x4A
#define TWL4030_SLAVEID_ID3 0x4B
/* Base Address defns */
/* USB ID */
#define TWL4030_BASEADD_USB 0x0000
/* AUD ID */
#define TWL4030_BASEADD_AUDIO_VOICE 0x0000
#define TWL4030_BASEADD_GPIO 0x0098
#define TWL4030_BASEADD_INTBR 0x0085
#define TWL4030_BASEADD_PIH 0x0080
#define TWL4030_BASEADD_TEST 0x004C
/* AUX ID */
#define TWL4030_BASEADD_INTERRUPTS 0x00B9
#define TWL4030_BASEADD_LED 0x00EE
#define TWL4030_BASEADD_MADC 0x0000
#define TWL4030_BASEADD_MAIN_CHARGE 0x0074
#define TWL4030_BASEADD_PRECHARGE 0x00AA
#define TWL4030_BASEADD_PWM0 0x00F8
#define TWL4030_BASEADD_PWM1 0x00FB
#define TWL4030_BASEADD_PWMA 0x00EF
#define TWL4030_BASEADD_PWMB 0x00F1
#define TWL4030_BASEADD_KEYPAD 0x00D2
/* POWER ID */
#define TWL4030_BASEADD_BACKUP 0x0014
#define TWL4030_BASEADD_INT 0x002E
#define TWL4030_BASEADD_PM_MASTER 0x0036
#define TWL4030_BASEADD_PM_RECIEVER 0x005B
#define TWL4030_BASEADD_RTC 0x001C
#define TWL4030_BASEADD_SECURED_REG 0x0000
/* Triton Core internal information (END) */
/* Few power values */
#define R_CFG_BOOT 0x05
#define R_PROTECT_KEY 0x0E
/* access control */
#define KEY_UNLOCK1 0xce
#define KEY_UNLOCK2 0xec
#define KEY_LOCK 0x00
#define HFCLK_FREQ_19p2_MHZ (1 << 0)
#define HFCLK_FREQ_26_MHZ (2 << 0)
#define HFCLK_FREQ_38p4_MHZ (3 << 0)
#define HIGH_PERF_SQ (1 << 3)
/* on I2C-1 for 2430SDP */
#define CONFIG_I2C_TWL4030_ID 1
/**** Helper functions */
static int
twl4030_detect_client(struct i2c_adapter *adapter, unsigned char sid);
static int twl4030_attach_adapter(struct i2c_adapter *adapter);
static int twl4030_detach_client(struct i2c_client *client);
static void do_twl4030_irq(unsigned int irq, irq_desc_t *desc);
static void twl_init_irq(void);
/**** Data Structures */
/* To have info on T2 IRQ substem activated or not */
static unsigned char twl_irq_used = FREE;
/* Structure to define on TWL4030 Slave ID */
struct twl4030_client {
struct i2c_client client;
const char client_name[sizeof(TWL_CLIENT_STRING) + 1];
const unsigned char address;
const char adapter_index;
unsigned char inuse;
/* max numb of i2c_msg required is for read =2 */
struct i2c_msg xfer_msg[2];
/* To lock access to xfer_msg */
struct semaphore xfer_lock;
};
/* Module Mapping */
struct twl4030mapping {
unsigned char sid; /* Slave ID */
unsigned char base; /* base address */
};
/* mapping the module id to slave id and base address */
static struct twl4030mapping twl4030_map[TWL4030_MODULE_LAST + 1] = {
{ TWL4030_SLAVENUM_NUM0, TWL4030_BASEADD_USB },
{ TWL4030_SLAVENUM_NUM1, TWL4030_BASEADD_AUDIO_VOICE },
{ TWL4030_SLAVENUM_NUM1, TWL4030_BASEADD_GPIO },
{ TWL4030_SLAVENUM_NUM1, TWL4030_BASEADD_INTBR },
{ TWL4030_SLAVENUM_NUM1, TWL4030_BASEADD_PIH },
{ TWL4030_SLAVENUM_NUM1, TWL4030_BASEADD_TEST },
{ TWL4030_SLAVENUM_NUM2, TWL4030_BASEADD_KEYPAD },
{ TWL4030_SLAVENUM_NUM2, TWL4030_BASEADD_MADC },
{ TWL4030_SLAVENUM_NUM2, TWL4030_BASEADD_INTERRUPTS },
{ TWL4030_SLAVENUM_NUM2, TWL4030_BASEADD_LED },
{ TWL4030_SLAVENUM_NUM2, TWL4030_BASEADD_MAIN_CHARGE },
{ TWL4030_SLAVENUM_NUM2, TWL4030_BASEADD_PRECHARGE },
{ TWL4030_SLAVENUM_NUM2, TWL4030_BASEADD_PWM0 },
{ TWL4030_SLAVENUM_NUM2, TWL4030_BASEADD_PWM1 },
{ TWL4030_SLAVENUM_NUM2, TWL4030_BASEADD_PWMA },
{ TWL4030_SLAVENUM_NUM2, TWL4030_BASEADD_PWMB },
{ TWL4030_SLAVENUM_NUM3, TWL4030_BASEADD_BACKUP },
{ TWL4030_SLAVENUM_NUM3, TWL4030_BASEADD_INT },
{ TWL4030_SLAVENUM_NUM3, TWL4030_BASEADD_PM_MASTER },
{ TWL4030_SLAVENUM_NUM3, TWL4030_BASEADD_PM_RECIEVER },
{ TWL4030_SLAVENUM_NUM3, TWL4030_BASEADD_RTC },
{ TWL4030_SLAVENUM_NUM3, TWL4030_BASEADD_SECURED_REG },
};
static struct twl4030_client twl4030_modules[TWL4030_NUM_SLAVES] = {
{
.address = TWL4030_SLAVEID_ID0,
.client_name = TWL_CLIENT_STRING "0",
.adapter_index = CONFIG_I2C_TWL4030_ID,
},
{
.address = TWL4030_SLAVEID_ID1,
.client_name = TWL_CLIENT_STRING "1",
.adapter_index = CONFIG_I2C_TWL4030_ID,
},
{
.address = TWL4030_SLAVEID_ID2,
.client_name = TWL_CLIENT_STRING "2",
.adapter_index = CONFIG_I2C_TWL4030_ID,
},
{
.address = TWL4030_SLAVEID_ID3,
.client_name = TWL_CLIENT_STRING "3",
.adapter_index = CONFIG_I2C_TWL4030_ID,
},
};
/* One Client Driver , 4 Clients */
static struct i2c_driver twl4030_driver = {
.driver.name = "TWL4030 I2C",
.attach_adapter = twl4030_attach_adapter,
.detach_client = twl4030_detach_client,
};
/*
* TWL4030 doesn't have PIH mask, hence dummy function for mask
* and unmask.
*/
static void twl4030_i2c_ackirq(unsigned int irq) {}
static void twl4030_i2c_disableint(unsigned int irq) {}
static void twl4030_i2c_enableint(unsigned int irq) {}
/* information for processing in the Work Item */
static struct irq_chip twl4030_irq_chip = {
.ack = twl4030_i2c_ackirq,
.mask = twl4030_i2c_disableint,
.unmask = twl4030_i2c_enableint,
};
/* Global Functions */
/*
* @brief twl4030_i2c_write - Writes a n bit register in TWL4030
*
* @param mod_no - module number
* @param *value - an array of num_bytes+1 containing data to write
* IMPORTANT - Allocate value num_bytes+1 and valid data starts at
* Offset 1.
* @param reg - register address (just offset will do)
* @param num_bytes - number of bytes to transfer
*
* @return result of operation - 0 is success
*/
int twl4030_i2c_write(u8 mod_no, u8 * value, u8 reg, u8 num_bytes)
{
int ret;
int sid;
struct twl4030_client *client;
struct i2c_msg *msg;
if (unlikely(mod_no > TWL4030_MODULE_LAST)) {
printk(KERN_ERR "TWL4030: Invalid module Number\n");
return -EPERM;
}
sid = twl4030_map[mod_no].sid;
client = &(twl4030_modules[sid]);
if (unlikely(client->inuse != TWL_CLIENT_USED)) {
printk(KERN_ERR
"TWL4030: I2C Client[%d] is not initialized[%d]\n",
sid, __LINE__);
return -EPERM;
}
down(&(client->xfer_lock));
/*
* [MSG1]: fill the register address data
* fill the data Tx buffer
*/
msg = &(client->xfer_msg[0]);
msg->addr = client->address;
msg->len = num_bytes + 1;
msg->flags = 0;
msg->buf = value;
/* over write the first byte of buffer with the register address */
*value = twl4030_map[mod_no].base + reg;
ret = i2c_transfer(client->client.adapter, client->xfer_msg, 1);
up(&(client->xfer_lock));
/* i2cTransfer returns num messages.translate it pls.. */
if (ret >= 0)
ret = 0;
return ret;
}
/**
* @brief twl4030_i2c_read - Reads a n bit register in TWL4030
*
* @param mod_no - module number
* @param *value - an array of num_bytes containing data to be read
* @param reg - register address (just offset will do)
* @param num_bytes - number of bytes to transfer
*
* @return result of operation - num_bytes is success else failure.
*/
int twl4030_i2c_read(u8 mod_no, u8 * value, u8 reg, u8 num_bytes)
{
int ret;
u8 val;
int sid;
struct twl4030_client *client;
struct i2c_msg *msg;
if (unlikely(mod_no > TWL4030_MODULE_LAST)) {
printk(KERN_ERR "TWL4030: Invalid module Number\n");
return -EPERM;
}
sid = twl4030_map[mod_no].sid;
client = &(twl4030_modules[sid]);
if (unlikely(client->inuse != TWL_CLIENT_USED)) {
printk(KERN_ERR
"TWL4030: I2C Client[%d] is not initialized[%d]\n",
sid, __LINE__);
return -EPERM;
}
down(&(client->xfer_lock));
/* [MSG1] fill the register address data */
msg = &(client->xfer_msg[0]);
msg->addr = client->address;
msg->len = 1;
val = twl4030_map[mod_no].base + reg;
msg->buf = &val;
/* [MSG2] fill the data rx buffer */
msg = &(client->xfer_msg[1]);
msg->addr = client->address;
msg->flags = I2C_M_RD; /* Read the register value */
msg->len = num_bytes; /* only n bytes */
msg->buf = value;
ret = i2c_transfer(client->client.adapter, client->xfer_msg, 2);
up(&(client->xfer_lock));
/* i2cTransfer returns num messages.translate it pls.. */
if (ret >= 0)
ret = 0;
return ret;
}
/**
* @brief twl4030_i2c_write_u8 - Writes a 8 bit register in TWL4030
*
* @param mod_no - module number
* @param value - the value to be written 8 bit
* @param reg - register address (just offset will do)
*
* @return result of operation - 0 is success
*/
int twl4030_i2c_write_u8(u8 mod_no, u8 value, u8 reg)
{
int ret;
/* 2 bytes offset 1 contains the data offset 0 is used by i2c_write */
u8 temp_buffer[2] = { 0 };
/* offset 1 contains the data */
temp_buffer[1] = value;
ret = twl4030_i2c_write(mod_no, temp_buffer, reg, 1);
return ret;
}
/**
* @brief twl4030_i2c_read_u8 - Reads a 8 bit register from TWL4030
*
* @param mod_no - module number
* @param *value - the value read 8 bit
* @param reg - register address (just offset will do)
*
* @return result of operation - 0 is success
*/
int twl4030_i2c_read_u8(u8 mod_no, u8 * value, u8 reg)
{
int ret = 0;
ret = twl4030_i2c_read(mod_no, value, reg, 1);
return ret;
}
/**** Helper Functions */
/*
* do_twl4030_module_irq() is the desc->handle method for each of the twl4030
* module interrupts. It executes in kernel thread context.
* On entry, cpu interrupts are disabled.
*/
static void do_twl4030_module_irq(unsigned int irq, irq_desc_t *desc)
{
struct irqaction *action;
const unsigned int cpu = smp_processor_id();
/*
* Earlier this was desc->triggered = 1;
*/
desc->status = IRQ_INPROGRESS;
/*
* The desc->handle method would normally call the desc->chip->ack
* method here, but we won't bother since our ack method is NULL.
*/
if (!desc->depth) {
kstat_cpu(cpu).irqs[irq]++;
action = desc->action;
if (action) {
int ret;
int status = 0;
int retval = 0;
local_irq_enable();
do {
/* Call the ISR with cpu interrupts enabled */
ret = action->handler(irq, action->dev_id);
if (ret == IRQ_HANDLED)
status |= action->flags;
retval |= ret;
action = action->next;
} while (action);
if (status & IRQF_SAMPLE_RANDOM)
add_interrupt_randomness(irq);
local_irq_disable();
if (retval != IRQ_HANDLED)
printk(KERN_ERR "ISR for TWL4030 module"
" irq %d can't handle interrupt\n", irq);
/*
* Here is where we should call the unmask method, but
* again we won't bother since it is NULL.
*/
} else
printk(KERN_CRIT "TWL4030 module irq %d has no ISR"
" but can't be masked!\n", irq);
} else
printk(KERN_CRIT "TWL4030 module irq %d is disabled but can't"
" be masked!\n", irq);
}
/*
* twl4030_irq_thread() runs as a kernel thread. It queries the twl4030
* interrupt controller to see which modules are generating interrupt requests
* and then calls the desc->handle method for each module requesting service.
*/
static int twl4030_irq_thread(void *data)
{
int irq = (int)data;
irq_desc_t *desc = irq_desc + irq;
static unsigned i2c_errors;
const static unsigned max_i2c_errors = 100;
while (!kthread_should_stop()) {
int ret;
int module_irq;
u8 pih_isr;
ret = twl4030_i2c_read_u8(TWL4030_MODULE_PIH, &pih_isr,
REG_PIH_ISR_P1);
if (ret) {
printk(KERN_WARNING "I2C error %d while reading TWL4030"
" PIH ISR register.\n", ret);
if (++i2c_errors >= max_i2c_errors) {
printk(KERN_ERR "Maximum I2C error count"
" exceeded. Terminating %s.\n",
__FUNCTION__);
break;
}
continue;
}
for (module_irq = IH_TWL4030_BASE; 0 != pih_isr;
pih_isr >>= 1, module_irq++) {
if (pih_isr & 0x1) {
irq_desc_t *d = irq_desc + module_irq;
local_irq_disable();
d->handle_irq(module_irq, d);
local_irq_enable();
}
}
local_irq_disable();
set_current_state(TASK_INTERRUPTIBLE);
desc->chip->unmask(irq);
local_irq_enable();
schedule();
}
set_current_state(TASK_RUNNING);
return 0;
}
/*
* do_twl4030_irq() is the desc->handle method for the twl4030 interrupt.
* This is a chained interrupt, so there is no desc->action method for it.
* Now we need to query the interrupt controller in the twl4030 to determine
* which module is generating the interrupt request. However, we can't do i2c
* transactions in interrupt context, so we must defer that work to a kernel
* thread. All we do here is acknowledge and mask the interrupt and wakeup
* the kernel thread.
*/
static void do_twl4030_irq(unsigned int irq, irq_desc_t *desc)
{
const unsigned int cpu = smp_processor_id();
struct task_struct *thread = (struct task_struct *)desc->chip_data;
/*
* Earlier this was desc->triggered = 1;
*/
desc->status = IRQ_INPROGRESS;
/*
* Acknowledge, clear _AND_ disable the interrupt.
*/
desc->chip->ack(irq);
if (!desc->depth) {
kstat_cpu(cpu).irqs[irq]++;
if (thread && thread->state != TASK_RUNNING)
wake_up_process(thread);
}
}
/* attach a client to the adapter */
static int twl4030_detect_client(struct i2c_adapter *adapter, unsigned char sid)
{
int err = 0;
struct twl4030_client *client;
if (unlikely(sid >= TWL4030_NUM_SLAVES)) {
printk(KERN_ERR "TWL4030: sid[%d] >MOD_LAST[%d]\n", sid,
TWL4030_NUM_SLAVES);
return -EPERM;
}
/* Check basic functionality */
if (!(err = i2c_check_functionality(adapter, I2C_FUNC_SMBUS_WORD_DATA |
I2C_FUNC_SMBUS_WRITE_BYTE))) {
printk(KERN_WARNING
"TWL4030: SlaveID=%d functionality check failed\n", sid);
return err;
}
client = &(twl4030_modules[sid]);
if (unlikely(client->inuse)) {
printk(KERN_ERR "TWL4030: Client is already in Use.....\n");
printk("%s[ID=0x%x] NOT attached to I2c Adapter %s\n",
client->client_name, client->address, adapter->name);
return -EPERM;
}
memset(&(client->client), 0, sizeof(struct i2c_client));
client->client.addr = client->address;
client->client.adapter = adapter;
client->client.driver = &twl4030_driver;
memcpy(&(client->client.name), client->client_name,
sizeof(TWL_CLIENT_STRING) + 1);
printk("TWL4030: TRY attach Slave %s on Adapter %s[%d][%x]\n",
client->client_name, adapter->name, err, err);
if ((err = i2c_attach_client(&(client->client))))
printk(KERN_WARNING
"TWL4030: Couldn't attach Slave %s on Adapter "
"%s[%d][%x]\n",
client->client_name, adapter->name, err, err);
else {
client->inuse = TWL_CLIENT_USED;
init_MUTEX(&client->xfer_lock);
}
return err;
}
/* adapter callback */
static int twl4030_attach_adapter(struct i2c_adapter *adapter)
{
int i;
int ret = 0;
static int twl_i2c_adapter = 1;
for (i = 0; i < TWL4030_NUM_SLAVES; i++) {
/* Check if I need to hook on to this adapter or not */
if (twl4030_modules[i].adapter_index == twl_i2c_adapter) {
if ((ret = twl4030_detect_client(adapter, i)))
goto free_client;
}
}
twl_i2c_adapter++;
/*
* Check if the PIH module is initialized, if yes, then init
* the T2 Interrupt subsystem
*/
if ((twl4030_modules[twl4030_map[TWL4030_MODULE_PIH].sid].inuse ==
TWL_CLIENT_USED) && (twl_irq_used != USED)) {
twl_init_irq();
twl_irq_used = USED;
}
return 0;
free_client:
printk(KERN_ERR
"TWL4030: TWL_CLIENT(Idx=%d] REGISTRATION FAILED=%d[0x%x]\n", i,
ret, ret);
/* ignore current slave..it never got registered */
i--;
while (i >= 0) {
/* now remove all those from the current adapter... */
if (twl4030_modules[i].adapter_index == twl_i2c_adapter)
(void)twl4030_detach_client(&(twl4030_modules[i].client));
i--;
}
return ret;
}
/* adapter's callback */
static int twl4030_detach_client(struct i2c_client *iclient)
{
int err;
if ((err = i2c_detach_client(iclient))) {
printk(KERN_ERR
"TWL4030: Client deregistration failed, client not detached.\n");
return err;
}
return 0;
}
struct task_struct *start_twl4030_irq_thread(int irq)
{
struct task_struct *thread;
thread = kthread_create(twl4030_irq_thread, (void *)irq,
"twl4030 irq %d", irq);
if (!thread)
printk(KERN_ERR "%s: could not create twl4030 irq %d thread!\n",
__FUNCTION__, irq);
return thread;
}
/*
* These three functions should be part of Voltage frame work
* added here to complete the functionality for now.
*/
static int protect_pm_master(void)
{
int e = 0;
e = twl4030_i2c_write_u8(TWL4030_MODULE_PM_MASTER, KEY_LOCK,
R_PROTECT_KEY);
return e;
}
static int unprotect_pm_master(void)
{
int e = 0;
e |= twl4030_i2c_write_u8(TWL4030_MODULE_PM_MASTER, KEY_UNLOCK1,
R_PROTECT_KEY);
e |= twl4030_i2c_write_u8(TWL4030_MODULE_PM_MASTER, KEY_UNLOCK2,
R_PROTECT_KEY);
return e;
}
int power_companion_init(void)
{
struct clk *osc;
u32 rate, ctrl = HFCLK_FREQ_26_MHZ;
int e = 0;
osc = clk_get(NULL,"osc_ck");
rate = clk_get_rate(osc);
clk_put(osc);
switch(rate) {
case 19200000 : ctrl = HFCLK_FREQ_19p2_MHZ; break;
case 26000000 : ctrl = HFCLK_FREQ_26_MHZ; break;
case 38400000 : ctrl = HFCLK_FREQ_38p4_MHZ; break;
}
ctrl |= HIGH_PERF_SQ;
e |= unprotect_pm_master();
/* effect->MADC+USB ck en */
e |= twl4030_i2c_write_u8(TWL4030_MODULE_PM_MASTER, ctrl, R_CFG_BOOT);
e |= protect_pm_master();
return e;
}
static void twl_init_irq(void)
{
int i = 0;
int res = 0;
int line = 0;
/*
* We end up with interrupts from other modules before
* they get a chance to handle them...
*/
/* PWR_ISR1 */
res = twl4030_i2c_write_u8(TWL4030_MODULE_INT, 0xFF, 0x00);
if (res < 0) {
line = __LINE__;
goto irq_exit_path;
}
/* PWR_ISR2 */
res = twl4030_i2c_write_u8(TWL4030_MODULE_INT, 0xFF, 0x02);
if (res < 0) {
line = __LINE__;
goto irq_exit_path;
}
/* PWR_IMR1 */
res = twl4030_i2c_write_u8(TWL4030_MODULE_INT, 0xFF, 0x1);
if (res < 0) {
line = __LINE__;
goto irq_exit_path;
}
/* PWR_IMR2 */
res = twl4030_i2c_write_u8(TWL4030_MODULE_INT, 0xFF, 0x3);
if (res < 0) {
line = __LINE__;
goto irq_exit_path;
}
/* Clear off any other pending interrupts on power */
/* PWR_ISR1 */
res = twl4030_i2c_write_u8(TWL4030_MODULE_INT, 0xFF, 0x00);
if (res < 0) {
line = __LINE__;
goto irq_exit_path;
}
/* PWR_ISR2 */
res = twl4030_i2c_write_u8(TWL4030_MODULE_INT, 0xFF, 0x02);
if (res < 0) {
line = __LINE__;
goto irq_exit_path;
}
/* POWER HACK (END) */
/* Slave address 0x4A */
/* BCIIMR1_1 */
res = twl4030_i2c_write_u8(TWL4030_MODULE_INTERRUPTS, 0xFF, 0x3);
if (res < 0) {
line = __LINE__;
goto irq_exit_path;
}
/* BCIIMR1_2 */
res = twl4030_i2c_write_u8(TWL4030_MODULE_INTERRUPTS, 0xFF, 0x4);
if (res < 0) {
line = __LINE__;
goto irq_exit_path;
}
/* BCIIMR2_1 */
res = twl4030_i2c_write_u8(TWL4030_MODULE_INTERRUPTS, 0xFF, 0x7);
if (res < 0) {
line = __LINE__;
goto irq_exit_path;
}
/* BCIIMR2_2 */
res = twl4030_i2c_write_u8(TWL4030_MODULE_INTERRUPTS, 0xFF, 0x8);
if (res < 0) {
line = __LINE__;
goto irq_exit_path;
}
/* MAD C */
/* MADC_IMR1 */
res = twl4030_i2c_write_u8(TWL4030_MODULE_MADC, 0xFF, 0x62);
if (res < 0) {
line = __LINE__;
goto irq_exit_path;
}
/* MADC_IMR2 */
res = twl4030_i2c_write_u8(TWL4030_MODULE_MADC, 0xFF, 0x64);
if (res < 0) {
line = __LINE__;
goto irq_exit_path;
}
/* key Pad */
/* KEYPAD - IMR1 */
res = twl4030_i2c_write_u8(TWL4030_MODULE_KEYPAD, 0xFF, (0x12));
if (res < 0) {
line = __LINE__;
goto irq_exit_path;
}
{
u8 clear;
/* Clear ISR */
twl4030_i2c_read_u8(TWL4030_MODULE_KEYPAD, &clear, 0x11);
twl4030_i2c_read_u8(TWL4030_MODULE_KEYPAD, &clear, 0x11);
}
/* KEYPAD - IMR2 */
res = twl4030_i2c_write_u8(TWL4030_MODULE_KEYPAD, 0xFF, (0x14));
if (res < 0) {
line = __LINE__;
goto irq_exit_path;
}
/* Slave address 0x49 */
/* GPIO_IMR1A */
res = twl4030_i2c_write_u8(TWL4030_MODULE_GPIO, 0xFF, (0x1C));
if (res < 0) {
line = __LINE__;
goto irq_exit_path;
}
/* GPIO_IMR2A */
res = twl4030_i2c_write_u8(TWL4030_MODULE_GPIO, 0xFF, (0x1D));
if (res < 0) {
line = __LINE__;
goto irq_exit_path;
}
/* GPIO_IMR3A */
res = twl4030_i2c_write_u8(TWL4030_MODULE_GPIO, 0xFF, (0x1E));
if (res < 0) {
line = __LINE__;
goto irq_exit_path;
}
/* GPIO_IMR1B */
res = twl4030_i2c_write_u8(TWL4030_MODULE_GPIO, 0xFF, (0x22));
if (res < 0) {
line = __LINE__;
goto irq_exit_path;
}
/* GPIO_IMR2B */
res = twl4030_i2c_write_u8(TWL4030_MODULE_GPIO, 0xFF, (0x23));
if (res < 0) {
line = __LINE__;
goto irq_exit_path;
}
/* GPIO_IMR3B */
res = twl4030_i2c_write_u8(TWL4030_MODULE_GPIO, 0xFF, (0x24));
if (res < 0) {
line = __LINE__;
goto irq_exit_path;
}
/* install an irq handler for each of the PIH modules */
for (i = IH_TWL4030_BASE; i < IH_TWL4030_END; i++) {
set_irq_chip(i, &twl4030_irq_chip);
set_irq_handler(i, do_twl4030_module_irq);
set_irq_flags(i, IRQF_VALID);
}
/* install an irq handler to demultiplex the TWL4030 interrupt */
set_irq_data(TWL4030_IRQNUM, start_twl4030_irq_thread(TWL4030_IRQNUM));
set_irq_type(TWL4030_IRQNUM, IRQT_FALLING);
set_irq_chained_handler(TWL4030_IRQNUM, do_twl4030_irq);
res = power_companion_init();
if (res < 0) {
line = __LINE__;
goto irq_exit_path;
}
irq_exit_path:
if (res)
printk(KERN_ERR
"TWL4030: Unable to register interrupt "
"subsystem[%d][%d]\n", res, line);
}
static int __init twl4030_init(void)
{
int res;
if ((res = i2c_register_driver(THIS_MODULE, &twl4030_driver))) {
printk(KERN_ERR "TWL4030: Driver registration failed \n");
return res;
}
printk(KERN_INFO "TWL4030: Driver registration complete.\n");
return res;
}
static void __exit twl4030_exit(void)
{
if (i2c_del_driver(&twl4030_driver))
printk(KERN_ERR
"TWL4030: Driver remove failed, module not removed\n");
twl_irq_used = FREE;
}
subsys_initcall(twl4030_init);
module_exit(twl4030_exit);
EXPORT_SYMBOL(twl4030_i2c_write_u8);
EXPORT_SYMBOL(twl4030_i2c_read_u8);
EXPORT_SYMBOL(twl4030_i2c_read);
EXPORT_SYMBOL(twl4030_i2c_write);
MODULE_AUTHOR("Texas Instruments, Inc.");
MODULE_DESCRIPTION("I2C Core interface for TWL4030");
MODULE_LICENSE("GPL");
/*
* twl4030.h - header for TWL4030 PM and audio CODEC device
*
* Copyright (C) 2005-2006 Texas Instruments, Inc.
*
* Based on tlv320aic23.c:
* Copyright (c) by Kai Svahn <kai.svahn@nokia.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#ifndef __TWL4030_H_
#define __TWL4030_H_
/* USB ID */
#define TWL4030_MODULE_USB 0x00
/* AUD ID */
#define TWL4030_MODULE_AUDIO_VOICE 0x01
#define TWL4030_MODULE_GPIO 0x02
#define TWL4030_MODULE_INTBR 0x03
#define TWL4030_MODULE_PIH 0x04
#define TWL4030_MODULE_TEST 0x05
/* AUX ID */
#define TWL4030_MODULE_KEYPAD 0x06
#define TWL4030_MODULE_MADC 0x07
#define TWL4030_MODULE_INTERRUPTS 0x08
#define TWL4030_MODULE_LED 0x09
#define TWL4030_MODULE_MAIN_CHARGE 0x0A
#define TWL4030_MODULE_PRECHARGE 0x0B
#define TWL4030_MODULE_PWM0 0x0C
#define TWL4030_MODULE_PWM1 0x0D
#define TWL4030_MODULE_PWMA 0x0E
#define TWL4030_MODULE_PWMB 0x0F
/* POWER ID */
#define TWL4030_MODULE_BACKUP 0x10
#define TWL4030_MODULE_INT 0x11
#define TWL4030_MODULE_PM_MASTER 0x12
#define TWL4030_MODULE_PM_RECIEVER 0x13
#define TWL4030_MODULE_RTC 0x14
#define TWL4030_MODULE_SECURED_REG 0x15
/* IRQ information-need base */
#include <asm/arch/irqs.h>
/* TWL4030 interrupts */
#define TWL4030_MODIRQ_GPIO (IH_TWL4030_BASE + 0)
#define TWL4030_MODIRQ_KEYPAD (IH_TWL4030_BASE + 1)
#define TWL4030_MODIRQ_BCI (IH_TWL4030_BASE + 2)
#define TWL4030_MODIRQ_MADC (IH_TWL4030_BASE + 3)
#define TWL4030_MODIRQ_USB (IH_TWL4030_BASE + 4)
#define TWL4030_MODIRQ_PWR (IH_TWL4030_BASE + 5)
/* Rest are unsued currently*/
/* Offsets to Power Registers */
#define TWL4030_VDAC_DEV_GRP 0x3B
#define TWL4030_VDAC_DEDICATED 0x3E
#define TWL4030_VAUX2_DEV_GRP 0x1B
#define TWL4030_VAUX2_DEDICATED 0x1E
#define TWL4030_VAUX3_DEV_GRP 0x1F
#define TWL4030_VAUX3_DEDICATED 0x22
/* Functions to read and write from TWL4030 */
/*
* IMP NOTE:
* The base address of the module will be added by the triton driver
* It is the caller's responsibility to ensure sane values
*/
int twl4030_i2c_write_u8(u8 mod_no, u8 val, u8 reg);
int twl4030_i2c_read_u8(u8 mod_no, u8* val, u8 reg);
/*
* i2c_write: IMPORTANT - Allocate value num_bytes+1 and valid data starts at
* Offset 1.
*/
int twl4030_i2c_write(u8 mod_no, u8 * value, u8 reg, u8 num_bytes);
int twl4030_i2c_read(u8 mod_no, u8 * value, u8 reg, u8 num_bytes);
#endif /* End of __TWL4030_H */
/*
*
* TI TSC2101 Audio CODEC and TS control registers definition
*
*
* Copyright 2003 MontaVista Software Inc.
* Author: MontaVista Software, Inc.
* source@mvista.com
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
* NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#ifndef __ASM_HARDWARE_TSC2101_H
#define __ASM_HARDWARE_TSC2101_H
/* Page 0 Touch Screen Data Registers */
#define TSC2101_TS_X (0x00)
#define TSC2101_TS_Y (0x01)
#define TSC2101_TS_Z1 (0x02)
#define TSC2101_TS_Z2 (0x03)
#define TSC2101_TS_BAT (0x05)
#define TSC2101_TS_AUX1 (0x07)
#define TSC2101_TS_AUX2 (0x08)
#define TSC2101_TS_TEMP1 (0x09)
#define TSC2101_TS_TEMP2 (0x0A)
/* Page 1 Touch Screen Control registers */
#define TSC2101_TS_ADC_CTRL (0x00)
#define TSC2101_TS_STATUS (0x01)
#define TSC2101_TS_BUFFER_CTRL (0x02)
#define TSC2101_TS_REF_CTRL (0x03)
#define TSC2101_TS_RESET_CTRL (0x04)
#define TSC2101_TS_CONFIG_CTRL (0x05)
#define TSC2101_TS_TEMP_MAX_THRESHOLD (0x06)
#define TSC2101_TS_TEMP_MIN_THRESHOLD (0x07)
#define TSC2101_TS_AUX1_MAX_THRESHOLD (0x08)
#define TSC2101_TS_AUX1_MIN_THRESHOLD (0x09)
#define TSC2101_TS_AUX2_MAX_THRESHOLD (0x0A)
#define TSC2101_TS_AUX2_MIN_THRESHOLD (0x0B)
#define TSC2101_TS_MEASURE_CONFIG (0x0C)
#define TSC2101_TS_PROG_DELAY (0x0D)
/* Page 2 Audio codec Control registers */
#define TSC2101_AUDIO_CTRL_1 (0x00)
#define TSC2101_HEADSET_GAIN_CTRL (0x01)
#define TSC2101_DAC_GAIN_CTRL (0x02)
#define TSC2101_MIXER_PGA_CTRL (0x03)
#define TSC2101_AUDIO_CTRL_2 (0x04)
#define TSC2101_CODEC_POWER_CTRL (0x05)
#define TSC2101_AUDIO_CTRL_3 (0x06)
#define TSC2101_LCH_BASS_BOOST_N0 (0x07)
#define TSC2101_LCH_BASS_BOOST_N1 (0x08)
#define TSC2101_LCH_BASS_BOOST_N2 (0x09)
#define TSC2101_LCH_BASS_BOOST_N3 (0x0A)
#define TSC2101_LCH_BASS_BOOST_N4 (0x0B)
#define TSC2101_LCH_BASS_BOOST_N5 (0x0C)
#define TSC2101_LCH_BASS_BOOST_D1 (0x0D)
#define TSC2101_LCH_BASS_BOOST_D2 (0x0E)
#define TSC2101_LCH_BASS_BOOST_D4 (0x0F)
#define TSC2101_LCH_BASS_BOOST_D5 (0x10)
#define TSC2101_RCH_BASS_BOOST_N0 (0x11)
#define TSC2101_RCH_BASS_BOOST_N1 (0x12)
#define TSC2101_RCH_BASS_BOOST_N2 (0x13)
#define TSC2101_RCH_BASS_BOOST_N3 (0x14)
#define TSC2101_RCH_BASS_BOOST_N4 (0x15)
#define TSC2101_RCH_BASS_BOOST_N5 (0x16)
#define TSC2101_RCH_BASS_BOOST_D1 (0x17)
#define TSC2101_RCH_BASS_BOOST_D2 (0x18)
#define TSC2101_RCH_BASS_BOOST_D4 (0x19)
#define TSC2101_RCH_BASS_BOOST_D5 (0x1A)
#define TSC2101_PLL_PROG_1 (0x1B)
#define TSC2101_PLL_PROG_2 (0x1C)
#define TSC2101_AUDIO_CTRL_4 (0x1D)
#define TSC2101_HANDSET_GAIN_CTRL (0x1E)
#define TSC2101_BUZZER_GAIN_CTRL (0x1F)
#define TSC2101_AUDIO_CTRL_5 (0x20)
#define TSC2101_AUDIO_CTRL_6 (0x21)
#define TSC2101_AUDIO_CTRL_7 (0x22)
#define TSC2101_GPIO_CTRL (0x23)
#define TSC2101_AGC_CTRL (0x24)
#define TSC2101_POWERDOWN_STS (0x25)
#define TSC2101_MIC_AGC_CONTROL (0x26)
#define TSC2101_CELL_AGC_CONTROL (0x27)
/* Bit field definitions for TS Control */
#define TSC2101_DATA_AVAILABLE 0x4000
#define TSC2101_BUFFERMODE_DISABLE 0x0
#define TSC2101_REF_POWERUP 0x16
#define TSC2101_ENABLE_TOUCHDETECT 0x08
#define TSC2101_PRG_DELAY 0x0900
#define TSC2101_ADC_CONTROL 0x8874
#define TSC2101_ADC_POWERDOWN 0x4000
/* Bit position */
#define TSC2101_BIT(ARG) ((0x01)<<(ARG))
/* Field masks for Audio Control 1 */
#define AC1_ADCHPF(ARG) (((ARG) & 0x03) << 14)
#define AC1_WLEN(ARG) (((ARG) & 0x03) << 10)
#define AC1_DATFM(ARG) (((ARG) & 0x03) << 8)
#define AC1_DACFS(ARG) (((ARG) & 0x07) << 3)
#define AC1_ADCFS(ARG) (((ARG) & 0x07))
/* Field masks for TSC2101_HEADSET_GAIN_CTRL */
#define HGC_ADMUT_HED TSC2101_BIT(15)
#define HGC_ADPGA_HED(ARG) (((ARG) & 0x7F) << 8)
#define HGC_AGCTG_HED(ARG) (((ARG) & 0x07) << 5)
#define HGC_AGCTC_HED(ARG) (((ARG) & 0x0F) << 1)
#define HGC_AGCEN_HED (0x01)
/* Field masks for TSC2101_DAC_GAIN_CTRL */
#define DGC_DALMU TSC2101_BIT(15)
#define DGC_DALVL(ARG) (((ARG) & 0x7F) << 8)
#define DGC_DARMU TSC2101_BIT(7)
#define DGC_DARVL(ARG) (((ARG) & 0x7F))
/* Field masks for TSC2101_MIXER_PGA_CTRL */
#define MPC_ASTMU TSC2101_BIT(15)
#define MPC_ASTG(ARG) (((ARG) & 0x7F) << 8)
#define MPC_MICSEL(ARG) (((ARG) & 0x07) << 5)
#define MPC_MICADC TSC2101_BIT(4)
#define MPC_CPADC TSC2101_BIT(3)
#define MPC_ASTGF (0x01)
/* Field formats for TSC2101_AUDIO_CTRL_2 */
#define AC2_KCLEN TSC2101_BIT(15)
#define AC2_KCLAC(ARG) (((ARG) & 0x07) << 12)
#define AC2_APGASS TSC2101_BIT(11)
#define AC2_KCLFRQ(ARG) (((ARG) & 0x07) << 8)
#define AC2_KCLLN(ARG) (((ARG) & 0x0F) << 4)
#define AC2_DLGAF TSC2101_BIT(3)
#define AC2_DRGAF TSC2101_BIT(2)
#define AC2_DASTC TSC2101_BIT(1)
#define AC2_ADGAF (0x01)
/* Field masks for TSC2101_CODEC_POWER_CTRL */
#define CPC_MBIAS_HND TSC2101_BIT(15)
#define CPC_MBIAS_HED TSC2101_BIT(14)
#define CPC_ASTPWD TSC2101_BIT(13)
#define CPC_SP1PWDN TSC2101_BIT(12)
#define CPC_SP2PWDN TSC2101_BIT(11)
#define CPC_DAPWDN TSC2101_BIT(10)
#define CPC_ADPWDN TSC2101_BIT(9)
#define CPC_VGPWDN TSC2101_BIT(8)
#define CPC_COPWDN TSC2101_BIT(7)
#define CPC_LSPWDN TSC2101_BIT(6)
#define CPC_ADPWDF TSC2101_BIT(5)
#define CPC_LDAPWDF TSC2101_BIT(4)
#define CPC_RDAPWDF TSC2101_BIT(3)
#define CPC_ASTPWF TSC2101_BIT(2)
#define CPC_BASSBC TSC2101_BIT(1)
#define CPC_DEEMPF (0x01)
/* Field masks for TSC2101_AUDIO_CTRL_3 */
#define AC3_DMSVOL(ARG) (((ARG) & 0x03) << 14)
#define AC3_REFFS TSC2101_BIT(13)
#define AC3_DAXFM TSC2101_BIT(12)
#define AC3_SLVMS TSC2101_BIT(11)
#define AC3_ADCOVF TSC2101_BIT(8)
#define AC3_DALOVF TSC2101_BIT(7)
#define AC3_DAROVF TSC2101_BIT(6)
#define AC3_CLPST TSC2101_BIT(3)
#define AC3_REVID(ARG) (((ARG) & 0x07))
/* Field masks for TSC2101_PLL_PROG_1 */
#define PLL1_PLLSEL TSC2101_BIT(15)
#define PLL1_QVAL(ARG) (((ARG) & 0x0F) << 11)
#define PLL1_PVAL(ARG) (((ARG) & 0x07) << 8)
#define PLL1_I_VAL(ARG) (((ARG) & 0x3F) << 2)
/* Field masks of TSC2101_PLL_PROG_2 */
#define PLL2_D_VAL(ARG) (((ARG) & 0x3FFF) << 2)
/* Field masks for TSC2101_AUDIO_CTRL_4 */
#define AC4_ADSTPD TSC2101_BIT(15)
#define AC4_DASTPD TSC2101_BIT(14)
#define AC4_ASSTPD TSC2101_BIT(13)
#define AC4_CISTPD TSC2101_BIT(12)
#define AC4_BISTPD TSC2101_BIT(11)
#define AC4_AGCHYS(ARG) (((ARG) & 0x03) << 9)
#define AC4_MB_HED(ARG) (((ARG) & 0x03) << 7)
#define AC4_MB_HND TSC2101_BIT(6)
#define AC4_SCPFL TSC2101_BIT(1)
/* Field masks settings for TSC2101_HANDSET_GAIN_CTRL */
#define HNGC_ADMUT_HND TSC2101_BIT(15)
#define HNGC_ADPGA_HND(ARG) (((ARG) & 0x7F) << 8)
#define HNGC_AGCTG_HND(ARG) (((ARG) & 0x07) << 5)
#define HNGC_AGCTC_HND(ARG) (((ARG) & 0x0F) << 1)
#define HNGC_AGCEN_HND (0x01)
/* Field masks settings for TSC2101_BUZZER_GAIN_CTRL */
#define BGC_MUT_CP TSC2101_BIT(15)
#define BGC_CPGA(ARG) (((ARG) & 0x7F) << 8)
#define BGC_CPGF TSC2101_BIT(7)
#define BGC_MUT_BU TSC2101_BIT(6)
#define BGC_BPGA(ARG) (((ARG) & 0x0F) << 2)
#define BGC_BUGF TSC2101_BIT(1)
/* Field masks settings for TSC2101_AUDIO_CTRL_5 */
#define AC5_DIFFIN TSC2101_BIT(15)
#define AC5_DAC2SPK1(ARG) (((ARG) & 0x03) << 13)
#define AC5_AST2SPK1 TSC2101_BIT(12)
#define AC5_BUZ2SPK1 TSC2101_BIT(11)
#define AC5_KCL2SPK1 TSC2101_BIT(10)
#define AC5_CPI2SPK1 TSC2101_BIT(9)
#define AC5_DAC2SPK2(ARG) (((ARG) & 0x03) << 7)
#define AC5_AST2SPK2 TSC2101_BIT(6)
#define AC5_BUZ2SPK2 TSC2101_BIT(5)
#define AC5_KCL2SPK2 TSC2101_BIT(4)
#define AC5_CPI2SPK2 TSC2101_BIT(3)
#define AC5_MUTSPK1 TSC2101_BIT(2)
#define AC5_MUTSPK2 TSC2101_BIT(1)
#define AC5_HDSCPTC (0x01)
/* Field masks settings for TSC2101_AUDIO_CTRL_6 */
#define AC6_SPL2LSK TSC2101_BIT(15)
#define AC6_AST2LSK TSC2101_BIT(14)
#define AC6_BUZ2LSK TSC2101_BIT(13)
#define AC6_KCL2LSK TSC2101_BIT(12)
#define AC6_CPI2LSK TSC2101_BIT(11)
#define AC6_MIC2CPO TSC2101_BIT(10)
#define AC6_SPL2CPO TSC2101_BIT(9)
#define AC6_SPR2CPO TSC2101_BIT(8)
#define AC6_MUTLSPK TSC2101_BIT(7)
#define AC6_MUTSPK2 TSC2101_BIT(6)
#define AC6_LDSCPTC TSC2101_BIT(5)
#define AC6_VGNDSCPTC TSC2101_BIT(4)
#define AC6_CAPINTF TSC2101_BIT(3)
/* Field masks settings for TSC2101_AUDIO_CTRL_7 */
#define AC7_DETECT TSC2101_BIT(15)
#define AC7_HESTYPE(ARG) (((ARG) & 0x03) << 13)
#define AC7_HDDETFL TSC2101_BIT(12)
#define AC7_BDETFL TSC2101_BIT(11)
#define AC7_HDDEBNPG(ARG) (((ARG) & 0x03) << 9)
#define AC7_BDEBNPG(ARG) (((ARG) & 0x03) << 6)
#define AC7_DGPIO2 TSC2101_BIT(4)
#define AC7_DGPIO1 TSC2101_BIT(3)
#define AC7_CLKGPIO2 TSC2101_BIT(2)
#define AC7_ADWSF(ARG) (((ARG) & 0x03))
/* Field masks settings for TSC2101_GPIO_CTRL */
#define GC_GPO2EN TSC2101_BIT(15)
#define GC_GPO2SG TSC2101_BIT(14)
#define GC_GPI2EN TSC2101_BIT(13)
#define GC_GPI2SGF TSC2101_BIT(12)
#define GC_GPO1EN TSC2101_BIT(11)
#define GC_GPO1SG TSC2101_BIT(10)
#define GC_GPI1EN TSC2101_BIT(9)
#define GC_GPI1SGF TSC2101_BIT(8)
/* Field masks for TSC2101_AGC_CTRL */
#define AC_AGCNF_CELL TSC2101_BIT(14)
#define AC_AGCNL(ARG) (((ARG) & 0x07) << 11)
#define AC_AGCHYS_CELL(ARG) (((ARG) & 0x03) << 9)
#define AC_CLPST_CELL TSC2101_BIT(8)
#define AC_AGCTG_CELL(ARG) (((ARG) & 0x07) << 5)
#define AC_AGCTC_CELL(ARG) (((ARG) & 0x0F) << 1)
#define AC_AGCEN_CELL (0x01)
/* Field masks for TSC2101_POWERDOWN_STS */
#define PS_SPK1FL TSC2101_BIT(15)
#define PS_SPK2FL TSC2101_BIT(14)
#define PS_HNDFL TSC2101_BIT(13)
#define PS_VGNDFL TSC2101_BIT(12)
#define PS_LSPKFL TSC2101_BIT(11)
#define PS_CELLFL TSC2101_BIT(10)
#define PS_PSEQ TSC2101_BIT(5)
#define PS_PSTIME TSC2101_BIT(4)
/* Field masks for Register Mic AGC Control */
#define MAC_MMPGA(ARG) (((ARG) & 0x7F) << 9)
#define MAC_MDEBNS(ARG) (((ARG) & 0x07) << 6)
#define MAC_MDEBSN(ARG) (((ARG) & 0x07) << 3)
/* Field masks for Register Cellphone AGC Control */
#define CAC_CMPGA(ARG) (((ARG) & 0x7F) << 9)
#define CAC_CDEBNS(ARG) (((ARG) & 0x07) << 6)
#define CAC_CDEBSN(ARG) (((ARG) & 0x07) << 3)
#endif /* __ASM_HARDWARE_TSC2101_H */
......@@ -118,6 +118,8 @@
#define I2C_DRIVERID_WM8731 89 /* Wolfson WM8731 audio codec */
#define I2C_DRIVERID_WM8750 90 /* Wolfson WM8750 audio codec */
#define I2C_DRIVERID_MISC 99 /* Whatever until sorted out */
#define I2C_DRIVERID_I2CDEV 900
#define I2C_DRIVERID_ARP 902 /* SMBus ARP Client */
#define I2C_DRIVERID_ALERT 903 /* SMBus Alert Responder Client */
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment