Commit dde5845a authored by Jiri Kosina's avatar Jiri Kosina Committed by Greg Kroah-Hartman

[PATCH] Generic HID layer - code split

The "big main" split of USB HID code into generic HID code and
USB-transport specific HID handling.
Signed-off-by: default avatarJiri Kosina <jkosina@suse.cz>
Signed-off-by: default avatarMarcel Holtmann <marcel@holtmann.org>
Cc: Dmitry Torokhov <dmitry.torokhov@gmail.com>
Signed-off-by: default avatarGreg Kroah-Hartman <gregkh@suse.de>
parent 64bb67b1
/*
* USB HID support for Linux
*
* Copyright (c) 1999 Andreas Gal
* Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz>
* Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc
* Copyright (c) 2006 Jiri Kosina
*/
/*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*/
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/list.h>
#include <linux/mm.h>
#include <linux/smp_lock.h>
#include <linux/spinlock.h>
#include <asm/unaligned.h>
#include <asm/byteorder.h>
#include <linux/input.h>
#include <linux/wait.h>
#undef DEBUG
#undef DEBUG_DATA
#include <linux/usb.h>
#include <linux/hid.h>
#include <linux/hiddev.h>
/*
* Version Information
*/
#define DRIVER_VERSION "v2.6"
#define DRIVER_AUTHOR "Andreas Gal, Vojtech Pavlik"
#define DRIVER_DESC "USB HID core driver"
#define DRIVER_LICENSE "GPL"
/*
* Module parameters.
*/
static unsigned int hid_mousepoll_interval;
module_param_named(mousepoll, hid_mousepoll_interval, uint, 0644);
MODULE_PARM_DESC(mousepoll, "Polling interval of mice");
/*
* Register a new report for a device.
*/
static struct hid_report *hid_register_report(struct hid_device *device, unsigned type, unsigned id)
{
struct hid_report_enum *report_enum = device->report_enum + type;
struct hid_report *report;
if (report_enum->report_id_hash[id])
return report_enum->report_id_hash[id];
if (!(report = kzalloc(sizeof(struct hid_report), GFP_KERNEL)))
return NULL;
if (id != 0)
report_enum->numbered = 1;
report->id = id;
report->type = type;
report->size = 0;
report->device = device;
report_enum->report_id_hash[id] = report;
list_add_tail(&report->list, &report_enum->report_list);
return report;
}
/*
* Register a new field for this report.
*/
static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages, unsigned values)
{
struct hid_field *field;
if (report->maxfield == HID_MAX_FIELDS) {
dbg("too many fields in report");
return NULL;
}
if (!(field = kzalloc(sizeof(struct hid_field) + usages * sizeof(struct hid_usage)
+ values * sizeof(unsigned), GFP_KERNEL))) return NULL;
field->index = report->maxfield++;
report->field[field->index] = field;
field->usage = (struct hid_usage *)(field + 1);
field->value = (unsigned *)(field->usage + usages);
field->report = report;
return field;
}
/*
* Open a collection. The type/usage is pushed on the stack.
*/
static int open_collection(struct hid_parser *parser, unsigned type)
{
struct hid_collection *collection;
unsigned usage;
usage = parser->local.usage[0];
if (parser->collection_stack_ptr == HID_COLLECTION_STACK_SIZE) {
dbg("collection stack overflow");
return -1;
}
if (parser->device->maxcollection == parser->device->collection_size) {
collection = kmalloc(sizeof(struct hid_collection) *
parser->device->collection_size * 2, GFP_KERNEL);
if (collection == NULL) {
dbg("failed to reallocate collection array");
return -1;
}
memcpy(collection, parser->device->collection,
sizeof(struct hid_collection) *
parser->device->collection_size);
memset(collection + parser->device->collection_size, 0,
sizeof(struct hid_collection) *
parser->device->collection_size);
kfree(parser->device->collection);
parser->device->collection = collection;
parser->device->collection_size *= 2;
}
parser->collection_stack[parser->collection_stack_ptr++] =
parser->device->maxcollection;
collection = parser->device->collection +
parser->device->maxcollection++;
collection->type = type;
collection->usage = usage;
collection->level = parser->collection_stack_ptr - 1;
if (type == HID_COLLECTION_APPLICATION)
parser->device->maxapplication++;
return 0;
}
/*
* Close a collection.
*/
static int close_collection(struct hid_parser *parser)
{
if (!parser->collection_stack_ptr) {
dbg("collection stack underflow");
return -1;
}
parser->collection_stack_ptr--;
return 0;
}
/*
* Climb up the stack, search for the specified collection type
* and return the usage.
*/
static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
{
int n;
for (n = parser->collection_stack_ptr - 1; n >= 0; n--)
if (parser->device->collection[parser->collection_stack[n]].type == type)
return parser->device->collection[parser->collection_stack[n]].usage;
return 0; /* we know nothing about this usage type */
}
/*
* Add a usage to the temporary parser table.
*/
static int hid_add_usage(struct hid_parser *parser, unsigned usage)
{
if (parser->local.usage_index >= HID_MAX_USAGES) {
dbg("usage index exceeded");
return -1;
}
parser->local.usage[parser->local.usage_index] = usage;
parser->local.collection_index[parser->local.usage_index] =
parser->collection_stack_ptr ?
parser->collection_stack[parser->collection_stack_ptr - 1] : 0;
parser->local.usage_index++;
return 0;
}
/*
* Register a new field for this report.
*/
static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
{
struct hid_report *report;
struct hid_field *field;
int usages;
unsigned offset;
int i;
if (!(report = hid_register_report(parser->device, report_type, parser->global.report_id))) {
dbg("hid_register_report failed");
return -1;
}
if (parser->global.logical_maximum < parser->global.logical_minimum) {
dbg("logical range invalid %d %d", parser->global.logical_minimum, parser->global.logical_maximum);
return -1;
}
offset = report->size;
report->size += parser->global.report_size * parser->global.report_count;
if (!parser->local.usage_index) /* Ignore padding fields */
return 0;
usages = max_t(int, parser->local.usage_index, parser->global.report_count);
if ((field = hid_register_field(report, usages, parser->global.report_count)) == NULL)
return 0;
field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
field->application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION);
for (i = 0; i < usages; i++) {
int j = i;
/* Duplicate the last usage we parsed if we have excess values */
if (i >= parser->local.usage_index)
j = parser->local.usage_index - 1;
field->usage[i].hid = parser->local.usage[j];
field->usage[i].collection_index =
parser->local.collection_index[j];
}
field->maxusage = usages;
field->flags = flags;
field->report_offset = offset;
field->report_type = report_type;
field->report_size = parser->global.report_size;
field->report_count = parser->global.report_count;
field->logical_minimum = parser->global.logical_minimum;
field->logical_maximum = parser->global.logical_maximum;
field->physical_minimum = parser->global.physical_minimum;
field->physical_maximum = parser->global.physical_maximum;
field->unit_exponent = parser->global.unit_exponent;
field->unit = parser->global.unit;
return 0;
}
/*
* Read data value from item.
*/
static u32 item_udata(struct hid_item *item)
{
switch (item->size) {
case 1: return item->data.u8;
case 2: return item->data.u16;
case 4: return item->data.u32;
}
return 0;
}
static s32 item_sdata(struct hid_item *item)
{
switch (item->size) {
case 1: return item->data.s8;
case 2: return item->data.s16;
case 4: return item->data.s32;
}
return 0;
}
/*
* Process a global item.
*/
static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
{
switch (item->tag) {
case HID_GLOBAL_ITEM_TAG_PUSH:
if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) {
dbg("global enviroment stack overflow");
return -1;
}
memcpy(parser->global_stack + parser->global_stack_ptr++,
&parser->global, sizeof(struct hid_global));
return 0;
case HID_GLOBAL_ITEM_TAG_POP:
if (!parser->global_stack_ptr) {
dbg("global enviroment stack underflow");
return -1;
}
memcpy(&parser->global, parser->global_stack + --parser->global_stack_ptr,
sizeof(struct hid_global));
return 0;
case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
parser->global.usage_page = item_udata(item);
return 0;
case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
parser->global.logical_minimum = item_sdata(item);
return 0;
case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
if (parser->global.logical_minimum < 0)
parser->global.logical_maximum = item_sdata(item);
else
parser->global.logical_maximum = item_udata(item);
return 0;
case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
parser->global.physical_minimum = item_sdata(item);
return 0;
case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
if (parser->global.physical_minimum < 0)
parser->global.physical_maximum = item_sdata(item);
else
parser->global.physical_maximum = item_udata(item);
return 0;
case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
parser->global.unit_exponent = item_sdata(item);
return 0;
case HID_GLOBAL_ITEM_TAG_UNIT:
parser->global.unit = item_udata(item);
return 0;
case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
if ((parser->global.report_size = item_udata(item)) > 32) {
dbg("invalid report_size %d", parser->global.report_size);
return -1;
}
return 0;
case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
if ((parser->global.report_count = item_udata(item)) > HID_MAX_USAGES) {
dbg("invalid report_count %d", parser->global.report_count);
return -1;
}
return 0;
case HID_GLOBAL_ITEM_TAG_REPORT_ID:
if ((parser->global.report_id = item_udata(item)) == 0) {
dbg("report_id 0 is invalid");
return -1;
}
return 0;
default:
dbg("unknown global tag 0x%x", item->tag);
return -1;
}
}
/*
* Process a local item.
*/
static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
{
__u32 data;
unsigned n;
if (item->size == 0) {
dbg("item data expected for local item");
return -1;
}
data = item_udata(item);
switch (item->tag) {
case HID_LOCAL_ITEM_TAG_DELIMITER:
if (data) {
/*
* We treat items before the first delimiter
* as global to all usage sets (branch 0).
* In the moment we process only these global
* items and the first delimiter set.
*/
if (parser->local.delimiter_depth != 0) {
dbg("nested delimiters");
return -1;
}
parser->local.delimiter_depth++;
parser->local.delimiter_branch++;
} else {
if (parser->local.delimiter_depth < 1) {
dbg("bogus close delimiter");
return -1;
}
parser->local.delimiter_depth--;
}
return 1;
case HID_LOCAL_ITEM_TAG_USAGE:
if (parser->local.delimiter_branch > 1) {
dbg("alternative usage ignored");
return 0;
}
if (item->size <= 2)
data = (parser->global.usage_page << 16) + data;
return hid_add_usage(parser, data);
case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:
if (parser->local.delimiter_branch > 1) {
dbg("alternative usage ignored");
return 0;
}
if (item->size <= 2)
data = (parser->global.usage_page << 16) + data;
parser->local.usage_minimum = data;
return 0;
case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:
if (parser->local.delimiter_branch > 1) {
dbg("alternative usage ignored");
return 0;
}
if (item->size <= 2)
data = (parser->global.usage_page << 16) + data;
for (n = parser->local.usage_minimum; n <= data; n++)
if (hid_add_usage(parser, n)) {
dbg("hid_add_usage failed\n");
return -1;
}
return 0;
default:
dbg("unknown local item tag 0x%x", item->tag);
return 0;
}
return 0;
}
/*
* Process a main item.
*/
static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
{
__u32 data;
int ret;
data = item_udata(item);
switch (item->tag) {
case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
ret = open_collection(parser, data & 0xff);
break;
case HID_MAIN_ITEM_TAG_END_COLLECTION:
ret = close_collection(parser);
break;
case HID_MAIN_ITEM_TAG_INPUT:
ret = hid_add_field(parser, HID_INPUT_REPORT, data);
break;
case HID_MAIN_ITEM_TAG_OUTPUT:
ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
break;
case HID_MAIN_ITEM_TAG_FEATURE:
ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
break;
default:
dbg("unknown main item tag 0x%x", item->tag);
ret = 0;
}
memset(&parser->local, 0, sizeof(parser->local)); /* Reset the local parser environment */
return ret;
}
/*
* Process a reserved item.
*/
static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
{
dbg("reserved item type, tag 0x%x", item->tag);
return 0;
}
/*
* Free a report and all registered fields. The field->usage and
* field->value table's are allocated behind the field, so we need
* only to free(field) itself.
*/
static void hid_free_report(struct hid_report *report)
{
unsigned n;
for (n = 0; n < report->maxfield; n++)
kfree(report->field[n]);
kfree(report);
}
/*
* Free a device structure, all reports, and all fields.
*/
static void hid_free_device(struct hid_device *device)
{
unsigned i,j;
for (i = 0; i < HID_REPORT_TYPES; i++) {
struct hid_report_enum *report_enum = device->report_enum + i;
for (j = 0; j < 256; j++) {
struct hid_report *report = report_enum->report_id_hash[j];
if (report)
hid_free_report(report);
}
}
kfree(device->rdesc);
kfree(device);
}
/*
* Fetch a report description item from the data stream. We support long
* items, though they are not used yet.
*/
static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item)
{
u8 b;
if ((end - start) <= 0)
return NULL;
b = *start++;
item->type = (b >> 2) & 3;
item->tag = (b >> 4) & 15;
if (item->tag == HID_ITEM_TAG_LONG) {
item->format = HID_ITEM_FORMAT_LONG;
if ((end - start) < 2)
return NULL;
item->size = *start++;
item->tag = *start++;
if ((end - start) < item->size)
return NULL;
item->data.longdata = start;
start += item->size;
return start;
}
item->format = HID_ITEM_FORMAT_SHORT;
item->size = b & 3;
switch (item->size) {
case 0:
return start;
case 1:
if ((end - start) < 1)
return NULL;
item->data.u8 = *start++;
return start;
case 2:
if ((end - start) < 2)
return NULL;
item->data.u16 = le16_to_cpu(get_unaligned((__le16*)start));
start = (__u8 *)((__le16 *)start + 1);
return start;
case 3:
item->size++;
if ((end - start) < 4)
return NULL;
item->data.u32 = le32_to_cpu(get_unaligned((__le32*)start));
start = (__u8 *)((__le32 *)start + 1);
return start;
}
return NULL;
}
/*
* Parse a report description into a hid_device structure. Reports are
* enumerated, fields are attached to these reports.
*/
static struct hid_device *hid_parse_report(__u8 *start, unsigned size)
{
struct hid_device *device;
struct hid_parser *parser;
struct hid_item item;
__u8 *end;
unsigned i;
static int (*dispatch_type[])(struct hid_parser *parser,
struct hid_item *item) = {
hid_parser_main,
hid_parser_global,
hid_parser_local,
hid_parser_reserved
};
if (!(device = kzalloc(sizeof(struct hid_device), GFP_KERNEL)))
return NULL;
if (!(device->collection = kzalloc(sizeof(struct hid_collection) *
HID_DEFAULT_NUM_COLLECTIONS, GFP_KERNEL))) {
kfree(device);
return NULL;
}
device->collection_size = HID_DEFAULT_NUM_COLLECTIONS;
for (i = 0; i < HID_REPORT_TYPES; i++)
INIT_LIST_HEAD(&device->report_enum[i].report_list);
if (!(device->rdesc = (__u8 *)kmalloc(size, GFP_KERNEL))) {
kfree(device->collection);
kfree(device);
return NULL;
}
memcpy(device->rdesc, start, size);
device->rsize = size;
if (!(parser = kzalloc(sizeof(struct hid_parser), GFP_KERNEL))) {
kfree(device->rdesc);
kfree(device->collection);
kfree(device);
return NULL;
}
parser->device = device;
end = start + size;
while ((start = fetch_item(start, end, &item)) != NULL) {
if (item.format != HID_ITEM_FORMAT_SHORT) {
dbg("unexpected long global item");
kfree(device->collection);
hid_free_device(device);
kfree(parser);
return NULL;
}
if (dispatch_type[item.type](parser, &item)) {
dbg("item %u %u %u %u parsing failed\n",
item.format, (unsigned)item.size, (unsigned)item.type, (unsigned)item.tag);
kfree(device->collection);
hid_free_device(device);
kfree(parser);
return NULL;
}
if (start == end) {
if (parser->collection_stack_ptr) {
dbg("unbalanced collection at end of report description");
kfree(device->collection);
hid_free_device(device);
kfree(parser);
return NULL;
}
if (parser->local.delimiter_depth) {
dbg("unbalanced delimiter at end of report description");
kfree(device->collection);
hid_free_device(device);
kfree(parser);
return NULL;
}
kfree(parser);
return device;
}
}
dbg("item fetching failed at offset %d\n", (int)(end - start));
kfree(device->collection);
hid_free_device(device);
kfree(parser);
return NULL;
}
/*
* Convert a signed n-bit integer to signed 32-bit integer. Common
* cases are done through the compiler, the screwed things has to be
* done by hand.
*/
static s32 snto32(__u32 value, unsigned n)
{
switch (n) {
case 8: return ((__s8)value);
case 16: return ((__s16)value);
case 32: return ((__s32)value);
}
return value & (1 << (n - 1)) ? value | (-1 << n) : value;
}
/*
* Convert a signed 32-bit integer to a signed n-bit integer.
*/
static u32 s32ton(__s32 value, unsigned n)
{
s32 a = value >> (n - 1);
if (a && a != -1)
return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;
return value & ((1 << n) - 1);
}
/*
* Extract/implement a data field from/to a little endian report (bit array).
*
* Code sort-of follows HID spec:
* http://www.usb.org/developers/devclass_docs/HID1_11.pdf
*
* While the USB HID spec allows unlimited length bit fields in "report
* descriptors", most devices never use more than 16 bits.
* One model of UPS is claimed to report "LINEV" as a 32-bit field.
* Search linux-kernel and linux-usb-devel archives for "hid-core extract".
*/
static __inline__ __u32 extract(__u8 *report, unsigned offset, unsigned n)
{
u64 x;
WARN_ON(n > 32);
report += offset >> 3; /* adjust byte index */
offset &= 7; /* now only need bit offset into one byte */
x = get_unaligned((u64 *) report);
x = le64_to_cpu(x);
x = (x >> offset) & ((1ULL << n) - 1); /* extract bit field */
return (u32) x;
}
/*
* "implement" : set bits in a little endian bit stream.
* Same concepts as "extract" (see comments above).
* The data mangled in the bit stream remains in little endian
* order the whole time. It make more sense to talk about
* endianness of register values by considering a register
* a "cached" copy of the little endiad bit stream.
*/
static __inline__ void implement(__u8 *report, unsigned offset, unsigned n, __u32 value)
{
u64 x;
u64 m = (1ULL << n) - 1;
WARN_ON(n > 32);
WARN_ON(value > m);
value &= m;
report += offset >> 3;
offset &= 7;
x = get_unaligned((u64 *)report);
x &= cpu_to_le64(~(m << offset));
x |= cpu_to_le64(((u64) value) << offset);
put_unaligned(x, (u64 *) report);
}
/*
* Search an array for a value.
*/
static __inline__ int search(__s32 *array, __s32 value, unsigned n)
{
while (n--) {
if (*array++ == value)
return 0;
}
return -1;
}
static void hid_process_event(struct hid_device *hid, struct hid_field *field, struct hid_usage *usage, __s32 value, int interrupt)
{
hid_dump_input(usage, value);
if (hid->claimed & HID_CLAIMED_INPUT)
hidinput_hid_event(hid, field, usage, value);
if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt)
hiddev_hid_event(hid, field, usage, value);
}
/*
* Analyse a received field, and fetch the data from it. The field
* content is stored for next report processing (we do differential
* reporting to the layer).
*/
static void hid_input_field(struct hid_device *hid, struct hid_field *field, __u8 *data, int interrupt)
{
unsigned n;
unsigned count = field->report_count;
unsigned offset = field->report_offset;
unsigned size = field->report_size;
__s32 min = field->logical_minimum;
__s32 max = field->logical_maximum;
__s32 *value;
if (!(value = kmalloc(sizeof(__s32) * count, GFP_ATOMIC)))
return;
for (n = 0; n < count; n++) {
value[n] = min < 0 ? snto32(extract(data, offset + n * size, size), size) :
extract(data, offset + n * size, size);
if (!(field->flags & HID_MAIN_ITEM_VARIABLE) /* Ignore report if ErrorRollOver */
&& value[n] >= min && value[n] <= max
&& field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1)
goto exit;
}
for (n = 0; n < count; n++) {
if (HID_MAIN_ITEM_VARIABLE & field->flags) {
hid_process_event(hid, field, &field->usage[n], value[n], interrupt);
continue;
}
if (field->value[n] >= min && field->value[n] <= max
&& field->usage[field->value[n] - min].hid
&& search(value, field->value[n], count))
hid_process_event(hid, field, &field->usage[field->value[n] - min], 0, interrupt);
if (value[n] >= min && value[n] <= max
&& field->usage[value[n] - min].hid
&& search(field->value, value[n], count))
hid_process_event(hid, field, &field->usage[value[n] - min], 1, interrupt);
}
memcpy(field->value, value, count * sizeof(__s32));
exit:
kfree(value);
}
/*
* Output the field into the report.
*/
static void hid_output_field(struct hid_field *field, __u8 *data)
{
unsigned count = field->report_count;
unsigned offset = field->report_offset;
unsigned size = field->report_size;
unsigned n;
for (n = 0; n < count; n++) {
if (field->logical_minimum < 0) /* signed values */
implement(data, offset + n * size, size, s32ton(field->value[n], size));
else /* unsigned values */
implement(data, offset + n * size, size, field->value[n]);
}
}
/*
* Create a report.
*/
static void hid_output_report(struct hid_report *report, __u8 *data)
{
unsigned n;
if (report->id > 0)
*data++ = report->id;
for (n = 0; n < report->maxfield; n++)
hid_output_field(report->field[n], data);
}
/*
* Set a field value. The report this field belongs to has to be
* created and transferred to the device, to set this value in the
* device.
*/
int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
{
unsigned size = field->report_size;
hid_dump_input(field->usage + offset, value);
if (offset >= field->report_count) {
dbg("offset (%d) exceeds report_count (%d)", offset, field->report_count);
hid_dump_field(field, 8);
return -1;
}
if (field->logical_minimum < 0) {
if (value != snto32(s32ton(value, size), size)) {
dbg("value %d is out of range", value);
return -1;
}
}
field->value[offset] = value;
return 0;
}
/*
* $Id: hid-input.c,v 1.2 2002/04/23 00:59:25 rdamazio Exp $
*
* Copyright (c) 2000-2001 Vojtech Pavlik
* Copyright (c) 2006 Jiri Kosina
*
* HID to Linux Input mapping
*/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* Should you need to contact me, the author, you can do so either by
* e-mail - mail your message to <vojtech@ucw.cz>, or by paper mail:
* Vojtech Pavlik, Simunkova 1594, Prague 8, 182 00 Czech Republic
*/
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/kernel.h>
#include <linux/usb/input.h>
#undef DEBUG
#include <linux/hid.h>
#define unk KEY_UNKNOWN
static const unsigned char hid_keyboard[256] = {
0, 0, 0, 0, 30, 48, 46, 32, 18, 33, 34, 35, 23, 36, 37, 38,
50, 49, 24, 25, 16, 19, 31, 20, 22, 47, 17, 45, 21, 44, 2, 3,
4, 5, 6, 7, 8, 9, 10, 11, 28, 1, 14, 15, 57, 12, 13, 26,
27, 43, 43, 39, 40, 41, 51, 52, 53, 58, 59, 60, 61, 62, 63, 64,
65, 66, 67, 68, 87, 88, 99, 70,119,110,102,104,111,107,109,106,
105,108,103, 69, 98, 55, 74, 78, 96, 79, 80, 81, 75, 76, 77, 71,
72, 73, 82, 83, 86,127,116,117,183,184,185,186,187,188,189,190,
191,192,193,194,134,138,130,132,128,129,131,137,133,135,136,113,
115,114,unk,unk,unk,121,unk, 89, 93,124, 92, 94, 95,unk,unk,unk,
122,123, 90, 91, 85,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,
unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,
unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,
unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,
unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,
29, 42, 56,125, 97, 54,100,126,164,166,165,163,161,115,114,113,
150,158,159,128,136,177,178,176,142,152,173,140,unk,unk,unk,unk
};
static const struct {
__s32 x;
__s32 y;
} hid_hat_to_axis[] = {{ 0, 0}, { 0,-1}, { 1,-1}, { 1, 0}, { 1, 1}, { 0, 1}, {-1, 1}, {-1, 0}, {-1,-1}};
#define map_abs(c) do { usage->code = c; usage->type = EV_ABS; bit = input->absbit; max = ABS_MAX; } while (0)
#define map_rel(c) do { usage->code = c; usage->type = EV_REL; bit = input->relbit; max = REL_MAX; } while (0)
#define map_key(c) do { usage->code = c; usage->type = EV_KEY; bit = input->keybit; max = KEY_MAX; } while (0)
#define map_led(c) do { usage->code = c; usage->type = EV_LED; bit = input->ledbit; max = LED_MAX; } while (0)
#define map_abs_clear(c) do { map_abs(c); clear_bit(c, bit); } while (0)
#define map_key_clear(c) do { map_key(c); clear_bit(c, bit); } while (0)
#ifdef CONFIG_USB_HIDINPUT_POWERBOOK
struct hidinput_key_translation {
u16 from;
u16 to;
u8 flags;
};
#define POWERBOOK_FLAG_FKEY 0x01
static struct hidinput_key_translation powerbook_fn_keys[] = {
{ KEY_BACKSPACE, KEY_DELETE },
{ KEY_F1, KEY_BRIGHTNESSDOWN, POWERBOOK_FLAG_FKEY },
{ KEY_F2, KEY_BRIGHTNESSUP, POWERBOOK_FLAG_FKEY },
{ KEY_F3, KEY_MUTE, POWERBOOK_FLAG_FKEY },
{ KEY_F4, KEY_VOLUMEDOWN, POWERBOOK_FLAG_FKEY },
{ KEY_F5, KEY_VOLUMEUP, POWERBOOK_FLAG_FKEY },
{ KEY_F6, KEY_NUMLOCK, POWERBOOK_FLAG_FKEY },
{ KEY_F7, KEY_SWITCHVIDEOMODE, POWERBOOK_FLAG_FKEY },
{ KEY_F8, KEY_KBDILLUMTOGGLE, POWERBOOK_FLAG_FKEY },
{ KEY_F9, KEY_KBDILLUMDOWN, POWERBOOK_FLAG_FKEY },
{ KEY_F10, KEY_KBDILLUMUP, POWERBOOK_FLAG_FKEY },
{ KEY_UP, KEY_PAGEUP },
{ KEY_DOWN, KEY_PAGEDOWN },
{ KEY_LEFT, KEY_HOME },
{ KEY_RIGHT, KEY_END },
{ }
};
static struct hidinput_key_translation powerbook_numlock_keys[] = {
{ KEY_J, KEY_KP1 },
{ KEY_K, KEY_KP2 },
{ KEY_L, KEY_KP3 },
{ KEY_U, KEY_KP4 },
{ KEY_I, KEY_KP5 },
{ KEY_O, KEY_KP6 },
{ KEY_7, KEY_KP7 },
{ KEY_8, KEY_KP8 },
{ KEY_9, KEY_KP9 },
{ KEY_M, KEY_KP0 },
{ KEY_DOT, KEY_KPDOT },
{ KEY_SLASH, KEY_KPPLUS },
{ KEY_SEMICOLON, KEY_KPMINUS },
{ KEY_P, KEY_KPASTERISK },
{ KEY_MINUS, KEY_KPEQUAL },
{ KEY_0, KEY_KPSLASH },
{ KEY_F6, KEY_NUMLOCK },
{ KEY_KPENTER, KEY_KPENTER },
{ KEY_BACKSPACE, KEY_BACKSPACE },
{ }
};
static struct hidinput_key_translation powerbook_iso_keyboard[] = {
{ KEY_GRAVE, KEY_102ND },
{ KEY_102ND, KEY_GRAVE },
{ }
};
static int usbhid_pb_fnmode = 1;
module_param_named(pb_fnmode, usbhid_pb_fnmode, int, 0644);
MODULE_PARM_DESC(pb_fnmode,
"Mode of fn key on PowerBooks (0 = disabled, 1 = fkeyslast, 2 = fkeysfirst)");
static struct hidinput_key_translation *find_translation(struct hidinput_key_translation *table, u16 from)
{
struct hidinput_key_translation *trans;
/* Look for the translation */
for (trans = table; trans->from; trans++)
if (trans->from == from)
return trans;
return NULL;
}
static int hidinput_pb_event(struct hid_device *hid, struct input_dev *input,
struct hid_usage *usage, __s32 value)
{
struct hidinput_key_translation *trans;
if (usage->code == KEY_FN) {
if (value) hid->quirks |= HID_QUIRK_POWERBOOK_FN_ON;
else hid->quirks &= ~HID_QUIRK_POWERBOOK_FN_ON;
input_event(input, usage->type, usage->code, value);
return 1;
}
if (usbhid_pb_fnmode) {
int do_translate;
trans = find_translation(powerbook_fn_keys, usage->code);
if (trans) {
if (test_bit(usage->code, hid->pb_pressed_fn))
do_translate = 1;
else if (trans->flags & POWERBOOK_FLAG_FKEY)
do_translate =
(usbhid_pb_fnmode == 2 && (hid->quirks & HID_QUIRK_POWERBOOK_FN_ON)) ||
(usbhid_pb_fnmode == 1 && !(hid->quirks & HID_QUIRK_POWERBOOK_FN_ON));
else
do_translate = (hid->quirks & HID_QUIRK_POWERBOOK_FN_ON);
if (do_translate) {
if (value)
set_bit(usage->code, hid->pb_pressed_fn);
else
clear_bit(usage->code, hid->pb_pressed_fn);
input_event(input, usage->type, trans->to, value);
return 1;
}
}
if (test_bit(usage->code, hid->pb_pressed_numlock) ||
test_bit(LED_NUML, input->led)) {
trans = find_translation(powerbook_numlock_keys, usage->code);
if (trans) {
if (value)
set_bit(usage->code, hid->pb_pressed_numlock);
else
clear_bit(usage->code, hid->pb_pressed_numlock);
input_event(input, usage->type, trans->to, value);
}
return 1;
}
}
if (hid->quirks & HID_QUIRK_POWERBOOK_ISO_KEYBOARD) {
trans = find_translation(powerbook_iso_keyboard, usage->code);
if (trans) {
input_event(input, usage->type, trans->to, value);
return 1;
}
}
return 0;
}
static void hidinput_pb_setup(struct input_dev *input)
{
struct hidinput_key_translation *trans;
set_bit(KEY_NUMLOCK, input->keybit);
/* Enable all needed keys */
for (trans = powerbook_fn_keys; trans->from; trans++)
set_bit(trans->to, input->keybit);
for (trans = powerbook_numlock_keys; trans->from; trans++)
set_bit(trans->to, input->keybit);
for (trans = powerbook_iso_keyboard; trans->from; trans++)
set_bit(trans->to, input->keybit);
}
#else
static inline int hidinput_pb_event(struct hid_device *hid, struct input_dev *input,
struct hid_usage *usage, __s32 value)
{
return 0;
}
static inline void hidinput_pb_setup(struct input_dev *input)
{
}
#endif
static void hidinput_configure_usage(struct hid_input *hidinput, struct hid_field *field,
struct hid_usage *usage)
{
struct input_dev *input = hidinput->input;
struct hid_device *device = input->private;
int max = 0, code;
unsigned long *bit = NULL;
field->hidinput = hidinput;
#ifdef DEBUG
printk(KERN_DEBUG "Mapping: ");
resolv_usage(usage->hid);
printk(" ---> ");
#endif
if (field->flags & HID_MAIN_ITEM_CONSTANT)
goto ignore;
switch (usage->hid & HID_USAGE_PAGE) {
case HID_UP_UNDEFINED:
goto ignore;
case HID_UP_KEYBOARD:
set_bit(EV_REP, input->evbit);
if ((usage->hid & HID_USAGE) < 256) {
if (!hid_keyboard[usage->hid & HID_USAGE]) goto ignore;
map_key_clear(hid_keyboard[usage->hid & HID_USAGE]);
} else
map_key(KEY_UNKNOWN);
break;
case HID_UP_BUTTON:
code = ((usage->hid - 1) & 0xf);
switch (field->application) {
case HID_GD_MOUSE:
case HID_GD_POINTER: code += 0x110; break;
case HID_GD_JOYSTICK: code += 0x120; break;
case HID_GD_GAMEPAD: code += 0x130; break;
default:
switch (field->physical) {
case HID_GD_MOUSE:
case HID_GD_POINTER: code += 0x110; break;
case HID_GD_JOYSTICK: code += 0x120; break;
case HID_GD_GAMEPAD: code += 0x130; break;
default: code += 0x100;
}
}
map_key(code);
break;
case HID_UP_SIMULATION:
switch (usage->hid & 0xffff) {
case 0xba: map_abs(ABS_RUDDER); break;
case 0xbb: map_abs(ABS_THROTTLE); break;
case 0xc4: map_abs(ABS_GAS); break;
case 0xc5: map_abs(ABS_BRAKE); break;
case 0xc8: map_abs(ABS_WHEEL); break;
default: goto ignore;
}
break;
case HID_UP_GENDESK:
if ((usage->hid & 0xf0) == 0x80) { /* SystemControl */
switch (usage->hid & 0xf) {
case 0x1: map_key_clear(KEY_POWER); break;
case 0x2: map_key_clear(KEY_SLEEP); break;
case 0x3: map_key_clear(KEY_WAKEUP); break;
default: goto unknown;
}
break;
}
if ((usage->hid & 0xf0) == 0x90) { /* D-pad */
switch (usage->hid) {
case HID_GD_UP: usage->hat_dir = 1; break;
case HID_GD_DOWN: usage->hat_dir = 5; break;
case HID_GD_RIGHT: usage->hat_dir = 3; break;
case HID_GD_LEFT: usage->hat_dir = 7; break;
default: goto unknown;
}
if (field->dpad) {
map_abs(field->dpad);
goto ignore;
}
map_abs(ABS_HAT0X);
break;
}
switch (usage->hid) {
/* These usage IDs map directly to the usage codes. */
case HID_GD_X: case HID_GD_Y: case HID_GD_Z:
case HID_GD_RX: case HID_GD_RY: case HID_GD_RZ:
case HID_GD_SLIDER: case HID_GD_DIAL: case HID_GD_WHEEL:
if (field->flags & HID_MAIN_ITEM_RELATIVE)
map_rel(usage->hid & 0xf);
else
map_abs(usage->hid & 0xf);
break;
case HID_GD_HATSWITCH:
usage->hat_min = field->logical_minimum;
usage->hat_max = field->logical_maximum;
map_abs(ABS_HAT0X);
break;
case HID_GD_START: map_key_clear(BTN_START); break;
case HID_GD_SELECT: map_key_clear(BTN_SELECT); break;
default: goto unknown;
}
break;
case HID_UP_LED:
if (((usage->hid - 1) & 0xffff) >= LED_MAX)
goto ignore;
map_led((usage->hid - 1) & 0xffff);
break;
case HID_UP_DIGITIZER:
switch (usage->hid & 0xff) {
case 0x30: /* TipPressure */
if (!test_bit(BTN_TOUCH, input->keybit)) {
device->quirks |= HID_QUIRK_NOTOUCH;
set_bit(EV_KEY, input->evbit);
set_bit(BTN_TOUCH, input->keybit);
}
map_abs_clear(ABS_PRESSURE);
break;
case 0x32: /* InRange */
switch (field->physical & 0xff) {
case 0x21: map_key(BTN_TOOL_MOUSE); break;
case 0x22: map_key(BTN_TOOL_FINGER); break;
default: map_key(BTN_TOOL_PEN); break;
}
break;
case 0x3c: /* Invert */
map_key_clear(BTN_TOOL_RUBBER);
break;
case 0x33: /* Touch */
case 0x42: /* TipSwitch */
case 0x43: /* TipSwitch2 */
device->quirks &= ~HID_QUIRK_NOTOUCH;
map_key_clear(BTN_TOUCH);
break;
case 0x44: /* BarrelSwitch */
map_key_clear(BTN_STYLUS);
break;
default: goto unknown;
}
break;
case HID_UP_CONSUMER: /* USB HUT v1.1, pages 56-62 */
switch (usage->hid & HID_USAGE) {
case 0x000: goto ignore;
case 0x034: map_key_clear(KEY_SLEEP); break;
case 0x036: map_key_clear(BTN_MISC); break;
case 0x045: map_key_clear(KEY_RADIO); break;
case 0x08a: map_key_clear(KEY_WWW); break;
case 0x08d: map_key_clear(KEY_PROGRAM); break;
case 0x095: map_key_clear(KEY_HELP); break;
case 0x09c: map_key_clear(KEY_CHANNELUP); break;
case 0x09d: map_key_clear(KEY_CHANNELDOWN); break;
case 0x0b0: map_key_clear(KEY_PLAY); break;
case 0x0b1: map_key_clear(KEY_PAUSE); break;
case 0x0b2: map_key_clear(KEY_RECORD); break;
case 0x0b3: map_key_clear(KEY_FASTFORWARD); break;
case 0x0b4: map_key_clear(KEY_REWIND); break;
case 0x0b5: map_key_clear(KEY_NEXTSONG); break;
case 0x0b6: map_key_clear(KEY_PREVIOUSSONG); break;
case 0x0b7: map_key_clear(KEY_STOPCD); break;
case 0x0b8: map_key_clear(KEY_EJECTCD); break;
case 0x0cd: map_key_clear(KEY_PLAYPAUSE); break;
case 0x0e0: map_abs_clear(ABS_VOLUME); break;
case 0x0e2: map_key_clear(KEY_MUTE); break;
case 0x0e5: map_key_clear(KEY_BASSBOOST); break;
case 0x0e9: map_key_clear(KEY_VOLUMEUP); break;
case 0x0ea: map_key_clear(KEY_VOLUMEDOWN); break;
case 0x183: map_key_clear(KEY_CONFIG); break;
case 0x18a: map_key_clear(KEY_MAIL); break;
case 0x192: map_key_clear(KEY_CALC); break;
case 0x194: map_key_clear(KEY_FILE); break;
case 0x1a7: map_key_clear(KEY_DOCUMENTS); break;
case 0x201: map_key_clear(KEY_NEW); break;
case 0x207: map_key_clear(KEY_SAVE); break;
case 0x208: map_key_clear(KEY_PRINT); break;
case 0x209: map_key_clear(KEY_PROPS); break;
case 0x21a: map_key_clear(KEY_UNDO); break;
case 0x21b: map_key_clear(KEY_COPY); break;
case 0x21c: map_key_clear(KEY_CUT); break;
case 0x21d: map_key_clear(KEY_PASTE); break;
case 0x221: map_key_clear(KEY_FIND); break;
case 0x223: map_key_clear(KEY_HOMEPAGE); break;
case 0x224: map_key_clear(KEY_BACK); break;
case 0x225: map_key_clear(KEY_FORWARD); break;
case 0x226: map_key_clear(KEY_STOP); break;
case 0x227: map_key_clear(KEY_REFRESH); break;
case 0x22a: map_key_clear(KEY_BOOKMARKS); break;
case 0x233: map_key_clear(KEY_SCROLLUP); break;
case 0x234: map_key_clear(KEY_SCROLLDOWN); break;
case 0x238: map_rel(REL_HWHEEL); break;
case 0x279: map_key_clear(KEY_REDO); break;
case 0x289: map_key_clear(KEY_REPLY); break;
case 0x28b: map_key_clear(KEY_FORWARDMAIL); break;
case 0x28c: map_key_clear(KEY_SEND); break;
/* Reported on a Cherry Cymotion keyboard */
case 0x301: map_key_clear(KEY_PROG1); break;
case 0x302: map_key_clear(KEY_PROG2); break;
case 0x303: map_key_clear(KEY_PROG3); break;
default: goto ignore;
}
break;
case HID_UP_HPVENDOR: /* Reported on a Dutch layout HP5308 */
set_bit(EV_REP, input->evbit);
switch (usage->hid & HID_USAGE) {
case 0x021: map_key_clear(KEY_PRINT); break;
case 0x070: map_key_clear(KEY_HP); break;
case 0x071: map_key_clear(KEY_CAMERA); break;
case 0x072: map_key_clear(KEY_SOUND); break;
case 0x073: map_key_clear(KEY_QUESTION); break;
case 0x080: map_key_clear(KEY_EMAIL); break;
case 0x081: map_key_clear(KEY_CHAT); break;
case 0x082: map_key_clear(KEY_SEARCH); break;
case 0x083: map_key_clear(KEY_CONNECT); break;
case 0x084: map_key_clear(KEY_FINANCE); break;
case 0x085: map_key_clear(KEY_SPORT); break;
case 0x086: map_key_clear(KEY_SHOP); break;
default: goto ignore;
}
break;
case HID_UP_MSVENDOR:
goto ignore;
case HID_UP_CUSTOM: /* Reported on Logitech and Powerbook USB keyboards */
set_bit(EV_REP, input->evbit);
switch(usage->hid & HID_USAGE) {
case 0x003:
/* The fn key on Apple PowerBooks */
map_key_clear(KEY_FN);
hidinput_pb_setup(input);
break;
default: goto ignore;
}
break;
case HID_UP_LOGIVENDOR: /* Reported on Logitech Ultra X Media Remote */
set_bit(EV_REP, input->evbit);
switch(usage->hid & HID_USAGE) {
case 0x004: map_key_clear(KEY_AGAIN); break;
case 0x00d: map_key_clear(KEY_HOME); break;
case 0x024: map_key_clear(KEY_SHUFFLE); break;
case 0x025: map_key_clear(KEY_TV); break;
case 0x026: map_key_clear(KEY_MENU); break;
case 0x031: map_key_clear(KEY_AUDIO); break;
case 0x032: map_key_clear(KEY_TEXT); break;
case 0x033: map_key_clear(KEY_LAST); break;
case 0x047: map_key_clear(KEY_MP3); break;
case 0x048: map_key_clear(KEY_DVD); break;
case 0x049: map_key_clear(KEY_MEDIA); break;
case 0x04a: map_key_clear(KEY_VIDEO); break;
case 0x04b: map_key_clear(KEY_ANGLE); break;
case 0x04c: map_key_clear(KEY_LANGUAGE); break;
case 0x04d: map_key_clear(KEY_SUBTITLE); break;
case 0x051: map_key_clear(KEY_RED); break;
case 0x052: map_key_clear(KEY_CLOSE); break;
default: goto ignore;
}
break;
case HID_UP_PID:
switch(usage->hid & HID_USAGE) {
case 0xa4: map_key_clear(BTN_DEAD); break;
default: goto ignore;
}
break;
default:
unknown:
if (field->report_size == 1) {
if (field->report->type == HID_OUTPUT_REPORT) {
map_led(LED_MISC);
break;
}
map_key(BTN_MISC);
break;
}
if (field->flags & HID_MAIN_ITEM_RELATIVE) {
map_rel(REL_MISC);
break;
}
map_abs(ABS_MISC);
break;
}
if (device->quirks & HID_QUIRK_MIGHTYMOUSE) {
if (usage->hid == HID_GD_Z)
map_rel(REL_HWHEEL);
else if (usage->code == BTN_1)
map_key(BTN_2);
else if (usage->code == BTN_2)
map_key(BTN_1);
}
if ((device->quirks & (HID_QUIRK_2WHEEL_MOUSE_HACK_7 | HID_QUIRK_2WHEEL_MOUSE_HACK_5)) &&
(usage->type == EV_REL) && (usage->code == REL_WHEEL))
set_bit(REL_HWHEEL, bit);
if (((device->quirks & HID_QUIRK_2WHEEL_MOUSE_HACK_5) && (usage->hid == 0x00090005))
|| ((device->quirks & HID_QUIRK_2WHEEL_MOUSE_HACK_7) && (usage->hid == 0x00090007)))
goto ignore;
if ((device->quirks & HID_QUIRK_BAD_RELATIVE_KEYS) &&
usage->type == EV_KEY && (field->flags & HID_MAIN_ITEM_RELATIVE))
field->flags &= ~HID_MAIN_ITEM_RELATIVE;
set_bit(usage->type, input->evbit);
while (usage->code <= max && test_and_set_bit(usage->code, bit))
usage->code = find_next_zero_bit(bit, max + 1, usage->code);
if (usage->code > max)
goto ignore;
if (usage->type == EV_ABS) {
int a = field->logical_minimum;
int b = field->logical_maximum;
if ((device->quirks & HID_QUIRK_BADPAD) && (usage->code == ABS_X || usage->code == ABS_Y)) {
a = field->logical_minimum = 0;
b = field->logical_maximum = 255;
}
if (field->application == HID_GD_GAMEPAD || field->application == HID_GD_JOYSTICK)
input_set_abs_params(input, usage->code, a, b, (b - a) >> 8, (b - a) >> 4);
else input_set_abs_params(input, usage->code, a, b, 0, 0);
}
if (usage->type == EV_ABS &&
(usage->hat_min < usage->hat_max || usage->hat_dir)) {
int i;
for (i = usage->code; i < usage->code + 2 && i <= max; i++) {
input_set_abs_params(input, i, -1, 1, 0, 0);
set_bit(i, input->absbit);
}
if (usage->hat_dir && !field->dpad)
field->dpad = usage->code;
}
#ifdef DEBUG
resolv_event(usage->type, usage->code);
printk("\n");
#endif
return;
ignore:
#ifdef DEBUG
printk("IGNORED\n");
#endif
return;
}
void hidinput_hid_event(struct hid_device *hid, struct hid_field *field, struct hid_usage *usage, __s32 value)
{
struct input_dev *input;
int *quirks = &hid->quirks;
if (!field->hidinput)
return;
input = field->hidinput->input;
if (!usage->type)
return;
if (((hid->quirks & HID_QUIRK_2WHEEL_MOUSE_HACK_5) && (usage->hid == 0x00090005))
|| ((hid->quirks & HID_QUIRK_2WHEEL_MOUSE_HACK_7) && (usage->hid == 0x00090007))) {
if (value) hid->quirks |= HID_QUIRK_2WHEEL_MOUSE_HACK_ON;
else hid->quirks &= ~HID_QUIRK_2WHEEL_MOUSE_HACK_ON;
return;
}
if ((hid->quirks & HID_QUIRK_INVERT_HWHEEL) && (usage->code == REL_HWHEEL)) {
input_event(input, usage->type, usage->code, -value);
return;
}
if ((hid->quirks & HID_QUIRK_2WHEEL_MOUSE_HACK_ON) && (usage->code == REL_WHEEL)) {
input_event(input, usage->type, REL_HWHEEL, value);
return;
}
if ((hid->quirks & HID_QUIRK_POWERBOOK_HAS_FN) && hidinput_pb_event(hid, input, usage, value))
return;
if (usage->hat_min < usage->hat_max || usage->hat_dir) {
int hat_dir = usage->hat_dir;
if (!hat_dir)
hat_dir = (value - usage->hat_min) * 8 / (usage->hat_max - usage->hat_min + 1) + 1;
if (hat_dir < 0 || hat_dir > 8) hat_dir = 0;
input_event(input, usage->type, usage->code , hid_hat_to_axis[hat_dir].x);
input_event(input, usage->type, usage->code + 1, hid_hat_to_axis[hat_dir].y);
return;
}
if (usage->hid == (HID_UP_DIGITIZER | 0x003c)) { /* Invert */
*quirks = value ? (*quirks | HID_QUIRK_INVERT) : (*quirks & ~HID_QUIRK_INVERT);
return;
}
if (usage->hid == (HID_UP_DIGITIZER | 0x0032)) { /* InRange */
if (value) {
input_event(input, usage->type, (*quirks & HID_QUIRK_INVERT) ? BTN_TOOL_RUBBER : usage->code, 1);
return;
}
input_event(input, usage->type, usage->code, 0);
input_event(input, usage->type, BTN_TOOL_RUBBER, 0);
return;
}
if (usage->hid == (HID_UP_DIGITIZER | 0x0030) && (*quirks & HID_QUIRK_NOTOUCH)) { /* Pressure */
int a = field->logical_minimum;
int b = field->logical_maximum;
input_event(input, EV_KEY, BTN_TOUCH, value > a + ((b - a) >> 3));
}
if (usage->hid == (HID_UP_PID | 0x83UL)) { /* Simultaneous Effects Max */
dbg("Maximum Effects - %d",value);
return;
}
if (usage->hid == (HID_UP_PID | 0x7fUL)) {
dbg("PID Pool Report\n");
return;
}
if ((usage->type == EV_KEY) && (usage->code == 0)) /* Key 0 is "unassigned", not KEY_UNKNOWN */
return;
input_event(input, usage->type, usage->code, value);
if ((field->flags & HID_MAIN_ITEM_RELATIVE) && (usage->type == EV_KEY))
input_event(input, usage->type, usage->code, 0);
}
void hidinput_report_event(struct hid_device *hid, struct hid_report *report)
{
struct hid_input *hidinput;
list_for_each_entry(hidinput, &hid->inputs, list)
input_sync(hidinput->input);
}
static int hidinput_find_field(struct hid_device *hid, unsigned int type, unsigned int code, struct hid_field **field)
{
struct hid_report *report;
int i, j;
list_for_each_entry(report, &hid->report_enum[HID_OUTPUT_REPORT].report_list, list) {
for (i = 0; i < report->maxfield; i++) {
*field = report->field[i];
for (j = 0; j < (*field)->maxusage; j++)
if ((*field)->usage[j].type == type && (*field)->usage[j].code == code)
return j;
}
}
return -1;
}
/*
* Register the input device; print a message.
* Configure the input layer interface
* Read all reports and initialize the absolute field values.
*/
int hidinput_connect(struct hid_device *hid)
{
struct usb_device *dev = hid->dev;
struct hid_report *report;
struct hid_input *hidinput = NULL;
struct input_dev *input_dev;
int i, j, k;
INIT_LIST_HEAD(&hid->inputs);
for (i = 0; i < hid->maxcollection; i++)
if (hid->collection[i].type == HID_COLLECTION_APPLICATION ||
hid->collection[i].type == HID_COLLECTION_PHYSICAL)
if (IS_INPUT_APPLICATION(hid->collection[i].usage))
break;
if (i == hid->maxcollection)
return -1;
for (k = HID_INPUT_REPORT; k <= HID_OUTPUT_REPORT; k++)
list_for_each_entry(report, &hid->report_enum[k].report_list, list) {
if (!report->maxfield)
continue;
if (!hidinput) {
hidinput = kzalloc(sizeof(*hidinput), GFP_KERNEL);
input_dev = input_allocate_device();
if (!hidinput || !input_dev) {
kfree(hidinput);
input_free_device(input_dev);
err("Out of memory during hid input probe");
return -1;
}
input_dev->private = hid;
input_dev->event = hidinput_input_event;
input_dev->open = hidinput_open;
input_dev->close = hidinput_close;
input_dev->name = hid->name;
input_dev->phys = hid->phys;
input_dev->uniq = hid->uniq;
usb_to_input_id(dev, &input_dev->id);
input_dev->cdev.dev = &hid->intf->dev;
hidinput->input = input_dev;
list_add_tail(&hidinput->list, &hid->inputs);
}
for (i = 0; i < report->maxfield; i++)
for (j = 0; j < report->field[i]->maxusage; j++)
hidinput_configure_usage(hidinput, report->field[i],
report->field[i]->usage + j);
if (hid->quirks & HID_QUIRK_MULTI_INPUT) {
/* This will leave hidinput NULL, so that it
* allocates another one if we have more inputs on
* the same interface. Some devices (e.g. Happ's
* UGCI) cram a lot of unrelated inputs into the
* same interface. */
hidinput->report = report;
input_register_device(hidinput->input);
hidinput = NULL;
}
}
/* This only gets called when we are a single-input (most of the
* time). IOW, not a HID_QUIRK_MULTI_INPUT. The hid_ff_init() is
* only useful in this case, and not for multi-input quirks. */
if (hidinput) {
hid_ff_init(hid);
input_register_device(hidinput->input);
}
return 0;
}
void hidinput_disconnect(struct hid_device *hid)
{
struct hid_input *hidinput, *next;
list_for_each_entry_safe(hidinput, next, &hid->inputs, list) {
list_del(&hidinput->list);
input_unregister_device(hidinput->input);
kfree(hidinput);
}
}
......@@ -4,6 +4,7 @@
* Copyright (c) 1999 Andreas Gal
* Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz>
* Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc
* Copyright (c) 2006 Jiri Kosina
*/
/*
......@@ -32,7 +33,7 @@
#include <linux/usb.h>
#include "hid.h"
#include <linux/hid.h>
#include <linux/hiddev.h>
/*
......@@ -54,887 +55,6 @@ static unsigned int hid_mousepoll_interval;
module_param_named(mousepoll, hid_mousepoll_interval, uint, 0644);
MODULE_PARM_DESC(mousepoll, "Polling interval of mice");
/*
* Register a new report for a device.
*/
static struct hid_report *hid_register_report(struct hid_device *device, unsigned type, unsigned id)
{
struct hid_report_enum *report_enum = device->report_enum + type;
struct hid_report *report;
if (report_enum->report_id_hash[id])
return report_enum->report_id_hash[id];
if (!(report = kzalloc(sizeof(struct hid_report), GFP_KERNEL)))
return NULL;
if (id != 0)
report_enum->numbered = 1;
report->id = id;
report->type = type;
report->size = 0;
report->device = device;
report_enum->report_id_hash[id] = report;
list_add_tail(&report->list, &report_enum->report_list);
return report;
}
/*
* Register a new field for this report.
*/
static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages, unsigned values)
{
struct hid_field *field;
if (report->maxfield == HID_MAX_FIELDS) {
dbg("too many fields in report");
return NULL;
}
if (!(field = kzalloc(sizeof(struct hid_field) + usages * sizeof(struct hid_usage)
+ values * sizeof(unsigned), GFP_KERNEL))) return NULL;
field->index = report->maxfield++;
report->field[field->index] = field;
field->usage = (struct hid_usage *)(field + 1);
field->value = (unsigned *)(field->usage + usages);
field->report = report;
return field;
}
/*
* Open a collection. The type/usage is pushed on the stack.
*/
static int open_collection(struct hid_parser *parser, unsigned type)
{
struct hid_collection *collection;
unsigned usage;
usage = parser->local.usage[0];
if (parser->collection_stack_ptr == HID_COLLECTION_STACK_SIZE) {
dbg("collection stack overflow");
return -1;
}
if (parser->device->maxcollection == parser->device->collection_size) {
collection = kmalloc(sizeof(struct hid_collection) *
parser->device->collection_size * 2, GFP_KERNEL);
if (collection == NULL) {
dbg("failed to reallocate collection array");
return -1;
}
memcpy(collection, parser->device->collection,
sizeof(struct hid_collection) *
parser->device->collection_size);
memset(collection + parser->device->collection_size, 0,
sizeof(struct hid_collection) *
parser->device->collection_size);
kfree(parser->device->collection);
parser->device->collection = collection;
parser->device->collection_size *= 2;
}
parser->collection_stack[parser->collection_stack_ptr++] =
parser->device->maxcollection;
collection = parser->device->collection +
parser->device->maxcollection++;
collection->type = type;
collection->usage = usage;
collection->level = parser->collection_stack_ptr - 1;
if (type == HID_COLLECTION_APPLICATION)
parser->device->maxapplication++;
return 0;
}
/*
* Close a collection.
*/
static int close_collection(struct hid_parser *parser)
{
if (!parser->collection_stack_ptr) {
dbg("collection stack underflow");
return -1;
}
parser->collection_stack_ptr--;
return 0;
}
/*
* Climb up the stack, search for the specified collection type
* and return the usage.
*/
static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
{
int n;
for (n = parser->collection_stack_ptr - 1; n >= 0; n--)
if (parser->device->collection[parser->collection_stack[n]].type == type)
return parser->device->collection[parser->collection_stack[n]].usage;
return 0; /* we know nothing about this usage type */
}
/*
* Add a usage to the temporary parser table.
*/
static int hid_add_usage(struct hid_parser *parser, unsigned usage)
{
if (parser->local.usage_index >= HID_MAX_USAGES) {
dbg("usage index exceeded");
return -1;
}
parser->local.usage[parser->local.usage_index] = usage;
parser->local.collection_index[parser->local.usage_index] =
parser->collection_stack_ptr ?
parser->collection_stack[parser->collection_stack_ptr - 1] : 0;
parser->local.usage_index++;
return 0;
}
/*
* Register a new field for this report.
*/
static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
{
struct hid_report *report;
struct hid_field *field;
int usages;
unsigned offset;
int i;
if (!(report = hid_register_report(parser->device, report_type, parser->global.report_id))) {
dbg("hid_register_report failed");
return -1;
}
if (parser->global.logical_maximum < parser->global.logical_minimum) {
dbg("logical range invalid %d %d", parser->global.logical_minimum, parser->global.logical_maximum);
return -1;
}
offset = report->size;
report->size += parser->global.report_size * parser->global.report_count;
if (!parser->local.usage_index) /* Ignore padding fields */
return 0;
usages = max_t(int, parser->local.usage_index, parser->global.report_count);
if ((field = hid_register_field(report, usages, parser->global.report_count)) == NULL)
return 0;
field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
field->application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION);
for (i = 0; i < usages; i++) {
int j = i;
/* Duplicate the last usage we parsed if we have excess values */
if (i >= parser->local.usage_index)
j = parser->local.usage_index - 1;
field->usage[i].hid = parser->local.usage[j];
field->usage[i].collection_index =
parser->local.collection_index[j];
}
field->maxusage = usages;
field->flags = flags;
field->report_offset = offset;
field->report_type = report_type;
field->report_size = parser->global.report_size;
field->report_count = parser->global.report_count;
field->logical_minimum = parser->global.logical_minimum;
field->logical_maximum = parser->global.logical_maximum;
field->physical_minimum = parser->global.physical_minimum;
field->physical_maximum = parser->global.physical_maximum;
field->unit_exponent = parser->global.unit_exponent;
field->unit = parser->global.unit;
return 0;
}
/*
* Read data value from item.
*/
static u32 item_udata(struct hid_item *item)
{
switch (item->size) {
case 1: return item->data.u8;
case 2: return item->data.u16;
case 4: return item->data.u32;
}
return 0;
}
static s32 item_sdata(struct hid_item *item)
{
switch (item->size) {
case 1: return item->data.s8;
case 2: return item->data.s16;
case 4: return item->data.s32;
}
return 0;
}
/*
* Process a global item.
*/
static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
{
switch (item->tag) {
case HID_GLOBAL_ITEM_TAG_PUSH:
if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) {
dbg("global enviroment stack overflow");
return -1;
}
memcpy(parser->global_stack + parser->global_stack_ptr++,
&parser->global, sizeof(struct hid_global));
return 0;
case HID_GLOBAL_ITEM_TAG_POP:
if (!parser->global_stack_ptr) {
dbg("global enviroment stack underflow");
return -1;
}
memcpy(&parser->global, parser->global_stack + --parser->global_stack_ptr,
sizeof(struct hid_global));
return 0;
case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
parser->global.usage_page = item_udata(item);
return 0;
case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
parser->global.logical_minimum = item_sdata(item);
return 0;
case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
if (parser->global.logical_minimum < 0)
parser->global.logical_maximum = item_sdata(item);
else
parser->global.logical_maximum = item_udata(item);
return 0;
case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
parser->global.physical_minimum = item_sdata(item);
return 0;
case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
if (parser->global.physical_minimum < 0)
parser->global.physical_maximum = item_sdata(item);
else
parser->global.physical_maximum = item_udata(item);
return 0;
case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
parser->global.unit_exponent = item_sdata(item);
return 0;
case HID_GLOBAL_ITEM_TAG_UNIT:
parser->global.unit = item_udata(item);
return 0;
case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
if ((parser->global.report_size = item_udata(item)) > 32) {
dbg("invalid report_size %d", parser->global.report_size);
return -1;
}
return 0;
case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
if ((parser->global.report_count = item_udata(item)) > HID_MAX_USAGES) {
dbg("invalid report_count %d", parser->global.report_count);
return -1;
}
return 0;
case HID_GLOBAL_ITEM_TAG_REPORT_ID:
if ((parser->global.report_id = item_udata(item)) == 0) {
dbg("report_id 0 is invalid");
return -1;
}
return 0;
default:
dbg("unknown global tag 0x%x", item->tag);
return -1;
}
}
/*
* Process a local item.
*/
static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
{
__u32 data;
unsigned n;
if (item->size == 0) {
dbg("item data expected for local item");
return -1;
}
data = item_udata(item);
switch (item->tag) {
case HID_LOCAL_ITEM_TAG_DELIMITER:
if (data) {
/*
* We treat items before the first delimiter
* as global to all usage sets (branch 0).
* In the moment we process only these global
* items and the first delimiter set.
*/
if (parser->local.delimiter_depth != 0) {
dbg("nested delimiters");
return -1;
}
parser->local.delimiter_depth++;
parser->local.delimiter_branch++;
} else {
if (parser->local.delimiter_depth < 1) {
dbg("bogus close delimiter");
return -1;
}
parser->local.delimiter_depth--;
}
return 1;
case HID_LOCAL_ITEM_TAG_USAGE:
if (parser->local.delimiter_branch > 1) {
dbg("alternative usage ignored");
return 0;
}
if (item->size <= 2)
data = (parser->global.usage_page << 16) + data;
return hid_add_usage(parser, data);
case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:
if (parser->local.delimiter_branch > 1) {
dbg("alternative usage ignored");
return 0;
}
if (item->size <= 2)
data = (parser->global.usage_page << 16) + data;
parser->local.usage_minimum = data;
return 0;
case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:
if (parser->local.delimiter_branch > 1) {
dbg("alternative usage ignored");
return 0;
}
if (item->size <= 2)
data = (parser->global.usage_page << 16) + data;
for (n = parser->local.usage_minimum; n <= data; n++)
if (hid_add_usage(parser, n)) {
dbg("hid_add_usage failed\n");
return -1;
}
return 0;
default:
dbg("unknown local item tag 0x%x", item->tag);
return 0;
}
return 0;
}
/*
* Process a main item.
*/
static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
{
__u32 data;
int ret;
data = item_udata(item);
switch (item->tag) {
case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
ret = open_collection(parser, data & 0xff);
break;
case HID_MAIN_ITEM_TAG_END_COLLECTION:
ret = close_collection(parser);
break;
case HID_MAIN_ITEM_TAG_INPUT:
ret = hid_add_field(parser, HID_INPUT_REPORT, data);
break;
case HID_MAIN_ITEM_TAG_OUTPUT:
ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
break;
case HID_MAIN_ITEM_TAG_FEATURE:
ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
break;
default:
dbg("unknown main item tag 0x%x", item->tag);
ret = 0;
}
memset(&parser->local, 0, sizeof(parser->local)); /* Reset the local parser environment */
return ret;
}
/*
* Process a reserved item.
*/
static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
{
dbg("reserved item type, tag 0x%x", item->tag);
return 0;
}
/*
* Free a report and all registered fields. The field->usage and
* field->value table's are allocated behind the field, so we need
* only to free(field) itself.
*/
static void hid_free_report(struct hid_report *report)
{
unsigned n;
for (n = 0; n < report->maxfield; n++)
kfree(report->field[n]);
kfree(report);
}
/*
* Free a device structure, all reports, and all fields.
*/
static void hid_free_device(struct hid_device *device)
{
unsigned i,j;
for (i = 0; i < HID_REPORT_TYPES; i++) {
struct hid_report_enum *report_enum = device->report_enum + i;
for (j = 0; j < 256; j++) {
struct hid_report *report = report_enum->report_id_hash[j];
if (report)
hid_free_report(report);
}
}
kfree(device->rdesc);
kfree(device);
}
/*
* Fetch a report description item from the data stream. We support long
* items, though they are not used yet.
*/
static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item)
{
u8 b;
if ((end - start) <= 0)
return NULL;
b = *start++;
item->type = (b >> 2) & 3;
item->tag = (b >> 4) & 15;
if (item->tag == HID_ITEM_TAG_LONG) {
item->format = HID_ITEM_FORMAT_LONG;
if ((end - start) < 2)
return NULL;
item->size = *start++;
item->tag = *start++;
if ((end - start) < item->size)
return NULL;
item->data.longdata = start;
start += item->size;
return start;
}
item->format = HID_ITEM_FORMAT_SHORT;
item->size = b & 3;
switch (item->size) {
case 0:
return start;
case 1:
if ((end - start) < 1)
return NULL;
item->data.u8 = *start++;
return start;
case 2:
if ((end - start) < 2)
return NULL;
item->data.u16 = le16_to_cpu(get_unaligned((__le16*)start));
start = (__u8 *)((__le16 *)start + 1);
return start;
case 3:
item->size++;
if ((end - start) < 4)
return NULL;
item->data.u32 = le32_to_cpu(get_unaligned((__le32*)start));
start = (__u8 *)((__le32 *)start + 1);
return start;
}
return NULL;
}
/*
* Parse a report description into a hid_device structure. Reports are
* enumerated, fields are attached to these reports.
*/
static struct hid_device *hid_parse_report(__u8 *start, unsigned size)
{
struct hid_device *device;
struct hid_parser *parser;
struct hid_item item;
__u8 *end;
unsigned i;
static int (*dispatch_type[])(struct hid_parser *parser,
struct hid_item *item) = {
hid_parser_main,
hid_parser_global,
hid_parser_local,
hid_parser_reserved
};
if (!(device = kzalloc(sizeof(struct hid_device), GFP_KERNEL)))
return NULL;
if (!(device->collection = kzalloc(sizeof(struct hid_collection) *
HID_DEFAULT_NUM_COLLECTIONS, GFP_KERNEL))) {
kfree(device);
return NULL;
}
device->collection_size = HID_DEFAULT_NUM_COLLECTIONS;
for (i = 0; i < HID_REPORT_TYPES; i++)
INIT_LIST_HEAD(&device->report_enum[i].report_list);
if (!(device->rdesc = (__u8 *)kmalloc(size, GFP_KERNEL))) {
kfree(device->collection);
kfree(device);
return NULL;
}
memcpy(device->rdesc, start, size);
device->rsize = size;
if (!(parser = kzalloc(sizeof(struct hid_parser), GFP_KERNEL))) {
kfree(device->rdesc);
kfree(device->collection);
kfree(device);
return NULL;
}
parser->device = device;
end = start + size;
while ((start = fetch_item(start, end, &item)) != NULL) {
if (item.format != HID_ITEM_FORMAT_SHORT) {
dbg("unexpected long global item");
kfree(device->collection);
hid_free_device(device);
kfree(parser);
return NULL;
}
if (dispatch_type[item.type](parser, &item)) {
dbg("item %u %u %u %u parsing failed\n",
item.format, (unsigned)item.size, (unsigned)item.type, (unsigned)item.tag);
kfree(device->collection);
hid_free_device(device);
kfree(parser);
return NULL;
}
if (start == end) {
if (parser->collection_stack_ptr) {
dbg("unbalanced collection at end of report description");
kfree(device->collection);
hid_free_device(device);
kfree(parser);
return NULL;
}
if (parser->local.delimiter_depth) {
dbg("unbalanced delimiter at end of report description");
kfree(device->collection);
hid_free_device(device);
kfree(parser);
return NULL;
}
kfree(parser);
return device;
}
}
dbg("item fetching failed at offset %d\n", (int)(end - start));
kfree(device->collection);
hid_free_device(device);
kfree(parser);
return NULL;
}
/*
* Convert a signed n-bit integer to signed 32-bit integer. Common
* cases are done through the compiler, the screwed things has to be
* done by hand.
*/
static s32 snto32(__u32 value, unsigned n)
{
switch (n) {
case 8: return ((__s8)value);
case 16: return ((__s16)value);
case 32: return ((__s32)value);
}
return value & (1 << (n - 1)) ? value | (-1 << n) : value;
}
/*
* Convert a signed 32-bit integer to a signed n-bit integer.
*/
static u32 s32ton(__s32 value, unsigned n)
{
s32 a = value >> (n - 1);
if (a && a != -1)
return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;
return value & ((1 << n) - 1);
}
/*
* Extract/implement a data field from/to a little endian report (bit array).
*
* Code sort-of follows HID spec:
* http://www.usb.org/developers/devclass_docs/HID1_11.pdf
*
* While the USB HID spec allows unlimited length bit fields in "report
* descriptors", most devices never use more than 16 bits.
* One model of UPS is claimed to report "LINEV" as a 32-bit field.
* Search linux-kernel and linux-usb-devel archives for "hid-core extract".
*/
static __inline__ __u32 extract(__u8 *report, unsigned offset, unsigned n)
{
u64 x;
WARN_ON(n > 32);
report += offset >> 3; /* adjust byte index */
offset &= 7; /* now only need bit offset into one byte */
x = get_unaligned((u64 *) report);
x = le64_to_cpu(x);
x = (x >> offset) & ((1ULL << n) - 1); /* extract bit field */
return (u32) x;
}
/*
* "implement" : set bits in a little endian bit stream.
* Same concepts as "extract" (see comments above).
* The data mangled in the bit stream remains in little endian
* order the whole time. It make more sense to talk about
* endianness of register values by considering a register
* a "cached" copy of the little endiad bit stream.
*/
static __inline__ void implement(__u8 *report, unsigned offset, unsigned n, __u32 value)
{
u64 x;
u64 m = (1ULL << n) - 1;
WARN_ON(n > 32);
WARN_ON(value > m);
value &= m;
report += offset >> 3;
offset &= 7;
x = get_unaligned((u64 *)report);
x &= cpu_to_le64(~(m << offset));
x |= cpu_to_le64(((u64) value) << offset);
put_unaligned(x, (u64 *) report);
}
/*
* Search an array for a value.
*/
static __inline__ int search(__s32 *array, __s32 value, unsigned n)
{
while (n--) {
if (*array++ == value)
return 0;
}
return -1;
}
static void hid_process_event(struct hid_device *hid, struct hid_field *field, struct hid_usage *usage, __s32 value, int interrupt)
{
hid_dump_input(usage, value);
if (hid->claimed & HID_CLAIMED_INPUT)
hidinput_hid_event(hid, field, usage, value);
if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt)
hiddev_hid_event(hid, field, usage, value);
}
/*
* Analyse a received field, and fetch the data from it. The field
* content is stored for next report processing (we do differential
* reporting to the layer).
*/
static void hid_input_field(struct hid_device *hid, struct hid_field *field, __u8 *data, int interrupt)
{
unsigned n;
unsigned count = field->report_count;
unsigned offset = field->report_offset;
unsigned size = field->report_size;
__s32 min = field->logical_minimum;
__s32 max = field->logical_maximum;
__s32 *value;
if (!(value = kmalloc(sizeof(__s32) * count, GFP_ATOMIC)))
return;
for (n = 0; n < count; n++) {
value[n] = min < 0 ? snto32(extract(data, offset + n * size, size), size) :
extract(data, offset + n * size, size);
if (!(field->flags & HID_MAIN_ITEM_VARIABLE) /* Ignore report if ErrorRollOver */
&& value[n] >= min && value[n] <= max
&& field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1)
goto exit;
}
for (n = 0; n < count; n++) {
if (HID_MAIN_ITEM_VARIABLE & field->flags) {
hid_process_event(hid, field, &field->usage[n], value[n], interrupt);
continue;
}
if (field->value[n] >= min && field->value[n] <= max
&& field->usage[field->value[n] - min].hid
&& search(value, field->value[n], count))
hid_process_event(hid, field, &field->usage[field->value[n] - min], 0, interrupt);
if (value[n] >= min && value[n] <= max
&& field->usage[value[n] - min].hid
&& search(field->value, value[n], count))
hid_process_event(hid, field, &field->usage[value[n] - min], 1, interrupt);
}
memcpy(field->value, value, count * sizeof(__s32));
exit:
kfree(value);
}
static int hid_input_report(int type, struct urb *urb, int interrupt)
{
struct hid_device *hid = urb->context;
struct hid_report_enum *report_enum = hid->report_enum + type;
u8 *data = urb->transfer_buffer;
int len = urb->actual_length;
struct hid_report *report;
int n, size;
if (!len) {
dbg("empty report");
return -1;
}
#ifdef DEBUG_DATA
printk(KERN_DEBUG __FILE__ ": report (size %u) (%snumbered)\n", len, report_enum->numbered ? "" : "un");
#endif
n = 0; /* Normally report number is 0 */
if (report_enum->numbered) { /* Device uses numbered reports, data[0] is report number */
n = *data++;
len--;
}
#ifdef DEBUG_DATA
{
int i;
printk(KERN_DEBUG __FILE__ ": report %d (size %u) = ", n, len);
for (i = 0; i < len; i++)
printk(" %02x", data[i]);
printk("\n");
}
#endif
if (!(report = report_enum->report_id_hash[n])) {
dbg("undefined report_id %d received", n);
return -1;
}
size = ((report->size - 1) >> 3) + 1;
if (len < size) {
dbg("report %d is too short, (%d < %d)", report->id, len, size);
memset(data + len, 0, size - len);
}
if (hid->claimed & HID_CLAIMED_HIDDEV)
hiddev_report_event(hid, report);
for (n = 0; n < report->maxfield; n++)
hid_input_field(hid, report->field[n], data, interrupt);
if (hid->claimed & HID_CLAIMED_INPUT)
hidinput_report_event(hid, report);
return 0;
}
/*
* Input submission and I/O error handler.
*/
......@@ -1044,6 +164,65 @@ done:
spin_unlock_irqrestore(&hid->inlock, flags);
}
static int hid_input_report(int type, struct urb *urb, int interrupt)
{
struct hid_device *hid = urb->context;
struct hid_report_enum *report_enum = hid->report_enum + type;
u8 *data = urb->transfer_buffer;
int len = urb->actual_length;
struct hid_report *report;
int n, size;
if (!len) {
dbg("empty report");
return -1;
}
#ifdef DEBUG_DATA
printk(KERN_DEBUG __FILE__ ": report (size %u) (%snumbered)\n", len, report_enum->numbered ? "" : "un");
#endif
n = 0; /* Normally report number is 0 */
if (report_enum->numbered) { /* Device uses numbered reports, data[0] is report number */
n = *data++;
len--;
}
#ifdef DEBUG_DATA
{
int i;
printk(KERN_DEBUG __FILE__ ": report %d (size %u) = ", n, len);
for (i = 0; i < len; i++)
printk(" %02x", data[i]);
printk("\n");
}
#endif
if (!(report = report_enum->report_id_hash[n])) {
dbg("undefined report_id %d received", n);
return -1;
}
size = ((report->size - 1) >> 3) + 1;
if (len < size) {
dbg("report %d is too short, (%d < %d)", report->id, len, size);
memset(data + len, 0, size - len);
}
if (hid->claimed & HID_CLAIMED_HIDDEV)
hiddev_report_event(hid, report);
for (n = 0; n < report->maxfield; n++)
hid_input_field(hid, report->field[n], data, interrupt);
if (hid->claimed & HID_CLAIMED_INPUT)
hidinput_report_event(hid, report);
return 0;
}
/*
* Input interrupt completion handler.
*/
......@@ -1092,67 +271,6 @@ static void hid_irq_in(struct urb *urb)
}
}
/*
* Output the field into the report.
*/
static void hid_output_field(struct hid_field *field, __u8 *data)
{
unsigned count = field->report_count;
unsigned offset = field->report_offset;
unsigned size = field->report_size;
unsigned n;
for (n = 0; n < count; n++) {
if (field->logical_minimum < 0) /* signed values */
implement(data, offset + n * size, size, s32ton(field->value[n], size));
else /* unsigned values */
implement(data, offset + n * size, size, field->value[n]);
}
}
/*
* Create a report.
*/
static void hid_output_report(struct hid_report *report, __u8 *data)
{
unsigned n;
if (report->id > 0)
*data++ = report->id;
for (n = 0; n < report->maxfield; n++)
hid_output_field(report->field[n], data);
}
/*
* Set a field value. The report this field belongs to has to be
* created and transferred to the device, to set this value in the
* device.
*/
int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
{
unsigned size = field->report_size;
hid_dump_input(field->usage + offset, value);
if (offset >= field->report_count) {
dbg("offset (%d) exceeds report_count (%d)", offset, field->report_count);
hid_dump_field(field, 8);
return -1;
}
if (field->logical_minimum < 0) {
if (value != snto32(s32ton(value, size), size)) {
dbg("value %d is out of range", value);
return -1;
}
}
field->value[offset] = value;
return 0;
}
/*
* Find a report field with a specified HID usage.
*/
......@@ -1379,6 +497,29 @@ void hid_submit_report(struct hid_device *hid, struct hid_report *report, unsign
spin_unlock_irqrestore(&hid->ctrllock, flags);
}
static int hidinput_input_event(struct input_dev *dev, unsigned int type, unsigned int code, int value)
{
struct hid_device *hid = dev->private;
struct hid_field *field;
int offset;
if (type == EV_FF)
return input_ff_event(dev, type, code, value);
if (type != EV_LED)
return -1;
if ((offset = hidinput_find_field(hid, type, code, &field)) == -1) {
warn("event field not found");
return -1;
}
hid_set_field(field, offset, value);
hid_submit_report(hid, field->report, USB_DIR_OUT);
return 0;
}
int hid_wait_io(struct hid_device *hid)
{
if (!wait_event_timeout(hid->wait, (!test_bit(HID_CTRL_RUNNING, &hid->iofl) &&
......@@ -1428,6 +569,18 @@ void hid_close(struct hid_device *hid)
usb_kill_urb(hid->urbin);
}
static int hidinput_open(struct input_dev *dev)
{
struct hid_device *hid = dev->private;
return hid_open(hid);
}
static void hidinput_close(struct input_dev *dev)
{
struct hid_device *hid = dev->private;
hid_close(hid);
}
#define USB_VENDOR_ID_PANJIT 0x134c
#define USB_VENDOR_ID_TURBOX 0x062a
......
......@@ -32,7 +32,7 @@
#undef DEBUG
#include <linux/usb.h>
#include "hid.h"
#include <linux/hid.h>
/*
* This table contains pointers to initializers. To add support for new
......
......@@ -4,6 +4,7 @@
* Copyright (c) 2000-2001 Vojtech Pavlik
*
* USB HID to Linux Input mapping
*
*/
/*
......@@ -26,847 +27,4 @@
* Vojtech Pavlik, Simunkova 1594, Prague 8, 182 00 Czech Republic
*/
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/kernel.h>
#include <linux/usb/input.h>
#undef DEBUG
#include "hid.h"
#define unk KEY_UNKNOWN
static const unsigned char hid_keyboard[256] = {
0, 0, 0, 0, 30, 48, 46, 32, 18, 33, 34, 35, 23, 36, 37, 38,
50, 49, 24, 25, 16, 19, 31, 20, 22, 47, 17, 45, 21, 44, 2, 3,
4, 5, 6, 7, 8, 9, 10, 11, 28, 1, 14, 15, 57, 12, 13, 26,
27, 43, 43, 39, 40, 41, 51, 52, 53, 58, 59, 60, 61, 62, 63, 64,
65, 66, 67, 68, 87, 88, 99, 70,119,110,102,104,111,107,109,106,
105,108,103, 69, 98, 55, 74, 78, 96, 79, 80, 81, 75, 76, 77, 71,
72, 73, 82, 83, 86,127,116,117,183,184,185,186,187,188,189,190,
191,192,193,194,134,138,130,132,128,129,131,137,133,135,136,113,
115,114,unk,unk,unk,121,unk, 89, 93,124, 92, 94, 95,unk,unk,unk,
122,123, 90, 91, 85,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,
unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,
unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,
unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,
unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,
29, 42, 56,125, 97, 54,100,126,164,166,165,163,161,115,114,113,
150,158,159,128,136,177,178,176,142,152,173,140,unk,unk,unk,unk
};
static const struct {
__s32 x;
__s32 y;
} hid_hat_to_axis[] = {{ 0, 0}, { 0,-1}, { 1,-1}, { 1, 0}, { 1, 1}, { 0, 1}, {-1, 1}, {-1, 0}, {-1,-1}};
#define map_abs(c) do { usage->code = c; usage->type = EV_ABS; bit = input->absbit; max = ABS_MAX; } while (0)
#define map_rel(c) do { usage->code = c; usage->type = EV_REL; bit = input->relbit; max = REL_MAX; } while (0)
#define map_key(c) do { usage->code = c; usage->type = EV_KEY; bit = input->keybit; max = KEY_MAX; } while (0)
#define map_led(c) do { usage->code = c; usage->type = EV_LED; bit = input->ledbit; max = LED_MAX; } while (0)
#define map_abs_clear(c) do { map_abs(c); clear_bit(c, bit); } while (0)
#define map_key_clear(c) do { map_key(c); clear_bit(c, bit); } while (0)
#ifdef CONFIG_USB_HIDINPUT_POWERBOOK
struct hidinput_key_translation {
u16 from;
u16 to;
u8 flags;
};
#define POWERBOOK_FLAG_FKEY 0x01
static struct hidinput_key_translation powerbook_fn_keys[] = {
{ KEY_BACKSPACE, KEY_DELETE },
{ KEY_F1, KEY_BRIGHTNESSDOWN, POWERBOOK_FLAG_FKEY },
{ KEY_F2, KEY_BRIGHTNESSUP, POWERBOOK_FLAG_FKEY },
{ KEY_F3, KEY_MUTE, POWERBOOK_FLAG_FKEY },
{ KEY_F4, KEY_VOLUMEDOWN, POWERBOOK_FLAG_FKEY },
{ KEY_F5, KEY_VOLUMEUP, POWERBOOK_FLAG_FKEY },
{ KEY_F6, KEY_NUMLOCK, POWERBOOK_FLAG_FKEY },
{ KEY_F7, KEY_SWITCHVIDEOMODE, POWERBOOK_FLAG_FKEY },
{ KEY_F8, KEY_KBDILLUMTOGGLE, POWERBOOK_FLAG_FKEY },
{ KEY_F9, KEY_KBDILLUMDOWN, POWERBOOK_FLAG_FKEY },
{ KEY_F10, KEY_KBDILLUMUP, POWERBOOK_FLAG_FKEY },
{ KEY_UP, KEY_PAGEUP },
{ KEY_DOWN, KEY_PAGEDOWN },
{ KEY_LEFT, KEY_HOME },
{ KEY_RIGHT, KEY_END },
{ }
};
static struct hidinput_key_translation powerbook_numlock_keys[] = {
{ KEY_J, KEY_KP1 },
{ KEY_K, KEY_KP2 },
{ KEY_L, KEY_KP3 },
{ KEY_U, KEY_KP4 },
{ KEY_I, KEY_KP5 },
{ KEY_O, KEY_KP6 },
{ KEY_7, KEY_KP7 },
{ KEY_8, KEY_KP8 },
{ KEY_9, KEY_KP9 },
{ KEY_M, KEY_KP0 },
{ KEY_DOT, KEY_KPDOT },
{ KEY_SLASH, KEY_KPPLUS },
{ KEY_SEMICOLON, KEY_KPMINUS },
{ KEY_P, KEY_KPASTERISK },
{ KEY_MINUS, KEY_KPEQUAL },
{ KEY_0, KEY_KPSLASH },
{ KEY_F6, KEY_NUMLOCK },
{ KEY_KPENTER, KEY_KPENTER },
{ KEY_BACKSPACE, KEY_BACKSPACE },
{ }
};
static struct hidinput_key_translation powerbook_iso_keyboard[] = {
{ KEY_GRAVE, KEY_102ND },
{ KEY_102ND, KEY_GRAVE },
{ }
};
static int usbhid_pb_fnmode = 1;
module_param_named(pb_fnmode, usbhid_pb_fnmode, int, 0644);
MODULE_PARM_DESC(pb_fnmode,
"Mode of fn key on PowerBooks (0 = disabled, 1 = fkeyslast, 2 = fkeysfirst)");
static struct hidinput_key_translation *find_translation(struct hidinput_key_translation *table, u16 from)
{
struct hidinput_key_translation *trans;
/* Look for the translation */
for (trans = table; trans->from; trans++)
if (trans->from == from)
return trans;
return NULL;
}
static int hidinput_pb_event(struct hid_device *hid, struct input_dev *input,
struct hid_usage *usage, __s32 value)
{
struct hidinput_key_translation *trans;
if (usage->code == KEY_FN) {
if (value) hid->quirks |= HID_QUIRK_POWERBOOK_FN_ON;
else hid->quirks &= ~HID_QUIRK_POWERBOOK_FN_ON;
input_event(input, usage->type, usage->code, value);
return 1;
}
if (usbhid_pb_fnmode) {
int do_translate;
trans = find_translation(powerbook_fn_keys, usage->code);
if (trans) {
if (test_bit(usage->code, hid->pb_pressed_fn))
do_translate = 1;
else if (trans->flags & POWERBOOK_FLAG_FKEY)
do_translate =
(usbhid_pb_fnmode == 2 && (hid->quirks & HID_QUIRK_POWERBOOK_FN_ON)) ||
(usbhid_pb_fnmode == 1 && !(hid->quirks & HID_QUIRK_POWERBOOK_FN_ON));
else
do_translate = (hid->quirks & HID_QUIRK_POWERBOOK_FN_ON);
if (do_translate) {
if (value)
set_bit(usage->code, hid->pb_pressed_fn);
else
clear_bit(usage->code, hid->pb_pressed_fn);
input_event(input, usage->type, trans->to, value);
return 1;
}
}
if (test_bit(usage->code, hid->pb_pressed_numlock) ||
test_bit(LED_NUML, input->led)) {
trans = find_translation(powerbook_numlock_keys, usage->code);
if (trans) {
if (value)
set_bit(usage->code, hid->pb_pressed_numlock);
else
clear_bit(usage->code, hid->pb_pressed_numlock);
input_event(input, usage->type, trans->to, value);
}
return 1;
}
}
if (hid->quirks & HID_QUIRK_POWERBOOK_ISO_KEYBOARD) {
trans = find_translation(powerbook_iso_keyboard, usage->code);
if (trans) {
input_event(input, usage->type, trans->to, value);
return 1;
}
}
return 0;
}
static void hidinput_pb_setup(struct input_dev *input)
{
struct hidinput_key_translation *trans;
set_bit(KEY_NUMLOCK, input->keybit);
/* Enable all needed keys */
for (trans = powerbook_fn_keys; trans->from; trans++)
set_bit(trans->to, input->keybit);
for (trans = powerbook_numlock_keys; trans->from; trans++)
set_bit(trans->to, input->keybit);
for (trans = powerbook_iso_keyboard; trans->from; trans++)
set_bit(trans->to, input->keybit);
}
#else
static inline int hidinput_pb_event(struct hid_device *hid, struct input_dev *input,
struct hid_usage *usage, __s32 value)
{
return 0;
}
static inline void hidinput_pb_setup(struct input_dev *input)
{
}
#endif
static void hidinput_configure_usage(struct hid_input *hidinput, struct hid_field *field,
struct hid_usage *usage)
{
struct input_dev *input = hidinput->input;
struct hid_device *device = input->private;
int max = 0, code;
unsigned long *bit = NULL;
field->hidinput = hidinput;
#ifdef DEBUG
printk(KERN_DEBUG "Mapping: ");
resolv_usage(usage->hid);
printk(" ---> ");
#endif
if (field->flags & HID_MAIN_ITEM_CONSTANT)
goto ignore;
switch (usage->hid & HID_USAGE_PAGE) {
case HID_UP_UNDEFINED:
goto ignore;
case HID_UP_KEYBOARD:
set_bit(EV_REP, input->evbit);
if ((usage->hid & HID_USAGE) < 256) {
if (!hid_keyboard[usage->hid & HID_USAGE]) goto ignore;
map_key_clear(hid_keyboard[usage->hid & HID_USAGE]);
} else
map_key(KEY_UNKNOWN);
break;
case HID_UP_BUTTON:
code = ((usage->hid - 1) & 0xf);
switch (field->application) {
case HID_GD_MOUSE:
case HID_GD_POINTER: code += 0x110; break;
case HID_GD_JOYSTICK: code += 0x120; break;
case HID_GD_GAMEPAD: code += 0x130; break;
default:
switch (field->physical) {
case HID_GD_MOUSE:
case HID_GD_POINTER: code += 0x110; break;
case HID_GD_JOYSTICK: code += 0x120; break;
case HID_GD_GAMEPAD: code += 0x130; break;
default: code += 0x100;
}
}
map_key(code);
break;
case HID_UP_SIMULATION:
switch (usage->hid & 0xffff) {
case 0xba: map_abs(ABS_RUDDER); break;
case 0xbb: map_abs(ABS_THROTTLE); break;
case 0xc4: map_abs(ABS_GAS); break;
case 0xc5: map_abs(ABS_BRAKE); break;
case 0xc8: map_abs(ABS_WHEEL); break;
default: goto ignore;
}
break;
case HID_UP_GENDESK:
if ((usage->hid & 0xf0) == 0x80) { /* SystemControl */
switch (usage->hid & 0xf) {
case 0x1: map_key_clear(KEY_POWER); break;
case 0x2: map_key_clear(KEY_SLEEP); break;
case 0x3: map_key_clear(KEY_WAKEUP); break;
default: goto unknown;
}
break;
}
if ((usage->hid & 0xf0) == 0x90) { /* D-pad */
switch (usage->hid) {
case HID_GD_UP: usage->hat_dir = 1; break;
case HID_GD_DOWN: usage->hat_dir = 5; break;
case HID_GD_RIGHT: usage->hat_dir = 3; break;
case HID_GD_LEFT: usage->hat_dir = 7; break;
default: goto unknown;
}
if (field->dpad) {
map_abs(field->dpad);
goto ignore;
}
map_abs(ABS_HAT0X);
break;
}
switch (usage->hid) {
/* These usage IDs map directly to the usage codes. */
case HID_GD_X: case HID_GD_Y: case HID_GD_Z:
case HID_GD_RX: case HID_GD_RY: case HID_GD_RZ:
case HID_GD_SLIDER: case HID_GD_DIAL: case HID_GD_WHEEL:
if (field->flags & HID_MAIN_ITEM_RELATIVE)
map_rel(usage->hid & 0xf);
else
map_abs(usage->hid & 0xf);
break;
case HID_GD_HATSWITCH:
usage->hat_min = field->logical_minimum;
usage->hat_max = field->logical_maximum;
map_abs(ABS_HAT0X);
break;
case HID_GD_START: map_key_clear(BTN_START); break;
case HID_GD_SELECT: map_key_clear(BTN_SELECT); break;
default: goto unknown;
}
break;
case HID_UP_LED:
if (((usage->hid - 1) & 0xffff) >= LED_MAX)
goto ignore;
map_led((usage->hid - 1) & 0xffff);
break;
case HID_UP_DIGITIZER:
switch (usage->hid & 0xff) {
case 0x30: /* TipPressure */
if (!test_bit(BTN_TOUCH, input->keybit)) {
device->quirks |= HID_QUIRK_NOTOUCH;
set_bit(EV_KEY, input->evbit);
set_bit(BTN_TOUCH, input->keybit);
}
map_abs_clear(ABS_PRESSURE);
break;
case 0x32: /* InRange */
switch (field->physical & 0xff) {
case 0x21: map_key(BTN_TOOL_MOUSE); break;
case 0x22: map_key(BTN_TOOL_FINGER); break;
default: map_key(BTN_TOOL_PEN); break;
}
break;
case 0x3c: /* Invert */
map_key_clear(BTN_TOOL_RUBBER);
break;
case 0x33: /* Touch */
case 0x42: /* TipSwitch */
case 0x43: /* TipSwitch2 */
device->quirks &= ~HID_QUIRK_NOTOUCH;
map_key_clear(BTN_TOUCH);
break;
case 0x44: /* BarrelSwitch */
map_key_clear(BTN_STYLUS);
break;
default: goto unknown;
}
break;
case HID_UP_CONSUMER: /* USB HUT v1.1, pages 56-62 */
switch (usage->hid & HID_USAGE) {
case 0x000: goto ignore;
case 0x034: map_key_clear(KEY_SLEEP); break;
case 0x036: map_key_clear(BTN_MISC); break;
case 0x045: map_key_clear(KEY_RADIO); break;
case 0x08a: map_key_clear(KEY_WWW); break;
case 0x08d: map_key_clear(KEY_PROGRAM); break;
case 0x095: map_key_clear(KEY_HELP); break;
case 0x09c: map_key_clear(KEY_CHANNELUP); break;
case 0x09d: map_key_clear(KEY_CHANNELDOWN); break;
case 0x0b0: map_key_clear(KEY_PLAY); break;
case 0x0b1: map_key_clear(KEY_PAUSE); break;
case 0x0b2: map_key_clear(KEY_RECORD); break;
case 0x0b3: map_key_clear(KEY_FASTFORWARD); break;
case 0x0b4: map_key_clear(KEY_REWIND); break;
case 0x0b5: map_key_clear(KEY_NEXTSONG); break;
case 0x0b6: map_key_clear(KEY_PREVIOUSSONG); break;
case 0x0b7: map_key_clear(KEY_STOPCD); break;
case 0x0b8: map_key_clear(KEY_EJECTCD); break;
case 0x0cd: map_key_clear(KEY_PLAYPAUSE); break;
case 0x0e0: map_abs_clear(ABS_VOLUME); break;
case 0x0e2: map_key_clear(KEY_MUTE); break;
case 0x0e5: map_key_clear(KEY_BASSBOOST); break;
case 0x0e9: map_key_clear(KEY_VOLUMEUP); break;
case 0x0ea: map_key_clear(KEY_VOLUMEDOWN); break;
case 0x183: map_key_clear(KEY_CONFIG); break;
case 0x18a: map_key_clear(KEY_MAIL); break;
case 0x192: map_key_clear(KEY_CALC); break;
case 0x194: map_key_clear(KEY_FILE); break;
case 0x1a7: map_key_clear(KEY_DOCUMENTS); break;
case 0x201: map_key_clear(KEY_NEW); break;
case 0x207: map_key_clear(KEY_SAVE); break;
case 0x208: map_key_clear(KEY_PRINT); break;
case 0x209: map_key_clear(KEY_PROPS); break;
case 0x21a: map_key_clear(KEY_UNDO); break;
case 0x21b: map_key_clear(KEY_COPY); break;
case 0x21c: map_key_clear(KEY_CUT); break;
case 0x21d: map_key_clear(KEY_PASTE); break;
case 0x221: map_key_clear(KEY_FIND); break;
case 0x223: map_key_clear(KEY_HOMEPAGE); break;
case 0x224: map_key_clear(KEY_BACK); break;
case 0x225: map_key_clear(KEY_FORWARD); break;
case 0x226: map_key_clear(KEY_STOP); break;
case 0x227: map_key_clear(KEY_REFRESH); break;
case 0x22a: map_key_clear(KEY_BOOKMARKS); break;
case 0x233: map_key_clear(KEY_SCROLLUP); break;
case 0x234: map_key_clear(KEY_SCROLLDOWN); break;
case 0x238: map_rel(REL_HWHEEL); break;
case 0x279: map_key_clear(KEY_REDO); break;
case 0x289: map_key_clear(KEY_REPLY); break;
case 0x28b: map_key_clear(KEY_FORWARDMAIL); break;
case 0x28c: map_key_clear(KEY_SEND); break;
/* Reported on a Cherry Cymotion keyboard */
case 0x301: map_key_clear(KEY_PROG1); break;
case 0x302: map_key_clear(KEY_PROG2); break;
case 0x303: map_key_clear(KEY_PROG3); break;
default: goto ignore;
}
break;
case HID_UP_HPVENDOR: /* Reported on a Dutch layout HP5308 */
set_bit(EV_REP, input->evbit);
switch (usage->hid & HID_USAGE) {
case 0x021: map_key_clear(KEY_PRINT); break;
case 0x070: map_key_clear(KEY_HP); break;
case 0x071: map_key_clear(KEY_CAMERA); break;
case 0x072: map_key_clear(KEY_SOUND); break;
case 0x073: map_key_clear(KEY_QUESTION); break;
case 0x080: map_key_clear(KEY_EMAIL); break;
case 0x081: map_key_clear(KEY_CHAT); break;
case 0x082: map_key_clear(KEY_SEARCH); break;
case 0x083: map_key_clear(KEY_CONNECT); break;
case 0x084: map_key_clear(KEY_FINANCE); break;
case 0x085: map_key_clear(KEY_SPORT); break;
case 0x086: map_key_clear(KEY_SHOP); break;
default: goto ignore;
}
break;
case HID_UP_MSVENDOR:
goto ignore;
case HID_UP_CUSTOM: /* Reported on Logitech and Powerbook USB keyboards */
set_bit(EV_REP, input->evbit);
switch(usage->hid & HID_USAGE) {
case 0x003:
/* The fn key on Apple PowerBooks */
map_key_clear(KEY_FN);
hidinput_pb_setup(input);
break;
default: goto ignore;
}
break;
case HID_UP_LOGIVENDOR: /* Reported on Logitech Ultra X Media Remote */
set_bit(EV_REP, input->evbit);
switch(usage->hid & HID_USAGE) {
case 0x004: map_key_clear(KEY_AGAIN); break;
case 0x00d: map_key_clear(KEY_HOME); break;
case 0x024: map_key_clear(KEY_SHUFFLE); break;
case 0x025: map_key_clear(KEY_TV); break;
case 0x026: map_key_clear(KEY_MENU); break;
case 0x031: map_key_clear(KEY_AUDIO); break;
case 0x032: map_key_clear(KEY_TEXT); break;
case 0x033: map_key_clear(KEY_LAST); break;
case 0x047: map_key_clear(KEY_MP3); break;
case 0x048: map_key_clear(KEY_DVD); break;
case 0x049: map_key_clear(KEY_MEDIA); break;
case 0x04a: map_key_clear(KEY_VIDEO); break;
case 0x04b: map_key_clear(KEY_ANGLE); break;
case 0x04c: map_key_clear(KEY_LANGUAGE); break;
case 0x04d: map_key_clear(KEY_SUBTITLE); break;
case 0x051: map_key_clear(KEY_RED); break;
case 0x052: map_key_clear(KEY_CLOSE); break;
default: goto ignore;
}
break;
case HID_UP_PID:
switch(usage->hid & HID_USAGE) {
case 0xa4: map_key_clear(BTN_DEAD); break;
default: goto ignore;
}
break;
default:
unknown:
if (field->report_size == 1) {
if (field->report->type == HID_OUTPUT_REPORT) {
map_led(LED_MISC);
break;
}
map_key(BTN_MISC);
break;
}
if (field->flags & HID_MAIN_ITEM_RELATIVE) {
map_rel(REL_MISC);
break;
}
map_abs(ABS_MISC);
break;
}
if (device->quirks & HID_QUIRK_MIGHTYMOUSE) {
if (usage->hid == HID_GD_Z)
map_rel(REL_HWHEEL);
else if (usage->code == BTN_1)
map_key(BTN_2);
else if (usage->code == BTN_2)
map_key(BTN_1);
}
if ((device->quirks & (HID_QUIRK_2WHEEL_MOUSE_HACK_7 | HID_QUIRK_2WHEEL_MOUSE_HACK_5)) &&
(usage->type == EV_REL) && (usage->code == REL_WHEEL))
set_bit(REL_HWHEEL, bit);
if (((device->quirks & HID_QUIRK_2WHEEL_MOUSE_HACK_5) && (usage->hid == 0x00090005))
|| ((device->quirks & HID_QUIRK_2WHEEL_MOUSE_HACK_7) && (usage->hid == 0x00090007)))
goto ignore;
if ((device->quirks & HID_QUIRK_BAD_RELATIVE_KEYS) &&
usage->type == EV_KEY && (field->flags & HID_MAIN_ITEM_RELATIVE))
field->flags &= ~HID_MAIN_ITEM_RELATIVE;
set_bit(usage->type, input->evbit);
while (usage->code <= max && test_and_set_bit(usage->code, bit))
usage->code = find_next_zero_bit(bit, max + 1, usage->code);
if (usage->code > max)
goto ignore;
if (usage->type == EV_ABS) {
int a = field->logical_minimum;
int b = field->logical_maximum;
if ((device->quirks & HID_QUIRK_BADPAD) && (usage->code == ABS_X || usage->code == ABS_Y)) {
a = field->logical_minimum = 0;
b = field->logical_maximum = 255;
}
if (field->application == HID_GD_GAMEPAD || field->application == HID_GD_JOYSTICK)
input_set_abs_params(input, usage->code, a, b, (b - a) >> 8, (b - a) >> 4);
else input_set_abs_params(input, usage->code, a, b, 0, 0);
}
if (usage->type == EV_ABS &&
(usage->hat_min < usage->hat_max || usage->hat_dir)) {
int i;
for (i = usage->code; i < usage->code + 2 && i <= max; i++) {
input_set_abs_params(input, i, -1, 1, 0, 0);
set_bit(i, input->absbit);
}
if (usage->hat_dir && !field->dpad)
field->dpad = usage->code;
}
#ifdef DEBUG
resolv_event(usage->type, usage->code);
printk("\n");
#endif
return;
ignore:
#ifdef DEBUG
printk("IGNORED\n");
#endif
return;
}
void hidinput_hid_event(struct hid_device *hid, struct hid_field *field, struct hid_usage *usage, __s32 value)
{
struct input_dev *input;
int *quirks = &hid->quirks;
if (!field->hidinput)
return;
input = field->hidinput->input;
if (!usage->type)
return;
if (((hid->quirks & HID_QUIRK_2WHEEL_MOUSE_HACK_5) && (usage->hid == 0x00090005))
|| ((hid->quirks & HID_QUIRK_2WHEEL_MOUSE_HACK_7) && (usage->hid == 0x00090007))) {
if (value) hid->quirks |= HID_QUIRK_2WHEEL_MOUSE_HACK_ON;
else hid->quirks &= ~HID_QUIRK_2WHEEL_MOUSE_HACK_ON;
return;
}
if ((hid->quirks & HID_QUIRK_INVERT_HWHEEL) && (usage->code == REL_HWHEEL)) {
input_event(input, usage->type, usage->code, -value);
return;
}
if ((hid->quirks & HID_QUIRK_2WHEEL_MOUSE_HACK_ON) && (usage->code == REL_WHEEL)) {
input_event(input, usage->type, REL_HWHEEL, value);
return;
}
if ((hid->quirks & HID_QUIRK_POWERBOOK_HAS_FN) && hidinput_pb_event(hid, input, usage, value))
return;
if (usage->hat_min < usage->hat_max || usage->hat_dir) {
int hat_dir = usage->hat_dir;
if (!hat_dir)
hat_dir = (value - usage->hat_min) * 8 / (usage->hat_max - usage->hat_min + 1) + 1;
if (hat_dir < 0 || hat_dir > 8) hat_dir = 0;
input_event(input, usage->type, usage->code , hid_hat_to_axis[hat_dir].x);
input_event(input, usage->type, usage->code + 1, hid_hat_to_axis[hat_dir].y);
return;
}
if (usage->hid == (HID_UP_DIGITIZER | 0x003c)) { /* Invert */
*quirks = value ? (*quirks | HID_QUIRK_INVERT) : (*quirks & ~HID_QUIRK_INVERT);
return;
}
if (usage->hid == (HID_UP_DIGITIZER | 0x0032)) { /* InRange */
if (value) {
input_event(input, usage->type, (*quirks & HID_QUIRK_INVERT) ? BTN_TOOL_RUBBER : usage->code, 1);
return;
}
input_event(input, usage->type, usage->code, 0);
input_event(input, usage->type, BTN_TOOL_RUBBER, 0);
return;
}
if (usage->hid == (HID_UP_DIGITIZER | 0x0030) && (*quirks & HID_QUIRK_NOTOUCH)) { /* Pressure */
int a = field->logical_minimum;
int b = field->logical_maximum;
input_event(input, EV_KEY, BTN_TOUCH, value > a + ((b - a) >> 3));
}
if (usage->hid == (HID_UP_PID | 0x83UL)) { /* Simultaneous Effects Max */
dbg("Maximum Effects - %d",value);
return;
}
if (usage->hid == (HID_UP_PID | 0x7fUL)) {
dbg("PID Pool Report\n");
return;
}
if ((usage->type == EV_KEY) && (usage->code == 0)) /* Key 0 is "unassigned", not KEY_UNKNOWN */
return;
input_event(input, usage->type, usage->code, value);
if ((field->flags & HID_MAIN_ITEM_RELATIVE) && (usage->type == EV_KEY))
input_event(input, usage->type, usage->code, 0);
}
void hidinput_report_event(struct hid_device *hid, struct hid_report *report)
{
struct hid_input *hidinput;
list_for_each_entry(hidinput, &hid->inputs, list)
input_sync(hidinput->input);
}
static int hidinput_find_field(struct hid_device *hid, unsigned int type, unsigned int code, struct hid_field **field)
{
struct hid_report *report;
int i, j;
list_for_each_entry(report, &hid->report_enum[HID_OUTPUT_REPORT].report_list, list) {
for (i = 0; i < report->maxfield; i++) {
*field = report->field[i];
for (j = 0; j < (*field)->maxusage; j++)
if ((*field)->usage[j].type == type && (*field)->usage[j].code == code)
return j;
}
}
return -1;
}
static int hidinput_input_event(struct input_dev *dev, unsigned int type, unsigned int code, int value)
{
struct hid_device *hid = dev->private;
struct hid_field *field;
int offset;
if (type == EV_FF)
return input_ff_event(dev, type, code, value);
if (type != EV_LED)
return -1;
if ((offset = hidinput_find_field(hid, type, code, &field)) == -1) {
warn("event field not found");
return -1;
}
hid_set_field(field, offset, value);
hid_submit_report(hid, field->report, USB_DIR_OUT);
return 0;
}
static int hidinput_open(struct input_dev *dev)
{
struct hid_device *hid = dev->private;
return hid_open(hid);
}
static void hidinput_close(struct input_dev *dev)
{
struct hid_device *hid = dev->private;
hid_close(hid);
}
/*
* Register the input device; print a message.
* Configure the input layer interface
* Read all reports and initialize the absolute field values.
*/
int hidinput_connect(struct hid_device *hid)
{
struct usb_device *dev = hid->dev;
struct hid_report *report;
struct hid_input *hidinput = NULL;
struct input_dev *input_dev;
int i, j, k;
INIT_LIST_HEAD(&hid->inputs);
for (i = 0; i < hid->maxcollection; i++)
if (hid->collection[i].type == HID_COLLECTION_APPLICATION ||
hid->collection[i].type == HID_COLLECTION_PHYSICAL)
if (IS_INPUT_APPLICATION(hid->collection[i].usage))
break;
if (i == hid->maxcollection)
return -1;
for (k = HID_INPUT_REPORT; k <= HID_OUTPUT_REPORT; k++)
list_for_each_entry(report, &hid->report_enum[k].report_list, list) {
if (!report->maxfield)
continue;
if (!hidinput) {
hidinput = kzalloc(sizeof(*hidinput), GFP_KERNEL);
input_dev = input_allocate_device();
if (!hidinput || !input_dev) {
kfree(hidinput);
input_free_device(input_dev);
err("Out of memory during hid input probe");
return -1;
}
input_dev->private = hid;
input_dev->event = hidinput_input_event;
input_dev->open = hidinput_open;
input_dev->close = hidinput_close;
input_dev->name = hid->name;
input_dev->phys = hid->phys;
input_dev->uniq = hid->uniq;
usb_to_input_id(dev, &input_dev->id);
input_dev->cdev.dev = &hid->intf->dev;
hidinput->input = input_dev;
list_add_tail(&hidinput->list, &hid->inputs);
}
for (i = 0; i < report->maxfield; i++)
for (j = 0; j < report->field[i]->maxusage; j++)
hidinput_configure_usage(hidinput, report->field[i],
report->field[i]->usage + j);
if (hid->quirks & HID_QUIRK_MULTI_INPUT) {
/* This will leave hidinput NULL, so that it
* allocates another one if we have more inputs on
* the same interface. Some devices (e.g. Happ's
* UGCI) cram a lot of unrelated inputs into the
* same interface. */
hidinput->report = report;
input_register_device(hidinput->input);
hidinput = NULL;
}
}
/* This only gets called when we are a single-input (most of the
* time). IOW, not a HID_QUIRK_MULTI_INPUT. The hid_ff_init() is
* only useful in this case, and not for multi-input quirks. */
if (hidinput) {
hid_ff_init(hid);
input_register_device(hidinput->input);
}
return 0;
}
void hidinput_disconnect(struct hid_device *hid)
{
struct hid_input *hidinput, *next;
list_for_each_entry_safe(hidinput, next, &hid->inputs, list) {
list_del(&hidinput->list);
input_unregister_device(hidinput->input);
kfree(hidinput);
}
}
......@@ -29,7 +29,7 @@
#include <linux/input.h>
#include <linux/usb.h>
#include "hid.h"
#include <linux/hid.h>
struct device_type {
u16 idVendor;
......
......@@ -28,7 +28,9 @@
#include <linux/input.h>
#include <linux/usb.h>
#include "hid.h"
#include <linux/hid.h>
#include "usbhid.h"
#define PID_EFFECTS_MAX 64
......
......@@ -32,7 +32,7 @@
#undef DEBUG
#include <linux/usb.h>
#include "hid.h"
#include <linux/hid.h>
/* Usages for thrustmaster devices I know about */
#define THRUSTMASTER_USAGE_RUMBLE_LR (HID_UP_GENDESK | 0xbb)
......
......@@ -27,7 +27,7 @@
#include <linux/input.h>
#include <linux/usb.h>
#include "hid.h"
#include <linux/hid.h>
struct zpff_device {
struct hid_report *report;
......
......@@ -32,8 +32,9 @@
#include <linux/smp_lock.h>
#include <linux/input.h>
#include <linux/usb.h>
#include "hid.h"
#include <linux/hid.h>
#include <linux/hiddev.h>
#include "usbhid.h"
#ifdef CONFIG_USB_DYNAMIC_MINORS
#define HIDDEV_MINOR_BASE 0
......
......@@ -6,6 +6,7 @@
*
* Copyright (c) 1999 Andreas Gal
* Copyright (c) 2000-2001 Vojtech Pavlik
* Copyright (c) 2006 Jiri Kosina
*/
/*
......@@ -33,6 +34,7 @@
#include <linux/list.h>
#include <linux/timer.h>
#include <linux/workqueue.h>
#include <linux/input.h>
/*
* USB HID (Human Interface Device) interface class code
......@@ -260,7 +262,7 @@ struct hid_item {
#define HID_QUIRK_POWERBOOK_HAS_FN 0x00001000
#define HID_QUIRK_POWERBOOK_FN_ON 0x00002000
#define HID_QUIRK_INVERT_HWHEEL 0x00004000
#define HID_QUIRK_POWERBOOK_ISO_KEYBOARD 0x00008000
#define HID_QUIRK_POWERBOOK_ISO_KEYBOARD 0x00008000
#define HID_QUIRK_BAD_RELATIVE_KEYS 0x00010000
/*
......@@ -496,9 +498,7 @@ struct hid_descriptor {
#define resolv_event(a,b) do { } while (0)
#endif
#endif
#ifdef CONFIG_USB_HIDINPUT
#ifdef CONFIG_HID
/* Applications from HID Usage Tables 4/8/99 Version 1.1 */
/* We ignore a few input applications that are not widely used */
#define IS_INPUT_APPLICATION(a) (((a >= 0x00010000) && (a <= 0x00010008)) || (a == 0x00010080) || (a == 0x000c0001))
......@@ -514,13 +514,12 @@ static inline int hidinput_connect(struct hid_device *hid) { return -ENODEV; }
static inline void hidinput_disconnect(struct hid_device *hid) { }
#endif
int hid_open(struct hid_device *);
void hid_close(struct hid_device *);
int hid_set_field(struct hid_field *, unsigned, __s32);
void hid_submit_report(struct hid_device *, struct hid_report *, unsigned char dir);
void hid_init_reports(struct hid_device *hid);
int hid_wait_io(struct hid_device* hid);
int hidinput_find_field(struct hid_device *hid, unsigned int type, unsigned int code, struct hid_field **field);
void hid_input_field(struct hid_device *hid, struct hid_field *field, __u8 *data, int interrupt);
void hid_output_report(struct hid_report *report, __u8 *data);
void hid_free_device(struct hid_device *device);
struct hid_device *hid_parse_report(__u8 *start, unsigned size);
#ifdef CONFIG_HID_FF
int hid_ff_init(struct hid_device *hid);
......@@ -537,4 +536,5 @@ static inline int hid_pidff_init(struct hid_device *hid) { return -ENODEV; }
#else
static inline int hid_ff_init(struct hid_device *hid) { return -1; }
#endif
#endif
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment