Commit caff4cae authored by Iliyan Malchev's avatar Iliyan Malchev Committed by Greg Kroah-Hartman

Staging: HTC Dream: add qdsp support

QDSP code is neccessarry for communication with some hardware
components on HTC Dream, including camera hardware. It also drives DSP
coproccessor.
Signed-off-by: default avatarPavel Machek <pavel@ucw.cz>
Cc: Brian Swetland <swetland@google.com>
Cc: Iliyan Malchev <ibm@android.com>
Cc: San Mehat <san@android.com>
Signed-off-by: default avatarGreg Kroah-Hartman <gregkh@suse.de>
parent 7bf06dac
obj-y += adsp.o
ifeq ($(CONFIG_MSM_AMSS_VERSION_6350),y)
obj-y += adsp_info.o
obj-y += audio_evrc.o audio_qcelp.o audio_amrnb.o audio_aac.o
else
obj-y += adsp_6225.o
endif
obj-y += adsp_driver.o
obj-y += adsp_video_verify_cmd.o
obj-y += adsp_videoenc_verify_cmd.o
obj-y += adsp_jpeg_verify_cmd.o adsp_jpeg_patch_event.o
obj-y += adsp_vfe_verify_cmd.o adsp_vfe_patch_event.o
obj-y += adsp_lpm_verify_cmd.o
obj-y += audio_out.o audio_in.o audio_mp3.o audmgr.o audpp.o
obj-y += snd.o
/* arch/arm/mach-msm/qdsp5/adsp.c
*
* Register/Interrupt access for userspace aDSP library.
*
* Copyright (c) 2008 QUALCOMM Incorporated
* Copyright (C) 2008 Google, Inc.
* Author: Iliyan Malchev <ibm@android.com>
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
/* TODO:
* - move shareable rpc code outside of adsp.c
* - general solution for virt->phys patchup
* - queue IDs should be relative to modules
* - disallow access to non-associated queues
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/kthread.h>
#include <linux/module.h>
#include <linux/uaccess.h>
#include <linux/wait.h>
#include <linux/wakelock.h>
static struct wake_lock adsp_wake_lock;
static inline void prevent_suspend(void)
{
wake_lock(&adsp_wake_lock);
}
static inline void allow_suspend(void)
{
wake_unlock(&adsp_wake_lock);
}
#include <linux/io.h>
#include <mach/msm_iomap.h>
#include "adsp.h"
#define INT_ADSP INT_ADSP_A9_A11
static struct adsp_info adsp_info;
static struct msm_rpc_endpoint *rpc_cb_server_client;
static struct msm_adsp_module *adsp_modules;
static int adsp_open_count;
static DEFINE_MUTEX(adsp_open_lock);
/* protect interactions with the ADSP command/message queue */
static spinlock_t adsp_cmd_lock;
static uint32_t current_image = -1;
void adsp_set_image(struct adsp_info *info, uint32_t image)
{
current_image = image;
}
/*
* Checks whether the module_id is available in the
* module_entries table.If module_id is available returns `0`.
* If module_id is not available returns `-ENXIO`.
*/
#if CONFIG_MSM_AMSS_VERSION >= 6350
static int32_t adsp_validate_module(uint32_t module_id)
{
uint32_t *ptr;
uint32_t module_index;
uint32_t num_mod_entries;
ptr = adsp_info.init_info_ptr->module_entries;
num_mod_entries = adsp_info.init_info_ptr->module_table_size;
for (module_index = 0; module_index < num_mod_entries; module_index++)
if (module_id == ptr[module_index])
return 0;
return -ENXIO;
}
#else
static inline int32_t adsp_validate_module(uint32_t module_id) { return 0; }
#endif
uint32_t adsp_get_module(struct adsp_info *info, uint32_t task)
{
BUG_ON(current_image == -1UL);
return info->task_to_module[current_image][task];
}
uint32_t adsp_get_queue_offset(struct adsp_info *info, uint32_t queue_id)
{
BUG_ON(current_image == -1UL);
return info->queue_offset[current_image][queue_id];
}
static int rpc_adsp_rtos_app_to_modem(uint32_t cmd, uint32_t module,
struct msm_adsp_module *adsp_module)
{
int rc;
struct rpc_adsp_rtos_app_to_modem_args_t rpc_req;
struct rpc_reply_hdr *rpc_rsp;
msm_rpc_setup_req(&rpc_req.hdr,
RPC_ADSP_RTOS_ATOM_PROG,
msm_rpc_get_vers(adsp_module->rpc_client),
RPC_ADSP_RTOS_APP_TO_MODEM_PROC);
rpc_req.gotit = cpu_to_be32(1);
rpc_req.cmd = cpu_to_be32(cmd);
rpc_req.proc_id = cpu_to_be32(RPC_ADSP_RTOS_PROC_APPS);
rpc_req.module = cpu_to_be32(module);
rc = msm_rpc_write(adsp_module->rpc_client, &rpc_req, sizeof(rpc_req));
if (rc < 0) {
pr_err("adsp: could not send RPC request: %d\n", rc);
return rc;
}
rc = msm_rpc_read(adsp_module->rpc_client,
(void **)&rpc_rsp, -1, (5*HZ));
if (rc < 0) {
pr_err("adsp: error receiving RPC reply: %d (%d)\n",
rc, -ERESTARTSYS);
return rc;
}
if (be32_to_cpu(rpc_rsp->reply_stat) != RPCMSG_REPLYSTAT_ACCEPTED) {
pr_err("adsp: RPC call was denied!\n");
kfree(rpc_rsp);
return -EPERM;
}
if (be32_to_cpu(rpc_rsp->data.acc_hdr.accept_stat) !=
RPC_ACCEPTSTAT_SUCCESS) {
pr_err("adsp error: RPC call was not successful (%d)\n",
be32_to_cpu(rpc_rsp->data.acc_hdr.accept_stat));
kfree(rpc_rsp);
return -EINVAL;
}
kfree(rpc_rsp);
return 0;
}
#if CONFIG_MSM_AMSS_VERSION >= 6350
static int get_module_index(uint32_t id)
{
int mod_idx;
for (mod_idx = 0; mod_idx < adsp_info.module_count; mod_idx++)
if (adsp_info.module[mod_idx].id == id)
return mod_idx;
return -ENXIO;
}
#endif
static struct msm_adsp_module *find_adsp_module_by_id(
struct adsp_info *info, uint32_t id)
{
if (id > info->max_module_id) {
return NULL;
} else {
#if CONFIG_MSM_AMSS_VERSION >= 6350
id = get_module_index(id);
if (id < 0)
return NULL;
#endif
return info->id_to_module[id];
}
}
static struct msm_adsp_module *find_adsp_module_by_name(
struct adsp_info *info, const char *name)
{
unsigned n;
for (n = 0; n < info->module_count; n++)
if (!strcmp(name, adsp_modules[n].name))
return adsp_modules + n;
return NULL;
}
static int adsp_rpc_init(struct msm_adsp_module *adsp_module)
{
/* remove the original connect once compatible support is complete */
adsp_module->rpc_client = msm_rpc_connect(
RPC_ADSP_RTOS_ATOM_PROG,
RPC_ADSP_RTOS_ATOM_VERS,
MSM_RPC_UNINTERRUPTIBLE);
if (IS_ERR(adsp_module->rpc_client)) {
int rc = PTR_ERR(adsp_module->rpc_client);
adsp_module->rpc_client = 0;
pr_err("adsp: could not open rpc client: %d\n", rc);
return rc;
}
return 0;
}
#if CONFIG_MSM_AMSS_VERSION >= 6350
/*
* Send RPC_ADSP_RTOS_CMD_GET_INIT_INFO cmd to ARM9 and get
* queue offsets and module entries (init info) as part of the event.
*/
static void msm_get_init_info(void)
{
int rc;
struct rpc_adsp_rtos_app_to_modem_args_t rpc_req;
adsp_info.init_info_rpc_client = msm_rpc_connect(
RPC_ADSP_RTOS_ATOM_PROG,
RPC_ADSP_RTOS_ATOM_VERS,
MSM_RPC_UNINTERRUPTIBLE);
if (IS_ERR(adsp_info.init_info_rpc_client)) {
rc = PTR_ERR(adsp_info.init_info_rpc_client);
adsp_info.init_info_rpc_client = 0;
pr_err("adsp: could not open rpc client: %d\n", rc);
return;
}
msm_rpc_setup_req(&rpc_req.hdr,
RPC_ADSP_RTOS_ATOM_PROG,
msm_rpc_get_vers(adsp_info.init_info_rpc_client),
RPC_ADSP_RTOS_APP_TO_MODEM_PROC);
rpc_req.gotit = cpu_to_be32(1);
rpc_req.cmd = cpu_to_be32(RPC_ADSP_RTOS_CMD_GET_INIT_INFO);
rpc_req.proc_id = cpu_to_be32(RPC_ADSP_RTOS_PROC_APPS);
rpc_req.module = 0;
rc = msm_rpc_write(adsp_info.init_info_rpc_client,
&rpc_req, sizeof(rpc_req));
if (rc < 0)
pr_err("adsp: could not send RPC request: %d\n", rc);
}
#endif
int msm_adsp_get(const char *name, struct msm_adsp_module **out,
struct msm_adsp_ops *ops, void *driver_data)
{
struct msm_adsp_module *module;
int rc = 0;
#if CONFIG_MSM_AMSS_VERSION >= 6350
static uint32_t init_info_cmd_sent;
if (!init_info_cmd_sent) {
msm_get_init_info();
init_waitqueue_head(&adsp_info.init_info_wait);
rc = wait_event_timeout(adsp_info.init_info_wait,
adsp_info.init_info_state == ADSP_STATE_INIT_INFO,
5 * HZ);
if (!rc) {
pr_info("adsp: INIT_INFO failed\n");
return -ETIMEDOUT;
}
init_info_cmd_sent++;
}
#endif
module = find_adsp_module_by_name(&adsp_info, name);
if (!module)
return -ENODEV;
mutex_lock(&module->lock);
pr_info("adsp: opening module %s\n", module->name);
if (module->open_count++ == 0 && module->clk)
clk_enable(module->clk);
mutex_lock(&adsp_open_lock);
if (adsp_open_count++ == 0) {
enable_irq(INT_ADSP);
prevent_suspend();
}
mutex_unlock(&adsp_open_lock);
if (module->ops) {
rc = -EBUSY;
goto done;
}
rc = adsp_rpc_init(module);
if (rc)
goto done;
module->ops = ops;
module->driver_data = driver_data;
*out = module;
rc = rpc_adsp_rtos_app_to_modem(RPC_ADSP_RTOS_CMD_REGISTER_APP,
module->id, module);
if (rc) {
module->ops = NULL;
module->driver_data = NULL;
*out = NULL;
pr_err("adsp: REGISTER_APP failed\n");
goto done;
}
pr_info("adsp: module %s has been registered\n", module->name);
done:
mutex_lock(&adsp_open_lock);
if (rc && --adsp_open_count == 0) {
disable_irq(INT_ADSP);
allow_suspend();
}
if (rc && --module->open_count == 0 && module->clk)
clk_disable(module->clk);
mutex_unlock(&adsp_open_lock);
mutex_unlock(&module->lock);
return rc;
}
EXPORT_SYMBOL(msm_adsp_get);
static int msm_adsp_disable_locked(struct msm_adsp_module *module);
void msm_adsp_put(struct msm_adsp_module *module)
{
unsigned long flags;
mutex_lock(&module->lock);
if (--module->open_count == 0 && module->clk)
clk_disable(module->clk);
if (module->ops) {
pr_info("adsp: closing module %s\n", module->name);
/* lock to ensure a dsp event cannot be delivered
* during or after removal of the ops and driver_data
*/
spin_lock_irqsave(&adsp_cmd_lock, flags);
module->ops = NULL;
module->driver_data = NULL;
spin_unlock_irqrestore(&adsp_cmd_lock, flags);
if (module->state != ADSP_STATE_DISABLED) {
pr_info("adsp: disabling module %s\n", module->name);
msm_adsp_disable_locked(module);
}
msm_rpc_close(module->rpc_client);
module->rpc_client = 0;
if (--adsp_open_count == 0) {
disable_irq(INT_ADSP);
allow_suspend();
pr_info("adsp: disable interrupt\n");
}
} else {
pr_info("adsp: module %s is already closed\n", module->name);
}
mutex_unlock(&module->lock);
}
EXPORT_SYMBOL(msm_adsp_put);
/* this should be common code with rpc_servers.c */
static int rpc_send_accepted_void_reply(struct msm_rpc_endpoint *client,
uint32_t xid, uint32_t accept_status)
{
int rc = 0;
uint8_t reply_buf[sizeof(struct rpc_reply_hdr)];
struct rpc_reply_hdr *reply = (struct rpc_reply_hdr *)reply_buf;
reply->xid = cpu_to_be32(xid);
reply->type = cpu_to_be32(1); /* reply */
reply->reply_stat = cpu_to_be32(RPCMSG_REPLYSTAT_ACCEPTED);
reply->data.acc_hdr.accept_stat = cpu_to_be32(accept_status);
reply->data.acc_hdr.verf_flavor = 0;
reply->data.acc_hdr.verf_length = 0;
rc = msm_rpc_write(rpc_cb_server_client, reply_buf, sizeof(reply_buf));
if (rc < 0)
pr_err("adsp: could not write RPC response: %d\n", rc);
return rc;
}
int __msm_adsp_write(struct msm_adsp_module *module, unsigned dsp_queue_addr,
void *cmd_buf, size_t cmd_size)
{
uint32_t ctrl_word;
uint32_t dsp_q_addr;
uint32_t dsp_addr;
uint32_t cmd_id = 0;
int cnt = 0;
int ret_status = 0;
unsigned long flags;
struct adsp_info *info = module->info;
spin_lock_irqsave(&adsp_cmd_lock, flags);
if (module->state != ADSP_STATE_ENABLED) {
spin_unlock_irqrestore(&adsp_cmd_lock, flags);
pr_err("adsp: module %s not enabled before write\n",
module->name);
return -ENODEV;
}
if (adsp_validate_module(module->id)) {
spin_unlock_irqrestore(&adsp_cmd_lock, flags);
pr_info("adsp: module id validation failed %s %d\n",
module->name, module->id);
return -ENXIO;
}
dsp_q_addr = adsp_get_queue_offset(info, dsp_queue_addr);
dsp_q_addr &= ADSP_RTOS_WRITE_CTRL_WORD_DSP_ADDR_M;
/* Poll until the ADSP is ready to accept a command.
* Wait for 100us, return error if it's not responding.
* If this returns an error, we need to disable ALL modules and
* then retry.
*/
while (((ctrl_word = readl(info->write_ctrl)) &
ADSP_RTOS_WRITE_CTRL_WORD_READY_M) !=
ADSP_RTOS_WRITE_CTRL_WORD_READY_V) {
if (cnt > 100) {
pr_err("adsp: timeout waiting for DSP write ready\n");
ret_status = -EIO;
goto fail;
}
pr_warning("adsp: waiting for DSP write ready\n");
udelay(1);
cnt++;
}
/* Set the mutex bits */
ctrl_word &= ~(ADSP_RTOS_WRITE_CTRL_WORD_MUTEX_M);
ctrl_word |= ADSP_RTOS_WRITE_CTRL_WORD_MUTEX_NAVAIL_V;
/* Clear the command bits */
ctrl_word &= ~(ADSP_RTOS_WRITE_CTRL_WORD_CMD_M);
/* Set the queue address bits */
ctrl_word &= ~(ADSP_RTOS_WRITE_CTRL_WORD_DSP_ADDR_M);
ctrl_word |= dsp_q_addr;
writel(ctrl_word, info->write_ctrl);
/* Generate an interrupt to the DSP. This notifies the DSP that
* we are about to send a command on this particular queue. The
* DSP will in response change its state.
*/
writel(1, info->send_irq);
/* Poll until the adsp responds to the interrupt; this does not
* generate an interrupt from the adsp. This should happen within
* 5ms.
*/
cnt = 0;
while ((readl(info->write_ctrl) &
ADSP_RTOS_WRITE_CTRL_WORD_MUTEX_M) ==
ADSP_RTOS_WRITE_CTRL_WORD_MUTEX_NAVAIL_V) {
if (cnt > 5000) {
pr_err("adsp: timeout waiting for adsp ack\n");
ret_status = -EIO;
goto fail;
}
udelay(1);
cnt++;
}
/* Read the ctrl word */
ctrl_word = readl(info->write_ctrl);
if ((ctrl_word & ADSP_RTOS_WRITE_CTRL_WORD_STATUS_M) !=
ADSP_RTOS_WRITE_CTRL_WORD_NO_ERR_V) {
ret_status = -EAGAIN;
goto fail;
}
/* Ctrl word status bits were 00, no error in the ctrl word */
/* Get the DSP buffer address */
dsp_addr = (ctrl_word & ADSP_RTOS_WRITE_CTRL_WORD_DSP_ADDR_M) +
(uint32_t)MSM_AD5_BASE;
if (dsp_addr < (uint32_t)(MSM_AD5_BASE + QDSP_RAMC_OFFSET)) {
uint16_t *buf_ptr = (uint16_t *) cmd_buf;
uint16_t *dsp_addr16 = (uint16_t *)dsp_addr;
cmd_size /= sizeof(uint16_t);
/* Save the command ID */
cmd_id = (uint32_t) buf_ptr[0];
/* Copy the command to DSP memory */
cmd_size++;
while (--cmd_size)
*dsp_addr16++ = *buf_ptr++;
} else {
uint32_t *buf_ptr = (uint32_t *) cmd_buf;
uint32_t *dsp_addr32 = (uint32_t *)dsp_addr;
cmd_size /= sizeof(uint32_t);
/* Save the command ID */
cmd_id = buf_ptr[0];
cmd_size++;
while (--cmd_size)
*dsp_addr32++ = *buf_ptr++;
}
/* Set the mutex bits */
ctrl_word &= ~(ADSP_RTOS_WRITE_CTRL_WORD_MUTEX_M);
ctrl_word |= ADSP_RTOS_WRITE_CTRL_WORD_MUTEX_NAVAIL_V;
/* Set the command bits to write done */
ctrl_word &= ~(ADSP_RTOS_WRITE_CTRL_WORD_CMD_M);
ctrl_word |= ADSP_RTOS_WRITE_CTRL_WORD_CMD_WRITE_DONE_V;
/* Set the queue address bits */
ctrl_word &= ~(ADSP_RTOS_WRITE_CTRL_WORD_DSP_ADDR_M);
ctrl_word |= dsp_q_addr;
writel(ctrl_word, info->write_ctrl);
/* Generate an interrupt to the DSP. It does not respond with
* an interrupt, and we do not need to wait for it to
* acknowledge, because it will hold the mutex lock until it's
* ready to receive more commands again.
*/
writel(1, info->send_irq);
module->num_commands++;
fail:
spin_unlock_irqrestore(&adsp_cmd_lock, flags);
return ret_status;
}
EXPORT_SYMBOL(msm_adsp_write);
int msm_adsp_write(struct msm_adsp_module *module, unsigned dsp_queue_addr,
void *cmd_buf, size_t cmd_size)
{
int rc, retries = 0;
do {
rc = __msm_adsp_write(module, dsp_queue_addr, cmd_buf, cmd_size);
if (rc == -EAGAIN)
udelay(10);
} while(rc == -EAGAIN && retries++ < 100);
if (retries > 50)
pr_warning("adsp: %s command took %d attempts: rc %d\n",
module->name, retries, rc);
return rc;
}
#ifdef CONFIG_MSM_ADSP_REPORT_EVENTS
static void *modem_event_addr;
#if CONFIG_MSM_AMSS_VERSION >= 6350
static void read_modem_event(void *buf, size_t len)
{
uint32_t *dptr = buf;
struct rpc_adsp_rtos_modem_to_app_args_t *sptr;
struct adsp_rtos_mp_mtoa_type *pkt_ptr;
sptr = modem_event_addr;
pkt_ptr = &sptr->mtoa_pkt.adsp_rtos_mp_mtoa_data.mp_mtoa_packet;
dptr[0] = be32_to_cpu(sptr->mtoa_pkt.mp_mtoa_header.event);
dptr[1] = be32_to_cpu(pkt_ptr->module);
dptr[2] = be32_to_cpu(pkt_ptr->image);
}
#else
static void read_modem_event(void *buf, size_t len)
{
uint32_t *dptr = buf;
struct rpc_adsp_rtos_modem_to_app_args_t *sptr =
modem_event_addr;
dptr[0] = be32_to_cpu(sptr->event);
dptr[1] = be32_to_cpu(sptr->module);
dptr[2] = be32_to_cpu(sptr->image);
}
#endif /* CONFIG_MSM_AMSS_VERSION >= 6350 */
#endif /* CONFIG_MSM_ADSP_REPORT_EVENTS */
static void handle_adsp_rtos_mtoa_app(struct rpc_request_hdr *req)
{
struct rpc_adsp_rtos_modem_to_app_args_t *args =
(struct rpc_adsp_rtos_modem_to_app_args_t *)req;
uint32_t event;
uint32_t proc_id;
uint32_t module_id;
uint32_t image;
struct msm_adsp_module *module;
#if CONFIG_MSM_AMSS_VERSION >= 6350
struct adsp_rtos_mp_mtoa_type *pkt_ptr =
&args->mtoa_pkt.adsp_rtos_mp_mtoa_data.mp_mtoa_packet;
event = be32_to_cpu(args->mtoa_pkt.mp_mtoa_header.event);
proc_id = be32_to_cpu(args->mtoa_pkt.mp_mtoa_header.proc_id);
module_id = be32_to_cpu(pkt_ptr->module);
image = be32_to_cpu(pkt_ptr->image);
if (be32_to_cpu(args->mtoa_pkt.desc_field) == RPC_ADSP_RTOS_INIT_INFO) {
struct queue_to_offset_type *qptr;
struct queue_to_offset_type *qtbl;
uint32_t *mptr;
uint32_t *mtbl;
uint32_t q_idx;
uint32_t num_entries;
uint32_t entries_per_image;
struct adsp_rtos_mp_mtoa_init_info_type *iptr;
struct adsp_rtos_mp_mtoa_init_info_type *sptr;
int32_t i_no, e_idx;
pr_info("adsp:INIT_INFO Event\n");
sptr = &args->mtoa_pkt.adsp_rtos_mp_mtoa_data.
mp_mtoa_init_packet;
iptr = adsp_info.init_info_ptr;
iptr->image_count = be32_to_cpu(sptr->image_count);
iptr->num_queue_offsets = be32_to_cpu(sptr->num_queue_offsets);
num_entries = iptr->num_queue_offsets;
qptr = &sptr->queue_offsets_tbl[0][0];
for (i_no = 0; i_no < iptr->image_count; i_no++) {
qtbl = &iptr->queue_offsets_tbl[i_no][0];
for (e_idx = 0; e_idx < num_entries; e_idx++) {
qtbl[e_idx].offset = be32_to_cpu(qptr->offset);
qtbl[e_idx].queue = be32_to_cpu(qptr->queue);
q_idx = be32_to_cpu(qptr->queue);
iptr->queue_offsets[i_no][q_idx] =
qtbl[e_idx].offset;
qptr++;
}
}
num_entries = be32_to_cpu(sptr->num_task_module_entries);
iptr->num_task_module_entries = num_entries;
entries_per_image = num_entries / iptr->image_count;
mptr = &sptr->task_to_module_tbl[0][0];
for (i_no = 0; i_no < iptr->image_count; i_no++) {
mtbl = &iptr->task_to_module_tbl[i_no][0];
for (e_idx = 0; e_idx < entries_per_image; e_idx++) {
mtbl[e_idx] = be32_to_cpu(*mptr);
mptr++;
}
}
iptr->module_table_size = be32_to_cpu(sptr->module_table_size);
mptr = &sptr->module_entries[0];
for (i_no = 0; i_no < iptr->module_table_size; i_no++)
iptr->module_entries[i_no] = be32_to_cpu(mptr[i_no]);
adsp_info.init_info_state = ADSP_STATE_INIT_INFO;
rpc_send_accepted_void_reply(rpc_cb_server_client, req->xid,
RPC_ACCEPTSTAT_SUCCESS);
wake_up(&adsp_info.init_info_wait);
return;
}
#else
event = be32_to_cpu(args->event);
proc_id = be32_to_cpu(args->proc_id);
module_id = be32_to_cpu(args->module);
image = be32_to_cpu(args->image);
#endif
pr_info("adsp: rpc event=%d, proc_id=%d, module=%d, image=%d\n",
event, proc_id, module_id, image);
module = find_adsp_module_by_id(&adsp_info, module_id);
if (!module) {
pr_err("adsp: module %d is not supported!\n", module_id);
rpc_send_accepted_void_reply(rpc_cb_server_client, req->xid,
RPC_ACCEPTSTAT_GARBAGE_ARGS);
return;
}
mutex_lock(&module->lock);
switch (event) {
case RPC_ADSP_RTOS_MOD_READY:
pr_info("adsp: module %s: READY\n", module->name);
module->state = ADSP_STATE_ENABLED;
wake_up(&module->state_wait);
adsp_set_image(module->info, image);
break;
case RPC_ADSP_RTOS_MOD_DISABLE:
pr_info("adsp: module %s: DISABLED\n", module->name);
module->state = ADSP_STATE_DISABLED;
wake_up(&module->state_wait);
break;
case RPC_ADSP_RTOS_SERVICE_RESET:
pr_info("adsp: module %s: SERVICE_RESET\n", module->name);
module->state = ADSP_STATE_DISABLED;
wake_up(&module->state_wait);
break;
case RPC_ADSP_RTOS_CMD_SUCCESS:
pr_info("adsp: module %s: CMD_SUCCESS\n", module->name);
break;
case RPC_ADSP_RTOS_CMD_FAIL:
pr_info("adsp: module %s: CMD_FAIL\n", module->name);
break;
#if CONFIG_MSM_AMSS_VERSION >= 6350
case RPC_ADSP_RTOS_DISABLE_FAIL:
pr_info("adsp: module %s: DISABLE_FAIL\n", module->name);
break;
#endif
default:
pr_info("adsp: unknown event %d\n", event);
rpc_send_accepted_void_reply(rpc_cb_server_client, req->xid,
RPC_ACCEPTSTAT_GARBAGE_ARGS);
mutex_unlock(&module->lock);
return;
}
rpc_send_accepted_void_reply(rpc_cb_server_client, req->xid,
RPC_ACCEPTSTAT_SUCCESS);
mutex_unlock(&module->lock);
#ifdef CONFIG_MSM_ADSP_REPORT_EVENTS
modem_event_addr = (uint32_t *)req;
module->ops->event(module->driver_data, EVENT_MSG_ID,
EVENT_LEN, read_modem_event);
#endif
}
static int handle_adsp_rtos_mtoa(struct rpc_request_hdr *req)
{
switch (req->procedure) {
case RPC_ADSP_RTOS_MTOA_NULL_PROC:
rpc_send_accepted_void_reply(rpc_cb_server_client,
req->xid,
RPC_ACCEPTSTAT_SUCCESS);
break;
case RPC_ADSP_RTOS_MODEM_TO_APP_PROC:
handle_adsp_rtos_mtoa_app(req);
break;
default:
pr_err("adsp: unknowned proc %d\n", req->procedure);
rpc_send_accepted_void_reply(
rpc_cb_server_client, req->xid,
RPC_ACCEPTSTAT_PROC_UNAVAIL);
break;
}
return 0;
}
/* this should be common code with rpc_servers.c */
static int adsp_rpc_thread(void *data)
{
void *buffer;
struct rpc_request_hdr *req;
int rc;
do {
rc = msm_rpc_read(rpc_cb_server_client, &buffer, -1, -1);
if (rc < 0) {
pr_err("adsp: could not read rpc: %d\n", rc);
break;
}
req = (struct rpc_request_hdr *)buffer;
req->type = be32_to_cpu(req->type);
req->xid = be32_to_cpu(req->xid);
req->rpc_vers = be32_to_cpu(req->rpc_vers);
req->prog = be32_to_cpu(req->prog);
req->vers = be32_to_cpu(req->vers);
req->procedure = be32_to_cpu(req->procedure);
if (req->type != 0)
goto bad_rpc;
if (req->rpc_vers != 2)
goto bad_rpc;
if (req->prog != RPC_ADSP_RTOS_MTOA_PROG)
goto bad_rpc;
if (req->vers != RPC_ADSP_RTOS_MTOA_VERS)
goto bad_rpc;
handle_adsp_rtos_mtoa(req);
kfree(buffer);
continue;
bad_rpc:
pr_err("adsp: bogus rpc from modem\n");
kfree(buffer);
} while (1);
do_exit(0);
}
static size_t read_event_size;
static void *read_event_addr;
static void read_event_16(void *buf, size_t len)
{
uint16_t *dst = buf;
uint16_t *src = read_event_addr;
len /= 2;
if (len > read_event_size)
len = read_event_size;
while (len--)
*dst++ = *src++;
}
static void read_event_32(void *buf, size_t len)
{
uint32_t *dst = buf;
uint32_t *src = read_event_addr;
len /= 2;
if (len > read_event_size)
len = read_event_size;
while (len--)
*dst++ = *src++;
}
static int adsp_rtos_read_ctrl_word_cmd_tast_to_h_v(
struct adsp_info *info, void *dsp_addr)
{
struct msm_adsp_module *module;
unsigned rtos_task_id;
unsigned msg_id;
unsigned msg_length;
void (*func)(void *, size_t);
if (dsp_addr >= (void *)(MSM_AD5_BASE + QDSP_RAMC_OFFSET)) {
uint32_t *dsp_addr32 = dsp_addr;
uint32_t tmp = *dsp_addr32++;
rtos_task_id = (tmp & ADSP_RTOS_READ_CTRL_WORD_TASK_ID_M) >> 8;
msg_id = (tmp & ADSP_RTOS_READ_CTRL_WORD_MSG_ID_M);
read_event_size = tmp >> 16;
read_event_addr = dsp_addr32;
msg_length = read_event_size * sizeof(uint32_t);
func = read_event_32;
} else {
uint16_t *dsp_addr16 = dsp_addr;
uint16_t tmp = *dsp_addr16++;
rtos_task_id = (tmp & ADSP_RTOS_READ_CTRL_WORD_TASK_ID_M) >> 8;
msg_id = tmp & ADSP_RTOS_READ_CTRL_WORD_MSG_ID_M;
read_event_size = *dsp_addr16++;
read_event_addr = dsp_addr16;
msg_length = read_event_size * sizeof(uint16_t);
func = read_event_16;
}
if (rtos_task_id > info->max_task_id) {
pr_err("adsp: bogus task id %d\n", rtos_task_id);
return 0;
}
module = find_adsp_module_by_id(info,
adsp_get_module(info, rtos_task_id));
if (!module) {
pr_err("adsp: no module for task id %d\n", rtos_task_id);
return 0;
}
module->num_events++;
if (!module->ops) {
pr_err("adsp: module %s is not open\n", module->name);
return 0;
}
module->ops->event(module->driver_data, msg_id, msg_length, func);
return 0;
}
static int adsp_get_event(struct adsp_info *info)
{
uint32_t ctrl_word;
uint32_t ready;
void *dsp_addr;
uint32_t cmd_type;
int cnt;
unsigned long flags;
int rc = 0;
spin_lock_irqsave(&adsp_cmd_lock, flags);
/* Whenever the DSP has a message, it updates this control word
* and generates an interrupt. When we receive the interrupt, we
* read this register to find out what ADSP task the command is
* comming from.
*
* The ADSP should *always* be ready on the first call, but the
* irq handler calls us in a loop (to handle back-to-back command
* processing), so we give the DSP some time to return to the
* ready state. The DSP will not issue another IRQ for events
* pending between the first IRQ and the event queue being drained,
* unfortunately.
*/
for (cnt = 0; cnt < 10; cnt++) {
ctrl_word = readl(info->read_ctrl);
if ((ctrl_word & ADSP_RTOS_READ_CTRL_WORD_FLAG_M) ==
ADSP_RTOS_READ_CTRL_WORD_FLAG_UP_CONT_V)
goto ready;
udelay(10);
}
pr_warning("adsp: not ready after 100uS\n");
rc = -EBUSY;
goto done;
ready:
/* Here we check to see if there are pending messages. If there are
* none, we siply return -EAGAIN to indicate that there are no more
* messages pending.
*/
ready = ctrl_word & ADSP_RTOS_READ_CTRL_WORD_READY_M;
if ((ready != ADSP_RTOS_READ_CTRL_WORD_READY_V) &&
(ready != ADSP_RTOS_READ_CTRL_WORD_CONT_V)) {
rc = -EAGAIN;
goto done;
}
/* DSP says that there are messages waiting for the host to read */
/* Get the Command Type */
cmd_type = ctrl_word & ADSP_RTOS_READ_CTRL_WORD_CMD_TYPE_M;
/* Get the DSP buffer address */
dsp_addr = (void *)((ctrl_word &
ADSP_RTOS_READ_CTRL_WORD_DSP_ADDR_M) +
(uint32_t)MSM_AD5_BASE);
/* We can only handle Task-to-Host messages */
if (cmd_type != ADSP_RTOS_READ_CTRL_WORD_CMD_TASK_TO_H_V) {
pr_err("adsp: unknown dsp cmd_type %d\n", cmd_type);
rc = -EIO;
goto done;
}
adsp_rtos_read_ctrl_word_cmd_tast_to_h_v(info, dsp_addr);
ctrl_word = readl(info->read_ctrl);
ctrl_word &= ~ADSP_RTOS_READ_CTRL_WORD_READY_M;
/* Write ctrl word to the DSP */
writel(ctrl_word, info->read_ctrl);
/* Generate an interrupt to the DSP */
writel(1, info->send_irq);
done:
spin_unlock_irqrestore(&adsp_cmd_lock, flags);
return rc;
}
static irqreturn_t adsp_irq_handler(int irq, void *data)
{
struct adsp_info *info = &adsp_info;
int cnt = 0;
for (cnt = 0; cnt < 10; cnt++)
if (adsp_get_event(info) < 0)
break;
if (cnt > info->event_backlog_max)
info->event_backlog_max = cnt;
info->events_received += cnt;
if (cnt == 10)
pr_err("adsp: too many (%d) events for single irq!\n", cnt);
return IRQ_HANDLED;
}
int adsp_set_clkrate(struct msm_adsp_module *module, unsigned long clk_rate)
{
if (module->clk && clk_rate)
return clk_set_rate(module->clk, clk_rate);
return -EINVAL;
}
int msm_adsp_enable(struct msm_adsp_module *module)
{
int rc = 0;
pr_info("msm_adsp_enable() '%s'state[%d] id[%d]\n",
module->name, module->state, module->id);
mutex_lock(&module->lock);
switch (module->state) {
case ADSP_STATE_DISABLED:
rc = rpc_adsp_rtos_app_to_modem(RPC_ADSP_RTOS_CMD_ENABLE,
module->id, module);
if (rc)
break;
module->state = ADSP_STATE_ENABLING;
mutex_unlock(&module->lock);
rc = wait_event_timeout(module->state_wait,
module->state != ADSP_STATE_ENABLING,
1 * HZ);
mutex_lock(&module->lock);
if (module->state == ADSP_STATE_ENABLED) {
rc = 0;
} else {
pr_err("adsp: module '%s' enable timed out\n",
module->name);
rc = -ETIMEDOUT;
}
break;
case ADSP_STATE_ENABLING:
pr_warning("adsp: module '%s' enable in progress\n",
module->name);
break;
case ADSP_STATE_ENABLED:
pr_warning("adsp: module '%s' already enabled\n",
module->name);
break;
case ADSP_STATE_DISABLING:
pr_err("adsp: module '%s' disable in progress\n",
module->name);
rc = -EBUSY;
break;
}
mutex_unlock(&module->lock);
return rc;
}
EXPORT_SYMBOL(msm_adsp_enable);
static int msm_adsp_disable_locked(struct msm_adsp_module *module)
{
int rc = 0;
switch (module->state) {
case ADSP_STATE_DISABLED:
pr_warning("adsp: module '%s' already disabled\n",
module->name);
break;
case ADSP_STATE_ENABLING:
case ADSP_STATE_ENABLED:
rc = rpc_adsp_rtos_app_to_modem(RPC_ADSP_RTOS_CMD_DISABLE,
module->id, module);
module->state = ADSP_STATE_DISABLED;
}
return rc;
}
int msm_adsp_disable(struct msm_adsp_module *module)
{
int rc;
pr_info("msm_adsp_disable() '%s'\n", module->name);
mutex_lock(&module->lock);
rc = msm_adsp_disable_locked(module);
mutex_unlock(&module->lock);
return rc;
}
EXPORT_SYMBOL(msm_adsp_disable);
static int msm_adsp_probe(struct platform_device *pdev)
{
unsigned count;
int rc, i;
int max_module_id;
pr_info("adsp: probe\n");
wake_lock_init(&adsp_wake_lock, WAKE_LOCK_SUSPEND, "adsp");
#if CONFIG_MSM_AMSS_VERSION >= 6350
adsp_info.init_info_ptr = kzalloc(
(sizeof(struct adsp_rtos_mp_mtoa_init_info_type)), GFP_KERNEL);
if (!adsp_info.init_info_ptr)
return -ENOMEM;
#endif
rc = adsp_init_info(&adsp_info);
if (rc)
return rc;
adsp_info.send_irq += (uint32_t) MSM_AD5_BASE;
adsp_info.read_ctrl += (uint32_t) MSM_AD5_BASE;
adsp_info.write_ctrl += (uint32_t) MSM_AD5_BASE;
count = adsp_info.module_count;
#if CONFIG_MSM_AMSS_VERSION >= 6350
max_module_id = count;
#else
max_module_id = adsp_info.max_module_id + 1;
#endif
adsp_modules = kzalloc(
sizeof(struct msm_adsp_module) * count +
sizeof(void *) * max_module_id, GFP_KERNEL);
if (!adsp_modules)
return -ENOMEM;
adsp_info.id_to_module = (void *) (adsp_modules + count);
spin_lock_init(&adsp_cmd_lock);
rc = request_irq(INT_ADSP, adsp_irq_handler, IRQF_TRIGGER_RISING,
"adsp", 0);
if (rc < 0)
goto fail_request_irq;
disable_irq(INT_ADSP);
rpc_cb_server_client = msm_rpc_open();
if (IS_ERR(rpc_cb_server_client)) {
rpc_cb_server_client = NULL;
rc = PTR_ERR(rpc_cb_server_client);
pr_err("adsp: could not create rpc server (%d)\n", rc);
goto fail_rpc_open;
}
rc = msm_rpc_register_server(rpc_cb_server_client,
RPC_ADSP_RTOS_MTOA_PROG,
RPC_ADSP_RTOS_MTOA_VERS);
if (rc) {
pr_err("adsp: could not register callback server (%d)\n", rc);
goto fail_rpc_register;
}
/* start the kernel thread to process the callbacks */
kthread_run(adsp_rpc_thread, NULL, "kadspd");
for (i = 0; i < count; i++) {
struct msm_adsp_module *mod = adsp_modules + i;
mutex_init(&mod->lock);
init_waitqueue_head(&mod->state_wait);
mod->info = &adsp_info;
mod->name = adsp_info.module[i].name;
mod->id = adsp_info.module[i].id;
if (adsp_info.module[i].clk_name)
mod->clk = clk_get(NULL, adsp_info.module[i].clk_name);
else
mod->clk = NULL;
if (mod->clk && adsp_info.module[i].clk_rate)
clk_set_rate(mod->clk, adsp_info.module[i].clk_rate);
mod->verify_cmd = adsp_info.module[i].verify_cmd;
mod->patch_event = adsp_info.module[i].patch_event;
INIT_HLIST_HEAD(&mod->pmem_regions);
mod->pdev.name = adsp_info.module[i].pdev_name;
mod->pdev.id = -1;
#if CONFIG_MSM_AMSS_VERSION >= 6350
adsp_info.id_to_module[i] = mod;
#else
adsp_info.id_to_module[mod->id] = mod;
#endif
platform_device_register(&mod->pdev);
}
msm_adsp_publish_cdevs(adsp_modules, count);
return 0;
fail_rpc_register:
msm_rpc_close(rpc_cb_server_client);
rpc_cb_server_client = NULL;
fail_rpc_open:
enable_irq(INT_ADSP);
free_irq(INT_ADSP, 0);
fail_request_irq:
kfree(adsp_modules);
#if CONFIG_MSM_AMSS_VERSION >= 6350
kfree(adsp_info.init_info_ptr);
#endif
return rc;
}
static struct platform_driver msm_adsp_driver = {
.probe = msm_adsp_probe,
.driver = {
.name = MSM_ADSP_DRIVER_NAME,
.owner = THIS_MODULE,
},
};
static int __init adsp_init(void)
{
return platform_driver_register(&msm_adsp_driver);
}
device_initcall(adsp_init);
/* arch/arm/mach-msm/qdsp5/adsp.h
*
* Copyright (c) 2008 QUALCOMM Incorporated
* Copyright (C) 2008 Google, Inc.
* Author: Iliyan Malchev <ibm@android.com>
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#ifndef _ARCH_ARM_MACH_MSM_ADSP_H
#define _ARCH_ARM_MACH_MSM_ADSP_H
#include <linux/types.h>
#include <linux/msm_adsp.h>
#include <mach/msm_rpcrouter.h>
#include <mach/msm_adsp.h>
int adsp_pmem_fixup(struct msm_adsp_module *module, void **addr,
unsigned long len);
int adsp_pmem_fixup_kvaddr(struct msm_adsp_module *module, void **addr,
unsigned long *kvaddr, unsigned long len);
int adsp_pmem_paddr_fixup(struct msm_adsp_module *module, void **addr);
int adsp_vfe_verify_cmd(struct msm_adsp_module *module,
unsigned int queue_id, void *cmd_data,
size_t cmd_size);
int adsp_jpeg_verify_cmd(struct msm_adsp_module *module,
unsigned int queue_id, void *cmd_data,
size_t cmd_size);
int adsp_lpm_verify_cmd(struct msm_adsp_module *module,
unsigned int queue_id, void *cmd_data,
size_t cmd_size);
int adsp_video_verify_cmd(struct msm_adsp_module *module,
unsigned int queue_id, void *cmd_data,
size_t cmd_size);
int adsp_videoenc_verify_cmd(struct msm_adsp_module *module,
unsigned int queue_id, void *cmd_data,
size_t cmd_size);
struct adsp_event;
int adsp_vfe_patch_event(struct msm_adsp_module *module,
struct adsp_event *event);
int adsp_jpeg_patch_event(struct msm_adsp_module *module,
struct adsp_event *event);
struct adsp_module_info {
const char *name;
const char *pdev_name;
uint32_t id;
const char *clk_name;
unsigned long clk_rate;
int (*verify_cmd) (struct msm_adsp_module*, unsigned int, void *,
size_t);
int (*patch_event) (struct msm_adsp_module*, struct adsp_event *);
};
#define ADSP_EVENT_MAX_SIZE 496
#define EVENT_LEN 12
#define EVENT_MSG_ID ((uint16_t)~0)
struct adsp_event {
struct list_head list;
uint32_t size; /* always in bytes */
uint16_t msg_id;
uint16_t type; /* 0 for msgs (from aDSP), -1 for events (from ARM9) */
int is16; /* always 0 (msg is 32-bit) when the event type is 1(ARM9) */
union {
uint16_t msg16[ADSP_EVENT_MAX_SIZE / 2];
uint32_t msg32[ADSP_EVENT_MAX_SIZE / 4];
} data;
};
struct adsp_info {
uint32_t send_irq;
uint32_t read_ctrl;
uint32_t write_ctrl;
uint32_t max_msg16_size;
uint32_t max_msg32_size;
uint32_t max_task_id;
uint32_t max_module_id;
uint32_t max_queue_id;
uint32_t max_image_id;
/* for each image id, a map of queue id to offset */
uint32_t **queue_offset;
/* for each image id, a map of task id to module id */
uint32_t **task_to_module;
/* for each module id, map of module id to module */
struct msm_adsp_module **id_to_module;
uint32_t module_count;
struct adsp_module_info *module;
/* stats */
uint32_t events_received;
uint32_t event_backlog_max;
#if CONFIG_MSM_AMSS_VERSION >= 6350
/* rpc_client for init_info */
struct msm_rpc_endpoint *init_info_rpc_client;
struct adsp_rtos_mp_mtoa_init_info_type *init_info_ptr;
wait_queue_head_t init_info_wait;
unsigned init_info_state;
#endif
};
#define RPC_ADSP_RTOS_ATOM_PROG 0x3000000a
#define RPC_ADSP_RTOS_MTOA_PROG 0x3000000b
#define RPC_ADSP_RTOS_ATOM_NULL_PROC 0
#define RPC_ADSP_RTOS_MTOA_NULL_PROC 0
#define RPC_ADSP_RTOS_APP_TO_MODEM_PROC 2
#define RPC_ADSP_RTOS_MODEM_TO_APP_PROC 2
#if CONFIG_MSM_AMSS_VERSION >= 6350
#define RPC_ADSP_RTOS_ATOM_VERS MSM_RPC_VERS(1,0)
#define RPC_ADSP_RTOS_MTOA_VERS MSM_RPC_VERS(2,1) /* must be actual vers */
#define MSM_ADSP_DRIVER_NAME "rs3000000a:00010000"
#elif (CONFIG_MSM_AMSS_VERSION == 6220) || (CONFIG_MSM_AMSS_VERSION == 6225)
#define RPC_ADSP_RTOS_ATOM_VERS MSM_RPC_VERS(0x71d1094b, 0)
#define RPC_ADSP_RTOS_MTOA_VERS MSM_RPC_VERS(0xee3a9966, 0)
#define MSM_ADSP_DRIVER_NAME "rs3000000a:71d1094b"
#elif CONFIG_MSM_AMSS_VERSION == 6210
#define RPC_ADSP_RTOS_ATOM_VERS MSM_RPC_VERS(0x20f17fd3, 0)
#define RPC_ADSP_RTOS_MTOA_VERS MSM_RPC_VERS(0x75babbd6, 0)
#define MSM_ADSP_DRIVER_NAME "rs3000000a:20f17fd3"
#else
#error "Unknown AMSS version"
#endif
enum rpc_adsp_rtos_proc_type {
RPC_ADSP_RTOS_PROC_NONE = 0,
RPC_ADSP_RTOS_PROC_MODEM = 1,
RPC_ADSP_RTOS_PROC_APPS = 2,
};
enum {
RPC_ADSP_RTOS_CMD_REGISTER_APP,
RPC_ADSP_RTOS_CMD_ENABLE,
RPC_ADSP_RTOS_CMD_DISABLE,
RPC_ADSP_RTOS_CMD_KERNEL_COMMAND,
RPC_ADSP_RTOS_CMD_16_COMMAND,
RPC_ADSP_RTOS_CMD_32_COMMAND,
RPC_ADSP_RTOS_CMD_DISABLE_EVENT_RSP,
RPC_ADSP_RTOS_CMD_REMOTE_EVENT,
RPC_ADSP_RTOS_CMD_SET_STATE,
#if CONFIG_MSM_AMSS_VERSION >= 6350
RPC_ADSP_RTOS_CMD_REMOTE_INIT_INFO_EVENT,
RPC_ADSP_RTOS_CMD_GET_INIT_INFO,
#endif
};
enum rpc_adsp_rtos_mod_status_type {
RPC_ADSP_RTOS_MOD_READY,
RPC_ADSP_RTOS_MOD_DISABLE,
RPC_ADSP_RTOS_SERVICE_RESET,
RPC_ADSP_RTOS_CMD_FAIL,
RPC_ADSP_RTOS_CMD_SUCCESS,
#if CONFIG_MSM_AMSS_VERSION >= 6350
RPC_ADSP_RTOS_INIT_INFO,
RPC_ADSP_RTOS_DISABLE_FAIL,
#endif
};
struct rpc_adsp_rtos_app_to_modem_args_t {
struct rpc_request_hdr hdr;
uint32_t gotit; /* if 1, the next elements are present */
uint32_t cmd; /* e.g., RPC_ADSP_RTOS_CMD_REGISTER_APP */
uint32_t proc_id; /* e.g., RPC_ADSP_RTOS_PROC_APPS */
uint32_t module; /* e.g., QDSP_MODULE_AUDPPTASK */
};
#if CONFIG_MSM_AMSS_VERSION >= 6350
enum qdsp_image_type {
QDSP_IMAGE_COMBO,
QDSP_IMAGE_GAUDIO,
QDSP_IMAGE_QTV_LP,
QDSP_IMAGE_MAX,
/* DO NOT USE: Force this enum to be a 32bit type to improve speed */
QDSP_IMAGE_32BIT_DUMMY = 0x10000
};
struct adsp_rtos_mp_mtoa_header_type {
enum rpc_adsp_rtos_mod_status_type event;
enum rpc_adsp_rtos_proc_type proc_id;
};
/* ADSP RTOS MP Communications - Modem to APP's Event Info*/
struct adsp_rtos_mp_mtoa_type {
uint32_t module;
uint32_t image;
uint32_t apps_okts;
};
/* ADSP RTOS MP Communications - Modem to APP's Init Info */
#define IMG_MAX 8
#define ENTRIES_MAX 64
struct queue_to_offset_type {
uint32_t queue;
uint32_t offset;
};
struct adsp_rtos_mp_mtoa_init_info_type {
uint32_t image_count;
uint32_t num_queue_offsets;
struct queue_to_offset_type queue_offsets_tbl[IMG_MAX][ENTRIES_MAX];
uint32_t num_task_module_entries;
uint32_t task_to_module_tbl[IMG_MAX][ENTRIES_MAX];
uint32_t module_table_size;
uint32_t module_entries[ENTRIES_MAX];
/*
* queue_offsets[] is to store only queue_offsets
*/
uint32_t queue_offsets[IMG_MAX][ENTRIES_MAX];
};
struct adsp_rtos_mp_mtoa_s_type {
struct adsp_rtos_mp_mtoa_header_type mp_mtoa_header;
uint32_t desc_field;
union {
struct adsp_rtos_mp_mtoa_init_info_type mp_mtoa_init_packet;
struct adsp_rtos_mp_mtoa_type mp_mtoa_packet;
} adsp_rtos_mp_mtoa_data;
};
struct rpc_adsp_rtos_modem_to_app_args_t {
struct rpc_request_hdr hdr;
uint32_t gotit; /* if 1, the next elements are present */
struct adsp_rtos_mp_mtoa_s_type mtoa_pkt;
};
#else
struct rpc_adsp_rtos_modem_to_app_args_t {
struct rpc_request_hdr hdr;
uint32_t gotit; /* if 1, the next elements are present */
uint32_t event; /* e.g., RPC_ADSP_RTOS_CMD_REGISTER_APP */
uint32_t proc_id; /* e.g., RPC_ADSP_RTOS_PROC_APPS */
uint32_t module; /* e.g., QDSP_MODULE_AUDPPTASK */
uint32_t image; /* RPC_QDSP_IMAGE_GAUDIO */
};
#endif /* CONFIG_MSM_AMSS_VERSION >= 6350 */
#define ADSP_STATE_DISABLED 0
#define ADSP_STATE_ENABLING 1
#define ADSP_STATE_ENABLED 2
#define ADSP_STATE_DISABLING 3
#if CONFIG_MSM_AMSS_VERSION >= 6350
#define ADSP_STATE_INIT_INFO 4
#endif
struct msm_adsp_module {
struct mutex lock;
const char *name;
unsigned id;
struct adsp_info *info;
struct msm_rpc_endpoint *rpc_client;
struct msm_adsp_ops *ops;
void *driver_data;
/* statistics */
unsigned num_commands;
unsigned num_events;
wait_queue_head_t state_wait;
unsigned state;
struct platform_device pdev;
struct clk *clk;
int open_count;
struct mutex pmem_regions_lock;
struct hlist_head pmem_regions;
int (*verify_cmd) (struct msm_adsp_module*, unsigned int, void *,
size_t);
int (*patch_event) (struct msm_adsp_module*, struct adsp_event *);
};
extern void msm_adsp_publish_cdevs(struct msm_adsp_module *, unsigned);
extern int adsp_init_info(struct adsp_info *info);
/* Value to indicate that a queue is not defined for a particular image */
#if CONFIG_MSM_AMSS_VERSION >= 6350
#define QDSP_RTOS_NO_QUEUE 0xfffffffe
#else
#define QDSP_RTOS_NO_QUEUE 0xffffffff
#endif
/*
* Constants used to communicate with the ADSP RTOS
*/
#define ADSP_RTOS_WRITE_CTRL_WORD_MUTEX_M 0x80000000U
#define ADSP_RTOS_WRITE_CTRL_WORD_MUTEX_NAVAIL_V 0x80000000U
#define ADSP_RTOS_WRITE_CTRL_WORD_MUTEX_AVAIL_V 0x00000000U
#define ADSP_RTOS_WRITE_CTRL_WORD_CMD_M 0x70000000U
#define ADSP_RTOS_WRITE_CTRL_WORD_CMD_WRITE_REQ_V 0x00000000U
#define ADSP_RTOS_WRITE_CTRL_WORD_CMD_WRITE_DONE_V 0x10000000U
#define ADSP_RTOS_WRITE_CTRL_WORD_CMD_NO_CMD_V 0x70000000U
#define ADSP_RTOS_WRITE_CTRL_WORD_STATUS_M 0x0E000000U
#define ADSP_RTOS_WRITE_CTRL_WORD_NO_ERR_V 0x00000000U
#define ADSP_RTOS_WRITE_CTRL_WORD_NO_FREE_BUF_V 0x02000000U
#define ADSP_RTOS_WRITE_CTRL_WORD_KERNEL_FLG_M 0x01000000U
#define ADSP_RTOS_WRITE_CTRL_WORD_HTOD_MSG_WRITE_V 0x00000000U
#define ADSP_RTOS_WRITE_CTRL_WORD_HTOD_CMD_V 0x01000000U
#define ADSP_RTOS_WRITE_CTRL_WORD_DSP_ADDR_M 0x00FFFFFFU
#define ADSP_RTOS_WRITE_CTRL_WORD_HTOD_CMD_ID_M 0x00FFFFFFU
/* Combination of MUTEX and CMD bits to check if the DSP is busy */
#define ADSP_RTOS_WRITE_CTRL_WORD_READY_M 0xF0000000U
#define ADSP_RTOS_WRITE_CTRL_WORD_READY_V 0x70000000U
/* RTOS to Host processor command mask values */
#define ADSP_RTOS_READ_CTRL_WORD_FLAG_M 0x80000000U
#define ADSP_RTOS_READ_CTRL_WORD_FLAG_UP_WAIT_V 0x00000000U
#define ADSP_RTOS_READ_CTRL_WORD_FLAG_UP_CONT_V 0x80000000U
#define ADSP_RTOS_READ_CTRL_WORD_CMD_M 0x60000000U
#define ADSP_RTOS_READ_CTRL_WORD_READ_DONE_V 0x00000000U
#define ADSP_RTOS_READ_CTRL_WORD_READ_REQ_V 0x20000000U
#define ADSP_RTOS_READ_CTRL_WORD_NO_CMD_V 0x60000000U
/* Combination of FLAG and COMMAND bits to check if MSG ready */
#define ADSP_RTOS_READ_CTRL_WORD_READY_M 0xE0000000U
#define ADSP_RTOS_READ_CTRL_WORD_READY_V 0xA0000000U
#define ADSP_RTOS_READ_CTRL_WORD_CONT_V 0xC0000000U
#define ADSP_RTOS_READ_CTRL_WORD_DONE_V 0xE0000000U
#define ADSP_RTOS_READ_CTRL_WORD_STATUS_M 0x18000000U
#define ADSP_RTOS_READ_CTRL_WORD_NO_ERR_V 0x00000000U
#define ADSP_RTOS_READ_CTRL_WORD_IN_PROG_M 0x04000000U
#define ADSP_RTOS_READ_CTRL_WORD_NO_READ_IN_PROG_V 0x00000000U
#define ADSP_RTOS_READ_CTRL_WORD_READ_IN_PROG_V 0x04000000U
#define ADSP_RTOS_READ_CTRL_WORD_CMD_TYPE_M 0x03000000U
#define ADSP_RTOS_READ_CTRL_WORD_CMD_TASK_TO_H_V 0x00000000U
#define ADSP_RTOS_READ_CTRL_WORD_CMD_KRNL_TO_H_V 0x01000000U
#define ADSP_RTOS_READ_CTRL_WORD_CMD_H_TO_KRNL_CFM_V 0x02000000U
#define ADSP_RTOS_READ_CTRL_WORD_DSP_ADDR_M 0x00FFFFFFU
#define ADSP_RTOS_READ_CTRL_WORD_MSG_ID_M 0x000000FFU
#define ADSP_RTOS_READ_CTRL_WORD_TASK_ID_M 0x0000FF00U
/* Base address of DSP and DSP hardware registers */
#define QDSP_RAMC_OFFSET 0x400000
#endif /* _ARCH_ARM_MACH_MSM_ADSP_H */
/* arch/arm/mach-msm/qdsp5/adsp_6210.h
*
* Copyright (c) 2008 QUALCOMM Incorporated.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include "adsp.h"
/* Firmware modules */
typedef enum {
QDSP_MODULE_KERNEL,
QDSP_MODULE_AFETASK,
QDSP_MODULE_AUDPLAY0TASK,
QDSP_MODULE_AUDPLAY1TASK,
QDSP_MODULE_AUDPPTASK,
QDSP_MODULE_VIDEOTASK,
QDSP_MODULE_VIDEO_AAC_VOC,
QDSP_MODULE_PCM_DEC,
QDSP_MODULE_AUDIO_DEC_MP3,
QDSP_MODULE_AUDIO_DEC_AAC,
QDSP_MODULE_AUDIO_DEC_WMA,
QDSP_MODULE_HOSTPCM,
QDSP_MODULE_DTMF,
QDSP_MODULE_AUDRECTASK,
QDSP_MODULE_AUDPREPROCTASK,
QDSP_MODULE_SBC_ENC,
QDSP_MODULE_VOC,
QDSP_MODULE_VOC_PCM,
QDSP_MODULE_VOCENCTASK,
QDSP_MODULE_VOCDECTASK,
QDSP_MODULE_VOICEPROCTASK,
QDSP_MODULE_VIDEOENCTASK,
QDSP_MODULE_VFETASK,
QDSP_MODULE_WAV_ENC,
QDSP_MODULE_AACLC_ENC,
QDSP_MODULE_VIDEO_AMR,
QDSP_MODULE_VOC_AMR,
QDSP_MODULE_VOC_EVRC,
QDSP_MODULE_VOC_13K,
QDSP_MODULE_VOC_FGV,
QDSP_MODULE_DIAGTASK,
QDSP_MODULE_JPEGTASK,
QDSP_MODULE_LPMTASK,
QDSP_MODULE_QCAMTASK,
QDSP_MODULE_MODMATHTASK,
QDSP_MODULE_AUDPLAY2TASK,
QDSP_MODULE_AUDPLAY3TASK,
QDSP_MODULE_AUDPLAY4TASK,
QDSP_MODULE_GRAPHICSTASK,
QDSP_MODULE_MIDI,
QDSP_MODULE_GAUDIO,
QDSP_MODULE_VDEC_LP_MODE,
QDSP_MODULE_MAX,
} qdsp_module_type;
#define QDSP_RTOS_MAX_TASK_ID 19U
/* Table of modules indexed by task ID for the GAUDIO image */
static qdsp_module_type qdsp_gaudio_task_to_module_table[] = {
QDSP_MODULE_KERNEL,
QDSP_MODULE_AFETASK,
QDSP_MODULE_MAX,
QDSP_MODULE_MAX,
QDSP_MODULE_MAX,
QDSP_MODULE_MAX,
QDSP_MODULE_MAX,
QDSP_MODULE_MAX,
QDSP_MODULE_MAX,
QDSP_MODULE_AUDPPTASK,
QDSP_MODULE_AUDPLAY0TASK,
QDSP_MODULE_AUDPLAY1TASK,
QDSP_MODULE_AUDPLAY2TASK,
QDSP_MODULE_AUDPLAY3TASK,
QDSP_MODULE_AUDPLAY4TASK,
QDSP_MODULE_MAX,
QDSP_MODULE_AUDRECTASK,
QDSP_MODULE_AUDPREPROCTASK,
QDSP_MODULE_MAX,
QDSP_MODULE_GRAPHICSTASK,
QDSP_MODULE_MAX
};
/* Queue offset table indexed by queue ID for the GAUDIO image */
static uint32_t qdsp_gaudio_queue_offset_table[] = {
QDSP_RTOS_NO_QUEUE, /* QDSP_lpmCommandQueue */
0x3be, /* QDSP_mpuAfeQueue */
0x3ee, /* QDSP_mpuGraphicsCmdQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_mpuModmathCmdQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_mpuVDecCmdQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_mpuVDecPktQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_mpuVEncCmdQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_rxMpuDecCmdQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_rxMpuDecPktQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_txMpuEncQueue */
0x3c2, /* QDSP_uPAudPPCmd1Queue */
0x3c6, /* QDSP_uPAudPPCmd2Queue */
0x3ca, /* QDSP_uPAudPPCmd3Queue */
0x3da, /* QDSP_uPAudPlay0BitStreamCtrlQueue */
0x3de, /* QDSP_uPAudPlay1BitStreamCtrlQueue */
0x3e2, /* QDSP_uPAudPlay2BitStreamCtrlQueue */
0x3e6, /* QDSP_uPAudPlay3BitStreamCtrlQueue */
0x3ea, /* QDSP_uPAudPlay4BitStreamCtrlQueue */
0x3ce, /* QDSP_uPAudPreProcCmdQueue */
0x3d6, /* QDSP_uPAudRecBitStreamQueue */
0x3d2, /* QDSP_uPAudRecCmdQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_uPJpegActionCmdQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_uPJpegCfgCmdQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_uPVocProcQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_vfeCommandQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_vfeCommandScaleQueue */
QDSP_RTOS_NO_QUEUE /* QDSP_vfeCommandTableQueue */
};
/* Table of modules indexed by task ID for the COMBO image */
static qdsp_module_type qdsp_combo_task_to_module_table[] = {
QDSP_MODULE_KERNEL,
QDSP_MODULE_AFETASK,
QDSP_MODULE_VOCDECTASK,
QDSP_MODULE_VOCENCTASK,
QDSP_MODULE_VIDEOTASK,
QDSP_MODULE_VIDEOENCTASK,
QDSP_MODULE_VOICEPROCTASK,
QDSP_MODULE_VFETASK,
QDSP_MODULE_JPEGTASK,
QDSP_MODULE_AUDPPTASK,
QDSP_MODULE_AUDPLAY0TASK,
QDSP_MODULE_AUDPLAY1TASK,
QDSP_MODULE_MAX,
QDSP_MODULE_MAX,
QDSP_MODULE_MAX,
QDSP_MODULE_LPMTASK,
QDSP_MODULE_AUDRECTASK,
QDSP_MODULE_AUDPREPROCTASK,
QDSP_MODULE_MODMATHTASK,
QDSP_MODULE_MAX,
QDSP_MODULE_MAX
};
/* Queue offset table indexed by queue ID for the COMBO image */
static uint32_t qdsp_combo_queue_offset_table[] = {
0x585, /* QDSP_lpmCommandQueue */
0x52d, /* QDSP_mpuAfeQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_mpuGraphicsCmdQueue */
0x541, /* QDSP_mpuModmathCmdQueue */
0x555, /* QDSP_mpuVDecCmdQueue */
0x559, /* QDSP_mpuVDecPktQueue */
0x551, /* QDSP_mpuVEncCmdQueue */
0x535, /* QDSP_rxMpuDecCmdQueue */
0x539, /* QDSP_rxMpuDecPktQueue */
0x53d, /* QDSP_txMpuEncQueue */
0x55d, /* QDSP_uPAudPPCmd1Queue */
0x561, /* QDSP_uPAudPPCmd2Queue */
0x565, /* QDSP_uPAudPPCmd3Queue */
0x575, /* QDSP_uPAudPlay0BitStreamCtrlQueue */
0x579, /* QDSP_uPAudPlay1BitStreamCtrlQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_uPAudPlay2BitStreamCtrlQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_uPAudPlay3BitStreamCtrlQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_uPAudPlay4BitStreamCtrlQueue */
0x569, /* QDSP_uPAudPreProcCmdQueue */
0x571, /* QDSP_uPAudRecBitStreamQueue */
0x56d, /* QDSP_uPAudRecCmdQueue */
0x581, /* QDSP_uPJpegActionCmdQueue */
0x57d, /* QDSP_uPJpegCfgCmdQueue */
0x531, /* QDSP_uPVocProcQueue */
0x545, /* QDSP_vfeCommandQueue */
0x54d, /* QDSP_vfeCommandScaleQueue */
0x549 /* QDSP_vfeCommandTableQueue */
};
/* Table of modules indexed by task ID for the QTV_LP image */
static qdsp_module_type qdsp_qtv_lp_task_to_module_table[] = {
QDSP_MODULE_KERNEL,
QDSP_MODULE_AFETASK,
QDSP_MODULE_MAX,
QDSP_MODULE_MAX,
QDSP_MODULE_VIDEOTASK,
QDSP_MODULE_MAX,
QDSP_MODULE_MAX,
QDSP_MODULE_MAX,
QDSP_MODULE_MAX,
QDSP_MODULE_AUDPPTASK,
QDSP_MODULE_AUDPLAY0TASK,
QDSP_MODULE_MAX,
QDSP_MODULE_MAX,
QDSP_MODULE_MAX,
QDSP_MODULE_MAX,
QDSP_MODULE_MAX,
QDSP_MODULE_AUDRECTASK,
QDSP_MODULE_AUDPREPROCTASK,
QDSP_MODULE_MAX,
QDSP_MODULE_MAX,
QDSP_MODULE_MAX
};
/* Queue offset table indexed by queue ID for the QTV_LP image */
static uint32_t qdsp_qtv_lp_queue_offset_table[] = {
QDSP_RTOS_NO_QUEUE, /* QDSP_lpmCommandQueue */
0x40c, /* QDSP_mpuAfeQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_mpuGraphicsCmdQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_mpuModmathCmdQueue */
0x410, /* QDSP_mpuVDecCmdQueue */
0x414, /* QDSP_mpuVDecPktQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_mpuVEncCmdQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_rxMpuDecCmdQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_rxMpuDecPktQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_txMpuEncQueue */
0x41c, /* QDSP_uPAudPPCmd1Queue */
0x420, /* QDSP_uPAudPPCmd2Queue */
0x424, /* QDSP_uPAudPPCmd3Queue */
0x430, /* QDSP_uPAudPlay0BitStreamCtrlQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_uPAudPlay1BitStreamCtrlQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_uPAudPlay2BitStreamCtrlQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_uPAudPlay3BitStreamCtrlQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_uPAudPlay4BitStreamCtrlQueue */
0x418, /* QDSP_uPAudPreProcCmdQueue */
0x42c, /* QDSP_uPAudRecBitStreamQueue */
0x428, /* QDSP_uPAudRecCmdQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_uPJpegActionCmdQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_uPJpegCfgCmdQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_uPVocProcQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_vfeCommandQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_vfeCommandScaleQueue */
QDSP_RTOS_NO_QUEUE /* QDSP_vfeCommandTableQueue */
};
/* Tables to convert tasks to modules */
static uint32_t *qdsp_task_to_module[] = {
qdsp_combo_task_to_module_table,
qdsp_gaudio_task_to_module_table,
qdsp_qtv_lp_task_to_module_table,
};
/* Tables to retrieve queue offsets */
static uint32_t *qdsp_queue_offset_table[] = {
qdsp_combo_queue_offset_table,
qdsp_gaudio_queue_offset_table,
qdsp_qtv_lp_queue_offset_table,
};
#define QDSP_MODULE(n) \
{ .name = #n, .pdev_name = "adsp_" #n, .id = QDSP_MODULE_##n }
static struct adsp_module_info module_info[] = {
QDSP_MODULE(AUDPPTASK),
QDSP_MODULE(AUDRECTASK),
QDSP_MODULE(AUDPREPROCTASK),
QDSP_MODULE(VFETASK),
QDSP_MODULE(QCAMTASK),
QDSP_MODULE(LPMTASK),
QDSP_MODULE(JPEGTASK),
QDSP_MODULE(VIDEOTASK),
QDSP_MODULE(VDEC_LP_MODE),
};
int adsp_init_info(struct adsp_info *info)
{
info->send_irq = 0x00c00200;
info->read_ctrl = 0x00400038;
info->write_ctrl = 0x00400034;
info->max_msg16_size = 193;
info->max_msg32_size = 8;
info->max_task_id = 16;
info->max_module_id = QDSP_MODULE_MAX - 1;
info->max_queue_id = QDSP_QUEUE_MAX;
info->max_image_id = 2;
info->queue_offset = qdsp_queue_offset_table;
info->task_to_module = qdsp_task_to_module;
info->module_count = ARRAY_SIZE(module_info);
info->module = module_info;
return 0;
}
/* arch/arm/mach-msm/qdsp5/adsp_6220.h
*
* Copyright (c) 2008 QUALCOMM Incorporated.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include "adsp.h"
/* Firmware modules */
typedef enum {
QDSP_MODULE_KERNEL,
QDSP_MODULE_AFETASK,
QDSP_MODULE_AUDPLAY0TASK,
QDSP_MODULE_AUDPLAY1TASK,
QDSP_MODULE_AUDPPTASK,
QDSP_MODULE_VIDEOTASK,
QDSP_MODULE_VIDEO_AAC_VOC,
QDSP_MODULE_PCM_DEC,
QDSP_MODULE_AUDIO_DEC_MP3,
QDSP_MODULE_AUDIO_DEC_AAC,
QDSP_MODULE_AUDIO_DEC_WMA,
QDSP_MODULE_HOSTPCM,
QDSP_MODULE_DTMF,
QDSP_MODULE_AUDRECTASK,
QDSP_MODULE_AUDPREPROCTASK,
QDSP_MODULE_SBC_ENC,
QDSP_MODULE_VOC,
QDSP_MODULE_VOC_PCM,
QDSP_MODULE_VOCENCTASK,
QDSP_MODULE_VOCDECTASK,
QDSP_MODULE_VOICEPROCTASK,
QDSP_MODULE_VIDEOENCTASK,
QDSP_MODULE_VFETASK,
QDSP_MODULE_WAV_ENC,
QDSP_MODULE_AACLC_ENC,
QDSP_MODULE_VIDEO_AMR,
QDSP_MODULE_VOC_AMR,
QDSP_MODULE_VOC_EVRC,
QDSP_MODULE_VOC_13K,
QDSP_MODULE_VOC_FGV,
QDSP_MODULE_DIAGTASK,
QDSP_MODULE_JPEGTASK,
QDSP_MODULE_LPMTASK,
QDSP_MODULE_QCAMTASK,
QDSP_MODULE_MODMATHTASK,
QDSP_MODULE_AUDPLAY2TASK,
QDSP_MODULE_AUDPLAY3TASK,
QDSP_MODULE_AUDPLAY4TASK,
QDSP_MODULE_GRAPHICSTASK,
QDSP_MODULE_MIDI,
QDSP_MODULE_GAUDIO,
QDSP_MODULE_VDEC_LP_MODE,
QDSP_MODULE_MAX,
} qdsp_module_type;
#define QDSP_RTOS_MAX_TASK_ID 19U
/* Table of modules indexed by task ID for the GAUDIO image */
static qdsp_module_type qdsp_gaudio_task_to_module_table[] = {
QDSP_MODULE_KERNEL,
QDSP_MODULE_AFETASK,
QDSP_MODULE_MAX,
QDSP_MODULE_MAX,
QDSP_MODULE_MAX,
QDSP_MODULE_MAX,
QDSP_MODULE_MAX,
QDSP_MODULE_MAX,
QDSP_MODULE_MAX,
QDSP_MODULE_AUDPPTASK,
QDSP_MODULE_AUDPLAY0TASK,
QDSP_MODULE_AUDPLAY1TASK,
QDSP_MODULE_AUDPLAY2TASK,
QDSP_MODULE_AUDPLAY3TASK,
QDSP_MODULE_AUDPLAY4TASK,
QDSP_MODULE_MAX,
QDSP_MODULE_AUDRECTASK,
QDSP_MODULE_AUDPREPROCTASK,
QDSP_MODULE_MAX,
QDSP_MODULE_GRAPHICSTASK,
QDSP_MODULE_MAX
};
/* Queue offset table indexed by queue ID for the GAUDIO image */
static uint32_t qdsp_gaudio_queue_offset_table[] = {
QDSP_RTOS_NO_QUEUE, /* QDSP_lpmCommandQueue */
0x3f0, /* QDSP_mpuAfeQueue */
0x420, /* QDSP_mpuGraphicsCmdQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_mpuModmathCmdQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_mpuVDecCmdQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_mpuVDecPktQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_mpuVEncCmdQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_rxMpuDecCmdQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_rxMpuDecPktQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_txMpuEncQueue */
0x3f4, /* QDSP_uPAudPPCmd1Queue */
0x3f8, /* QDSP_uPAudPPCmd2Queue */
0x3fc, /* QDSP_uPAudPPCmd3Queue */
0x40c, /* QDSP_uPAudPlay0BitStreamCtrlQueue */
0x410, /* QDSP_uPAudPlay1BitStreamCtrlQueue */
0x414, /* QDSP_uPAudPlay2BitStreamCtrlQueue */
0x418, /* QDSP_uPAudPlay3BitStreamCtrlQueue */
0x41c, /* QDSP_uPAudPlay4BitStreamCtrlQueue */
0x400, /* QDSP_uPAudPreProcCmdQueue */
0x408, /* QDSP_uPAudRecBitStreamQueue */
0x404, /* QDSP_uPAudRecCmdQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_uPJpegActionCmdQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_uPJpegCfgCmdQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_uPVocProcQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_vfeCommandQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_vfeCommandScaleQueue */
QDSP_RTOS_NO_QUEUE /* QDSP_vfeCommandTableQueue */
};
/* Table of modules indexed by task ID for the COMBO image */
static qdsp_module_type qdsp_combo_task_to_module_table[] = {
QDSP_MODULE_KERNEL,
QDSP_MODULE_AFETASK,
QDSP_MODULE_VOCDECTASK,
QDSP_MODULE_VOCENCTASK,
QDSP_MODULE_VIDEOTASK,
QDSP_MODULE_VIDEOENCTASK,
QDSP_MODULE_VOICEPROCTASK,
QDSP_MODULE_VFETASK,
QDSP_MODULE_JPEGTASK,
QDSP_MODULE_AUDPPTASK,
QDSP_MODULE_AUDPLAY0TASK,
QDSP_MODULE_AUDPLAY1TASK,
QDSP_MODULE_MAX,
QDSP_MODULE_MAX,
QDSP_MODULE_MAX,
QDSP_MODULE_LPMTASK,
QDSP_MODULE_AUDRECTASK,
QDSP_MODULE_AUDPREPROCTASK,
QDSP_MODULE_MODMATHTASK,
QDSP_MODULE_MAX,
QDSP_MODULE_MAX
};
/* Queue offset table indexed by queue ID for the COMBO image */
static uint32_t qdsp_combo_queue_offset_table[] = {
0x6f2, /* QDSP_lpmCommandQueue */
0x69e, /* QDSP_mpuAfeQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_mpuGraphicsCmdQueue */
0x6b2, /* QDSP_mpuModmathCmdQueue */
0x6c6, /* QDSP_mpuVDecCmdQueue */
0x6ca, /* QDSP_mpuVDecPktQueue */
0x6c2, /* QDSP_mpuVEncCmdQueue */
0x6a6, /* QDSP_rxMpuDecCmdQueue */
0x6aa, /* QDSP_rxMpuDecPktQueue */
0x6ae, /* QDSP_txMpuEncQueue */
0x6ce, /* QDSP_uPAudPPCmd1Queue */
0x6d2, /* QDSP_uPAudPPCmd2Queue */
0x6d6, /* QDSP_uPAudPPCmd3Queue */
0x6e6, /* QDSP_uPAudPlay0BitStreamCtrlQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_uPAudPlay1BitStreamCtrlQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_uPAudPlay2BitStreamCtrlQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_uPAudPlay3BitStreamCtrlQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_uPAudPlay4BitStreamCtrlQueue */
0x6da, /* QDSP_uPAudPreProcCmdQueue */
0x6e2, /* QDSP_uPAudRecBitStreamQueue */
0x6de, /* QDSP_uPAudRecCmdQueue */
0x6ee, /* QDSP_uPJpegActionCmdQueue */
0x6ea, /* QDSP_uPJpegCfgCmdQueue */
0x6a2, /* QDSP_uPVocProcQueue */
0x6b6, /* QDSP_vfeCommandQueue */
0x6be, /* QDSP_vfeCommandScaleQueue */
0x6ba /* QDSP_vfeCommandTableQueue */
};
/* Table of modules indexed by task ID for the QTV_LP image */
static qdsp_module_type qdsp_qtv_lp_task_to_module_table[] = {
QDSP_MODULE_KERNEL,
QDSP_MODULE_AFETASK,
QDSP_MODULE_MAX,
QDSP_MODULE_MAX,
QDSP_MODULE_VIDEOTASK,
QDSP_MODULE_MAX,
QDSP_MODULE_MAX,
QDSP_MODULE_MAX,
QDSP_MODULE_MAX,
QDSP_MODULE_AUDPPTASK,
QDSP_MODULE_AUDPLAY0TASK,
QDSP_MODULE_MAX,
QDSP_MODULE_MAX,
QDSP_MODULE_MAX,
QDSP_MODULE_MAX,
QDSP_MODULE_MAX,
QDSP_MODULE_AUDRECTASK,
QDSP_MODULE_AUDPREPROCTASK,
QDSP_MODULE_MAX,
QDSP_MODULE_MAX,
QDSP_MODULE_MAX
};
/* Queue offset table indexed by queue ID for the QTV_LP image */
static uint32_t qdsp_qtv_lp_queue_offset_table[] = {
QDSP_RTOS_NO_QUEUE, /* QDSP_lpmCommandQueue */
0x430, /* QDSP_mpuAfeQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_mpuGraphicsCmdQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_mpuModmathCmdQueue */
0x434, /* QDSP_mpuVDecCmdQueue */
0x438, /* QDSP_mpuVDecPktQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_mpuVEncCmdQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_rxMpuDecCmdQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_rxMpuDecPktQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_txMpuEncQueue */
0x440, /* QDSP_uPAudPPCmd1Queue */
0x444, /* QDSP_uPAudPPCmd2Queue */
0x448, /* QDSP_uPAudPPCmd3Queue */
0x454, /* QDSP_uPAudPlay0BitStreamCtrlQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_uPAudPlay1BitStreamCtrlQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_uPAudPlay2BitStreamCtrlQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_uPAudPlay3BitStreamCtrlQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_uPAudPlay4BitStreamCtrlQueue */
0x43c, /* QDSP_uPAudPreProcCmdQueue */
0x450, /* QDSP_uPAudRecBitStreamQueue */
0x44c, /* QDSP_uPAudRecCmdQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_uPJpegActionCmdQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_uPJpegCfgCmdQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_uPVocProcQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_vfeCommandQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_vfeCommandScaleQueue */
QDSP_RTOS_NO_QUEUE /* QDSP_vfeCommandTableQueue */
};
/* Tables to convert tasks to modules */
static qdsp_module_type *qdsp_task_to_module[] = {
qdsp_combo_task_to_module_table,
qdsp_gaudio_task_to_module_table,
qdsp_qtv_lp_task_to_module_table,
};
/* Tables to retrieve queue offsets */
static uint32_t *qdsp_queue_offset_table[] = {
qdsp_combo_queue_offset_table,
qdsp_gaudio_queue_offset_table,
qdsp_qtv_lp_queue_offset_table,
};
#define QDSP_MODULE(n) \
{ .name = #n, .pdev_name = "adsp_" #n, .id = QDSP_MODULE_##n }
static struct adsp_module_info module_info[] = {
QDSP_MODULE(AUDPLAY0TASK),
QDSP_MODULE(AUDPPTASK),
QDSP_MODULE(AUDPREPROCTASK),
QDSP_MODULE(AUDRECTASK),
QDSP_MODULE(VFETASK),
QDSP_MODULE(QCAMTASK),
QDSP_MODULE(LPMTASK),
QDSP_MODULE(JPEGTASK),
QDSP_MODULE(VIDEOTASK),
QDSP_MODULE(VDEC_LP_MODE),
};
int adsp_init_info(struct adsp_info *info)
{
info->send_irq = 0x00c00200;
info->read_ctrl = 0x00400038;
info->write_ctrl = 0x00400034;
info->max_msg16_size = 193;
info->max_msg32_size = 8;
info->max_task_id = 16;
info->max_module_id = QDSP_MODULE_MAX - 1;
info->max_queue_id = QDSP_QUEUE_MAX;
info->max_image_id = 2;
info->queue_offset = qdsp_queue_offset_table;
info->task_to_module = qdsp_task_to_module;
info->module_count = ARRAY_SIZE(module_info);
info->module = module_info;
return 0;
}
/* arch/arm/mach-msm/qdsp5/adsp_6225.h
*
* Copyright (c) 2008 QUALCOMM Incorporated.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include "adsp.h"
/* Firmware modules */
typedef enum {
QDSP_MODULE_KERNEL,
QDSP_MODULE_AFETASK,
QDSP_MODULE_AUDPLAY0TASK,
QDSP_MODULE_AUDPLAY1TASK,
QDSP_MODULE_AUDPPTASK,
QDSP_MODULE_VIDEOTASK,
QDSP_MODULE_VIDEO_AAC_VOC,
QDSP_MODULE_PCM_DEC,
QDSP_MODULE_AUDIO_DEC_MP3,
QDSP_MODULE_AUDIO_DEC_AAC,
QDSP_MODULE_AUDIO_DEC_WMA,
QDSP_MODULE_HOSTPCM,
QDSP_MODULE_DTMF,
QDSP_MODULE_AUDRECTASK,
QDSP_MODULE_AUDPREPROCTASK,
QDSP_MODULE_SBC_ENC,
QDSP_MODULE_VOC_UMTS,
QDSP_MODULE_VOC_CDMA,
QDSP_MODULE_VOC_PCM,
QDSP_MODULE_VOCENCTASK,
QDSP_MODULE_VOCDECTASK,
QDSP_MODULE_VOICEPROCTASK,
QDSP_MODULE_VIDEOENCTASK,
QDSP_MODULE_VFETASK,
QDSP_MODULE_WAV_ENC,
QDSP_MODULE_AACLC_ENC,
QDSP_MODULE_VIDEO_AMR,
QDSP_MODULE_VOC_AMR,
QDSP_MODULE_VOC_EVRC,
QDSP_MODULE_VOC_13K,
QDSP_MODULE_VOC_FGV,
QDSP_MODULE_DIAGTASK,
QDSP_MODULE_JPEGTASK,
QDSP_MODULE_LPMTASK,
QDSP_MODULE_QCAMTASK,
QDSP_MODULE_MODMATHTASK,
QDSP_MODULE_AUDPLAY2TASK,
QDSP_MODULE_AUDPLAY3TASK,
QDSP_MODULE_AUDPLAY4TASK,
QDSP_MODULE_GRAPHICSTASK,
QDSP_MODULE_MIDI,
QDSP_MODULE_GAUDIO,
QDSP_MODULE_VDEC_LP_MODE,
QDSP_MODULE_MAX,
} qdsp_module_type;
#define QDSP_RTOS_MAX_TASK_ID 30U
/* Table of modules indexed by task ID for the GAUDIO image */
static qdsp_module_type qdsp_gaudio_task_to_module_table[] = {
QDSP_MODULE_KERNEL,
QDSP_MODULE_AFETASK,
QDSP_MODULE_MAX,
QDSP_MODULE_MAX,
QDSP_MODULE_MAX,
QDSP_MODULE_MAX,
QDSP_MODULE_MAX,
QDSP_MODULE_MAX,
QDSP_MODULE_MAX,
QDSP_MODULE_AUDPPTASK,
QDSP_MODULE_AUDPLAY0TASK,
QDSP_MODULE_AUDPLAY1TASK,
QDSP_MODULE_AUDPLAY2TASK,
QDSP_MODULE_AUDPLAY3TASK,
QDSP_MODULE_AUDPLAY4TASK,
QDSP_MODULE_MAX,
QDSP_MODULE_AUDRECTASK,
QDSP_MODULE_AUDPREPROCTASK,
QDSP_MODULE_MAX,
QDSP_MODULE_GRAPHICSTASK,
QDSP_MODULE_MAX,
QDSP_MODULE_MAX,
QDSP_MODULE_MAX,
QDSP_MODULE_MAX,
QDSP_MODULE_MAX,
QDSP_MODULE_MAX,
QDSP_MODULE_MAX,
QDSP_MODULE_MAX,
QDSP_MODULE_MAX,
QDSP_MODULE_MAX,
QDSP_MODULE_MAX,
QDSP_MODULE_MAX,
};
/* Queue offset table indexed by queue ID for the GAUDIO image */
static uint32_t qdsp_gaudio_queue_offset_table[] = {
QDSP_RTOS_NO_QUEUE, /* QDSP_lpmCommandQueue */
0x3f0, /* QDSP_mpuAfeQueue */
0x420, /* QDSP_mpuGraphicsCmdQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_mpuModmathCmdQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_mpuVDecCmdQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_mpuVDecPktQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_mpuVEncCmdQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_rxMpuDecCmdQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_rxMpuDecPktQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_txMpuEncQueue */
0x3f4, /* QDSP_uPAudPPCmd1Queue */
0x3f8, /* QDSP_uPAudPPCmd2Queue */
0x3fc, /* QDSP_uPAudPPCmd3Queue */
0x40c, /* QDSP_uPAudPlay0BitStreamCtrlQueue */
0x410, /* QDSP_uPAudPlay1BitStreamCtrlQueue */
0x414, /* QDSP_uPAudPlay2BitStreamCtrlQueue */
0x418, /* QDSP_uPAudPlay3BitStreamCtrlQueue */
0x41c, /* QDSP_uPAudPlay4BitStreamCtrlQueue */
0x400, /* QDSP_uPAudPreProcCmdQueue */
0x408, /* QDSP_uPAudRecBitStreamQueue */
0x404, /* QDSP_uPAudRecCmdQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_uPJpegActionCmdQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_uPJpegCfgCmdQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_uPVocProcQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_vfeCommandQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_vfeCommandScaleQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_vfeCommandTableQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_uPDiagQueue */
};
/* Table of modules indexed by task ID for the COMBO image */
static qdsp_module_type qdsp_combo_task_to_module_table[] = {
QDSP_MODULE_KERNEL,
QDSP_MODULE_AFETASK,
QDSP_MODULE_VOCDECTASK,
QDSP_MODULE_VOCENCTASK,
QDSP_MODULE_VIDEOTASK,
QDSP_MODULE_VIDEOENCTASK,
QDSP_MODULE_VOICEPROCTASK,
QDSP_MODULE_VFETASK,
QDSP_MODULE_JPEGTASK,
QDSP_MODULE_AUDPPTASK,
QDSP_MODULE_AUDPLAY0TASK,
QDSP_MODULE_AUDPLAY1TASK,
QDSP_MODULE_MAX,
QDSP_MODULE_MAX,
QDSP_MODULE_MAX,
QDSP_MODULE_LPMTASK,
QDSP_MODULE_AUDRECTASK,
QDSP_MODULE_AUDPREPROCTASK,
QDSP_MODULE_MODMATHTASK,
QDSP_MODULE_MAX,
QDSP_MODULE_MAX,
QDSP_MODULE_MAX,
QDSP_MODULE_MAX,
QDSP_MODULE_MAX,
QDSP_MODULE_MAX,
QDSP_MODULE_MAX,
QDSP_MODULE_MAX,
QDSP_MODULE_MAX,
QDSP_MODULE_MAX,
QDSP_MODULE_MAX,
QDSP_MODULE_DIAGTASK,
QDSP_MODULE_MAX,
};
/* Queue offset table indexed by queue ID for the COMBO image */
static uint32_t qdsp_combo_queue_offset_table[] = {
0x714, /* QDSP_lpmCommandQueue */
0x6bc, /* QDSP_mpuAfeQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_mpuGraphicsCmdQueue */
0x6d0, /* QDSP_mpuModmathCmdQueue */
0x6e8, /* QDSP_mpuVDecCmdQueue */
0x6ec, /* QDSP_mpuVDecPktQueue */
0x6e4, /* QDSP_mpuVEncCmdQueue */
0x6c4, /* QDSP_rxMpuDecCmdQueue */
0x6c8, /* QDSP_rxMpuDecPktQueue */
0x6cc, /* QDSP_txMpuEncQueue */
0x6f0, /* QDSP_uPAudPPCmd1Queue */
0x6f4, /* QDSP_uPAudPPCmd2Queue */
0x6f8, /* QDSP_uPAudPPCmd3Queue */
0x708, /* QDSP_uPAudPlay0BitStreamCtrlQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_uPAudPlay1BitStreamCtrlQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_uPAudPlay2BitStreamCtrlQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_uPAudPlay3BitStreamCtrlQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_uPAudPlay4BitStreamCtrlQueue */
0x6fc, /* QDSP_uPAudPreProcCmdQueue */
0x704, /* QDSP_uPAudRecBitStreamQueue */
0x700, /* QDSP_uPAudRecCmdQueue */
0x710, /* QDSP_uPJpegActionCmdQueue */
0x70c, /* QDSP_uPJpegCfgCmdQueue */
0x6c0, /* QDSP_uPVocProcQueue */
0x6d8, /* QDSP_vfeCommandQueue */
0x6e0, /* QDSP_vfeCommandScaleQueue */
0x6dc, /* QDSP_vfeCommandTableQueue */
0x6d4, /* QDSP_uPDiagQueue */
};
/* Table of modules indexed by task ID for the QTV_LP image */
static qdsp_module_type qdsp_qtv_lp_task_to_module_table[] = {
QDSP_MODULE_KERNEL,
QDSP_MODULE_AFETASK,
QDSP_MODULE_MAX,
QDSP_MODULE_MAX,
QDSP_MODULE_VIDEOTASK,
QDSP_MODULE_MAX,
QDSP_MODULE_MAX,
QDSP_MODULE_MAX,
QDSP_MODULE_MAX,
QDSP_MODULE_AUDPPTASK,
QDSP_MODULE_AUDPLAY0TASK,
QDSP_MODULE_MAX,
QDSP_MODULE_MAX,
QDSP_MODULE_MAX,
QDSP_MODULE_MAX,
QDSP_MODULE_MAX,
QDSP_MODULE_AUDRECTASK,
QDSP_MODULE_AUDPREPROCTASK,
QDSP_MODULE_MAX,
QDSP_MODULE_MAX,
QDSP_MODULE_MAX,
QDSP_MODULE_MAX,
QDSP_MODULE_MAX,
QDSP_MODULE_MAX,
QDSP_MODULE_MAX,
QDSP_MODULE_MAX,
QDSP_MODULE_MAX,
QDSP_MODULE_MAX,
QDSP_MODULE_MAX,
QDSP_MODULE_MAX,
QDSP_MODULE_MAX,
QDSP_MODULE_MAX,
};
/* Queue offset table indexed by queue ID for the QTV_LP image */
static uint32_t qdsp_qtv_lp_queue_offset_table[] = {
QDSP_RTOS_NO_QUEUE, /* QDSP_lpmCommandQueue */
0x3fe, /* QDSP_mpuAfeQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_mpuGraphicsCmdQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_mpuModmathCmdQueue */
0x402, /* QDSP_mpuVDecCmdQueue */
0x406, /* QDSP_mpuVDecPktQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_mpuVEncCmdQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_rxMpuDecCmdQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_rxMpuDecPktQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_txMpuEncQueue */
0x40e, /* QDSP_uPAudPPCmd1Queue */
0x412, /* QDSP_uPAudPPCmd2Queue */
0x416, /* QDSP_uPAudPPCmd3Queue */
0x422, /* QDSP_uPAudPlay0BitStreamCtrlQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_uPAudPlay1BitStreamCtrlQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_uPAudPlay2BitStreamCtrlQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_uPAudPlay3BitStreamCtrlQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_uPAudPlay4BitStreamCtrlQueue */
0x40a, /* QDSP_uPAudPreProcCmdQueue */
0x41e, /* QDSP_uPAudRecBitStreamQueue */
0x41a, /* QDSP_uPAudRecCmdQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_uPJpegActionCmdQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_uPJpegCfgCmdQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_uPVocProcQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_vfeCommandQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_vfeCommandScaleQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_vfeCommandTableQueue */
QDSP_RTOS_NO_QUEUE, /* QDSP_uPDiagQueue */
};
/* Tables to convert tasks to modules */
static qdsp_module_type *qdsp_task_to_module[] = {
qdsp_combo_task_to_module_table,
qdsp_gaudio_task_to_module_table,
qdsp_qtv_lp_task_to_module_table,
};
/* Tables to retrieve queue offsets */
static uint32_t *qdsp_queue_offset_table[] = {
qdsp_combo_queue_offset_table,
qdsp_gaudio_queue_offset_table,
qdsp_qtv_lp_queue_offset_table,
};
#define QDSP_MODULE(n, clkname, clkrate, verify_cmd_func, patch_event_func) \
{ .name = #n, .pdev_name = "adsp_" #n, .id = QDSP_MODULE_##n, \
.clk_name = clkname, .clk_rate = clkrate, \
.verify_cmd = verify_cmd_func, .patch_event = patch_event_func }
static struct adsp_module_info module_info[] = {
QDSP_MODULE(AUDPLAY0TASK, NULL, 0, NULL, NULL),
QDSP_MODULE(AUDPPTASK, NULL, 0, NULL, NULL),
QDSP_MODULE(AUDRECTASK, NULL, 0, NULL, NULL),
QDSP_MODULE(AUDPREPROCTASK, NULL, 0, NULL, NULL),
QDSP_MODULE(VFETASK, "vfe_clk", 0, adsp_vfe_verify_cmd,
adsp_vfe_patch_event),
QDSP_MODULE(QCAMTASK, NULL, 0, NULL, NULL),
QDSP_MODULE(LPMTASK, NULL, 0, adsp_lpm_verify_cmd, NULL),
QDSP_MODULE(JPEGTASK, "vdc_clk", 0, adsp_jpeg_verify_cmd,
adsp_jpeg_patch_event),
QDSP_MODULE(VIDEOTASK, "vdc_clk", 96000000,
adsp_video_verify_cmd, NULL),
QDSP_MODULE(VDEC_LP_MODE, NULL, 0, NULL, NULL),
QDSP_MODULE(VIDEOENCTASK, "vdc_clk", 96000000,
adsp_videoenc_verify_cmd, NULL),
};
int adsp_init_info(struct adsp_info *info)
{
info->send_irq = 0x00c00200;
info->read_ctrl = 0x00400038;
info->write_ctrl = 0x00400034;
info->max_msg16_size = 193;
info->max_msg32_size = 8;
info->max_task_id = 16;
info->max_module_id = QDSP_MODULE_MAX - 1;
info->max_queue_id = QDSP_QUEUE_MAX;
info->max_image_id = 2;
info->queue_offset = qdsp_queue_offset_table;
info->task_to_module = qdsp_task_to_module;
info->module_count = ARRAY_SIZE(module_info);
info->module = module_info;
return 0;
}
/* arch/arm/mach-msm/qdsp5/adsp_driver.c
*
* Copyright (C) 2008 Google, Inc.
* Author: Iliyan Malchev <ibm@android.com>
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/cdev.h>
#include <linux/fs.h>
#include <linux/list.h>
#include <linux/platform_device.h>
#include <linux/sched.h>
#include <linux/uaccess.h>
#include "adsp.h"
#include <linux/msm_adsp.h>
#include <linux/android_pmem.h>
struct adsp_pmem_region {
struct hlist_node list;
void *vaddr;
unsigned long paddr;
unsigned long kvaddr;
unsigned long len;
struct file *file;
};
struct adsp_device {
struct msm_adsp_module *module;
spinlock_t event_queue_lock;
wait_queue_head_t event_wait;
struct list_head event_queue;
int abort;
const char *name;
struct device *device;
struct cdev cdev;
};
static struct adsp_device *inode_to_device(struct inode *inode);
#define __CONTAINS(r, v, l) ({ \
typeof(r) __r = r; \
typeof(v) __v = v; \
typeof(v) __e = __v + l; \
int res = __v >= __r->vaddr && \
__e <= __r->vaddr + __r->len; \
res; \
})
#define CONTAINS(r1, r2) ({ \
typeof(r2) __r2 = r2; \
__CONTAINS(r1, __r2->vaddr, __r2->len); \
})
#define IN_RANGE(r, v) ({ \
typeof(r) __r = r; \
typeof(v) __vv = v; \
int res = ((__vv >= __r->vaddr) && \
(__vv < (__r->vaddr + __r->len))); \
res; \
})
#define OVERLAPS(r1, r2) ({ \
typeof(r1) __r1 = r1; \
typeof(r2) __r2 = r2; \
typeof(__r2->vaddr) __v = __r2->vaddr; \
typeof(__v) __e = __v + __r2->len - 1; \
int res = (IN_RANGE(__r1, __v) || IN_RANGE(__r1, __e)); \
res; \
})
static int adsp_pmem_check(struct msm_adsp_module *module,
void *vaddr, unsigned long len)
{
struct adsp_pmem_region *region_elt;
struct hlist_node *node;
struct adsp_pmem_region t = { .vaddr = vaddr, .len = len };
hlist_for_each_entry(region_elt, node, &module->pmem_regions, list) {
if (CONTAINS(region_elt, &t) || CONTAINS(&t, region_elt) ||
OVERLAPS(region_elt, &t)) {
printk(KERN_ERR "adsp: module %s:"
" region (vaddr %p len %ld)"
" clashes with registered region"
" (vaddr %p paddr %p len %ld)\n",
module->name,
vaddr, len,
region_elt->vaddr,
(void *)region_elt->paddr,
region_elt->len);
return -EINVAL;
}
}
return 0;
}
static int adsp_pmem_add(struct msm_adsp_module *module,
struct adsp_pmem_info *info)
{
unsigned long paddr, kvaddr, len;
struct file *file;
struct adsp_pmem_region *region;
int rc = -EINVAL;
mutex_lock(&module->pmem_regions_lock);
region = kmalloc(sizeof(*region), GFP_KERNEL);
if (!region) {
rc = -ENOMEM;
goto end;
}
INIT_HLIST_NODE(&region->list);
if (get_pmem_file(info->fd, &paddr, &kvaddr, &len, &file)) {
kfree(region);
goto end;
}
rc = adsp_pmem_check(module, info->vaddr, len);
if (rc < 0) {
put_pmem_file(file);
kfree(region);
goto end;
}
region->vaddr = info->vaddr;
region->paddr = paddr;
region->kvaddr = kvaddr;
region->len = len;
region->file = file;
hlist_add_head(&region->list, &module->pmem_regions);
end:
mutex_unlock(&module->pmem_regions_lock);
return rc;
}
static int adsp_pmem_lookup_vaddr(struct msm_adsp_module *module, void **addr,
unsigned long len, struct adsp_pmem_region **region)
{
struct hlist_node *node;
void *vaddr = *addr;
struct adsp_pmem_region *region_elt;
int match_count = 0;
*region = NULL;
/* returns physical address or zero */
hlist_for_each_entry(region_elt, node, &module->pmem_regions, list) {
if (vaddr >= region_elt->vaddr &&
vaddr < region_elt->vaddr + region_elt->len &&
vaddr + len <= region_elt->vaddr + region_elt->len) {
/* offset since we could pass vaddr inside a registerd
* pmem buffer
*/
match_count++;
if (!*region)
*region = region_elt;
}
}
if (match_count > 1) {
printk(KERN_ERR "adsp: module %s: "
"multiple hits for vaddr %p, len %ld\n",
module->name, vaddr, len);
hlist_for_each_entry(region_elt, node,
&module->pmem_regions, list) {
if (vaddr >= region_elt->vaddr &&
vaddr < region_elt->vaddr + region_elt->len &&
vaddr + len <= region_elt->vaddr + region_elt->len)
printk(KERN_ERR "\t%p, %ld --> %p\n",
region_elt->vaddr,
region_elt->len,
(void *)region_elt->paddr);
}
}
return *region ? 0 : -1;
}
int adsp_pmem_fixup_kvaddr(struct msm_adsp_module *module, void **addr,
unsigned long *kvaddr, unsigned long len)
{
struct adsp_pmem_region *region;
void *vaddr = *addr;
unsigned long *paddr = (unsigned long *)addr;
int ret;
ret = adsp_pmem_lookup_vaddr(module, addr, len, &region);
if (ret) {
printk(KERN_ERR "adsp: not patching %s (paddr & kvaddr),"
" lookup (%p, %ld) failed\n",
module->name, vaddr, len);
return ret;
}
*paddr = region->paddr + (vaddr - region->vaddr);
*kvaddr = region->kvaddr + (vaddr - region->vaddr);
return 0;
}
int adsp_pmem_fixup(struct msm_adsp_module *module, void **addr,
unsigned long len)
{
struct adsp_pmem_region *region;
void *vaddr = *addr;
unsigned long *paddr = (unsigned long *)addr;
int ret;
ret = adsp_pmem_lookup_vaddr(module, addr, len, &region);
if (ret) {
printk(KERN_ERR "adsp: not patching %s, lookup (%p, %ld) failed\n",
module->name, vaddr, len);
return ret;
}
*paddr = region->paddr + (vaddr - region->vaddr);
return 0;
}
static int adsp_verify_cmd(struct msm_adsp_module *module,
unsigned int queue_id, void *cmd_data,
size_t cmd_size)
{
/* call the per module verifier */
if (module->verify_cmd)
return module->verify_cmd(module, queue_id, cmd_data,
cmd_size);
else
printk(KERN_INFO "adsp: no packet verifying function "
"for task %s\n", module->name);
return 0;
}
static long adsp_write_cmd(struct adsp_device *adev, void __user *arg)
{
struct adsp_command_t cmd;
unsigned char buf[256];
void *cmd_data;
long rc;
if (copy_from_user(&cmd, (void __user *)arg, sizeof(cmd)))
return -EFAULT;
if (cmd.len > 256) {
cmd_data = kmalloc(cmd.len, GFP_USER);
if (!cmd_data)
return -ENOMEM;
} else {
cmd_data = buf;
}
if (copy_from_user(cmd_data, (void __user *)(cmd.data), cmd.len)) {
rc = -EFAULT;
goto end;
}
mutex_lock(&adev->module->pmem_regions_lock);
if (adsp_verify_cmd(adev->module, cmd.queue, cmd_data, cmd.len)) {
printk(KERN_ERR "module %s: verify failed.\n",
adev->module->name);
rc = -EINVAL;
goto end;
}
rc = msm_adsp_write(adev->module, cmd.queue, cmd_data, cmd.len);
end:
mutex_unlock(&adev->module->pmem_regions_lock);
if (cmd.len > 256)
kfree(cmd_data);
return rc;
}
static int adsp_events_pending(struct adsp_device *adev)
{
unsigned long flags;
int yes;
spin_lock_irqsave(&adev->event_queue_lock, flags);
yes = !list_empty(&adev->event_queue);
spin_unlock_irqrestore(&adev->event_queue_lock, flags);
return yes || adev->abort;
}
static int adsp_pmem_lookup_paddr(struct msm_adsp_module *module, void **addr,
struct adsp_pmem_region **region)
{
struct hlist_node *node;
unsigned long paddr = (unsigned long)(*addr);
struct adsp_pmem_region *region_elt;
hlist_for_each_entry(region_elt, node, &module->pmem_regions, list) {
if (paddr >= region_elt->paddr &&
paddr < region_elt->paddr + region_elt->len) {
*region = region_elt;
return 0;
}
}
return -1;
}
int adsp_pmem_paddr_fixup(struct msm_adsp_module *module, void **addr)
{
struct adsp_pmem_region *region;
unsigned long paddr = (unsigned long)(*addr);
unsigned long *vaddr = (unsigned long *)addr;
int ret;
ret = adsp_pmem_lookup_paddr(module, addr, &region);
if (ret) {
printk(KERN_ERR "adsp: not patching %s, paddr %p lookup failed\n",
module->name, vaddr);
return ret;
}
*vaddr = (unsigned long)region->vaddr + (paddr - region->paddr);
return 0;
}
static int adsp_patch_event(struct msm_adsp_module *module,
struct adsp_event *event)
{
/* call the per-module msg verifier */
if (module->patch_event)
return module->patch_event(module, event);
return 0;
}
static long adsp_get_event(struct adsp_device *adev, void __user *arg)
{
unsigned long flags;
struct adsp_event *data = NULL;
struct adsp_event_t evt;
int timeout;
long rc = 0;
if (copy_from_user(&evt, arg, sizeof(struct adsp_event_t)))
return -EFAULT;
timeout = (int)evt.timeout_ms;
if (timeout > 0) {
rc = wait_event_interruptible_timeout(
adev->event_wait, adsp_events_pending(adev),
msecs_to_jiffies(timeout));
if (rc == 0)
return -ETIMEDOUT;
} else {
rc = wait_event_interruptible(
adev->event_wait, adsp_events_pending(adev));
}
if (rc < 0)
return rc;
if (adev->abort)
return -ENODEV;
spin_lock_irqsave(&adev->event_queue_lock, flags);
if (!list_empty(&adev->event_queue)) {
data = list_first_entry(&adev->event_queue,
struct adsp_event, list);
list_del(&data->list);
}
spin_unlock_irqrestore(&adev->event_queue_lock, flags);
if (!data)
return -EAGAIN;
/* DSP messages are type 0; they may contain physical addresses */
if (data->type == 0)
adsp_patch_event(adev->module, data);
/* map adsp_event --> adsp_event_t */
if (evt.len < data->size) {
rc = -ETOOSMALL;
goto end;
}
if (data->msg_id != EVENT_MSG_ID) {
if (copy_to_user((void *)(evt.data), data->data.msg16,
data->size)) {
rc = -EFAULT;
goto end;
}
} else {
if (copy_to_user((void *)(evt.data), data->data.msg32,
data->size)) {
rc = -EFAULT;
goto end;
}
}
evt.type = data->type; /* 0 --> from aDSP, 1 --> from ARM9 */
evt.msg_id = data->msg_id;
evt.flags = data->is16;
evt.len = data->size;
if (copy_to_user(arg, &evt, sizeof(evt)))
rc = -EFAULT;
end:
kfree(data);
return rc;
}
static long adsp_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
{
struct adsp_device *adev = filp->private_data;
switch (cmd) {
case ADSP_IOCTL_ENABLE:
return msm_adsp_enable(adev->module);
case ADSP_IOCTL_DISABLE:
return msm_adsp_disable(adev->module);
case ADSP_IOCTL_DISABLE_EVENT_RSP:
return 0;
case ADSP_IOCTL_DISABLE_ACK:
pr_err("adsp: ADSP_IOCTL_DISABLE_ACK is not implemented.\n");
break;
case ADSP_IOCTL_WRITE_COMMAND:
return adsp_write_cmd(adev, (void __user *) arg);
case ADSP_IOCTL_GET_EVENT:
return adsp_get_event(adev, (void __user *) arg);
case ADSP_IOCTL_SET_CLKRATE: {
#if CONFIG_MSM_AMSS_VERSION==6350
unsigned long clk_rate;
if (copy_from_user(&clk_rate, (void *) arg, sizeof(clk_rate)))
return -EFAULT;
return adsp_set_clkrate(adev->module, clk_rate);
#endif
}
case ADSP_IOCTL_REGISTER_PMEM: {
struct adsp_pmem_info info;
if (copy_from_user(&info, (void *) arg, sizeof(info)))
return -EFAULT;
return adsp_pmem_add(adev->module, &info);
}
case ADSP_IOCTL_ABORT_EVENT_READ:
adev->abort = 1;
wake_up(&adev->event_wait);
break;
default:
break;
}
return -EINVAL;
}
static int adsp_release(struct inode *inode, struct file *filp)
{
struct adsp_device *adev = filp->private_data;
struct msm_adsp_module *module = adev->module;
struct hlist_node *node, *tmp;
struct adsp_pmem_region *region;
pr_info("adsp_release() '%s'\n", adev->name);
/* clear module before putting it to avoid race with open() */
adev->module = NULL;
mutex_lock(&module->pmem_regions_lock);
hlist_for_each_safe(node, tmp, &module->pmem_regions) {
region = hlist_entry(node, struct adsp_pmem_region, list);
hlist_del(node);
put_pmem_file(region->file);
kfree(region);
}
mutex_unlock(&module->pmem_regions_lock);
BUG_ON(!hlist_empty(&module->pmem_regions));
msm_adsp_put(module);
return 0;
}
static void adsp_event(void *driver_data, unsigned id, size_t len,
void (*getevent)(void *ptr, size_t len))
{
struct adsp_device *adev = driver_data;
struct adsp_event *event;
unsigned long flags;
if (len > ADSP_EVENT_MAX_SIZE) {
pr_err("adsp_event: event too large (%d bytes)\n", len);
return;
}
event = kmalloc(sizeof(*event), GFP_ATOMIC);
if (!event) {
pr_err("adsp_event: cannot allocate buffer\n");
return;
}
if (id != EVENT_MSG_ID) {
event->type = 0;
event->is16 = 0;
event->msg_id = id;
event->size = len;
getevent(event->data.msg16, len);
} else {
event->type = 1;
event->is16 = 1;
event->msg_id = id;
event->size = len;
getevent(event->data.msg32, len);
}
spin_lock_irqsave(&adev->event_queue_lock, flags);
list_add_tail(&event->list, &adev->event_queue);
spin_unlock_irqrestore(&adev->event_queue_lock, flags);
wake_up(&adev->event_wait);
}
static struct msm_adsp_ops adsp_ops = {
.event = adsp_event,
};
static int adsp_open(struct inode *inode, struct file *filp)
{
struct adsp_device *adev;
int rc;
rc = nonseekable_open(inode, filp);
if (rc < 0)
return rc;
adev = inode_to_device(inode);
if (!adev)
return -ENODEV;
pr_info("adsp_open() name = '%s'\n", adev->name);
rc = msm_adsp_get(adev->name, &adev->module, &adsp_ops, adev);
if (rc)
return rc;
pr_info("adsp_open() module '%s' adev %p\n", adev->name, adev);
filp->private_data = adev;
adev->abort = 0;
INIT_HLIST_HEAD(&adev->module->pmem_regions);
mutex_init(&adev->module->pmem_regions_lock);
return 0;
}
static unsigned adsp_device_count;
static struct adsp_device *adsp_devices;
static struct adsp_device *inode_to_device(struct inode *inode)
{
unsigned n = MINOR(inode->i_rdev);
if (n < adsp_device_count) {
if (adsp_devices[n].device)
return adsp_devices + n;
}
return NULL;
}
static dev_t adsp_devno;
static struct class *adsp_class;
static struct file_operations adsp_fops = {
.owner = THIS_MODULE,
.open = adsp_open,
.unlocked_ioctl = adsp_ioctl,
.release = adsp_release,
};
static void adsp_create(struct adsp_device *adev, const char *name,
struct device *parent, dev_t devt)
{
struct device *dev;
int rc;
dev = device_create(adsp_class, parent, devt, "%s", name);
if (IS_ERR(dev))
return;
init_waitqueue_head(&adev->event_wait);
INIT_LIST_HEAD(&adev->event_queue);
spin_lock_init(&adev->event_queue_lock);
cdev_init(&adev->cdev, &adsp_fops);
adev->cdev.owner = THIS_MODULE;
rc = cdev_add(&adev->cdev, devt, 1);
if (rc < 0) {
device_destroy(adsp_class, devt);
} else {
adev->device = dev;
adev->name = name;
}
}
void msm_adsp_publish_cdevs(struct msm_adsp_module *modules, unsigned n)
{
int rc;
adsp_devices = kzalloc(sizeof(struct adsp_device) * n, GFP_KERNEL);
if (!adsp_devices)
return;
adsp_class = class_create(THIS_MODULE, "adsp");
if (IS_ERR(adsp_class))
goto fail_create_class;
rc = alloc_chrdev_region(&adsp_devno, 0, n, "adsp");
if (rc < 0)
goto fail_alloc_region;
adsp_device_count = n;
for (n = 0; n < adsp_device_count; n++) {
adsp_create(adsp_devices + n,
modules[n].name, &modules[n].pdev.dev,
MKDEV(MAJOR(adsp_devno), n));
}
return;
fail_alloc_region:
class_unregister(adsp_class);
fail_create_class:
kfree(adsp_devices);
}
/* arch/arm/mach-msm/adsp_info.c
*
* Copyright (c) 2008 QUALCOMM Incorporated.
* Copyright (c) 2008 QUALCOMM USA, INC.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include "adsp.h"
/* Firmware modules */
#define QDSP_MODULE_KERNEL 0x0106dd4e
#define QDSP_MODULE_AFETASK 0x0106dd6f
#define QDSP_MODULE_AUDPLAY0TASK 0x0106dd70
#define QDSP_MODULE_AUDPLAY1TASK 0x0106dd71
#define QDSP_MODULE_AUDPPTASK 0x0106dd72
#define QDSP_MODULE_VIDEOTASK 0x0106dd73
#define QDSP_MODULE_VIDEO_AAC_VOC 0x0106dd74
#define QDSP_MODULE_PCM_DEC 0x0106dd75
#define QDSP_MODULE_AUDIO_DEC_MP3 0x0106dd76
#define QDSP_MODULE_AUDIO_DEC_AAC 0x0106dd77
#define QDSP_MODULE_AUDIO_DEC_WMA 0x0106dd78
#define QDSP_MODULE_HOSTPCM 0x0106dd79
#define QDSP_MODULE_DTMF 0x0106dd7a
#define QDSP_MODULE_AUDRECTASK 0x0106dd7b
#define QDSP_MODULE_AUDPREPROCTASK 0x0106dd7c
#define QDSP_MODULE_SBC_ENC 0x0106dd7d
#define QDSP_MODULE_VOC_UMTS 0x0106dd9a
#define QDSP_MODULE_VOC_CDMA 0x0106dd98
#define QDSP_MODULE_VOC_PCM 0x0106dd7f
#define QDSP_MODULE_VOCENCTASK 0x0106dd80
#define QDSP_MODULE_VOCDECTASK 0x0106dd81
#define QDSP_MODULE_VOICEPROCTASK 0x0106dd82
#define QDSP_MODULE_VIDEOENCTASK 0x0106dd83
#define QDSP_MODULE_VFETASK 0x0106dd84
#define QDSP_MODULE_WAV_ENC 0x0106dd85
#define QDSP_MODULE_AACLC_ENC 0x0106dd86
#define QDSP_MODULE_VIDEO_AMR 0x0106dd87
#define QDSP_MODULE_VOC_AMR 0x0106dd88
#define QDSP_MODULE_VOC_EVRC 0x0106dd89
#define QDSP_MODULE_VOC_13K 0x0106dd8a
#define QDSP_MODULE_VOC_FGV 0x0106dd8b
#define QDSP_MODULE_DIAGTASK 0x0106dd8c
#define QDSP_MODULE_JPEGTASK 0x0106dd8d
#define QDSP_MODULE_LPMTASK 0x0106dd8e
#define QDSP_MODULE_QCAMTASK 0x0106dd8f
#define QDSP_MODULE_MODMATHTASK 0x0106dd90
#define QDSP_MODULE_AUDPLAY2TASK 0x0106dd91
#define QDSP_MODULE_AUDPLAY3TASK 0x0106dd92
#define QDSP_MODULE_AUDPLAY4TASK 0x0106dd93
#define QDSP_MODULE_GRAPHICSTASK 0x0106dd94
#define QDSP_MODULE_MIDI 0x0106dd95
#define QDSP_MODULE_GAUDIO 0x0106dd96
#define QDSP_MODULE_VDEC_LP_MODE 0x0106dd97
#define QDSP_MODULE_MAX 0x7fffffff
/* DO NOT USE: Force this enum to be a 32bit type to improve speed */
#define QDSP_MODULE_32BIT_DUMMY 0x10000
static uint32_t *qdsp_task_to_module[IMG_MAX];
static uint32_t *qdsp_queue_offset_table[IMG_MAX];
#define QDSP_MODULE(n, clkname, clkrate, verify_cmd_func, patch_event_func) \
{ .name = #n, .pdev_name = "adsp_" #n, .id = QDSP_MODULE_##n, \
.clk_name = clkname, .clk_rate = clkrate, \
.verify_cmd = verify_cmd_func, .patch_event = patch_event_func }
static struct adsp_module_info module_info[] = {
QDSP_MODULE(AUDPLAY0TASK, NULL, 0, NULL, NULL),
QDSP_MODULE(AUDPPTASK, NULL, 0, NULL, NULL),
QDSP_MODULE(AUDRECTASK, NULL, 0, NULL, NULL),
QDSP_MODULE(AUDPREPROCTASK, NULL, 0, NULL, NULL),
QDSP_MODULE(VFETASK, "vfe_clk", 0, adsp_vfe_verify_cmd,
adsp_vfe_patch_event),
QDSP_MODULE(QCAMTASK, NULL, 0, NULL, NULL),
QDSP_MODULE(LPMTASK, NULL, 0, adsp_lpm_verify_cmd, NULL),
QDSP_MODULE(JPEGTASK, "vdc_clk", 96000000, adsp_jpeg_verify_cmd,
adsp_jpeg_patch_event),
QDSP_MODULE(VIDEOTASK, "vdc_clk", 96000000,
adsp_video_verify_cmd, NULL),
QDSP_MODULE(VDEC_LP_MODE, NULL, 0, NULL, NULL),
QDSP_MODULE(VIDEOENCTASK, "vdc_clk", 96000000,
adsp_videoenc_verify_cmd, NULL),
};
int adsp_init_info(struct adsp_info *info)
{
uint32_t img_num;
info->send_irq = 0x00c00200;
info->read_ctrl = 0x00400038;
info->write_ctrl = 0x00400034;
info->max_msg16_size = 193;
info->max_msg32_size = 8;
for (img_num = 0; img_num < IMG_MAX; img_num++)
qdsp_queue_offset_table[img_num] =
&info->init_info_ptr->queue_offsets[img_num][0];
for (img_num = 0; img_num < IMG_MAX; img_num++)
qdsp_task_to_module[img_num] =
&info->init_info_ptr->task_to_module_tbl[img_num][0];
info->max_task_id = 30;
info->max_module_id = QDSP_MODULE_MAX - 1;
info->max_queue_id = QDSP_MAX_NUM_QUEUES;
info->max_image_id = 2;
info->queue_offset = qdsp_queue_offset_table;
info->task_to_module = qdsp_task_to_module;
info->module_count = ARRAY_SIZE(module_info);
info->module = module_info;
return 0;
}
/* arch/arm/mach-msm/qdsp5/adsp_jpeg_patch_event.c
*
* Verification code for aDSP JPEG events.
*
* Copyright (c) 2008 QUALCOMM Incorporated
* Copyright (C) 2008 Google, Inc.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <mach/qdsp5/qdsp5jpegmsg.h>
#include "adsp.h"
int adsp_jpeg_patch_event(struct msm_adsp_module *module,
struct adsp_event *event)
{
if (event->msg_id == JPEG_MSG_ENC_OP_PRODUCED) {
jpeg_msg_enc_op_produced *op = (jpeg_msg_enc_op_produced *)event->data.msg16;
return adsp_pmem_paddr_fixup(module, (void **)&op->op_buf_addr);
}
return 0;
}
/* arch/arm/mach-msm/qdsp5/adsp_jpeg_verify_cmd.c
*
* Verification code for aDSP JPEG packets from userspace.
*
* Copyright (c) 2008 QUALCOMM Incorporated
* Copyright (C) 2008 Google, Inc.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <mach/qdsp5/qdsp5jpegcmdi.h>
#include "adsp.h"
static uint32_t dec_fmt;
static inline void get_sizes(jpeg_cmd_enc_cfg *cmd, uint32_t *luma_size,
uint32_t *chroma_size)
{
uint32_t fmt, luma_width, luma_height;
fmt = cmd->process_cfg & JPEG_CMD_ENC_PROCESS_CFG_IP_DATA_FORMAT_M;
luma_width = (cmd->ip_size_cfg & JPEG_CMD_IP_SIZE_CFG_LUMA_WIDTH_M)
>> 16;
luma_height = cmd->frag_cfg & JPEG_CMD_FRAG_SIZE_LUMA_HEIGHT_M;
*luma_size = luma_width * luma_height;
if (fmt == JPEG_CMD_ENC_PROCESS_CFG_IP_DATA_FORMAT_H2V2)
*chroma_size = *luma_size/2;
else
*chroma_size = *luma_size;
}
static inline int verify_jpeg_cmd_enc_cfg(struct msm_adsp_module *module,
void *cmd_data, size_t cmd_size)
{
jpeg_cmd_enc_cfg *cmd = (jpeg_cmd_enc_cfg *)cmd_data;
uint32_t luma_size, chroma_size;
int i, num_frags;
if (cmd_size != sizeof(jpeg_cmd_enc_cfg)) {
printk(KERN_ERR "adsp: module %s: JPEG ENC CFG invalid cmd_size %d\n",
module->name, cmd_size);
return -1;
}
get_sizes(cmd, &luma_size, &chroma_size);
num_frags = (cmd->process_cfg >> 10) & 0xf;
num_frags = ((num_frags == 1) ? num_frags : num_frags * 2);
for (i = 0; i < num_frags; i += 2) {
if (adsp_pmem_fixup(module, (void **)(&cmd->frag_cfg_part[i]), luma_size) ||
adsp_pmem_fixup(module, (void **)(&cmd->frag_cfg_part[i+1]), chroma_size))
return -1;
}
if (adsp_pmem_fixup(module, (void **)&cmd->op_buf_0_cfg_part1,
cmd->op_buf_0_cfg_part2) ||
adsp_pmem_fixup(module, (void **)&cmd->op_buf_1_cfg_part1,
cmd->op_buf_1_cfg_part2))
return -1;
return 0;
}
static inline int verify_jpeg_cmd_dec_cfg(struct msm_adsp_module *module,
void *cmd_data, size_t cmd_size)
{
jpeg_cmd_dec_cfg *cmd = (jpeg_cmd_dec_cfg *)cmd_data;
uint32_t div;
if (cmd_size != sizeof(jpeg_cmd_dec_cfg)) {
printk(KERN_ERR "adsp: module %s: JPEG DEC CFG invalid cmd_size %d\n",
module->name, cmd_size);
return -1;
}
if (adsp_pmem_fixup(module, (void **)&cmd->ip_stream_buf_cfg_part1,
cmd->ip_stream_buf_cfg_part2) ||
adsp_pmem_fixup(module, (void **)&cmd->op_stream_buf_0_cfg_part1,
cmd->op_stream_buf_0_cfg_part2) ||
adsp_pmem_fixup(module, (void **)&cmd->op_stream_buf_1_cfg_part1,
cmd->op_stream_buf_1_cfg_part2))
return -1;
dec_fmt = cmd->op_data_format &
JPEG_CMD_DEC_OP_DATA_FORMAT_M;
div = (dec_fmt == JPEG_CMD_DEC_OP_DATA_FORMAT_H2V2) ? 2 : 1;
if (adsp_pmem_fixup(module, (void **)&cmd->op_stream_buf_0_cfg_part3,
cmd->op_stream_buf_0_cfg_part2 / div) ||
adsp_pmem_fixup(module, (void **)&cmd->op_stream_buf_1_cfg_part3,
cmd->op_stream_buf_1_cfg_part2 / div))
return -1;
return 0;
}
static int verify_jpeg_cfg_cmd(struct msm_adsp_module *module,
void *cmd_data, size_t cmd_size)
{
uint32_t cmd_id = ((uint32_t *)cmd_data)[0];
switch(cmd_id) {
case JPEG_CMD_ENC_CFG:
return verify_jpeg_cmd_enc_cfg(module, cmd_data, cmd_size);
case JPEG_CMD_DEC_CFG:
return verify_jpeg_cmd_dec_cfg(module, cmd_data, cmd_size);
default:
if (cmd_id > 1) {
printk(KERN_ERR "adsp: module %s: invalid JPEG CFG cmd_id %d\n", module->name, cmd_id);
return -1;
}
}
return 0;
}
static int verify_jpeg_action_cmd(struct msm_adsp_module *module,
void *cmd_data, size_t cmd_size)
{
uint32_t cmd_id = ((uint32_t *)cmd_data)[0];
switch (cmd_id) {
case JPEG_CMD_ENC_OP_CONSUMED:
{
jpeg_cmd_enc_op_consumed *cmd =
(jpeg_cmd_enc_op_consumed *)cmd_data;
if (cmd_size != sizeof(jpeg_cmd_enc_op_consumed)) {
printk(KERN_ERR "adsp: module %s: JPEG_CMD_ENC_OP_CONSUMED invalid size %d\n",
module->name, cmd_size);
return -1;
}
if (adsp_pmem_fixup(module, (void **)&cmd->op_buf_addr,
cmd->op_buf_size))
return -1;
}
break;
case JPEG_CMD_DEC_OP_CONSUMED:
{
uint32_t div;
jpeg_cmd_dec_op_consumed *cmd =
(jpeg_cmd_dec_op_consumed *)cmd_data;
if (cmd_size != sizeof(jpeg_cmd_enc_op_consumed)) {
printk(KERN_ERR "adsp: module %s: JPEG_CMD_DEC_OP_CONSUMED invalid size %d\n",
module->name, cmd_size);
return -1;
}
div = (dec_fmt == JPEG_CMD_DEC_OP_DATA_FORMAT_H2V2) ? 2 : 1;
if (adsp_pmem_fixup(module, (void **)&cmd->luma_op_buf_addr,
cmd->luma_op_buf_size) ||
adsp_pmem_fixup(module, (void **)&cmd->chroma_op_buf_addr,
cmd->luma_op_buf_size / div))
return -1;
}
break;
default:
if (cmd_id > 7) {
printk(KERN_ERR "adsp: module %s: invalid cmd_id %d\n",
module->name, cmd_id);
return -1;
}
}
return 0;
}
int adsp_jpeg_verify_cmd(struct msm_adsp_module *module,
unsigned int queue_id, void *cmd_data,
size_t cmd_size)
{
switch(queue_id) {
case QDSP_uPJpegCfgCmdQueue:
return verify_jpeg_cfg_cmd(module, cmd_data, cmd_size);
case QDSP_uPJpegActionCmdQueue:
return verify_jpeg_action_cmd(module, cmd_data, cmd_size);
default:
return -1;
}
}
/* arch/arm/mach-msm/qdsp5/adsp_lpm_verify_cmd.c
*
* Verificion code for aDSP LPM packets from userspace.
*
* Copyright (c) 2008 QUALCOMM Incorporated
* Copyright (C) 2008 Google, Inc.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <mach/qdsp5/qdsp5lpmcmdi.h>
#include "adsp.h"
int adsp_lpm_verify_cmd(struct msm_adsp_module *module,
unsigned int queue_id, void *cmd_data,
size_t cmd_size)
{
uint32_t cmd_id, col_height, input_row_incr, output_row_incr,
input_size, output_size;
uint32_t size_mask = 0x0fff;
lpm_cmd_start *cmd;
if (queue_id != QDSP_lpmCommandQueue) {
printk(KERN_ERR "adsp: module %s: wrong queue id %d\n",
module->name, queue_id);
return -1;
}
cmd = (lpm_cmd_start *)cmd_data;
cmd_id = cmd->cmd_id;
if (cmd_id == LPM_CMD_START) {
if (cmd_size != sizeof(lpm_cmd_start)) {
printk(KERN_ERR "adsp: module %s: wrong size %d, expect %d\n",
module->name, cmd_size, sizeof(lpm_cmd_start));
return -1;
}
col_height = cmd->ip_data_cfg_part1 & size_mask;
input_row_incr = cmd->ip_data_cfg_part2 & size_mask;
output_row_incr = cmd->op_data_cfg_part1 & size_mask;
input_size = col_height * input_row_incr;
output_size = col_height * output_row_incr;
if ((cmd->ip_data_cfg_part4 && adsp_pmem_fixup(module,
(void **)(&cmd->ip_data_cfg_part4),
input_size)) ||
(cmd->op_data_cfg_part3 && adsp_pmem_fixup(module,
(void **)(&cmd->op_data_cfg_part3),
output_size)))
return -1;
} else if (cmd_id > 1) {
printk(KERN_ERR "adsp: module %s: invalid cmd_id %d\n",
module->name, cmd_id);
return -1;
}
return 0;
}
/* arch/arm/mach-msm/qdsp5/adsp_vfe_patch_event.c
*
* Verification code for aDSP VFE packets from userspace.
*
* Copyright (c) 2008 QUALCOMM Incorporated
* Copyright (C) 2008 Google, Inc.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <mach/qdsp5/qdsp5vfemsg.h>
#include "adsp.h"
static int patch_op_event(struct msm_adsp_module *module,
struct adsp_event *event)
{
vfe_msg_op1 *op = (vfe_msg_op1 *)event->data.msg16;
if (adsp_pmem_paddr_fixup(module, (void **)&op->op1_buf_y_addr) ||
adsp_pmem_paddr_fixup(module, (void **)&op->op1_buf_cbcr_addr))
return -1;
return 0;
}
static int patch_af_wb_event(struct msm_adsp_module *module,
struct adsp_event *event)
{
vfe_msg_stats_wb_exp *af = (vfe_msg_stats_wb_exp *)event->data.msg16;
return adsp_pmem_paddr_fixup(module, (void **)&af->wb_exp_stats_op_buf);
}
int adsp_vfe_patch_event(struct msm_adsp_module *module,
struct adsp_event *event)
{
switch(event->msg_id) {
case VFE_MSG_OP1:
case VFE_MSG_OP2:
return patch_op_event(module, event);
case VFE_MSG_STATS_AF:
case VFE_MSG_STATS_WB_EXP:
return patch_af_wb_event(module, event);
default:
break;
}
return 0;
}
/* arch/arm/mach-msm/qdsp5/adsp_vfe_verify_cmd.c
*
* Verification code for aDSP VFE packets from userspace.
*
* Copyright (c) 2008 QUALCOMM Incorporated
* Copyright (C) 2008 Google, Inc.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <mach/qdsp5/qdsp5vfecmdi.h>
#include "adsp.h"
static uint32_t size1_y, size2_y, size1_cbcr, size2_cbcr;
static uint32_t af_size = 4228;
static uint32_t awb_size = 8196;
static inline int verify_cmd_op_ack(struct msm_adsp_module *module,
void *cmd_data, size_t cmd_size)
{
vfe_cmd_op1_ack *cmd = (vfe_cmd_op1_ack *)cmd_data;
void **addr_y = (void **)&cmd->op1_buf_y_addr;
void **addr_cbcr = (void **)(&cmd->op1_buf_cbcr_addr);
if (cmd_size != sizeof(vfe_cmd_op1_ack))
return -1;
if ((*addr_y && adsp_pmem_fixup(module, addr_y, size1_y)) ||
(*addr_cbcr && adsp_pmem_fixup(module, addr_cbcr, size1_cbcr)))
return -1;
return 0;
}
static inline int verify_cmd_stats_autofocus_cfg(struct msm_adsp_module *module,
void *cmd_data, size_t cmd_size)
{
int i;
vfe_cmd_stats_autofocus_cfg *cmd =
(vfe_cmd_stats_autofocus_cfg *)cmd_data;
if (cmd_size != sizeof(vfe_cmd_stats_autofocus_cfg))
return -1;
for (i = 0; i < 3; i++) {
void **addr = (void **)(&cmd->af_stats_op_buf[i]);
if (*addr && adsp_pmem_fixup(module, addr, af_size))
return -1;
}
return 0;
}
static inline int verify_cmd_stats_wb_exp_cfg(struct msm_adsp_module *module,
void *cmd_data, size_t cmd_size)
{
vfe_cmd_stats_wb_exp_cfg *cmd =
(vfe_cmd_stats_wb_exp_cfg *)cmd_data;
int i;
if (cmd_size != sizeof(vfe_cmd_stats_wb_exp_cfg))
return -1;
for (i = 0; i < 3; i++) {
void **addr = (void **)(&cmd->wb_exp_stats_op_buf[i]);
if (*addr && adsp_pmem_fixup(module, addr, awb_size))
return -1;
}
return 0;
}
static inline int verify_cmd_stats_af_ack(struct msm_adsp_module *module,
void *cmd_data, size_t cmd_size)
{
vfe_cmd_stats_af_ack *cmd = (vfe_cmd_stats_af_ack *)cmd_data;
void **addr = (void **)&cmd->af_stats_op_buf;
if (cmd_size != sizeof(vfe_cmd_stats_af_ack))
return -1;
if (*addr && adsp_pmem_fixup(module, addr, af_size))
return -1;
return 0;
}
static inline int verify_cmd_stats_wb_exp_ack(struct msm_adsp_module *module,
void *cmd_data, size_t cmd_size)
{
vfe_cmd_stats_wb_exp_ack *cmd =
(vfe_cmd_stats_wb_exp_ack *)cmd_data;
void **addr = (void **)&cmd->wb_exp_stats_op_buf;
if (cmd_size != sizeof(vfe_cmd_stats_wb_exp_ack))
return -1;
if (*addr && adsp_pmem_fixup(module, addr, awb_size))
return -1;
return 0;
}
static int verify_vfe_command(struct msm_adsp_module *module,
void *cmd_data, size_t cmd_size)
{
uint32_t cmd_id = ((uint32_t *)cmd_data)[0];
switch (cmd_id) {
case VFE_CMD_OP1_ACK:
return verify_cmd_op_ack(module, cmd_data, cmd_size);
case VFE_CMD_OP2_ACK:
return verify_cmd_op_ack(module, cmd_data, cmd_size);
case VFE_CMD_STATS_AUTOFOCUS_CFG:
return verify_cmd_stats_autofocus_cfg(module, cmd_data,
cmd_size);
case VFE_CMD_STATS_WB_EXP_CFG:
return verify_cmd_stats_wb_exp_cfg(module, cmd_data, cmd_size);
case VFE_CMD_STATS_AF_ACK:
return verify_cmd_stats_af_ack(module, cmd_data, cmd_size);
case VFE_CMD_STATS_WB_EXP_ACK:
return verify_cmd_stats_wb_exp_ack(module, cmd_data, cmd_size);
default:
if (cmd_id > 29) {
printk(KERN_ERR "adsp: module %s: invalid VFE command id %d\n", module->name, cmd_id);
return -1;
}
}
return 0;
}
static int verify_vfe_command_scale(struct msm_adsp_module *module,
void *cmd_data, size_t cmd_size)
{
uint32_t cmd_id = ((uint32_t *)cmd_data)[0];
// FIXME: check the size
if (cmd_id > 1) {
printk(KERN_ERR "adsp: module %s: invalid VFE SCALE command id %d\n", module->name, cmd_id);
return -1;
}
return 0;
}
static uint32_t get_size(uint32_t hw)
{
uint32_t height, width;
uint32_t height_mask = 0x3ffc;
uint32_t width_mask = 0x3ffc000;
height = (hw & height_mask) >> 2;
width = (hw & width_mask) >> 14 ;
return height * width;
}
static int verify_vfe_command_table(struct msm_adsp_module *module,
void *cmd_data, size_t cmd_size)
{
uint32_t cmd_id = ((uint32_t *)cmd_data)[0];
int i;
switch (cmd_id) {
case VFE_CMD_AXI_IP_CFG:
{
vfe_cmd_axi_ip_cfg *cmd = (vfe_cmd_axi_ip_cfg *)cmd_data;
uint32_t size;
if (cmd_size != sizeof(vfe_cmd_axi_ip_cfg)) {
printk(KERN_ERR "adsp: module %s: invalid VFE TABLE (VFE_CMD_AXI_IP_CFG) command size %d\n",
module->name, cmd_size);
return -1;
}
size = get_size(cmd->ip_cfg_part2);
for (i = 0; i < 8; i++) {
void **addr = (void **)
&cmd->ip_buf_addr[i];
if (*addr && adsp_pmem_fixup(module, addr, size))
return -1;
}
}
case VFE_CMD_AXI_OP_CFG:
{
vfe_cmd_axi_op_cfg *cmd = (vfe_cmd_axi_op_cfg *)cmd_data;
void **addr1_y, **addr2_y, **addr1_cbcr, **addr2_cbcr;
if (cmd_size != sizeof(vfe_cmd_axi_op_cfg)) {
printk(KERN_ERR "adsp: module %s: invalid VFE TABLE (VFE_CMD_AXI_OP_CFG) command size %d\n",
module->name, cmd_size);
return -1;
}
size1_y = get_size(cmd->op1_y_cfg_part2);
size1_cbcr = get_size(cmd->op1_cbcr_cfg_part2);
size2_y = get_size(cmd->op2_y_cfg_part2);
size2_cbcr = get_size(cmd->op2_cbcr_cfg_part2);
for (i = 0; i < 8; i++) {
addr1_y = (void **)(&cmd->op1_buf1_addr[2*i]);
addr1_cbcr = (void **)(&cmd->op1_buf1_addr[2*i+1]);
addr2_y = (void **)(&cmd->op2_buf1_addr[2*i]);
addr2_cbcr = (void **)(&cmd->op2_buf1_addr[2*i+1]);
/*
printk("module %s: [%d] %p %p %p %p\n",
module->name, i,
*addr1_y, *addr1_cbcr, *addr2_y, *addr2_cbcr);
*/
if ((*addr1_y && adsp_pmem_fixup(module, addr1_y, size1_y)) ||
(*addr1_cbcr && adsp_pmem_fixup(module, addr1_cbcr, size1_cbcr)) ||
(*addr2_y && adsp_pmem_fixup(module, addr2_y, size2_y)) ||
(*addr2_cbcr && adsp_pmem_fixup(module, addr2_cbcr, size2_cbcr)))
return -1;
}
}
default:
if (cmd_id > 4) {
printk(KERN_ERR "adsp: module %s: invalid VFE TABLE command id %d\n",
module->name, cmd_id);
return -1;
}
}
return 0;
}
int adsp_vfe_verify_cmd(struct msm_adsp_module *module,
unsigned int queue_id, void *cmd_data,
size_t cmd_size)
{
switch (queue_id) {
case QDSP_vfeCommandQueue:
return verify_vfe_command(module, cmd_data, cmd_size);
case QDSP_vfeCommandScaleQueue:
return verify_vfe_command_scale(module, cmd_data, cmd_size);
case QDSP_vfeCommandTableQueue:
return verify_vfe_command_table(module, cmd_data, cmd_size);
default:
printk(KERN_ERR "adsp: module %s: unknown queue id %d\n",
module->name, queue_id);
return -1;
}
}
/* arch/arm/mach-msm/qdsp5/adsp_video_verify_cmd.c
*
* Verificion code for aDSP VDEC packets from userspace.
*
* Copyright (c) 2008 QUALCOMM Incorporated
* Copyright (C) 2008 Google, Inc.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/io.h>
#define ADSP_DEBUG_MSGS 0
#if ADSP_DEBUG_MSGS
#define DLOG(fmt,args...) \
do { printk(KERN_INFO "[%s:%s:%d] "fmt, __FILE__, __func__, __LINE__, \
##args); } \
while (0)
#else
#define DLOG(x...) do {} while (0)
#endif
#include <mach/qdsp5/qdsp5vdeccmdi.h>
#include "adsp.h"
static inline void *high_low_short_to_ptr(unsigned short high,
unsigned short low)
{
return (void *)((((unsigned long)high) << 16) | ((unsigned long)low));
}
static inline void ptr_to_high_low_short(void *ptr, unsigned short *high,
unsigned short *low)
{
*high = (unsigned short)((((unsigned long)ptr) >> 16) & 0xffff);
*low = (unsigned short)((unsigned long)ptr & 0xffff);
}
static int pmem_fixup_high_low(unsigned short *high,
unsigned short *low,
unsigned short size_high,
unsigned short size_low,
struct msm_adsp_module *module,
unsigned long *addr, unsigned long *size)
{
void *phys_addr;
unsigned long phys_size;
unsigned long kvaddr;
phys_addr = high_low_short_to_ptr(*high, *low);
phys_size = (unsigned long)high_low_short_to_ptr(size_high, size_low);
DLOG("virt %x %x\n", phys_addr, phys_size);
if (adsp_pmem_fixup_kvaddr(module, &phys_addr, &kvaddr, phys_size)) {
DLOG("ah%x al%x sh%x sl%x addr %x size %x\n",
*high, *low, size_high, size_low, phys_addr, phys_size);
return -1;
}
ptr_to_high_low_short(phys_addr, high, low);
DLOG("phys %x %x\n", phys_addr, phys_size);
if (addr)
*addr = kvaddr;
if (size)
*size = phys_size;
return 0;
}
static int verify_vdec_pkt_cmd(struct msm_adsp_module *module,
void *cmd_data, size_t cmd_size)
{
unsigned short cmd_id = ((unsigned short *)cmd_data)[0];
viddec_cmd_subframe_pkt *pkt;
unsigned long subframe_pkt_addr;
unsigned long subframe_pkt_size;
viddec_cmd_frame_header_packet *frame_header_pkt;
int i, num_addr, skip;
unsigned short *frame_buffer_high, *frame_buffer_low;
unsigned long frame_buffer_size;
unsigned short frame_buffer_size_high, frame_buffer_size_low;
DLOG("cmd_size %d cmd_id %d cmd_data %x\n", cmd_size, cmd_id, cmd_data);
if (cmd_id != VIDDEC_CMD_SUBFRAME_PKT) {
printk(KERN_INFO "adsp_video: unknown video packet %u\n",
cmd_id);
return 0;
}
if (cmd_size < sizeof(viddec_cmd_subframe_pkt))
return -1;
pkt = (viddec_cmd_subframe_pkt *)cmd_data;
if (pmem_fixup_high_low(&(pkt->subframe_packet_high),
&(pkt->subframe_packet_low),
pkt->subframe_packet_size_high,
pkt->subframe_packet_size_low,
module,
&subframe_pkt_addr,
&subframe_pkt_size))
return -1;
/* deref those ptrs and check if they are a frame header packet */
frame_header_pkt = (viddec_cmd_frame_header_packet *)subframe_pkt_addr;
switch (frame_header_pkt->packet_id) {
case 0xB201: /* h.264 */
num_addr = skip = 8;
break;
case 0x4D01: /* mpeg-4 and h.263 */
num_addr = 3;
skip = 0;
break;
default:
return 0;
}
frame_buffer_high = &frame_header_pkt->frame_buffer_0_high;
frame_buffer_low = &frame_header_pkt->frame_buffer_0_low;
frame_buffer_size = (frame_header_pkt->x_dimension *
frame_header_pkt->y_dimension * 3) / 2;
ptr_to_high_low_short((void *)frame_buffer_size,
&frame_buffer_size_high,
&frame_buffer_size_low);
for (i = 0; i < num_addr; i++) {
if (pmem_fixup_high_low(frame_buffer_high, frame_buffer_low,
frame_buffer_size_high,
frame_buffer_size_low,
module,
NULL, NULL))
return -1;
frame_buffer_high += 2;
frame_buffer_low += 2;
}
/* Patch the output buffer. */
frame_buffer_high += 2*skip;
frame_buffer_low += 2*skip;
if (pmem_fixup_high_low(frame_buffer_high, frame_buffer_low,
frame_buffer_size_high,
frame_buffer_size_low, module, NULL, NULL))
return -1;
return 0;
}
int adsp_video_verify_cmd(struct msm_adsp_module *module,
unsigned int queue_id, void *cmd_data,
size_t cmd_size)
{
switch (queue_id) {
case QDSP_mpuVDecPktQueue:
DLOG("\n");
return verify_vdec_pkt_cmd(module, cmd_data, cmd_size);
default:
printk(KERN_INFO "unknown video queue %u\n", queue_id);
return 0;
}
}
/* arch/arm/mach-msm/qdsp5/adsp_video_verify_cmd.c
*
* Verificion code for aDSP VENC packets from userspace.
*
* Copyright (c) 2008 QUALCOMM Incorporated
* Copyright (C) 2008 Google, Inc.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/io.h>
#define ADSP_DEBUG_MSGS 0
#if ADSP_DEBUG_MSGS
#define DLOG(fmt,args...) \
do { printk(KERN_INFO "[%s:%s:%d] "fmt, __FILE__, __func__, __LINE__, \
##args); } \
while (0)
#else
#define DLOG(x...) do {} while (0)
#endif
#include <mach/qdsp5/qdsp5venccmdi.h>
#include "adsp.h"
static unsigned short x_dimension, y_dimension;
static inline void *high_low_short_to_ptr(unsigned short high,
unsigned short low)
{
return (void *)((((unsigned long)high) << 16) | ((unsigned long)low));
}
static inline void ptr_to_high_low_short(void *ptr, unsigned short *high,
unsigned short *low)
{
*high = (unsigned short)((((unsigned long)ptr) >> 16) & 0xffff);
*low = (unsigned short)((unsigned long)ptr & 0xffff);
}
static int pmem_fixup_high_low(unsigned short *high,
unsigned short *low,
unsigned short size_high,
unsigned short size_low,
struct msm_adsp_module *module,
unsigned long *addr, unsigned long *size)
{
void *phys_addr;
unsigned long phys_size;
unsigned long kvaddr;
phys_addr = high_low_short_to_ptr(*high, *low);
phys_size = (unsigned long)high_low_short_to_ptr(size_high, size_low);
DLOG("virt %x %x\n", phys_addr, phys_size);
if (adsp_pmem_fixup_kvaddr(module, &phys_addr, &kvaddr, phys_size)) {
DLOG("ah%x al%x sh%x sl%x addr %x size %x\n",
*high, *low, size_high, size_low, phys_addr, phys_size);
return -1;
}
ptr_to_high_low_short(phys_addr, high, low);
DLOG("phys %x %x\n", phys_addr, phys_size);
if (addr)
*addr = kvaddr;
if (size)
*size = phys_size;
return 0;
}
static int verify_venc_cmd(struct msm_adsp_module *module,
void *cmd_data, size_t cmd_size)
{
unsigned short cmd_id = ((unsigned short *)cmd_data)[0];
unsigned long frame_buf_size, luma_buf_size, chroma_buf_size;
unsigned short frame_buf_size_high, frame_buf_size_low;
unsigned short luma_buf_size_high, luma_buf_size_low;
unsigned short chroma_buf_size_high, chroma_buf_size_low;
videnc_cmd_cfg *config_cmd;
videnc_cmd_frame_start *frame_cmd;
videnc_cmd_dis *dis_cmd;
DLOG("cmd_size %d cmd_id %d cmd_data %x\n", cmd_size, cmd_id, cmd_data);
switch (cmd_id) {
case VIDENC_CMD_ACTIVE:
if (cmd_size < sizeof(videnc_cmd_active))
return -1;
break;
case VIDENC_CMD_IDLE:
if (cmd_size < sizeof(videnc_cmd_idle))
return -1;
x_dimension = y_dimension = 0;
break;
case VIDENC_CMD_STATUS_QUERY:
if (cmd_size < sizeof(videnc_cmd_status_query))
return -1;
break;
case VIDENC_CMD_RC_CFG:
if (cmd_size < sizeof(videnc_cmd_rc_cfg))
return -1;
break;
case VIDENC_CMD_INTRA_REFRESH:
if (cmd_size < sizeof(videnc_cmd_intra_refresh))
return -1;
break;
case VIDENC_CMD_DIGITAL_ZOOM:
if (cmd_size < sizeof(videnc_cmd_digital_zoom))
return -1;
break;
case VIDENC_CMD_DIS_CFG:
if (cmd_size < sizeof(videnc_cmd_dis_cfg))
return -1;
break;
case VIDENC_CMD_CFG:
if (cmd_size < sizeof(videnc_cmd_cfg))
return -1;
config_cmd = (videnc_cmd_cfg *)cmd_data;
x_dimension = ((config_cmd->venc_frame_dim) & 0xFF00)>>8;
x_dimension = x_dimension*16;
y_dimension = (config_cmd->venc_frame_dim) & 0xFF;
y_dimension = y_dimension * 16;
break;
case VIDENC_CMD_FRAME_START:
if (cmd_size < sizeof(videnc_cmd_frame_start))
return -1;
frame_cmd = (videnc_cmd_frame_start *)cmd_data;
luma_buf_size = x_dimension * y_dimension;
chroma_buf_size = luma_buf_size>>1;
frame_buf_size = luma_buf_size + chroma_buf_size;
ptr_to_high_low_short((void *)luma_buf_size,
&luma_buf_size_high,
&luma_buf_size_low);
ptr_to_high_low_short((void *)chroma_buf_size,
&chroma_buf_size_high,
&chroma_buf_size_low);
ptr_to_high_low_short((void *)frame_buf_size,
&frame_buf_size_high,
&frame_buf_size_low);
/* Address of raw Y data. */
if (pmem_fixup_high_low(&frame_cmd->input_luma_addr_high,
&frame_cmd->input_luma_addr_low,
luma_buf_size_high,
luma_buf_size_low,
module,
NULL, NULL))
return -1;
/* Address of raw CbCr data */
if (pmem_fixup_high_low(&frame_cmd->input_chroma_addr_high,
&frame_cmd->input_chroma_addr_low,
chroma_buf_size_high,
chroma_buf_size_low,
module,
NULL, NULL))
return -1;
/* Reference VOP */
if (pmem_fixup_high_low(&frame_cmd->ref_vop_buf_ptr_high,
&frame_cmd->ref_vop_buf_ptr_low,
frame_buf_size_high,
frame_buf_size_low,
module,
NULL, NULL))
return -1;
/* Encoded Packet Address */
if (pmem_fixup_high_low(&frame_cmd->enc_pkt_buf_ptr_high,
&frame_cmd->enc_pkt_buf_ptr_low,
frame_cmd->enc_pkt_buf_size_high,
frame_cmd->enc_pkt_buf_size_low,
module,
NULL, NULL))
return -1;
/* Unfiltered VOP Buffer Address */
if (pmem_fixup_high_low(
&frame_cmd->unfilt_recon_vop_buf_ptr_high,
&frame_cmd->unfilt_recon_vop_buf_ptr_low,
frame_buf_size_high,
frame_buf_size_low,
module,
NULL, NULL))
return -1;
/* Filtered VOP Buffer Address */
if (pmem_fixup_high_low(&frame_cmd->filt_recon_vop_buf_ptr_high,
&frame_cmd->filt_recon_vop_buf_ptr_low,
frame_buf_size_high,
frame_buf_size_low,
module,
NULL, NULL))
return -1;
break;
case VIDENC_CMD_DIS:
if (cmd_size < sizeof(videnc_cmd_dis))
return -1;
dis_cmd = (videnc_cmd_dis *)cmd_data;
luma_buf_size = x_dimension * y_dimension;
ptr_to_high_low_short((void *)luma_buf_size,
&luma_buf_size_high,
&luma_buf_size_low);
/* Prev VFE Luma Output Address */
if (pmem_fixup_high_low(&dis_cmd->vfe_out_prev_luma_addr_high,
&dis_cmd->vfe_out_prev_luma_addr_low,
luma_buf_size_high,
luma_buf_size_low,
module,
NULL, NULL))
return -1;
break;
default:
printk(KERN_INFO "adsp_video:unknown encoder video command %u\n",
cmd_id);
return 0;
}
return 0;
}
int adsp_videoenc_verify_cmd(struct msm_adsp_module *module,
unsigned int queue_id, void *cmd_data,
size_t cmd_size)
{
switch (queue_id) {
case QDSP_mpuVEncCmdQueue:
DLOG("\n");
return verify_venc_cmd(module, cmd_data, cmd_size);
default:
printk(KERN_INFO "unknown video queue %u\n", queue_id);
return 0;
}
}
/* arch/arm/mach-msm/qdsp5/audio_aac.c
*
* aac audio decoder device
*
* Copyright (C) 2008 Google, Inc.
* Copyright (C) 2008 HTC Corporation
* Copyright (c) 2008-2009 QUALCOMM USA, INC.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/module.h>
#include <linux/fs.h>
#include <linux/miscdevice.h>
#include <linux/uaccess.h>
#include <linux/kthread.h>
#include <linux/wait.h>
#include <linux/dma-mapping.h>
#include <linux/delay.h>
#include <asm/atomic.h>
#include <asm/ioctls.h>
#include "audmgr.h"
#include <mach/msm_adsp.h>
#include <mach/msm_audio_aac.h>
#include <mach/qdsp5/qdsp5audppcmdi.h>
#include <mach/qdsp5/qdsp5audppmsg.h>
#include <mach/qdsp5/qdsp5audplaycmdi.h>
#include <mach/qdsp5/qdsp5audplaymsg.h>
/* for queue ids - should be relative to module number*/
#include "adsp.h"
#ifdef DEBUG
#define dprintk(format, arg...) \
printk(KERN_DEBUG format, ## arg)
#else
#define dprintk(format, arg...) do {} while (0)
#endif
#define BUFSZ 32768
#define DMASZ (BUFSZ * 2)
#define AUDPLAY_INVALID_READ_PTR_OFFSET 0xFFFF
#define AUDDEC_DEC_AAC 5
#define PCM_BUFSZ_MIN 9600 /* Hold one stereo AAC frame */
#define PCM_BUF_MAX_COUNT 5 /* DSP only accepts 5 buffers at most
but support 2 buffers currently */
#define ROUTING_MODE_FTRT 1
#define ROUTING_MODE_RT 2
/* Decoder status received from AUDPPTASK */
#define AUDPP_DEC_STATUS_SLEEP 0
#define AUDPP_DEC_STATUS_INIT 1
#define AUDPP_DEC_STATUS_CFG 2
#define AUDPP_DEC_STATUS_PLAY 3
struct buffer {
void *data;
unsigned size;
unsigned used; /* Input usage actual DSP produced PCM size */
unsigned addr;
};
struct audio {
struct buffer out[2];
spinlock_t dsp_lock;
uint8_t out_head;
uint8_t out_tail;
uint8_t out_needed; /* number of buffers the dsp is waiting for */
atomic_t out_bytes;
struct mutex lock;
struct mutex write_lock;
wait_queue_head_t write_wait;
/* Host PCM section */
struct buffer in[PCM_BUF_MAX_COUNT];
struct mutex read_lock;
wait_queue_head_t read_wait; /* Wait queue for read */
char *read_data; /* pointer to reader buffer */
dma_addr_t read_phys; /* physical address of reader buffer */
uint8_t read_next; /* index to input buffers to be read next */
uint8_t fill_next; /* index to buffer that DSP should be filling */
uint8_t pcm_buf_count; /* number of pcm buffer allocated */
/* ---- End of Host PCM section */
struct msm_adsp_module *audplay;
/* configuration to use on next enable */
uint32_t out_sample_rate;
uint32_t out_channel_mode;
struct msm_audio_aac_config aac_config;
struct audmgr audmgr;
/* data allocated for various buffers */
char *data;
dma_addr_t phys;
int rflush; /* Read flush */
int wflush; /* Write flush */
int opened;
int enabled;
int running;
int stopped; /* set when stopped, cleared on flush */
int pcm_feedback;
int buf_refresh;
int reserved; /* A byte is being reserved */
char rsv_byte; /* Handle odd length user data */
unsigned volume;
uint16_t dec_id;
uint32_t read_ptr_offset;
};
static int auddec_dsp_config(struct audio *audio, int enable);
static void audpp_cmd_cfg_adec_params(struct audio *audio);
static void audpp_cmd_cfg_routing_mode(struct audio *audio);
static void audplay_send_data(struct audio *audio, unsigned needed);
static void audplay_config_hostpcm(struct audio *audio);
static void audplay_buffer_refresh(struct audio *audio);
static void audio_dsp_event(void *private, unsigned id, uint16_t *msg);
/* must be called with audio->lock held */
static int audio_enable(struct audio *audio)
{
struct audmgr_config cfg;
int rc;
dprintk("audio_enable()\n");
if (audio->enabled)
return 0;
audio->out_tail = 0;
audio->out_needed = 0;
cfg.tx_rate = RPC_AUD_DEF_SAMPLE_RATE_NONE;
cfg.rx_rate = RPC_AUD_DEF_SAMPLE_RATE_48000;
cfg.def_method = RPC_AUD_DEF_METHOD_PLAYBACK;
cfg.codec = RPC_AUD_DEF_CODEC_AAC;
cfg.snd_method = RPC_SND_METHOD_MIDI;
rc = audmgr_enable(&audio->audmgr, &cfg);
if (rc < 0)
return rc;
if (msm_adsp_enable(audio->audplay)) {
pr_err("audio: msm_adsp_enable(audplay) failed\n");
audmgr_disable(&audio->audmgr);
return -ENODEV;
}
if (audpp_enable(audio->dec_id, audio_dsp_event, audio)) {
pr_err("audio: audpp_enable() failed\n");
msm_adsp_disable(audio->audplay);
audmgr_disable(&audio->audmgr);
return -ENODEV;
}
audio->enabled = 1;
return 0;
}
/* must be called with audio->lock held */
static int audio_disable(struct audio *audio)
{
dprintk("audio_disable()\n");
if (audio->enabled) {
audio->enabled = 0;
auddec_dsp_config(audio, 0);
wake_up(&audio->write_wait);
wake_up(&audio->read_wait);
msm_adsp_disable(audio->audplay);
audpp_disable(audio->dec_id, audio);
audmgr_disable(&audio->audmgr);
audio->out_needed = 0;
}
return 0;
}
/* ------------------- dsp --------------------- */
static void audio_update_pcm_buf_entry(struct audio *audio, uint32_t *payload)
{
uint8_t index;
unsigned long flags;
if (audio->rflush)
return;
spin_lock_irqsave(&audio->dsp_lock, flags);
for (index = 0; index < payload[1]; index++) {
if (audio->in[audio->fill_next].addr ==
payload[2 + index * 2]) {
dprintk("audio_update_pcm_buf_entry: in[%d] ready\n",
audio->fill_next);
audio->in[audio->fill_next].used =
payload[3 + index * 2];
if ((++audio->fill_next) == audio->pcm_buf_count)
audio->fill_next = 0;
} else {
pr_err
("audio_update_pcm_buf_entry: expected=%x ret=%x\n"
, audio->in[audio->fill_next].addr,
payload[1 + index * 2]);
break;
}
}
if (audio->in[audio->fill_next].used == 0) {
audplay_buffer_refresh(audio);
} else {
dprintk("audio_update_pcm_buf_entry: read cannot keep up\n");
audio->buf_refresh = 1;
}
wake_up(&audio->read_wait);
spin_unlock_irqrestore(&audio->dsp_lock, flags);
}
static void audplay_dsp_event(void *data, unsigned id, size_t len,
void (*getevent) (void *ptr, size_t len))
{
struct audio *audio = data;
uint32_t msg[28];
getevent(msg, sizeof(msg));
dprintk("audplay_dsp_event: msg_id=%x\n", id);
switch (id) {
case AUDPLAY_MSG_DEC_NEEDS_DATA:
audplay_send_data(audio, 1);
break;
case AUDPLAY_MSG_BUFFER_UPDATE:
audio_update_pcm_buf_entry(audio, msg);
break;
default:
pr_err("unexpected message from decoder \n");
}
}
static void audio_dsp_event(void *private, unsigned id, uint16_t *msg)
{
struct audio *audio = private;
switch (id) {
case AUDPP_MSG_STATUS_MSG:{
unsigned status = msg[1];
switch (status) {
case AUDPP_DEC_STATUS_SLEEP:
dprintk("decoder status: sleep \n");
break;
case AUDPP_DEC_STATUS_INIT:
dprintk("decoder status: init \n");
audpp_cmd_cfg_routing_mode(audio);
break;
case AUDPP_DEC_STATUS_CFG:
dprintk("decoder status: cfg \n");
break;
case AUDPP_DEC_STATUS_PLAY:
dprintk("decoder status: play \n");
if (audio->pcm_feedback) {
audplay_config_hostpcm(audio);
audplay_buffer_refresh(audio);
}
break;
default:
pr_err("unknown decoder status \n");
}
break;
}
case AUDPP_MSG_CFG_MSG:
if (msg[0] == AUDPP_MSG_ENA_ENA) {
dprintk("audio_dsp_event: CFG_MSG ENABLE\n");
auddec_dsp_config(audio, 1);
audio->out_needed = 0;
audio->running = 1;
audpp_set_volume_and_pan(audio->dec_id, audio->volume,
0);
audpp_avsync(audio->dec_id, 22050);
} else if (msg[0] == AUDPP_MSG_ENA_DIS) {
dprintk("audio_dsp_event: CFG_MSG DISABLE\n");
audpp_avsync(audio->dec_id, 0);
audio->running = 0;
} else {
pr_err("audio_dsp_event: CFG_MSG %d?\n", msg[0]);
}
break;
case AUDPP_MSG_ROUTING_ACK:
dprintk("audio_dsp_event: ROUTING_ACK mode=%d\n", msg[1]);
audpp_cmd_cfg_adec_params(audio);
break;
case AUDPP_MSG_FLUSH_ACK:
dprintk("%s: FLUSH_ACK\n", __func__);
audio->wflush = 0;
audio->rflush = 0;
if (audio->pcm_feedback)
audplay_buffer_refresh(audio);
break;
default:
pr_err("audio_dsp_event: UNKNOWN (%d)\n", id);
}
}
struct msm_adsp_ops audplay_adsp_ops_aac = {
.event = audplay_dsp_event,
};
#define audplay_send_queue0(audio, cmd, len) \
msm_adsp_write(audio->audplay, QDSP_uPAudPlay0BitStreamCtrlQueue, \
cmd, len)
static int auddec_dsp_config(struct audio *audio, int enable)
{
audpp_cmd_cfg_dec_type cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.cmd_id = AUDPP_CMD_CFG_DEC_TYPE;
if (enable)
cmd.dec0_cfg = AUDPP_CMD_UPDATDE_CFG_DEC |
AUDPP_CMD_ENA_DEC_V | AUDDEC_DEC_AAC;
else
cmd.dec0_cfg = AUDPP_CMD_UPDATDE_CFG_DEC | AUDPP_CMD_DIS_DEC_V;
return audpp_send_queue1(&cmd, sizeof(cmd));
}
static void audpp_cmd_cfg_adec_params(struct audio *audio)
{
audpp_cmd_cfg_adec_params_aac cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.common.cmd_id = AUDPP_CMD_CFG_ADEC_PARAMS;
cmd.common.length = AUDPP_CMD_CFG_ADEC_PARAMS_AAC_LEN;
cmd.common.dec_id = audio->dec_id;
cmd.common.input_sampling_frequency = audio->out_sample_rate;
cmd.format = audio->aac_config.format;
cmd.audio_object = audio->aac_config.audio_object;
cmd.ep_config = audio->aac_config.ep_config;
cmd.aac_section_data_resilience_flag =
audio->aac_config.aac_section_data_resilience_flag;
cmd.aac_scalefactor_data_resilience_flag =
audio->aac_config.aac_scalefactor_data_resilience_flag;
cmd.aac_spectral_data_resilience_flag =
audio->aac_config.aac_spectral_data_resilience_flag;
cmd.sbr_on_flag = audio->aac_config.sbr_on_flag;
cmd.sbr_ps_on_flag = audio->aac_config.sbr_ps_on_flag;
cmd.channel_configuration = audio->aac_config.channel_configuration;
audpp_send_queue2(&cmd, sizeof(cmd));
}
static void audpp_cmd_cfg_routing_mode(struct audio *audio)
{
struct audpp_cmd_routing_mode cmd;
dprintk("audpp_cmd_cfg_routing_mode()\n");
memset(&cmd, 0, sizeof(cmd));
cmd.cmd_id = AUDPP_CMD_ROUTING_MODE;
cmd.object_number = audio->dec_id;
if (audio->pcm_feedback)
cmd.routing_mode = ROUTING_MODE_FTRT;
else
cmd.routing_mode = ROUTING_MODE_RT;
audpp_send_queue1(&cmd, sizeof(cmd));
}
static int audplay_dsp_send_data_avail(struct audio *audio,
unsigned idx, unsigned len)
{
audplay_cmd_bitstream_data_avail cmd;
cmd.cmd_id = AUDPLAY_CMD_BITSTREAM_DATA_AVAIL;
cmd.decoder_id = audio->dec_id;
cmd.buf_ptr = audio->out[idx].addr;
cmd.buf_size = len / 2;
cmd.partition_number = 0;
return audplay_send_queue0(audio, &cmd, sizeof(cmd));
}
static void audplay_buffer_refresh(struct audio *audio)
{
struct audplay_cmd_buffer_refresh refresh_cmd;
refresh_cmd.cmd_id = AUDPLAY_CMD_BUFFER_REFRESH;
refresh_cmd.num_buffers = 1;
refresh_cmd.buf0_address = audio->in[audio->fill_next].addr;
refresh_cmd.buf0_length = audio->in[audio->fill_next].size -
(audio->in[audio->fill_next].size % 1024); /* AAC frame size */
refresh_cmd.buf_read_count = 0;
dprintk("audplay_buffer_fresh: buf0_addr=%x buf0_len=%d\n",
refresh_cmd.buf0_address, refresh_cmd.buf0_length);
(void)audplay_send_queue0(audio, &refresh_cmd, sizeof(refresh_cmd));
}
static void audplay_config_hostpcm(struct audio *audio)
{
struct audplay_cmd_hpcm_buf_cfg cfg_cmd;
dprintk("audplay_config_hostpcm()\n");
cfg_cmd.cmd_id = AUDPLAY_CMD_HPCM_BUF_CFG;
cfg_cmd.max_buffers = audio->pcm_buf_count;
cfg_cmd.byte_swap = 0;
cfg_cmd.hostpcm_config = (0x8000) | (0x4000);
cfg_cmd.feedback_frequency = 1;
cfg_cmd.partition_number = 0;
(void)audplay_send_queue0(audio, &cfg_cmd, sizeof(cfg_cmd));
}
static void audplay_send_data(struct audio *audio, unsigned needed)
{
struct buffer *frame;
unsigned long flags;
spin_lock_irqsave(&audio->dsp_lock, flags);
if (!audio->running)
goto done;
if (needed && !audio->wflush) {
/* We were called from the callback because the DSP
* requested more data. Note that the DSP does want
* more data, and if a buffer was in-flight, mark it
* as available (since the DSP must now be done with
* it).
*/
audio->out_needed = 1;
frame = audio->out + audio->out_tail;
if (frame->used == 0xffffffff) {
dprintk("frame %d free\n", audio->out_tail);
frame->used = 0;
audio->out_tail ^= 1;
wake_up(&audio->write_wait);
}
}
if (audio->out_needed) {
/* If the DSP currently wants data and we have a
* buffer available, we will send it and reset
* the needed flag. We'll mark the buffer as in-flight
* so that it won't be recycled until the next buffer
* is requested
*/
frame = audio->out + audio->out_tail;
if (frame->used) {
BUG_ON(frame->used == 0xffffffff);
/* printk("frame %d busy\n", audio->out_tail); */
audplay_dsp_send_data_avail(audio, audio->out_tail,
frame->used);
frame->used = 0xffffffff;
audio->out_needed = 0;
}
}
done:
spin_unlock_irqrestore(&audio->dsp_lock, flags);
}
/* ------------------- device --------------------- */
static void audio_flush(struct audio *audio)
{
audio->out[0].used = 0;
audio->out[1].used = 0;
audio->out_head = 0;
audio->out_tail = 0;
audio->reserved = 0;
audio->out_needed = 0;
atomic_set(&audio->out_bytes, 0);
}
static void audio_flush_pcm_buf(struct audio *audio)
{
uint8_t index;
for (index = 0; index < PCM_BUF_MAX_COUNT; index++)
audio->in[index].used = 0;
audio->buf_refresh = 0;
audio->read_next = 0;
audio->fill_next = 0;
}
static int audaac_validate_usr_config(struct msm_audio_aac_config *config)
{
int ret_val = -1;
if (config->format != AUDIO_AAC_FORMAT_ADTS &&
config->format != AUDIO_AAC_FORMAT_RAW &&
config->format != AUDIO_AAC_FORMAT_PSUEDO_RAW &&
config->format != AUDIO_AAC_FORMAT_LOAS)
goto done;
if (config->audio_object != AUDIO_AAC_OBJECT_LC &&
config->audio_object != AUDIO_AAC_OBJECT_LTP &&
config->audio_object != AUDIO_AAC_OBJECT_ERLC)
goto done;
if (config->audio_object == AUDIO_AAC_OBJECT_ERLC) {
if (config->ep_config > 3)
goto done;
if (config->aac_scalefactor_data_resilience_flag !=
AUDIO_AAC_SCA_DATA_RES_OFF &&
config->aac_scalefactor_data_resilience_flag !=
AUDIO_AAC_SCA_DATA_RES_ON)
goto done;
if (config->aac_section_data_resilience_flag !=
AUDIO_AAC_SEC_DATA_RES_OFF &&
config->aac_section_data_resilience_flag !=
AUDIO_AAC_SEC_DATA_RES_ON)
goto done;
if (config->aac_spectral_data_resilience_flag !=
AUDIO_AAC_SPEC_DATA_RES_OFF &&
config->aac_spectral_data_resilience_flag !=
AUDIO_AAC_SPEC_DATA_RES_ON)
goto done;
} else {
config->aac_section_data_resilience_flag =
AUDIO_AAC_SEC_DATA_RES_OFF;
config->aac_scalefactor_data_resilience_flag =
AUDIO_AAC_SCA_DATA_RES_OFF;
config->aac_spectral_data_resilience_flag =
AUDIO_AAC_SPEC_DATA_RES_OFF;
}
if (config->sbr_on_flag != AUDIO_AAC_SBR_ON_FLAG_OFF &&
config->sbr_on_flag != AUDIO_AAC_SBR_ON_FLAG_ON)
goto done;
if (config->sbr_ps_on_flag != AUDIO_AAC_SBR_PS_ON_FLAG_OFF &&
config->sbr_ps_on_flag != AUDIO_AAC_SBR_PS_ON_FLAG_ON)
goto done;
if (config->dual_mono_mode > AUDIO_AAC_DUAL_MONO_PL_SR)
goto done;
if (config->channel_configuration > 2)
goto done;
ret_val = 0;
done:
return ret_val;
}
static void audio_ioport_reset(struct audio *audio)
{
/* Make sure read/write thread are free from
* sleep and knowing that system is not able
* to process io request at the moment
*/
wake_up(&audio->write_wait);
mutex_lock(&audio->write_lock);
audio_flush(audio);
mutex_unlock(&audio->write_lock);
wake_up(&audio->read_wait);
mutex_lock(&audio->read_lock);
audio_flush_pcm_buf(audio);
mutex_unlock(&audio->read_lock);
}
static long audio_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
struct audio *audio = file->private_data;
int rc = 0;
dprintk("audio_ioctl() cmd = %d\n", cmd);
if (cmd == AUDIO_GET_STATS) {
struct msm_audio_stats stats;
stats.byte_count = audpp_avsync_byte_count(audio->dec_id);
stats.sample_count = audpp_avsync_sample_count(audio->dec_id);
if (copy_to_user((void *)arg, &stats, sizeof(stats)))
return -EFAULT;
return 0;
}
if (cmd == AUDIO_SET_VOLUME) {
unsigned long flags;
spin_lock_irqsave(&audio->dsp_lock, flags);
audio->volume = arg;
if (audio->running)
audpp_set_volume_and_pan(audio->dec_id, arg, 0);
spin_unlock_irqrestore(&audio->dsp_lock, flags);
return 0;
}
mutex_lock(&audio->lock);
switch (cmd) {
case AUDIO_START:
rc = audio_enable(audio);
break;
case AUDIO_STOP:
rc = audio_disable(audio);
audio->stopped = 1;
audio_ioport_reset(audio);
audio->stopped = 0;
break;
case AUDIO_FLUSH:
dprintk("%s: AUDIO_FLUSH\n", __func__);
audio->rflush = 1;
audio->wflush = 1;
audio_ioport_reset(audio);
if (audio->running)
audpp_flush(audio->dec_id);
else {
audio->rflush = 0;
audio->wflush = 0;
}
break;
case AUDIO_SET_CONFIG:{
struct msm_audio_config config;
if (copy_from_user
(&config, (void *)arg, sizeof(config))) {
rc = -EFAULT;
break;
}
if (config.channel_count == 1) {
config.channel_count =
AUDPP_CMD_PCM_INTF_MONO_V;
} else if (config.channel_count == 2) {
config.channel_count =
AUDPP_CMD_PCM_INTF_STEREO_V;
} else {
rc = -EINVAL;
break;
}
audio->out_sample_rate = config.sample_rate;
audio->out_channel_mode = config.channel_count;
rc = 0;
break;
}
case AUDIO_GET_CONFIG:{
struct msm_audio_config config;
config.buffer_size = BUFSZ;
config.buffer_count = 2;
config.sample_rate = audio->out_sample_rate;
if (audio->out_channel_mode ==
AUDPP_CMD_PCM_INTF_MONO_V) {
config.channel_count = 1;
} else {
config.channel_count = 2;
}
config.unused[0] = 0;
config.unused[1] = 0;
config.unused[2] = 0;
config.unused[3] = 0;
if (copy_to_user((void *)arg, &config,
sizeof(config)))
rc = -EFAULT;
else
rc = 0;
break;
}
case AUDIO_GET_AAC_CONFIG:{
if (copy_to_user((void *)arg, &audio->aac_config,
sizeof(audio->aac_config)))
rc = -EFAULT;
else
rc = 0;
break;
}
case AUDIO_SET_AAC_CONFIG:{
struct msm_audio_aac_config usr_config;
if (copy_from_user
(&usr_config, (void *)arg,
sizeof(usr_config))) {
rc = -EFAULT;
break;
}
if (audaac_validate_usr_config(&usr_config) == 0) {
audio->aac_config = usr_config;
rc = 0;
} else
rc = -EINVAL;
break;
}
case AUDIO_GET_PCM_CONFIG:{
struct msm_audio_pcm_config config;
config.pcm_feedback = 0;
config.buffer_count = PCM_BUF_MAX_COUNT;
config.buffer_size = PCM_BUFSZ_MIN;
if (copy_to_user((void *)arg, &config,
sizeof(config)))
rc = -EFAULT;
else
rc = 0;
break;
}
case AUDIO_SET_PCM_CONFIG:{
struct msm_audio_pcm_config config;
if (copy_from_user
(&config, (void *)arg, sizeof(config))) {
rc = -EFAULT;
break;
}
if ((config.buffer_count > PCM_BUF_MAX_COUNT) ||
(config.buffer_count == 1))
config.buffer_count = PCM_BUF_MAX_COUNT;
if (config.buffer_size < PCM_BUFSZ_MIN)
config.buffer_size = PCM_BUFSZ_MIN;
/* Check if pcm feedback is required */
if ((config.pcm_feedback) && (!audio->read_data)) {
dprintk("ioctl: allocate PCM buffer %d\n",
config.buffer_count *
config.buffer_size);
audio->read_data =
dma_alloc_coherent(NULL,
config.buffer_size *
config.buffer_count,
&audio->read_phys,
GFP_KERNEL);
if (!audio->read_data) {
pr_err("audio_aac: buf alloc fail\n");
rc = -1;
} else {
uint8_t index;
uint32_t offset = 0;
audio->pcm_feedback = 1;
audio->buf_refresh = 0;
audio->pcm_buf_count =
config.buffer_count;
audio->read_next = 0;
audio->fill_next = 0;
for (index = 0;
index < config.buffer_count;
index++) {
audio->in[index].data =
audio->read_data + offset;
audio->in[index].addr =
audio->read_phys + offset;
audio->in[index].size =
config.buffer_size;
audio->in[index].used = 0;
offset += config.buffer_size;
}
rc = 0;
}
} else {
rc = 0;
}
break;
}
case AUDIO_PAUSE:
dprintk("%s: AUDIO_PAUSE %ld\n", __func__, arg);
rc = audpp_pause(audio->dec_id, (int) arg);
break;
default:
rc = -EINVAL;
}
mutex_unlock(&audio->lock);
return rc;
}
static ssize_t audio_read(struct file *file, char __user *buf, size_t count,
loff_t *pos)
{
struct audio *audio = file->private_data;
const char __user *start = buf;
int rc = 0;
if (!audio->pcm_feedback)
return 0; /* PCM feedback is not enabled. Nothing to read */
mutex_lock(&audio->read_lock);
dprintk("audio_read() %d \n", count);
while (count > 0) {
rc = wait_event_interruptible(audio->read_wait,
(audio->in[audio->read_next].
used > 0) || (audio->stopped)
|| (audio->rflush));
if (rc < 0)
break;
if (audio->stopped || audio->rflush) {
rc = -EBUSY;
break;
}
if (count < audio->in[audio->read_next].used) {
/* Read must happen in frame boundary. Since driver
does not know frame size, read count must be greater
or equal to size of PCM samples */
dprintk("audio_read: no partial frame done reading\n");
break;
} else {
dprintk("audio_read: read from in[%d]\n",
audio->read_next);
if (copy_to_user
(buf, audio->in[audio->read_next].data,
audio->in[audio->read_next].used)) {
pr_err("audio_read: invalid addr %x \n",
(unsigned int)buf);
rc = -EFAULT;
break;
}
count -= audio->in[audio->read_next].used;
buf += audio->in[audio->read_next].used;
audio->in[audio->read_next].used = 0;
if ((++audio->read_next) == audio->pcm_buf_count)
audio->read_next = 0;
if (audio->in[audio->read_next].used == 0)
break; /* No data ready at this moment
* Exit while loop to prevent
* output thread sleep too long
*/
}
}
/* don't feed output buffer to HW decoder during flushing
* buffer refresh command will be sent once flush completes
* send buf refresh command here can confuse HW decoder
*/
if (audio->buf_refresh && !audio->rflush) {
audio->buf_refresh = 0;
dprintk("audio_read: kick start pcm feedback again\n");
audplay_buffer_refresh(audio);
}
mutex_unlock(&audio->read_lock);
if (buf > start)
rc = buf - start;
dprintk("audio_read: read %d bytes\n", rc);
return rc;
}
static ssize_t audio_write(struct file *file, const char __user *buf,
size_t count, loff_t *pos)
{
struct audio *audio = file->private_data;
const char __user *start = buf;
struct buffer *frame;
size_t xfer;
char *cpy_ptr;
int rc = 0;
unsigned dsize;
mutex_lock(&audio->write_lock);
while (count > 0) {
frame = audio->out + audio->out_head;
cpy_ptr = frame->data;
dsize = 0;
rc = wait_event_interruptible(audio->write_wait,
(frame->used == 0)
|| (audio->stopped)
|| (audio->wflush));
if (rc < 0)
break;
if (audio->stopped || audio->wflush) {
rc = -EBUSY;
break;
}
if (audio->reserved) {
dprintk("%s: append reserved byte %x\n",
__func__, audio->rsv_byte);
*cpy_ptr = audio->rsv_byte;
xfer = (count > (frame->size - 1)) ?
frame->size - 1 : count;
cpy_ptr++;
dsize = 1;
audio->reserved = 0;
} else
xfer = (count > frame->size) ? frame->size : count;
if (copy_from_user(cpy_ptr, buf, xfer)) {
rc = -EFAULT;
break;
}
dsize += xfer;
if (dsize & 1) {
audio->rsv_byte = ((char *) frame->data)[dsize - 1];
dprintk("%s: odd length buf reserve last byte %x\n",
__func__, audio->rsv_byte);
audio->reserved = 1;
dsize--;
}
count -= xfer;
buf += xfer;
if (dsize > 0) {
audio->out_head ^= 1;
frame->used = dsize;
audplay_send_data(audio, 0);
}
}
mutex_unlock(&audio->write_lock);
if (buf > start)
return buf - start;
return rc;
}
static int audio_release(struct inode *inode, struct file *file)
{
struct audio *audio = file->private_data;
dprintk("audio_release()\n");
mutex_lock(&audio->lock);
audio_disable(audio);
audio_flush(audio);
audio_flush_pcm_buf(audio);
msm_adsp_put(audio->audplay);
audio->audplay = NULL;
audio->opened = 0;
audio->reserved = 0;
dma_free_coherent(NULL, DMASZ, audio->data, audio->phys);
audio->data = NULL;
if (audio->read_data != NULL) {
dma_free_coherent(NULL,
audio->in[0].size * audio->pcm_buf_count,
audio->read_data, audio->read_phys);
audio->read_data = NULL;
}
audio->pcm_feedback = 0;
mutex_unlock(&audio->lock);
return 0;
}
struct audio the_aac_audio;
static int audio_open(struct inode *inode, struct file *file)
{
struct audio *audio = &the_aac_audio;
int rc;
mutex_lock(&audio->lock);
if (audio->opened) {
pr_err("audio: busy\n");
rc = -EBUSY;
goto done;
}
if (!audio->data) {
audio->data = dma_alloc_coherent(NULL, DMASZ,
&audio->phys, GFP_KERNEL);
if (!audio->data) {
pr_err("audio: could not allocate DMA buffers\n");
rc = -ENOMEM;
goto done;
}
}
rc = audmgr_open(&audio->audmgr);
if (rc)
goto done;
rc = msm_adsp_get("AUDPLAY0TASK", &audio->audplay,
&audplay_adsp_ops_aac, audio);
if (rc) {
pr_err("audio: failed to get audplay0 dsp module\n");
goto done;
}
audio->out_sample_rate = 44100;
audio->out_channel_mode = AUDPP_CMD_PCM_INTF_STEREO_V;
audio->aac_config.format = AUDIO_AAC_FORMAT_ADTS;
audio->aac_config.audio_object = AUDIO_AAC_OBJECT_LC;
audio->aac_config.ep_config = 0;
audio->aac_config.aac_section_data_resilience_flag =
AUDIO_AAC_SEC_DATA_RES_OFF;
audio->aac_config.aac_scalefactor_data_resilience_flag =
AUDIO_AAC_SCA_DATA_RES_OFF;
audio->aac_config.aac_spectral_data_resilience_flag =
AUDIO_AAC_SPEC_DATA_RES_OFF;
audio->aac_config.sbr_on_flag = AUDIO_AAC_SBR_ON_FLAG_ON;
audio->aac_config.sbr_ps_on_flag = AUDIO_AAC_SBR_PS_ON_FLAG_ON;
audio->aac_config.dual_mono_mode = AUDIO_AAC_DUAL_MONO_PL_SR;
audio->aac_config.channel_configuration = 2;
audio->dec_id = 0;
audio->out[0].data = audio->data + 0;
audio->out[0].addr = audio->phys + 0;
audio->out[0].size = BUFSZ;
audio->out[1].data = audio->data + BUFSZ;
audio->out[1].addr = audio->phys + BUFSZ;
audio->out[1].size = BUFSZ;
audio->volume = 0x2000; /* Q13 1.0 */
audio_flush(audio);
file->private_data = audio;
audio->opened = 1;
rc = 0;
done:
mutex_unlock(&audio->lock);
return rc;
}
static struct file_operations audio_aac_fops = {
.owner = THIS_MODULE,
.open = audio_open,
.release = audio_release,
.read = audio_read,
.write = audio_write,
.unlocked_ioctl = audio_ioctl,
};
struct miscdevice audio_aac_misc = {
.minor = MISC_DYNAMIC_MINOR,
.name = "msm_aac",
.fops = &audio_aac_fops,
};
static int __init audio_init(void)
{
mutex_init(&the_aac_audio.lock);
mutex_init(&the_aac_audio.write_lock);
mutex_init(&the_aac_audio.read_lock);
spin_lock_init(&the_aac_audio.dsp_lock);
init_waitqueue_head(&the_aac_audio.write_wait);
init_waitqueue_head(&the_aac_audio.read_wait);
the_aac_audio.read_data = NULL;
return misc_register(&audio_aac_misc);
}
device_initcall(audio_init);
/* linux/arch/arm/mach-msm/qdsp5/audio_amrnb.c
*
* amrnb audio decoder device
*
* Copyright (c) 2008 QUALCOMM USA, INC.
*
* Based on the mp3 native driver in arch/arm/mach-msm/qdsp5/audio_mp3.c
*
* Copyright (C) 2008 Google, Inc.
* Copyright (C) 2008 HTC Corporation
*
* All source code in this file is licensed under the following license except
* where indicated.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
*
* See the GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program; if not, you can find it at http://www.fsf.org
*/
#include <linux/module.h>
#include <linux/fs.h>
#include <linux/miscdevice.h>
#include <linux/uaccess.h>
#include <linux/kthread.h>
#include <linux/wait.h>
#include <linux/dma-mapping.h>
#include <linux/delay.h>
#include <asm/atomic.h>
#include <asm/ioctls.h>
#include <mach/msm_adsp.h>
#include <linux/msm_audio.h>
#include "audmgr.h"
#include <mach/qdsp5/qdsp5audppcmdi.h>
#include <mach/qdsp5/qdsp5audppmsg.h>
#include <mach/qdsp5/qdsp5audplaycmdi.h>
#include <mach/qdsp5/qdsp5audplaymsg.h>
/* for queue ids - should be relative to module number*/
#include "adsp.h"
#define DEBUG
#ifdef DEBUG
#define dprintk(format, arg...) \
printk(KERN_DEBUG format, ## arg)
#else
#define dprintk(format, arg...) do {} while (0)
#endif
#define BUFSZ 1024 /* Hold minimum 700ms voice data */
#define DMASZ (BUFSZ * 2)
#define AUDPLAY_INVALID_READ_PTR_OFFSET 0xFFFF
#define AUDDEC_DEC_AMRNB 10
#define PCM_BUFSZ_MIN 1600 /* 100ms worth of data */
#define AMRNB_DECODED_FRSZ 320 /* AMR-NB 20ms 8KHz mono PCM size */
#define PCM_BUF_MAX_COUNT 5 /* DSP only accepts 5 buffers at most
but support 2 buffers currently */
#define ROUTING_MODE_FTRT 1
#define ROUTING_MODE_RT 2
/* Decoder status received from AUDPPTASK */
#define AUDPP_DEC_STATUS_SLEEP 0
#define AUDPP_DEC_STATUS_INIT 1
#define AUDPP_DEC_STATUS_CFG 2
#define AUDPP_DEC_STATUS_PLAY 3
struct buffer {
void *data;
unsigned size;
unsigned used; /* Input usage actual DSP produced PCM size */
unsigned addr;
};
struct audio {
struct buffer out[2];
spinlock_t dsp_lock;
uint8_t out_head;
uint8_t out_tail;
uint8_t out_needed; /* number of buffers the dsp is waiting for */
atomic_t out_bytes;
struct mutex lock;
struct mutex write_lock;
wait_queue_head_t write_wait;
/* Host PCM section */
struct buffer in[PCM_BUF_MAX_COUNT];
struct mutex read_lock;
wait_queue_head_t read_wait; /* Wait queue for read */
char *read_data; /* pointer to reader buffer */
dma_addr_t read_phys; /* physical address of reader buffer */
uint8_t read_next; /* index to input buffers to be read next */
uint8_t fill_next; /* index to buffer that DSP should be filling */
uint8_t pcm_buf_count; /* number of pcm buffer allocated */
/* ---- End of Host PCM section */
struct msm_adsp_module *audplay;
struct audmgr audmgr;
/* data allocated for various buffers */
char *data;
dma_addr_t phys;
uint8_t opened:1;
uint8_t enabled:1;
uint8_t running:1;
uint8_t stopped:1; /* set when stopped, cleared on flush */
uint8_t pcm_feedback:1;
uint8_t buf_refresh:1;
unsigned volume;
uint16_t dec_id;
uint32_t read_ptr_offset;
};
struct audpp_cmd_cfg_adec_params_amrnb {
audpp_cmd_cfg_adec_params_common common;
unsigned short stereo_cfg;
} __attribute__((packed)) ;
static int auddec_dsp_config(struct audio *audio, int enable);
static void audpp_cmd_cfg_adec_params(struct audio *audio);
static void audpp_cmd_cfg_routing_mode(struct audio *audio);
static void audamrnb_send_data(struct audio *audio, unsigned needed);
static void audamrnb_config_hostpcm(struct audio *audio);
static void audamrnb_buffer_refresh(struct audio *audio);
static void audamrnb_dsp_event(void *private, unsigned id, uint16_t *msg);
/* must be called with audio->lock held */
static int audamrnb_enable(struct audio *audio)
{
struct audmgr_config cfg;
int rc;
dprintk("audamrnb_enable()\n");
if (audio->enabled)
return 0;
audio->out_tail = 0;
audio->out_needed = 0;
cfg.tx_rate = RPC_AUD_DEF_SAMPLE_RATE_NONE;
cfg.rx_rate = RPC_AUD_DEF_SAMPLE_RATE_48000;
cfg.def_method = RPC_AUD_DEF_METHOD_PLAYBACK;
cfg.codec = RPC_AUD_DEF_CODEC_AMR_NB;
cfg.snd_method = RPC_SND_METHOD_MIDI;
rc = audmgr_enable(&audio->audmgr, &cfg);
if (rc < 0)
return rc;
if (msm_adsp_enable(audio->audplay)) {
pr_err("audio: msm_adsp_enable(audplay) failed\n");
audmgr_disable(&audio->audmgr);
return -ENODEV;
}
if (audpp_enable(audio->dec_id, audamrnb_dsp_event, audio)) {
pr_err("audio: audpp_enable() failed\n");
msm_adsp_disable(audio->audplay);
audmgr_disable(&audio->audmgr);
return -ENODEV;
}
audio->enabled = 1;
return 0;
}
/* must be called with audio->lock held */
static int audamrnb_disable(struct audio *audio)
{
dprintk("audamrnb_disable()\n");
if (audio->enabled) {
audio->enabled = 0;
auddec_dsp_config(audio, 0);
wake_up(&audio->write_wait);
wake_up(&audio->read_wait);
msm_adsp_disable(audio->audplay);
audpp_disable(audio->dec_id, audio);
audmgr_disable(&audio->audmgr);
audio->out_needed = 0;
}
return 0;
}
/* ------------------- dsp --------------------- */
static void audamrnb_update_pcm_buf_entry(struct audio *audio,
uint32_t *payload)
{
uint8_t index;
unsigned long flags;
spin_lock_irqsave(&audio->dsp_lock, flags);
for (index = 0; index < payload[1]; index++) {
if (audio->in[audio->fill_next].addr ==
payload[2 + index * 2]) {
dprintk("audamrnb_update_pcm_buf_entry: in[%d] ready\n",
audio->fill_next);
audio->in[audio->fill_next].used =
payload[3 + index * 2];
if ((++audio->fill_next) == audio->pcm_buf_count)
audio->fill_next = 0;
} else {
pr_err
("audamrnb_update_pcm_buf_entry: expected=%x ret=%x\n"
, audio->in[audio->fill_next].addr,
payload[1 + index * 2]);
break;
}
}
if (audio->in[audio->fill_next].used == 0) {
audamrnb_buffer_refresh(audio);
} else {
dprintk("audamrnb_update_pcm_buf_entry: read cannot keep up\n");
audio->buf_refresh = 1;
}
spin_unlock_irqrestore(&audio->dsp_lock, flags);
wake_up(&audio->read_wait);
}
static void audplay_dsp_event(void *data, unsigned id, size_t len,
void (*getevent) (void *ptr, size_t len))
{
struct audio *audio = data;
uint32_t msg[28];
getevent(msg, sizeof(msg));
dprintk("audplay_dsp_event: msg_id=%x\n", id);
switch (id) {
case AUDPLAY_MSG_DEC_NEEDS_DATA:
audamrnb_send_data(audio, 1);
break;
case AUDPLAY_MSG_BUFFER_UPDATE:
audamrnb_update_pcm_buf_entry(audio, msg);
break;
default:
pr_err("unexpected message from decoder \n");
}
}
static void audamrnb_dsp_event(void *private, unsigned id, uint16_t *msg)
{
struct audio *audio = private;
switch (id) {
case AUDPP_MSG_STATUS_MSG:{
unsigned status = msg[1];
switch (status) {
case AUDPP_DEC_STATUS_SLEEP:
dprintk("decoder status: sleep \n");
break;
case AUDPP_DEC_STATUS_INIT:
dprintk("decoder status: init \n");
audpp_cmd_cfg_routing_mode(audio);
break;
case AUDPP_DEC_STATUS_CFG:
dprintk("decoder status: cfg \n");
break;
case AUDPP_DEC_STATUS_PLAY:
dprintk("decoder status: play \n");
if (audio->pcm_feedback) {
audamrnb_config_hostpcm(audio);
audamrnb_buffer_refresh(audio);
}
break;
default:
pr_err("unknown decoder status \n");
break;
}
break;
}
case AUDPP_MSG_CFG_MSG:
if (msg[0] == AUDPP_MSG_ENA_ENA) {
dprintk("audamrnb_dsp_event: CFG_MSG ENABLE\n");
auddec_dsp_config(audio, 1);
audio->out_needed = 0;
audio->running = 1;
audpp_set_volume_and_pan(audio->dec_id, audio->volume,
0);
audpp_avsync(audio->dec_id, 22050);
} else if (msg[0] == AUDPP_MSG_ENA_DIS) {
dprintk("audamrnb_dsp_event: CFG_MSG DISABLE\n");
audpp_avsync(audio->dec_id, 0);
audio->running = 0;
} else {
pr_err("audamrnb_dsp_event: CFG_MSG %d?\n", msg[0]);
}
break;
case AUDPP_MSG_ROUTING_ACK:
dprintk("audamrnb_dsp_event: ROUTING_ACK mode=%d\n", msg[1]);
audpp_cmd_cfg_adec_params(audio);
break;
default:
pr_err("audamrnb_dsp_event: UNKNOWN (%d)\n", id);
}
}
struct msm_adsp_ops audplay_adsp_ops_amrnb = {
.event = audplay_dsp_event,
};
#define audplay_send_queue0(audio, cmd, len) \
msm_adsp_write(audio->audplay, QDSP_uPAudPlay0BitStreamCtrlQueue, \
cmd, len)
static int auddec_dsp_config(struct audio *audio, int enable)
{
audpp_cmd_cfg_dec_type cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.cmd_id = AUDPP_CMD_CFG_DEC_TYPE;
if (enable)
cmd.dec0_cfg = AUDPP_CMD_UPDATDE_CFG_DEC |
AUDPP_CMD_ENA_DEC_V | AUDDEC_DEC_AMRNB;
else
cmd.dec0_cfg = AUDPP_CMD_UPDATDE_CFG_DEC | AUDPP_CMD_DIS_DEC_V;
return audpp_send_queue1(&cmd, sizeof(cmd));
}
static void audpp_cmd_cfg_adec_params(struct audio *audio)
{
struct audpp_cmd_cfg_adec_params_amrnb cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.common.cmd_id = AUDPP_CMD_CFG_ADEC_PARAMS;
cmd.common.length = AUDPP_CMD_CFG_ADEC_PARAMS_V13K_LEN;
cmd.common.dec_id = audio->dec_id;
cmd.common.input_sampling_frequency = 8000;
cmd.stereo_cfg = AUDPP_CMD_PCM_INTF_MONO_V;
audpp_send_queue2(&cmd, sizeof(cmd));
}
static void audpp_cmd_cfg_routing_mode(struct audio *audio)
{
struct audpp_cmd_routing_mode cmd;
dprintk("audpp_cmd_cfg_routing_mode()\n");
memset(&cmd, 0, sizeof(cmd));
cmd.cmd_id = AUDPP_CMD_ROUTING_MODE;
cmd.object_number = audio->dec_id;
if (audio->pcm_feedback)
cmd.routing_mode = ROUTING_MODE_FTRT;
else
cmd.routing_mode = ROUTING_MODE_RT;
audpp_send_queue1(&cmd, sizeof(cmd));
}
static int audplay_dsp_send_data_avail(struct audio *audio,
unsigned idx, unsigned len)
{
audplay_cmd_bitstream_data_avail cmd;
cmd.cmd_id = AUDPLAY_CMD_BITSTREAM_DATA_AVAIL;
cmd.decoder_id = audio->dec_id;
cmd.buf_ptr = audio->out[idx].addr;
cmd.buf_size = len / 2;
cmd.partition_number = 0;
return audplay_send_queue0(audio, &cmd, sizeof(cmd));
}
static void audamrnb_buffer_refresh(struct audio *audio)
{
struct audplay_cmd_buffer_refresh refresh_cmd;
refresh_cmd.cmd_id = AUDPLAY_CMD_BUFFER_REFRESH;
refresh_cmd.num_buffers = 1;
refresh_cmd.buf0_address = audio->in[audio->fill_next].addr;
refresh_cmd.buf0_length = audio->in[audio->fill_next].size -
(audio->in[audio->fill_next].size % AMRNB_DECODED_FRSZ);
refresh_cmd.buf_read_count = 0;
dprintk("audplay_buffer_fresh: buf0_addr=%x buf0_len=%d\n",
refresh_cmd.buf0_address, refresh_cmd.buf0_length);
(void)audplay_send_queue0(audio, &refresh_cmd, sizeof(refresh_cmd));
}
static void audamrnb_config_hostpcm(struct audio *audio)
{
struct audplay_cmd_hpcm_buf_cfg cfg_cmd;
dprintk("audamrnb_config_hostpcm()\n");
cfg_cmd.cmd_id = AUDPLAY_CMD_HPCM_BUF_CFG;
cfg_cmd.max_buffers = audio->pcm_buf_count;
cfg_cmd.byte_swap = 0;
cfg_cmd.hostpcm_config = (0x8000) | (0x4000);
cfg_cmd.feedback_frequency = 1;
cfg_cmd.partition_number = 0;
(void)audplay_send_queue0(audio, &cfg_cmd, sizeof(cfg_cmd));
}
static void audamrnb_send_data(struct audio *audio, unsigned needed)
{
struct buffer *frame;
unsigned long flags;
spin_lock_irqsave(&audio->dsp_lock, flags);
if (!audio->running)
goto done;
if (needed) {
/* We were called from the callback because the DSP
* requested more data. Note that the DSP does want
* more data, and if a buffer was in-flight, mark it
* as available (since the DSP must now be done with
* it).
*/
audio->out_needed = 1;
frame = audio->out + audio->out_tail;
if (frame->used == 0xffffffff) {
frame->used = 0;
audio->out_tail ^= 1;
wake_up(&audio->write_wait);
}
}
if (audio->out_needed) {
/* If the DSP currently wants data and we have a
* buffer available, we will send it and reset
* the needed flag. We'll mark the buffer as in-flight
* so that it won't be recycled until the next buffer
* is requested
*/
frame = audio->out + audio->out_tail;
if (frame->used) {
BUG_ON(frame->used == 0xffffffff);
/* printk("frame %d busy\n", audio->out_tail); */
audplay_dsp_send_data_avail(audio, audio->out_tail,
frame->used);
frame->used = 0xffffffff;
audio->out_needed = 0;
}
}
done:
spin_unlock_irqrestore(&audio->dsp_lock, flags);
}
/* ------------------- device --------------------- */
static void audamrnb_flush(struct audio *audio)
{
audio->out[0].used = 0;
audio->out[1].used = 0;
audio->out_head = 0;
audio->out_tail = 0;
audio->stopped = 0;
atomic_set(&audio->out_bytes, 0);
}
static void audamrnb_flush_pcm_buf(struct audio *audio)
{
uint8_t index;
for (index = 0; index < PCM_BUF_MAX_COUNT; index++)
audio->in[index].used = 0;
audio->read_next = 0;
audio->fill_next = 0;
}
static long audamrnb_ioctl(struct file *file, unsigned int cmd,
unsigned long arg)
{
struct audio *audio = file->private_data;
int rc = 0;
dprintk("audamrnb_ioctl() cmd = %d\n", cmd);
if (cmd == AUDIO_GET_STATS) {
struct msm_audio_stats stats;
stats.byte_count = audpp_avsync_byte_count(audio->dec_id);
stats.sample_count = audpp_avsync_sample_count(audio->dec_id);
if (copy_to_user((void *)arg, &stats, sizeof(stats)))
return -EFAULT;
return 0;
}
if (cmd == AUDIO_SET_VOLUME) {
unsigned long flags;
spin_lock_irqsave(&audio->dsp_lock, flags);
audio->volume = arg;
if (audio->running)
audpp_set_volume_and_pan(audio->dec_id, arg, 0);
spin_unlock_irqrestore(&audio->dsp_lock, flags);
return 0;
}
mutex_lock(&audio->lock);
switch (cmd) {
case AUDIO_START:
rc = audamrnb_enable(audio);
break;
case AUDIO_STOP:
rc = audamrnb_disable(audio);
audio->stopped = 1;
break;
case AUDIO_FLUSH:
if (audio->stopped) {
/* Make sure we're stopped and we wake any threads
* that might be blocked holding the write_lock.
* While audio->stopped write threads will always
* exit immediately.
*/
wake_up(&audio->write_wait);
mutex_lock(&audio->write_lock);
audamrnb_flush(audio);
mutex_unlock(&audio->write_lock);
wake_up(&audio->read_wait);
mutex_lock(&audio->read_lock);
audamrnb_flush_pcm_buf(audio);
mutex_unlock(&audio->read_lock);
break;
}
case AUDIO_SET_CONFIG:{
dprintk("AUDIO_SET_CONFIG not applicable \n");
break;
}
case AUDIO_GET_CONFIG:{
struct msm_audio_config config;
config.buffer_size = BUFSZ;
config.buffer_count = 2;
config.sample_rate = 8000;
config.channel_count = 1;
config.unused[0] = 0;
config.unused[1] = 0;
config.unused[2] = 0;
config.unused[3] = 0;
if (copy_to_user((void *)arg, &config,
sizeof(config)))
rc = -EFAULT;
else
rc = 0;
break;
}
case AUDIO_GET_PCM_CONFIG:{
struct msm_audio_pcm_config config;
config.pcm_feedback = 0;
config.buffer_count = PCM_BUF_MAX_COUNT;
config.buffer_size = PCM_BUFSZ_MIN;
if (copy_to_user((void *)arg, &config,
sizeof(config)))
rc = -EFAULT;
else
rc = 0;
break;
}
case AUDIO_SET_PCM_CONFIG:{
struct msm_audio_pcm_config config;
if (copy_from_user
(&config, (void *)arg, sizeof(config))) {
rc = -EFAULT;
break;
}
if ((config.buffer_count > PCM_BUF_MAX_COUNT) ||
(config.buffer_count == 1))
config.buffer_count = PCM_BUF_MAX_COUNT;
if (config.buffer_size < PCM_BUFSZ_MIN)
config.buffer_size = PCM_BUFSZ_MIN;
/* Check if pcm feedback is required */
if ((config.pcm_feedback) && (!audio->read_data)) {
dprintk("audamrnb_ioctl: allocate PCM buf %d\n",
config.buffer_count *
config.buffer_size);
audio->read_data =
dma_alloc_coherent(NULL,
config.buffer_size *
config.buffer_count,
&audio->read_phys,
GFP_KERNEL);
if (!audio->read_data) {
pr_err("audamrnb_ioctl: no mem for pcm buf\n");
rc = -1;
} else {
uint8_t index;
uint32_t offset = 0;
audio->pcm_feedback = 1;
audio->buf_refresh = 0;
audio->pcm_buf_count =
config.buffer_count;
audio->read_next = 0;
audio->fill_next = 0;
for (index = 0;
index < config.buffer_count; index++) {
audio->in[index].data =
audio->read_data + offset;
audio->in[index].addr =
audio->read_phys + offset;
audio->in[index].size =
config.buffer_size;
audio->in[index].used = 0;
offset += config.buffer_size;
}
rc = 0;
}
} else {
rc = 0;
}
break;
}
default:
rc = -EINVAL;
}
mutex_unlock(&audio->lock);
return rc;
}
static ssize_t audamrnb_read(struct file *file, char __user *buf, size_t count,
loff_t *pos)
{
struct audio *audio = file->private_data;
const char __user *start = buf;
int rc = 0;
if (!audio->pcm_feedback)
return 0; /* PCM feedback is not enabled. Nothing to read */
mutex_lock(&audio->read_lock);
dprintk("audamrnb_read() %d \n", count);
while (count > 0) {
rc = wait_event_interruptible(audio->read_wait,
(audio->in[audio->read_next].
used > 0) || (audio->stopped));
if (rc < 0)
break;
if (audio->stopped) {
rc = -EBUSY;
break;
}
if (count < audio->in[audio->read_next].used) {
/* Read must happen in frame boundary. Since driver does
* not know frame size, read count must be greater or
* equal to size of PCM samples
*/
dprintk("audamrnb_read:read stop - partial frame\n");
break;
} else {
dprintk("audamrnb_read: read from in[%d]\n",
audio->read_next);
if (copy_to_user
(buf, audio->in[audio->read_next].data,
audio->in[audio->read_next].used)) {
pr_err("audamrnb_read: invalid addr %x \n",
(unsigned int)buf);
rc = -EFAULT;
break;
}
count -= audio->in[audio->read_next].used;
buf += audio->in[audio->read_next].used;
audio->in[audio->read_next].used = 0;
if ((++audio->read_next) == audio->pcm_buf_count)
audio->read_next = 0;
}
}
if (audio->buf_refresh) {
audio->buf_refresh = 0;
dprintk("audamrnb_read: kick start pcm feedback again\n");
audamrnb_buffer_refresh(audio);
}
mutex_unlock(&audio->read_lock);
if (buf > start)
rc = buf - start;
dprintk("audamrnb_read: read %d bytes\n", rc);
return rc;
}
static ssize_t audamrnb_write(struct file *file, const char __user *buf,
size_t count, loff_t *pos)
{
struct audio *audio = file->private_data;
const char __user *start = buf;
struct buffer *frame;
size_t xfer;
int rc = 0;
if (count & 1)
return -EINVAL;
dprintk("audamrnb_write() \n");
mutex_lock(&audio->write_lock);
while (count > 0) {
frame = audio->out + audio->out_head;
rc = wait_event_interruptible(audio->write_wait,
(frame->used == 0)
|| (audio->stopped));
dprintk("audamrnb_write() buffer available\n");
if (rc < 0)
break;
if (audio->stopped) {
rc = -EBUSY;
break;
}
xfer = (count > frame->size) ? frame->size : count;
if (copy_from_user(frame->data, buf, xfer)) {
rc = -EFAULT;
break;
}
frame->used = xfer;
audio->out_head ^= 1;
count -= xfer;
buf += xfer;
audamrnb_send_data(audio, 0);
}
mutex_unlock(&audio->write_lock);
if (buf > start)
return buf - start;
return rc;
}
static int audamrnb_release(struct inode *inode, struct file *file)
{
struct audio *audio = file->private_data;
dprintk("audamrnb_release()\n");
mutex_lock(&audio->lock);
audamrnb_disable(audio);
audamrnb_flush(audio);
audamrnb_flush_pcm_buf(audio);
msm_adsp_put(audio->audplay);
audio->audplay = NULL;
audio->opened = 0;
dma_free_coherent(NULL, DMASZ, audio->data, audio->phys);
audio->data = NULL;
if (audio->read_data != NULL) {
dma_free_coherent(NULL,
audio->in[0].size * audio->pcm_buf_count,
audio->read_data, audio->read_phys);
audio->read_data = NULL;
}
audio->pcm_feedback = 0;
mutex_unlock(&audio->lock);
return 0;
}
static struct audio the_amrnb_audio;
static int audamrnb_open(struct inode *inode, struct file *file)
{
struct audio *audio = &the_amrnb_audio;
int rc;
mutex_lock(&audio->lock);
if (audio->opened) {
pr_err("audio: busy\n");
rc = -EBUSY;
goto done;
}
if (!audio->data) {
audio->data = dma_alloc_coherent(NULL, DMASZ,
&audio->phys, GFP_KERNEL);
if (!audio->data) {
pr_err("audio: could not allocate DMA buffers\n");
rc = -ENOMEM;
goto done;
}
}
rc = audmgr_open(&audio->audmgr);
if (rc)
goto done;
rc = msm_adsp_get("AUDPLAY0TASK", &audio->audplay,
&audplay_adsp_ops_amrnb, audio);
if (rc) {
pr_err("audio: failed to get audplay0 dsp module\n");
audmgr_disable(&audio->audmgr);
dma_free_coherent(NULL, DMASZ, audio->data, audio->phys);
audio->data = NULL;
goto done;
}
audio->dec_id = 0;
audio->out[0].data = audio->data + 0;
audio->out[0].addr = audio->phys + 0;
audio->out[0].size = BUFSZ;
audio->out[1].data = audio->data + BUFSZ;
audio->out[1].addr = audio->phys + BUFSZ;
audio->out[1].size = BUFSZ;
audio->volume = 0x2000; /* Q13 1.0 */
audamrnb_flush(audio);
file->private_data = audio;
audio->opened = 1;
rc = 0;
done:
mutex_unlock(&audio->lock);
return rc;
}
static struct file_operations audio_amrnb_fops = {
.owner = THIS_MODULE,
.open = audamrnb_open,
.release = audamrnb_release,
.read = audamrnb_read,
.write = audamrnb_write,
.unlocked_ioctl = audamrnb_ioctl,
};
struct miscdevice audio_amrnb_misc = {
.minor = MISC_DYNAMIC_MINOR,
.name = "msm_amrnb",
.fops = &audio_amrnb_fops,
};
static int __init audamrnb_init(void)
{
mutex_init(&the_amrnb_audio.lock);
mutex_init(&the_amrnb_audio.write_lock);
mutex_init(&the_amrnb_audio.read_lock);
spin_lock_init(&the_amrnb_audio.dsp_lock);
init_waitqueue_head(&the_amrnb_audio.write_wait);
init_waitqueue_head(&the_amrnb_audio.read_wait);
the_amrnb_audio.read_data = NULL;
return misc_register(&audio_amrnb_misc);
}
static void __exit audamrnb_exit(void)
{
misc_deregister(&audio_amrnb_misc);
}
module_init(audamrnb_init);
module_exit(audamrnb_exit);
MODULE_DESCRIPTION("MSM AMR-NB driver");
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("QUALCOMM Inc");
/* arch/arm/mach-msm/audio_evrc.c
*
* Copyright (c) 2008 QUALCOMM USA, INC.
*
* This code also borrows from audio_aac.c, which is
* Copyright (C) 2008 Google, Inc.
* Copyright (C) 2008 HTC Corporation
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
*
* See the GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program; if not, you can find it at http://www.fsf.org.
*/
#include <linux/module.h>
#include <linux/fs.h>
#include <linux/miscdevice.h>
#include <linux/uaccess.h>
#include <linux/kthread.h>
#include <linux/wait.h>
#include <linux/dma-mapping.h>
#include <linux/delay.h>
#include <asm/atomic.h>
#include <asm/ioctls.h>
#include <mach/msm_adsp.h>
#include <linux/msm_audio.h>
#include "audmgr.h"
#include <mach/qdsp5/qdsp5audppcmdi.h>
#include <mach/qdsp5/qdsp5audppmsg.h>
#include <mach/qdsp5/qdsp5audplaycmdi.h>
#include <mach/qdsp5/qdsp5audplaymsg.h>
#include "adsp.h"
#ifdef DEBUG
#define dprintk(format, arg...) \
printk(KERN_DEBUG format, ## arg)
#else
#define dprintk(format, arg...) do {} while (0)
#endif
/* Hold 30 packets of 24 bytes each*/
#define BUFSZ 720
#define DMASZ (BUFSZ * 2)
#define AUDDEC_DEC_EVRC 12
#define PCM_BUFSZ_MIN 1600 /* 100ms worth of data */
#define PCM_BUF_MAX_COUNT 5
/* DSP only accepts 5 buffers at most
* but support 2 buffers currently
*/
#define EVRC_DECODED_FRSZ 320 /* EVRC 20ms 8KHz mono PCM size */
#define ROUTING_MODE_FTRT 1
#define ROUTING_MODE_RT 2
/* Decoder status received from AUDPPTASK */
#define AUDPP_DEC_STATUS_SLEEP 0
#define AUDPP_DEC_STATUS_INIT 1
#define AUDPP_DEC_STATUS_CFG 2
#define AUDPP_DEC_STATUS_PLAY 3
struct buffer {
void *data;
unsigned size;
unsigned used; /* Input usage actual DSP produced PCM size */
unsigned addr;
};
struct audio {
struct buffer out[2];
spinlock_t dsp_lock;
uint8_t out_head;
uint8_t out_tail;
uint8_t out_needed; /* number of buffers the dsp is waiting for */
atomic_t out_bytes;
struct mutex lock;
struct mutex write_lock;
wait_queue_head_t write_wait;
/* Host PCM section */
struct buffer in[PCM_BUF_MAX_COUNT];
struct mutex read_lock;
wait_queue_head_t read_wait; /* Wait queue for read */
char *read_data; /* pointer to reader buffer */
dma_addr_t read_phys; /* physical address of reader buffer */
uint8_t read_next; /* index to input buffers to be read next */
uint8_t fill_next; /* index to buffer that DSP should be filling */
uint8_t pcm_buf_count; /* number of pcm buffer allocated */
/* ---- End of Host PCM section */
struct msm_adsp_module *audplay;
struct audmgr audmgr;
/* data allocated for various buffers */
char *data;
dma_addr_t phys;
uint8_t opened:1;
uint8_t enabled:1;
uint8_t running:1;
uint8_t stopped:1; /* set when stopped, cleared on flush */
uint8_t pcm_feedback:1;
uint8_t buf_refresh:1;
unsigned volume;
uint16_t dec_id;
uint32_t read_ptr_offset;
};
static struct audio the_evrc_audio;
static int auddec_dsp_config(struct audio *audio, int enable);
static void audpp_cmd_cfg_adec_params(struct audio *audio);
static void audpp_cmd_cfg_routing_mode(struct audio *audio);
static void audevrc_send_data(struct audio *audio, unsigned needed);
static void audevrc_dsp_event(void *private, unsigned id, uint16_t *msg);
static void audevrc_config_hostpcm(struct audio *audio);
static void audevrc_buffer_refresh(struct audio *audio);
/* must be called with audio->lock held */
static int audevrc_enable(struct audio *audio)
{
struct audmgr_config cfg;
int rc;
if (audio->enabled)
return 0;
audio->out_tail = 0;
audio->out_needed = 0;
cfg.tx_rate = RPC_AUD_DEF_SAMPLE_RATE_NONE;
cfg.rx_rate = RPC_AUD_DEF_SAMPLE_RATE_48000;
cfg.def_method = RPC_AUD_DEF_METHOD_PLAYBACK;
cfg.codec = RPC_AUD_DEF_CODEC_EVRC;
cfg.snd_method = RPC_SND_METHOD_MIDI;
rc = audmgr_enable(&audio->audmgr, &cfg);
if (rc < 0)
return rc;
if (msm_adsp_enable(audio->audplay)) {
pr_err("audio: msm_adsp_enable(audplay) failed\n");
audmgr_disable(&audio->audmgr);
return -ENODEV;
}
if (audpp_enable(audio->dec_id, audevrc_dsp_event, audio)) {
pr_err("audio: audpp_enable() failed\n");
msm_adsp_disable(audio->audplay);
audmgr_disable(&audio->audmgr);
return -ENODEV;
}
audio->enabled = 1;
return 0;
}
/* must be called with audio->lock held */
static int audevrc_disable(struct audio *audio)
{
if (audio->enabled) {
audio->enabled = 0;
auddec_dsp_config(audio, 0);
wake_up(&audio->write_wait);
wake_up(&audio->read_wait);
msm_adsp_disable(audio->audplay);
audpp_disable(audio->dec_id, audio);
audmgr_disable(&audio->audmgr);
audio->out_needed = 0;
}
return 0;
}
/* ------------------- dsp --------------------- */
static void audevrc_update_pcm_buf_entry(struct audio *audio,
uint32_t *payload)
{
uint8_t index;
unsigned long flags;
spin_lock_irqsave(&audio->dsp_lock, flags);
for (index = 0; index < payload[1]; index++) {
if (audio->in[audio->fill_next].addr
== payload[2 + index * 2]) {
dprintk("audevrc_update_pcm_buf_entry: in[%d] ready\n",
audio->fill_next);
audio->in[audio->fill_next].used =
payload[3 + index * 2];
if ((++audio->fill_next) == audio->pcm_buf_count)
audio->fill_next = 0;
} else {
pr_err
("audevrc_update_pcm_buf_entry: expected=%x ret=%x\n",
audio->in[audio->fill_next].addr,
payload[1 + index * 2]);
break;
}
}
if (audio->in[audio->fill_next].used == 0) {
audevrc_buffer_refresh(audio);
} else {
dprintk("audevrc_update_pcm_buf_entry: read cannot keep up\n");
audio->buf_refresh = 1;
}
spin_unlock_irqrestore(&audio->dsp_lock, flags);
wake_up(&audio->read_wait);
}
static void audplay_dsp_event(void *data, unsigned id, size_t len,
void (*getevent) (void *ptr, size_t len))
{
struct audio *audio = data;
uint32_t msg[28];
getevent(msg, sizeof(msg));
dprintk("audplay_dsp_event: msg_id=%x\n", id);
switch (id) {
case AUDPLAY_MSG_DEC_NEEDS_DATA:
audevrc_send_data(audio, 1);
break;
case AUDPLAY_MSG_BUFFER_UPDATE:
dprintk("audevrc_update_pcm_buf_entry:======> \n");
audevrc_update_pcm_buf_entry(audio, msg);
break;
default:
pr_err("unexpected message from decoder \n");
}
}
static void audevrc_dsp_event(void *private, unsigned id, uint16_t *msg)
{
struct audio *audio = private;
switch (id) {
case AUDPP_MSG_STATUS_MSG:{
unsigned status = msg[1];
switch (status) {
case AUDPP_DEC_STATUS_SLEEP:
dprintk("decoder status: sleep \n");
break;
case AUDPP_DEC_STATUS_INIT:
dprintk("decoder status: init \n");
audpp_cmd_cfg_routing_mode(audio);
break;
case AUDPP_DEC_STATUS_CFG:
dprintk("decoder status: cfg \n");
break;
case AUDPP_DEC_STATUS_PLAY:
dprintk("decoder status: play \n");
if (audio->pcm_feedback) {
audevrc_config_hostpcm(audio);
audevrc_buffer_refresh(audio);
}
break;
default:
pr_err("unknown decoder status \n");
}
break;
}
case AUDPP_MSG_CFG_MSG:
if (msg[0] == AUDPP_MSG_ENA_ENA) {
dprintk("audevrc_dsp_event: CFG_MSG ENABLE\n");
auddec_dsp_config(audio, 1);
audio->out_needed = 0;
audio->running = 1;
audpp_set_volume_and_pan(audio->dec_id, audio->volume,
0);
audpp_avsync(audio->dec_id, 22050);
} else if (msg[0] == AUDPP_MSG_ENA_DIS) {
dprintk("audevrc_dsp_event: CFG_MSG DISABLE\n");
audpp_avsync(audio->dec_id, 0);
audio->running = 0;
} else {
pr_err("audevrc_dsp_event: CFG_MSG %d?\n", msg[0]);
}
break;
case AUDPP_MSG_ROUTING_ACK:
dprintk("audevrc_dsp_event: ROUTING_ACK\n");
audpp_cmd_cfg_adec_params(audio);
break;
default:
pr_err("audevrc_dsp_event: UNKNOWN (%d)\n", id);
}
}
struct msm_adsp_ops audplay_adsp_ops_evrc = {
.event = audplay_dsp_event,
};
#define audplay_send_queue0(audio, cmd, len) \
msm_adsp_write(audio->audplay, QDSP_uPAudPlay0BitStreamCtrlQueue, \
cmd, len)
static int auddec_dsp_config(struct audio *audio, int enable)
{
audpp_cmd_cfg_dec_type cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.cmd_id = AUDPP_CMD_CFG_DEC_TYPE;
if (enable)
cmd.dec0_cfg = AUDPP_CMD_UPDATDE_CFG_DEC |
AUDPP_CMD_ENA_DEC_V | AUDDEC_DEC_EVRC;
else
cmd.dec0_cfg = AUDPP_CMD_UPDATDE_CFG_DEC | AUDPP_CMD_DIS_DEC_V;
return audpp_send_queue1(&cmd, sizeof(cmd));
}
static void audpp_cmd_cfg_adec_params(struct audio *audio)
{
struct audpp_cmd_cfg_adec_params_evrc cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.common.cmd_id = AUDPP_CMD_CFG_ADEC_PARAMS;
cmd.common.length = sizeof(cmd);
cmd.common.dec_id = audio->dec_id;
cmd.common.input_sampling_frequency = 8000;
cmd.stereo_cfg = AUDPP_CMD_PCM_INTF_MONO_V;
audpp_send_queue2(&cmd, sizeof(cmd));
}
static void audpp_cmd_cfg_routing_mode(struct audio *audio)
{
struct audpp_cmd_routing_mode cmd;
dprintk("audpp_cmd_cfg_routing_mode()\n");
memset(&cmd, 0, sizeof(cmd));
cmd.cmd_id = AUDPP_CMD_ROUTING_MODE;
cmd.object_number = audio->dec_id;
if (audio->pcm_feedback)
cmd.routing_mode = ROUTING_MODE_FTRT;
else
cmd.routing_mode = ROUTING_MODE_RT;
audpp_send_queue1(&cmd, sizeof(cmd));
}
static int audplay_dsp_send_data_avail(struct audio *audio,
unsigned idx, unsigned len)
{
audplay_cmd_bitstream_data_avail cmd;
cmd.cmd_id = AUDPLAY_CMD_BITSTREAM_DATA_AVAIL;
cmd.decoder_id = audio->dec_id;
cmd.buf_ptr = audio->out[idx].addr;
cmd.buf_size = len / 2;
cmd.partition_number = 0;
return audplay_send_queue0(audio, &cmd, sizeof(cmd));
}
static void audevrc_buffer_refresh(struct audio *audio)
{
struct audplay_cmd_buffer_refresh refresh_cmd;
refresh_cmd.cmd_id = AUDPLAY_CMD_BUFFER_REFRESH;
refresh_cmd.num_buffers = 1;
refresh_cmd.buf0_address = audio->in[audio->fill_next].addr;
refresh_cmd.buf0_length = audio->in[audio->fill_next].size;
refresh_cmd.buf_read_count = 0;
dprintk("audplay_buffer_fresh: buf0_addr=%x buf0_len=%d\n",
refresh_cmd.buf0_address, refresh_cmd.buf0_length);
audplay_send_queue0(audio, &refresh_cmd, sizeof(refresh_cmd));
}
static void audevrc_config_hostpcm(struct audio *audio)
{
struct audplay_cmd_hpcm_buf_cfg cfg_cmd;
dprintk("audevrc_config_hostpcm()\n");
cfg_cmd.cmd_id = AUDPLAY_CMD_HPCM_BUF_CFG;
cfg_cmd.max_buffers = 1;
cfg_cmd.byte_swap = 0;
cfg_cmd.hostpcm_config = (0x8000) | (0x4000);
cfg_cmd.feedback_frequency = 1;
cfg_cmd.partition_number = 0;
audplay_send_queue0(audio, &cfg_cmd, sizeof(cfg_cmd));
}
static void audevrc_send_data(struct audio *audio, unsigned needed)
{
struct buffer *frame;
unsigned long flags;
spin_lock_irqsave(&audio->dsp_lock, flags);
if (!audio->running)
goto done;
if (needed) {
/* We were called from the callback because the DSP
* requested more data. Note that the DSP does want
* more data, and if a buffer was in-flight, mark it
* as available (since the DSP must now be done with
* it).
*/
audio->out_needed = 1;
frame = audio->out + audio->out_tail;
if (frame->used == 0xffffffff) {
dprintk("frame %d free\n", audio->out_tail);
frame->used = 0;
audio->out_tail ^= 1;
wake_up(&audio->write_wait);
}
}
if (audio->out_needed) {
/* If the DSP currently wants data and we have a
* buffer available, we will send it and reset
* the needed flag. We'll mark the buffer as in-flight
* so that it won't be recycled until the next buffer
* is requested
*/
frame = audio->out + audio->out_tail;
if (frame->used) {
BUG_ON(frame->used == 0xffffffff);
dprintk("frame %d busy\n", audio->out_tail);
audplay_dsp_send_data_avail(audio, audio->out_tail,
frame->used);
frame->used = 0xffffffff;
audio->out_needed = 0;
}
}
done:
spin_unlock_irqrestore(&audio->dsp_lock, flags);
}
/* ------------------- device --------------------- */
static void audevrc_flush(struct audio *audio)
{
audio->out[0].used = 0;
audio->out[1].used = 0;
audio->out_head = 0;
audio->out_tail = 0;
audio->stopped = 0;
atomic_set(&audio->out_bytes, 0);
}
static void audevrc_flush_pcm_buf(struct audio *audio)
{
uint8_t index;
for (index = 0; index < PCM_BUF_MAX_COUNT; index++)
audio->in[index].used = 0;
audio->read_next = 0;
audio->fill_next = 0;
}
static long audevrc_ioctl(struct file *file, unsigned int cmd,
unsigned long arg)
{
struct audio *audio = file->private_data;
int rc = 0;
dprintk("audevrc_ioctl() cmd = %d\n", cmd);
if (cmd == AUDIO_GET_STATS) {
struct msm_audio_stats stats;
stats.byte_count = audpp_avsync_byte_count(audio->dec_id);
stats.sample_count = audpp_avsync_sample_count(audio->dec_id);
if (copy_to_user((void *)arg, &stats, sizeof(stats)))
return -EFAULT;
return 0;
}
if (cmd == AUDIO_SET_VOLUME) {
unsigned long flags;
spin_lock_irqsave(&audio->dsp_lock, flags);
audio->volume = arg;
if (audio->running)
audpp_set_volume_and_pan(audio->dec_id, arg, 0);
spin_unlock_irqrestore(&audio->dsp_lock, flags);
return 0;
}
mutex_lock(&audio->lock);
switch (cmd) {
case AUDIO_START:
rc = audevrc_enable(audio);
break;
case AUDIO_STOP:
rc = audevrc_disable(audio);
audio->stopped = 1;
break;
case AUDIO_SET_CONFIG:{
dprintk("AUDIO_SET_CONFIG not applicable \n");
break;
}
case AUDIO_GET_CONFIG:{
struct msm_audio_config config;
config.buffer_size = BUFSZ;
config.buffer_count = 2;
config.sample_rate = 8000;
config.channel_count = 1;
config.unused[0] = 0;
config.unused[1] = 0;
config.unused[2] = 0;
config.unused[3] = 0;
if (copy_to_user((void *)arg, &config, sizeof(config)))
rc = -EFAULT;
else
rc = 0;
break;
}
case AUDIO_GET_PCM_CONFIG:{
struct msm_audio_pcm_config config;
config.pcm_feedback = 0;
config.buffer_count = PCM_BUF_MAX_COUNT;
config.buffer_size = PCM_BUFSZ_MIN;
if (copy_to_user((void *)arg, &config, sizeof(config)))
rc = -EFAULT;
else
rc = 0;
break;
}
case AUDIO_SET_PCM_CONFIG:{
struct msm_audio_pcm_config config;
if (copy_from_user
(&config, (void *)arg, sizeof(config))) {
rc = -EFAULT;
break;
}
if ((config.buffer_count > PCM_BUF_MAX_COUNT) ||
(config.buffer_count == 1))
config.buffer_count = PCM_BUF_MAX_COUNT;
if (config.buffer_size < PCM_BUFSZ_MIN)
config.buffer_size = PCM_BUFSZ_MIN;
/* Check if pcm feedback is required */
if ((config.pcm_feedback) && (!audio->read_data)) {
dprintk("audevrc_ioctl: allocate PCM buf %d\n",
config.buffer_count *
config.buffer_size);
audio->read_data =
dma_alloc_coherent(NULL,
config.buffer_size *
config.buffer_count,
&audio->read_phys,
GFP_KERNEL);
if (!audio->read_data) {
pr_err
("audevrc_ioctl: no mem for pcm buf\n");
rc = -1;
} else {
uint8_t index;
uint32_t offset = 0;
audio->pcm_feedback = 1;
audio->buf_refresh = 0;
audio->pcm_buf_count =
config.buffer_count;
audio->read_next = 0;
audio->fill_next = 0;
for (index = 0;
index < config.buffer_count;
index++) {
audio->in[index].data =
audio->read_data + offset;
audio->in[index].addr =
audio->read_phys + offset;
audio->in[index].size =
config.buffer_size;
audio->in[index].used = 0;
offset += config.buffer_size;
}
rc = 0;
}
} else {
rc = 0;
}
break;
}
case AUDIO_PAUSE:
dprintk("%s: AUDIO_PAUSE %ld\n", __func__, arg);
rc = audpp_pause(audio->dec_id, (int) arg);
break;
default:
rc = -EINVAL;
}
mutex_unlock(&audio->lock);
return rc;
}
static ssize_t audevrc_read(struct file *file, char __user *buf, size_t count,
loff_t *pos)
{
struct audio *audio = file->private_data;
const char __user *start = buf;
int rc = 0;
if (!audio->pcm_feedback) {
return 0;
/* PCM feedback is not enabled. Nothing to read */
}
mutex_lock(&audio->read_lock);
dprintk("audevrc_read() \n");
while (count > 0) {
rc = wait_event_interruptible(audio->read_wait,
(audio->in[audio->read_next].
used > 0) || (audio->stopped));
dprintk("audevrc_read() wait terminated \n");
if (rc < 0)
break;
if (audio->stopped) {
rc = -EBUSY;
break;
}
if (count < audio->in[audio->read_next].used) {
/* Read must happen in frame boundary. Since driver does
* not know frame size, read count must be greater or
* equal to size of PCM samples
*/
dprintk("audevrc_read:read stop - partial frame\n");
break;
} else {
dprintk("audevrc_read: read from in[%d]\n",
audio->read_next);
if (copy_to_user
(buf, audio->in[audio->read_next].data,
audio->in[audio->read_next].used)) {
pr_err("audevrc_read: invalid addr %x \n",
(unsigned int)buf);
rc = -EFAULT;
break;
}
count -= audio->in[audio->read_next].used;
buf += audio->in[audio->read_next].used;
audio->in[audio->read_next].used = 0;
if ((++audio->read_next) == audio->pcm_buf_count)
audio->read_next = 0;
if (audio->in[audio->read_next].used == 0)
break; /* No data ready at this moment
* Exit while loop to prevent
* output thread sleep too long
*/
}
}
if (audio->buf_refresh) {
audio->buf_refresh = 0;
dprintk("audevrc_read: kick start pcm feedback again\n");
audevrc_buffer_refresh(audio);
}
mutex_unlock(&audio->read_lock);
if (buf > start)
rc = buf - start;
dprintk("audevrc_read: read %d bytes\n", rc);
return rc;
}
static ssize_t audevrc_write(struct file *file, const char __user *buf,
size_t count, loff_t *pos)
{
struct audio *audio = file->private_data;
const char __user *start = buf;
struct buffer *frame;
size_t xfer;
int rc = 0;
if (count & 1)
return -EINVAL;
mutex_lock(&audio->write_lock);
dprintk("audevrc_write() \n");
while (count > 0) {
frame = audio->out + audio->out_head;
rc = wait_event_interruptible(audio->write_wait,
(frame->used == 0)
|| (audio->stopped));
if (rc < 0)
break;
if (audio->stopped) {
rc = -EBUSY;
break;
}
xfer = (count > frame->size) ? frame->size : count;
if (copy_from_user(frame->data, buf, xfer)) {
rc = -EFAULT;
break;
}
frame->used = xfer;
audio->out_head ^= 1;
count -= xfer;
buf += xfer;
audevrc_send_data(audio, 0);
}
mutex_unlock(&audio->write_lock);
if (buf > start)
return buf - start;
return rc;
}
static int audevrc_release(struct inode *inode, struct file *file)
{
struct audio *audio = file->private_data;
dprintk("audevrc_release()\n");
mutex_lock(&audio->lock);
audevrc_disable(audio);
audevrc_flush(audio);
audevrc_flush_pcm_buf(audio);
msm_adsp_put(audio->audplay);
audio->audplay = NULL;
audio->opened = 0;
dma_free_coherent(NULL, DMASZ, audio->data, audio->phys);
audio->data = NULL;
if (audio->read_data != NULL) {
dma_free_coherent(NULL,
audio->in[0].size * audio->pcm_buf_count,
audio->read_data, audio->read_phys);
audio->read_data = NULL;
}
audio->pcm_feedback = 0;
mutex_unlock(&audio->lock);
return 0;
}
static struct audio the_evrc_audio;
static int audevrc_open(struct inode *inode, struct file *file)
{
struct audio *audio = &the_evrc_audio;
int rc;
if (audio->opened) {
pr_err("audio: busy\n");
return -EBUSY;
}
/* Acquire Lock */
mutex_lock(&audio->lock);
if (!audio->data) {
audio->data = dma_alloc_coherent(NULL, DMASZ,
&audio->phys, GFP_KERNEL);
if (!audio->data) {
pr_err("audio: could not allocate DMA buffers\n");
rc = -ENOMEM;
goto dma_fail;
}
}
rc = audmgr_open(&audio->audmgr);
if (rc)
goto audmgr_fail;
rc = msm_adsp_get("AUDPLAY0TASK", &audio->audplay,
&audplay_adsp_ops_evrc, audio);
if (rc) {
pr_err("audio: failed to get audplay0 dsp module\n");
goto adsp_fail;
}
audio->dec_id = 0;
audio->out[0].data = audio->data + 0;
audio->out[0].addr = audio->phys + 0;
audio->out[0].size = BUFSZ;
audio->out[1].data = audio->data + BUFSZ;
audio->out[1].addr = audio->phys + BUFSZ;
audio->out[1].size = BUFSZ;
audio->volume = 0x3FFF;
audevrc_flush(audio);
audio->opened = 1;
file->private_data = audio;
mutex_unlock(&audio->lock);
return rc;
adsp_fail:
audmgr_close(&audio->audmgr);
audmgr_fail:
dma_free_coherent(NULL, DMASZ, audio->data, audio->phys);
dma_fail:
mutex_unlock(&audio->lock);
return rc;
}
static struct file_operations audio_evrc_fops = {
.owner = THIS_MODULE,
.open = audevrc_open,
.release = audevrc_release,
.read = audevrc_read,
.write = audevrc_write,
.unlocked_ioctl = audevrc_ioctl,
};
struct miscdevice audio_evrc_misc = {
.minor = MISC_DYNAMIC_MINOR,
.name = "msm_evrc",
.fops = &audio_evrc_fops,
};
static int __init audevrc_init(void)
{
mutex_init(&the_evrc_audio.lock);
mutex_init(&the_evrc_audio.write_lock);
mutex_init(&the_evrc_audio.read_lock);
spin_lock_init(&the_evrc_audio.dsp_lock);
init_waitqueue_head(&the_evrc_audio.write_wait);
init_waitqueue_head(&the_evrc_audio.read_wait);
the_evrc_audio.read_data = NULL;
return misc_register(&audio_evrc_misc);
}
static void __exit audevrc_exit(void)
{
misc_deregister(&audio_evrc_misc);
}
module_init(audevrc_init);
module_exit(audevrc_exit);
MODULE_DESCRIPTION("MSM EVRC driver");
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("QUALCOMM Inc");
/* arch/arm/mach-msm/qdsp5/audio_in.c
*
* pcm audio input device
*
* Copyright (C) 2008 Google, Inc.
* Copyright (C) 2008 HTC Corporation
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/module.h>
#include <linux/fs.h>
#include <linux/miscdevice.h>
#include <linux/uaccess.h>
#include <linux/kthread.h>
#include <linux/wait.h>
#include <linux/dma-mapping.h>
#include <linux/delay.h>
#include <linux/msm_audio.h>
#include <asm/atomic.h>
#include <asm/ioctls.h>
#include <mach/msm_adsp.h>
#include <mach/msm_rpcrouter.h>
#include "audmgr.h"
#include <mach/qdsp5/qdsp5audpreproccmdi.h>
#include <mach/qdsp5/qdsp5audpreprocmsg.h>
#include <mach/qdsp5/qdsp5audreccmdi.h>
#include <mach/qdsp5/qdsp5audrecmsg.h>
/* for queue ids - should be relative to module number*/
#include "adsp.h"
/* FRAME_NUM must be a power of two */
#define FRAME_NUM (8)
#define FRAME_SIZE (2052 * 2)
#define MONO_DATA_SIZE (2048)
#define STEREO_DATA_SIZE (MONO_DATA_SIZE * 2)
#define DMASZ (FRAME_SIZE * FRAME_NUM)
#define AGC_PARAM_SIZE (20)
#define NS_PARAM_SIZE (6)
#define IIR_PARAM_SIZE (48)
#define DEBUG (0)
#define AGC_ENABLE 0x0001
#define NS_ENABLE 0x0002
#define IIR_ENABLE 0x0004
struct tx_agc_config {
uint16_t agc_params[AGC_PARAM_SIZE];
};
struct ns_config {
uint16_t ns_params[NS_PARAM_SIZE];
};
struct tx_iir_filter {
uint16_t num_bands;
uint16_t iir_params[IIR_PARAM_SIZE];
};
struct audpre_cmd_iir_config_type {
uint16_t cmd_id;
uint16_t active_flag;
uint16_t num_bands;
uint16_t iir_params[IIR_PARAM_SIZE];
};
struct buffer {
void *data;
uint32_t size;
uint32_t read;
uint32_t addr;
};
struct audio_in {
struct buffer in[FRAME_NUM];
spinlock_t dsp_lock;
atomic_t in_bytes;
struct mutex lock;
struct mutex read_lock;
wait_queue_head_t wait;
struct msm_adsp_module *audpre;
struct msm_adsp_module *audrec;
/* configuration to use on next enable */
uint32_t samp_rate;
uint32_t channel_mode;
uint32_t buffer_size; /* 2048 for mono, 4096 for stereo */
uint32_t type; /* 0 for PCM ,1 for AAC */
uint32_t dsp_cnt;
uint32_t in_head; /* next buffer dsp will write */
uint32_t in_tail; /* next buffer read() will read */
uint32_t in_count; /* number of buffers available to read() */
unsigned short samp_rate_index;
struct audmgr audmgr;
/* data allocated for various buffers */
char *data;
dma_addr_t phys;
int opened;
int enabled;
int running;
int stopped; /* set when stopped, cleared on flush */
/* audpre settings */
int agc_enable;
struct tx_agc_config agc;
int ns_enable;
struct ns_config ns;
int iir_enable;
struct tx_iir_filter iir;
};
static int audio_in_dsp_enable(struct audio_in *audio, int enable);
static int audio_in_encoder_config(struct audio_in *audio);
static int audio_dsp_read_buffer(struct audio_in *audio, uint32_t read_cnt);
static void audio_flush(struct audio_in *audio);
static int audio_dsp_set_agc(struct audio_in *audio);
static int audio_dsp_set_ns(struct audio_in *audio);
static int audio_dsp_set_tx_iir(struct audio_in *audio);
static unsigned convert_dsp_samp_index(unsigned index)
{
switch (index) {
case 48000: return AUDREC_CMD_SAMP_RATE_INDX_48000;
case 44100: return AUDREC_CMD_SAMP_RATE_INDX_44100;
case 32000: return AUDREC_CMD_SAMP_RATE_INDX_32000;
case 24000: return AUDREC_CMD_SAMP_RATE_INDX_24000;
case 22050: return AUDREC_CMD_SAMP_RATE_INDX_22050;
case 16000: return AUDREC_CMD_SAMP_RATE_INDX_16000;
case 12000: return AUDREC_CMD_SAMP_RATE_INDX_12000;
case 11025: return AUDREC_CMD_SAMP_RATE_INDX_11025;
case 8000: return AUDREC_CMD_SAMP_RATE_INDX_8000;
default: return AUDREC_CMD_SAMP_RATE_INDX_11025;
}
}
static unsigned convert_samp_rate(unsigned hz)
{
switch (hz) {
case 48000: return RPC_AUD_DEF_SAMPLE_RATE_48000;
case 44100: return RPC_AUD_DEF_SAMPLE_RATE_44100;
case 32000: return RPC_AUD_DEF_SAMPLE_RATE_32000;
case 24000: return RPC_AUD_DEF_SAMPLE_RATE_24000;
case 22050: return RPC_AUD_DEF_SAMPLE_RATE_22050;
case 16000: return RPC_AUD_DEF_SAMPLE_RATE_16000;
case 12000: return RPC_AUD_DEF_SAMPLE_RATE_12000;
case 11025: return RPC_AUD_DEF_SAMPLE_RATE_11025;
case 8000: return RPC_AUD_DEF_SAMPLE_RATE_8000;
default: return RPC_AUD_DEF_SAMPLE_RATE_11025;
}
}
static unsigned convert_samp_index(unsigned index)
{
switch (index) {
case RPC_AUD_DEF_SAMPLE_RATE_48000: return 48000;
case RPC_AUD_DEF_SAMPLE_RATE_44100: return 44100;
case RPC_AUD_DEF_SAMPLE_RATE_32000: return 32000;
case RPC_AUD_DEF_SAMPLE_RATE_24000: return 24000;
case RPC_AUD_DEF_SAMPLE_RATE_22050: return 22050;
case RPC_AUD_DEF_SAMPLE_RATE_16000: return 16000;
case RPC_AUD_DEF_SAMPLE_RATE_12000: return 12000;
case RPC_AUD_DEF_SAMPLE_RATE_11025: return 11025;
case RPC_AUD_DEF_SAMPLE_RATE_8000: return 8000;
default: return 11025;
}
}
/* must be called with audio->lock held */
static int audio_in_enable(struct audio_in *audio)
{
struct audmgr_config cfg;
int rc;
if (audio->enabled)
return 0;
cfg.tx_rate = audio->samp_rate;
cfg.rx_rate = RPC_AUD_DEF_SAMPLE_RATE_NONE;
cfg.def_method = RPC_AUD_DEF_METHOD_RECORD;
if (audio->type == AUDREC_CMD_TYPE_0_INDEX_WAV)
cfg.codec = RPC_AUD_DEF_CODEC_PCM;
else
cfg.codec = RPC_AUD_DEF_CODEC_AAC;
cfg.snd_method = RPC_SND_METHOD_MIDI;
rc = audmgr_enable(&audio->audmgr, &cfg);
if (rc < 0)
return rc;
if (msm_adsp_enable(audio->audpre)) {
pr_err("audrec: msm_adsp_enable(audpre) failed\n");
return -ENODEV;
}
if (msm_adsp_enable(audio->audrec)) {
pr_err("audrec: msm_adsp_enable(audrec) failed\n");
return -ENODEV;
}
audio->enabled = 1;
audio_in_dsp_enable(audio, 1);
return 0;
}
/* must be called with audio->lock held */
static int audio_in_disable(struct audio_in *audio)
{
if (audio->enabled) {
audio->enabled = 0;
audio_in_dsp_enable(audio, 0);
wake_up(&audio->wait);
msm_adsp_disable(audio->audrec);
msm_adsp_disable(audio->audpre);
audmgr_disable(&audio->audmgr);
}
return 0;
}
/* ------------------- dsp --------------------- */
static void audpre_dsp_event(void *data, unsigned id, size_t len,
void (*getevent)(void *ptr, size_t len))
{
uint16_t msg[2];
getevent(msg, sizeof(msg));
switch (id) {
case AUDPREPROC_MSG_CMD_CFG_DONE_MSG:
pr_info("audpre: type %d, status_flag %d\n", msg[0], msg[1]);
break;
case AUDPREPROC_MSG_ERROR_MSG_ID:
pr_info("audpre: err_index %d\n", msg[0]);
break;
default:
pr_err("audpre: unknown event %d\n", id);
}
}
struct audio_frame {
uint16_t count_low;
uint16_t count_high;
uint16_t bytes;
uint16_t unknown;
unsigned char samples[];
} __attribute__((packed));
static void audio_in_get_dsp_frames(struct audio_in *audio)
{
struct audio_frame *frame;
uint32_t index;
unsigned long flags;
index = audio->in_head;
/* XXX check for bogus frame size? */
frame = (void *) (((char *)audio->in[index].data) - sizeof(*frame));
spin_lock_irqsave(&audio->dsp_lock, flags);
audio->in[index].size = frame->bytes;
audio->in_head = (audio->in_head + 1) & (FRAME_NUM - 1);
/* If overflow, move the tail index foward. */
if (audio->in_head == audio->in_tail)
audio->in_tail = (audio->in_tail + 1) & (FRAME_NUM - 1);
else
audio->in_count++;
audio_dsp_read_buffer(audio, audio->dsp_cnt++);
spin_unlock_irqrestore(&audio->dsp_lock, flags);
wake_up(&audio->wait);
}
static void audrec_dsp_event(void *data, unsigned id, size_t len,
void (*getevent)(void *ptr, size_t len))
{
struct audio_in *audio = data;
uint16_t msg[3];
getevent(msg, sizeof(msg));
switch (id) {
case AUDREC_MSG_CMD_CFG_DONE_MSG:
if (msg[0] & AUDREC_MSG_CFG_DONE_TYPE_0_UPDATE) {
if (msg[0] & AUDREC_MSG_CFG_DONE_TYPE_0_ENA) {
pr_info("audpre: CFG ENABLED\n");
audio_dsp_set_agc(audio);
audio_dsp_set_ns(audio);
audio_dsp_set_tx_iir(audio);
audio_in_encoder_config(audio);
} else {
pr_info("audrec: CFG SLEEP\n");
audio->running = 0;
}
} else {
pr_info("audrec: CMD_CFG_DONE %x\n", msg[0]);
}
break;
case AUDREC_MSG_CMD_AREC_PARAM_CFG_DONE_MSG: {
pr_info("audrec: PARAM CFG DONE\n");
audio->running = 1;
break;
}
case AUDREC_MSG_FATAL_ERR_MSG:
pr_err("audrec: ERROR %x\n", msg[0]);
break;
case AUDREC_MSG_PACKET_READY_MSG:
/* REC_DBG("type %x, count %d", msg[0], (msg[1] | (msg[2] << 16))); */
audio_in_get_dsp_frames(audio);
break;
default:
pr_err("audrec: unknown event %d\n", id);
}
}
struct msm_adsp_ops audpre_adsp_ops = {
.event = audpre_dsp_event,
};
struct msm_adsp_ops audrec_adsp_ops = {
.event = audrec_dsp_event,
};
#define audio_send_queue_pre(audio, cmd, len) \
msm_adsp_write(audio->audpre, QDSP_uPAudPreProcCmdQueue, cmd, len)
#define audio_send_queue_recbs(audio, cmd, len) \
msm_adsp_write(audio->audrec, QDSP_uPAudRecBitStreamQueue, cmd, len)
#define audio_send_queue_rec(audio, cmd, len) \
msm_adsp_write(audio->audrec, \
QDSP_uPAudRecCmdQueue, cmd, len)
static int audio_dsp_set_agc(struct audio_in *audio)
{
audpreproc_cmd_cfg_agc_params cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.cmd_id = AUDPREPROC_CMD_CFG_AGC_PARAMS;
if (audio->agc_enable) {
/* cmd.tx_agc_param_mask = 0xFE00 from sample code */
cmd.tx_agc_param_mask =
(1 << AUDPREPROC_CMD_TX_AGC_PARAM_MASK_COMP_SLOPE) |
(1 << AUDPREPROC_CMD_TX_AGC_PARAM_MASK_COMP_TH) |
(1 << AUDPREPROC_CMD_TX_AGC_PARAM_MASK_EXP_SLOPE) |
(1 << AUDPREPROC_CMD_TX_AGC_PARAM_MASK_EXP_TH) |
(1 << AUDPREPROC_CMD_TX_AGC_PARAM_MASK_COMP_AIG_FLAG) |
(1 << AUDPREPROC_CMD_TX_AGC_PARAM_MASK_COMP_STATIC_GAIN) |
(1 << AUDPREPROC_CMD_TX_AGC_PARAM_MASK_TX_AGC_ENA_FLAG);
cmd.tx_agc_enable_flag =
AUDPREPROC_CMD_TX_AGC_ENA_FLAG_ENA;
memcpy(&cmd.static_gain, &audio->agc.agc_params[0],
sizeof(uint16_t) * 6);
/* cmd.param_mask = 0xFFF0 from sample code */
cmd.param_mask =
(1 << AUDPREPROC_CMD_PARAM_MASK_RMS_TAY) |
(1 << AUDPREPROC_CMD_PARAM_MASK_RELEASEK) |
(1 << AUDPREPROC_CMD_PARAM_MASK_DELAY) |
(1 << AUDPREPROC_CMD_PARAM_MASK_ATTACKK) |
(1 << AUDPREPROC_CMD_PARAM_MASK_LEAKRATE_SLOW) |
(1 << AUDPREPROC_CMD_PARAM_MASK_LEAKRATE_FAST) |
(1 << AUDPREPROC_CMD_PARAM_MASK_AIG_RELEASEK) |
(1 << AUDPREPROC_CMD_PARAM_MASK_AIG_MIN) |
(1 << AUDPREPROC_CMD_PARAM_MASK_AIG_MAX) |
(1 << AUDPREPROC_CMD_PARAM_MASK_LEAK_UP) |
(1 << AUDPREPROC_CMD_PARAM_MASK_LEAK_DOWN) |
(1 << AUDPREPROC_CMD_PARAM_MASK_AIG_ATTACKK);
memcpy(&cmd.aig_attackk, &audio->agc.agc_params[6],
sizeof(uint16_t) * 14);
} else {
cmd.tx_agc_param_mask =
(1 << AUDPREPROC_CMD_TX_AGC_PARAM_MASK_TX_AGC_ENA_FLAG);
cmd.tx_agc_enable_flag =
AUDPREPROC_CMD_TX_AGC_ENA_FLAG_DIS;
}
#if DEBUG
pr_info("cmd_id = 0x%04x\n", cmd.cmd_id);
pr_info("tx_agc_param_mask = 0x%04x\n", cmd.tx_agc_param_mask);
pr_info("tx_agc_enable_flag = 0x%04x\n", cmd.tx_agc_enable_flag);
pr_info("static_gain = 0x%04x\n", cmd.static_gain);
pr_info("adaptive_gain_flag = 0x%04x\n", cmd.adaptive_gain_flag);
pr_info("expander_th = 0x%04x\n", cmd.expander_th);
pr_info("expander_slope = 0x%04x\n", cmd.expander_slope);
pr_info("compressor_th = 0x%04x\n", cmd.compressor_th);
pr_info("compressor_slope = 0x%04x\n", cmd.compressor_slope);
pr_info("param_mask = 0x%04x\n", cmd.param_mask);
pr_info("aig_attackk = 0x%04x\n", cmd.aig_attackk);
pr_info("aig_leak_down = 0x%04x\n", cmd.aig_leak_down);
pr_info("aig_leak_up = 0x%04x\n", cmd.aig_leak_up);
pr_info("aig_max = 0x%04x\n", cmd.aig_max);
pr_info("aig_min = 0x%04x\n", cmd.aig_min);
pr_info("aig_releasek = 0x%04x\n", cmd.aig_releasek);
pr_info("aig_leakrate_fast = 0x%04x\n", cmd.aig_leakrate_fast);
pr_info("aig_leakrate_slow = 0x%04x\n", cmd.aig_leakrate_slow);
pr_info("attackk_msw = 0x%04x\n", cmd.attackk_msw);
pr_info("attackk_lsw = 0x%04x\n", cmd.attackk_lsw);
pr_info("delay = 0x%04x\n", cmd.delay);
pr_info("releasek_msw = 0x%04x\n", cmd.releasek_msw);
pr_info("releasek_lsw = 0x%04x\n", cmd.releasek_lsw);
pr_info("rms_tav = 0x%04x\n", cmd.rms_tav);
#endif
return audio_send_queue_pre(audio, &cmd, sizeof(cmd));
}
static int audio_dsp_set_ns(struct audio_in *audio)
{
audpreproc_cmd_cfg_ns_params cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.cmd_id = AUDPREPROC_CMD_CFG_NS_PARAMS;
if (audio->ns_enable) {
/* cmd.ec_mode_new is fixed as 0x0064 when enable from sample code */
cmd.ec_mode_new =
AUDPREPROC_CMD_EC_MODE_NEW_NS_ENA |
AUDPREPROC_CMD_EC_MODE_NEW_HB_ENA |
AUDPREPROC_CMD_EC_MODE_NEW_VA_ENA;
memcpy(&cmd.dens_gamma_n, &audio->ns.ns_params,
sizeof(audio->ns.ns_params));
} else {
cmd.ec_mode_new =
AUDPREPROC_CMD_EC_MODE_NEW_NLMS_DIS |
AUDPREPROC_CMD_EC_MODE_NEW_DES_DIS |
AUDPREPROC_CMD_EC_MODE_NEW_NS_DIS |
AUDPREPROC_CMD_EC_MODE_NEW_CNI_DIS |
AUDPREPROC_CMD_EC_MODE_NEW_NLES_DIS |
AUDPREPROC_CMD_EC_MODE_NEW_HB_DIS |
AUDPREPROC_CMD_EC_MODE_NEW_VA_DIS |
AUDPREPROC_CMD_EC_MODE_NEW_PCD_DIS |
AUDPREPROC_CMD_EC_MODE_NEW_FEHI_DIS |
AUDPREPROC_CMD_EC_MODE_NEW_NEHI_DIS |
AUDPREPROC_CMD_EC_MODE_NEW_NLPP_DIS |
AUDPREPROC_CMD_EC_MODE_NEW_FNE_DIS |
AUDPREPROC_CMD_EC_MODE_NEW_PRENLMS_DIS;
}
#if DEBUG
pr_info("cmd_id = 0x%04x\n", cmd.cmd_id);
pr_info("ec_mode_new = 0x%04x\n", cmd.ec_mode_new);
pr_info("dens_gamma_n = 0x%04x\n", cmd.dens_gamma_n);
pr_info("dens_nfe_block_size = 0x%04x\n", cmd.dens_nfe_block_size);
pr_info("dens_limit_ns = 0x%04x\n", cmd.dens_limit_ns);
pr_info("dens_limit_ns_d = 0x%04x\n", cmd.dens_limit_ns_d);
pr_info("wb_gamma_e = 0x%04x\n", cmd.wb_gamma_e);
pr_info("wb_gamma_n = 0x%04x\n", cmd.wb_gamma_n);
#endif
return audio_send_queue_pre(audio, &cmd, sizeof(cmd));
}
static int audio_dsp_set_tx_iir(struct audio_in *audio)
{
struct audpre_cmd_iir_config_type cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.cmd_id = AUDPREPROC_CMD_CFG_IIR_TUNING_FILTER_PARAMS;
if (audio->iir_enable) {
cmd.active_flag = AUDPREPROC_CMD_IIR_ACTIVE_FLAG_ENA;
cmd.num_bands = audio->iir.num_bands;
memcpy(&cmd.iir_params, &audio->iir.iir_params,
sizeof(audio->iir.iir_params));
} else {
cmd.active_flag = AUDPREPROC_CMD_IIR_ACTIVE_FLAG_DIS;
}
#if DEBUG
pr_info("cmd_id = 0x%04x\n", cmd.cmd_id);
pr_info("active_flag = 0x%04x\n", cmd.active_flag);
#endif
return audio_send_queue_pre(audio, &cmd, sizeof(cmd));
}
static int audio_in_dsp_enable(struct audio_in *audio, int enable)
{
audrec_cmd_cfg cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.cmd_id = AUDREC_CMD_CFG;
cmd.type_0 = enable ? AUDREC_CMD_TYPE_0_ENA : AUDREC_CMD_TYPE_0_DIS;
cmd.type_0 |= (AUDREC_CMD_TYPE_0_UPDATE | audio->type);
cmd.type_1 = 0;
return audio_send_queue_rec(audio, &cmd, sizeof(cmd));
}
static int audio_in_encoder_config(struct audio_in *audio)
{
audrec_cmd_arec0param_cfg cmd;
uint16_t *data = (void *) audio->data;
unsigned n;
memset(&cmd, 0, sizeof(cmd));
cmd.cmd_id = AUDREC_CMD_AREC0PARAM_CFG;
cmd.ptr_to_extpkt_buffer_msw = audio->phys >> 16;
cmd.ptr_to_extpkt_buffer_lsw = audio->phys;
cmd.buf_len = FRAME_NUM; /* Both WAV and AAC use 8 frames */
cmd.samp_rate_index = audio->samp_rate_index;
cmd.stereo_mode = audio->channel_mode; /* 0 for mono, 1 for stereo */
/* FIXME have no idea why cmd.rec_quality is fixed
* as 0x1C00 from sample code
*/
cmd.rec_quality = 0x1C00;
/* prepare buffer pointers:
* Mono: 1024 samples + 4 halfword header
* Stereo: 2048 samples + 4 halfword header
* AAC
* Mono/Stere: 768 + 4 halfword header
*/
for (n = 0; n < FRAME_NUM; n++) {
audio->in[n].data = data + 4;
if (audio->type == AUDREC_CMD_TYPE_0_INDEX_WAV)
data += (4 + (audio->channel_mode ? 2048 : 1024));
else if (audio->type == AUDREC_CMD_TYPE_0_INDEX_AAC)
data += (4 + 768);
}
return audio_send_queue_rec(audio, &cmd, sizeof(cmd));
}
static int audio_dsp_read_buffer(struct audio_in *audio, uint32_t read_cnt)
{
audrec_cmd_packet_ext_ptr cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.cmd_id = AUDREC_CMD_PACKET_EXT_PTR;
/* Both WAV and AAC use AUDREC_CMD_TYPE_0 */
cmd.type = AUDREC_CMD_TYPE_0;
cmd.curr_rec_count_msw = read_cnt >> 16;
cmd.curr_rec_count_lsw = read_cnt;
return audio_send_queue_recbs(audio, &cmd, sizeof(cmd));
}
/* ------------------- device --------------------- */
static void audio_enable_agc(struct audio_in *audio, int enable)
{
if (audio->agc_enable != enable) {
audio->agc_enable = enable;
if (audio->running)
audio_dsp_set_agc(audio);
}
}
static void audio_enable_ns(struct audio_in *audio, int enable)
{
if (audio->ns_enable != enable) {
audio->ns_enable = enable;
if (audio->running)
audio_dsp_set_ns(audio);
}
}
static void audio_enable_tx_iir(struct audio_in *audio, int enable)
{
if (audio->iir_enable != enable) {
audio->iir_enable = enable;
if (audio->running)
audio_dsp_set_tx_iir(audio);
}
}
static void audio_flush(struct audio_in *audio)
{
int i;
audio->dsp_cnt = 0;
audio->in_head = 0;
audio->in_tail = 0;
audio->in_count = 0;
for (i = 0; i < FRAME_NUM; i++) {
audio->in[i].size = 0;
audio->in[i].read = 0;
}
}
static long audio_in_ioctl(struct file *file,
unsigned int cmd, unsigned long arg)
{
struct audio_in *audio = file->private_data;
int rc;
if (cmd == AUDIO_GET_STATS) {
struct msm_audio_stats stats;
stats.byte_count = atomic_read(&audio->in_bytes);
if (copy_to_user((void *) arg, &stats, sizeof(stats)))
return -EFAULT;
return 0;
}
mutex_lock(&audio->lock);
switch (cmd) {
case AUDIO_START:
rc = audio_in_enable(audio);
break;
case AUDIO_STOP:
rc = audio_in_disable(audio);
audio->stopped = 1;
break;
case AUDIO_FLUSH:
if (audio->stopped) {
/* Make sure we're stopped and we wake any threads
* that might be blocked holding the read_lock.
* While audio->stopped read threads will always
* exit immediately.
*/
wake_up(&audio->wait);
mutex_lock(&audio->read_lock);
audio_flush(audio);
mutex_unlock(&audio->read_lock);
}
case AUDIO_SET_CONFIG: {
struct msm_audio_config cfg;
if (copy_from_user(&cfg, (void *) arg, sizeof(cfg))) {
rc = -EFAULT;
break;
}
if (cfg.channel_count == 1) {
cfg.channel_count = AUDREC_CMD_STEREO_MODE_MONO;
} else if (cfg.channel_count == 2) {
cfg.channel_count = AUDREC_CMD_STEREO_MODE_STEREO;
} else {
rc = -EINVAL;
break;
}
if (cfg.type == 0) {
cfg.type = AUDREC_CMD_TYPE_0_INDEX_WAV;
} else if (cfg.type == 1) {
cfg.type = AUDREC_CMD_TYPE_0_INDEX_AAC;
} else {
rc = -EINVAL;
break;
}
audio->samp_rate = convert_samp_rate(cfg.sample_rate);
audio->samp_rate_index =
convert_dsp_samp_index(cfg.sample_rate);
audio->channel_mode = cfg.channel_count;
audio->buffer_size =
audio->channel_mode ? STEREO_DATA_SIZE
: MONO_DATA_SIZE;
audio->type = cfg.type;
rc = 0;
break;
}
case AUDIO_GET_CONFIG: {
struct msm_audio_config cfg;
cfg.buffer_size = audio->buffer_size;
cfg.buffer_count = FRAME_NUM;
cfg.sample_rate = convert_samp_index(audio->samp_rate);
if (audio->channel_mode == AUDREC_CMD_STEREO_MODE_MONO)
cfg.channel_count = 1;
else
cfg.channel_count = 2;
if (audio->type == AUDREC_CMD_TYPE_0_INDEX_WAV)
cfg.type = 0;
else
cfg.type = 1;
cfg.unused[0] = 0;
cfg.unused[1] = 0;
cfg.unused[2] = 0;
if (copy_to_user((void *) arg, &cfg, sizeof(cfg)))
rc = -EFAULT;
else
rc = 0;
break;
}
default:
rc = -EINVAL;
}
mutex_unlock(&audio->lock);
return rc;
}
static ssize_t audio_in_read(struct file *file,
char __user *buf,
size_t count, loff_t *pos)
{
struct audio_in *audio = file->private_data;
unsigned long flags;
const char __user *start = buf;
void *data;
uint32_t index;
uint32_t size;
int rc = 0;
mutex_lock(&audio->read_lock);
while (count > 0) {
rc = wait_event_interruptible(
audio->wait, (audio->in_count > 0) || audio->stopped);
if (rc < 0)
break;
if (audio->stopped) {
rc = -EBUSY;
break;
}
index = audio->in_tail;
data = (uint8_t *) audio->in[index].data;
size = audio->in[index].size;
if (count >= size) {
if (copy_to_user(buf, data, size)) {
rc = -EFAULT;
break;
}
spin_lock_irqsave(&audio->dsp_lock, flags);
if (index != audio->in_tail) {
/* overrun -- data is invalid and we need to retry */
spin_unlock_irqrestore(&audio->dsp_lock, flags);
continue;
}
audio->in[index].size = 0;
audio->in_tail = (audio->in_tail + 1) & (FRAME_NUM - 1);
audio->in_count--;
spin_unlock_irqrestore(&audio->dsp_lock, flags);
count -= size;
buf += size;
if (audio->type == AUDREC_CMD_TYPE_0_INDEX_AAC)
break;
} else {
pr_err("audio_in: short read\n");
break;
}
if (audio->type == AUDREC_CMD_TYPE_0_INDEX_AAC)
break; /* AAC only read one frame */
}
mutex_unlock(&audio->read_lock);
if (buf > start)
return buf - start;
return rc;
}
static ssize_t audio_in_write(struct file *file,
const char __user *buf,
size_t count, loff_t *pos)
{
return -EINVAL;
}
static int audio_in_release(struct inode *inode, struct file *file)
{
struct audio_in *audio = file->private_data;
mutex_lock(&audio->lock);
audio_in_disable(audio);
audio_flush(audio);
msm_adsp_put(audio->audrec);
msm_adsp_put(audio->audpre);
audio->audrec = NULL;
audio->audpre = NULL;
audio->opened = 0;
mutex_unlock(&audio->lock);
return 0;
}
struct audio_in the_audio_in;
static int audio_in_open(struct inode *inode, struct file *file)
{
struct audio_in *audio = &the_audio_in;
int rc;
mutex_lock(&audio->lock);
if (audio->opened) {
rc = -EBUSY;
goto done;
}
/* Settings will be re-config at AUDIO_SET_CONFIG,
* but at least we need to have initial config
*/
audio->samp_rate = RPC_AUD_DEF_SAMPLE_RATE_11025;
audio->samp_rate_index = AUDREC_CMD_SAMP_RATE_INDX_11025;
audio->channel_mode = AUDREC_CMD_STEREO_MODE_MONO;
audio->buffer_size = MONO_DATA_SIZE;
audio->type = AUDREC_CMD_TYPE_0_INDEX_WAV;
rc = audmgr_open(&audio->audmgr);
if (rc)
goto done;
rc = msm_adsp_get("AUDPREPROCTASK", &audio->audpre,
&audpre_adsp_ops, audio);
if (rc)
goto done;
rc = msm_adsp_get("AUDRECTASK", &audio->audrec,
&audrec_adsp_ops, audio);
if (rc)
goto done;
audio->dsp_cnt = 0;
audio->stopped = 0;
audio_flush(audio);
file->private_data = audio;
audio->opened = 1;
rc = 0;
done:
mutex_unlock(&audio->lock);
return rc;
}
static long audpre_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
struct audio_in *audio = file->private_data;
int rc = 0, enable;
uint16_t enable_mask;
#if DEBUG
int i;
#endif
mutex_lock(&audio->lock);
switch (cmd) {
case AUDIO_ENABLE_AUDPRE: {
if (copy_from_user(&enable_mask, (void *) arg,
sizeof(enable_mask)))
goto out_fault;
enable = (enable_mask & AGC_ENABLE) ? 1 : 0;
audio_enable_agc(audio, enable);
enable = (enable_mask & NS_ENABLE) ? 1 : 0;
audio_enable_ns(audio, enable);
enable = (enable_mask & IIR_ENABLE) ? 1 : 0;
audio_enable_tx_iir(audio, enable);
break;
}
case AUDIO_SET_AGC: {
if (copy_from_user(&audio->agc, (void *) arg,
sizeof(audio->agc)))
goto out_fault;
#if DEBUG
pr_info("set agc\n");
for (i = 0; i < AGC_PARAM_SIZE; i++) \
pr_info("agc_params[%d] = 0x%04x\n", i,
audio->agc.agc_params[i]);
#endif
break;
}
case AUDIO_SET_NS: {
if (copy_from_user(&audio->ns, (void *) arg,
sizeof(audio->ns)))
goto out_fault;
#if DEBUG
pr_info("set ns\n");
for (i = 0; i < NS_PARAM_SIZE; i++) \
pr_info("ns_params[%d] = 0x%04x\n",
i, audio->ns.ns_params[i]);
#endif
break;
}
case AUDIO_SET_TX_IIR: {
if (copy_from_user(&audio->iir, (void *) arg,
sizeof(audio->iir)))
goto out_fault;
#if DEBUG
pr_info("set iir\n");
pr_info("iir.num_bands = 0x%04x\n", audio->iir.num_bands);
for (i = 0; i < IIR_PARAM_SIZE; i++) \
pr_info("iir_params[%d] = 0x%04x\n",
i, audio->iir.iir_params[i]);
#endif
break;
}
default:
rc = -EINVAL;
}
goto out;
out_fault:
rc = -EFAULT;
out:
mutex_unlock(&audio->lock);
return rc;
}
static int audpre_open(struct inode *inode, struct file *file)
{
struct audio_in *audio = &the_audio_in;
file->private_data = audio;
return 0;
}
static struct file_operations audio_fops = {
.owner = THIS_MODULE,
.open = audio_in_open,
.release = audio_in_release,
.read = audio_in_read,
.write = audio_in_write,
.unlocked_ioctl = audio_in_ioctl,
};
static struct file_operations audpre_fops = {
.owner = THIS_MODULE,
.open = audpre_open,
.unlocked_ioctl = audpre_ioctl,
};
struct miscdevice audio_in_misc = {
.minor = MISC_DYNAMIC_MINOR,
.name = "msm_pcm_in",
.fops = &audio_fops,
};
struct miscdevice audpre_misc = {
.minor = MISC_DYNAMIC_MINOR,
.name = "msm_audpre",
.fops = &audpre_fops,
};
static int __init audio_in_init(void)
{
int rc;
the_audio_in.data = dma_alloc_coherent(NULL, DMASZ,
&the_audio_in.phys, GFP_KERNEL);
if (!the_audio_in.data) {
printk(KERN_ERR "%s: Unable to allocate DMA buffer\n",
__func__);
return -ENOMEM;
}
mutex_init(&the_audio_in.lock);
mutex_init(&the_audio_in.read_lock);
spin_lock_init(&the_audio_in.dsp_lock);
init_waitqueue_head(&the_audio_in.wait);
rc = misc_register(&audio_in_misc);
if (!rc) {
rc = misc_register(&audpre_misc);
if (rc < 0)
misc_deregister(&audio_in_misc);
}
return rc;
}
device_initcall(audio_in_init);
/* arch/arm/mach-msm/qdsp5/audio_mp3.c
*
* mp3 audio output device
*
* Copyright (C) 2008 Google, Inc.
* Copyright (C) 2008 HTC Corporation
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/module.h>
#include <linux/fs.h>
#include <linux/miscdevice.h>
#include <linux/uaccess.h>
#include <linux/kthread.h>
#include <linux/wait.h>
#include <linux/dma-mapping.h>
#include <linux/delay.h>
#include <asm/atomic.h>
#include <asm/ioctls.h>
#include <mach/msm_adsp.h>
#include <linux/msm_audio.h>
#include "audmgr.h"
#include <mach/qdsp5/qdsp5audppcmdi.h>
#include <mach/qdsp5/qdsp5audppmsg.h>
#include <mach/qdsp5/qdsp5audplaycmdi.h>
#include <mach/qdsp5/qdsp5audplaymsg.h>
/* for queue ids - should be relative to module number*/
#include "adsp.h"
#ifdef DEBUG
#define dprintk(format, arg...) \
printk(KERN_DEBUG format, ## arg)
#else
#define dprintk(format, arg...) do {} while (0)
#endif
/* Size must be power of 2 */
#define BUFSZ_MAX 32768
#define BUFSZ_MIN 4096
#define DMASZ_MAX (BUFSZ_MAX * 2)
#define DMASZ_MIN (BUFSZ_MIN * 2)
#define AUDPLAY_INVALID_READ_PTR_OFFSET 0xFFFF
#define AUDDEC_DEC_MP3 2
#define PCM_BUFSZ_MIN 4800 /* Hold one stereo MP3 frame */
#define PCM_BUF_MAX_COUNT 5 /* DSP only accepts 5 buffers at most
but support 2 buffers currently */
#define ROUTING_MODE_FTRT 1
#define ROUTING_MODE_RT 2
/* Decoder status received from AUDPPTASK */
#define AUDPP_DEC_STATUS_SLEEP 0
#define AUDPP_DEC_STATUS_INIT 1
#define AUDPP_DEC_STATUS_CFG 2
#define AUDPP_DEC_STATUS_PLAY 3
struct buffer {
void *data;
unsigned size;
unsigned used; /* Input usage actual DSP produced PCM size */
unsigned addr;
};
struct audio {
struct buffer out[2];
spinlock_t dsp_lock;
uint8_t out_head;
uint8_t out_tail;
uint8_t out_needed; /* number of buffers the dsp is waiting for */
unsigned out_dma_sz;
atomic_t out_bytes;
struct mutex lock;
struct mutex write_lock;
wait_queue_head_t write_wait;
/* Host PCM section */
struct buffer in[PCM_BUF_MAX_COUNT];
struct mutex read_lock;
wait_queue_head_t read_wait; /* Wait queue for read */
char *read_data; /* pointer to reader buffer */
dma_addr_t read_phys; /* physical address of reader buffer */
uint8_t read_next; /* index to input buffers to be read next */
uint8_t fill_next; /* index to buffer that DSP should be filling */
uint8_t pcm_buf_count; /* number of pcm buffer allocated */
/* ---- End of Host PCM section */
struct msm_adsp_module *audplay;
/* configuration to use on next enable */
uint32_t out_sample_rate;
uint32_t out_channel_mode;
struct audmgr audmgr;
/* data allocated for various buffers */
char *data;
dma_addr_t phys;
int rflush; /* Read flush */
int wflush; /* Write flush */
int opened;
int enabled;
int running;
int stopped; /* set when stopped, cleared on flush */
int pcm_feedback;
int buf_refresh;
int reserved; /* A byte is being reserved */
char rsv_byte; /* Handle odd length user data */
unsigned volume;
uint16_t dec_id;
uint32_t read_ptr_offset;
};
static int auddec_dsp_config(struct audio *audio, int enable);
static void audpp_cmd_cfg_adec_params(struct audio *audio);
static void audpp_cmd_cfg_routing_mode(struct audio *audio);
static void audplay_send_data(struct audio *audio, unsigned needed);
static void audplay_config_hostpcm(struct audio *audio);
static void audplay_buffer_refresh(struct audio *audio);
static void audio_dsp_event(void *private, unsigned id, uint16_t *msg);
/* must be called with audio->lock held */
static int audio_enable(struct audio *audio)
{
struct audmgr_config cfg;
int rc;
pr_info("audio_enable()\n");
if (audio->enabled)
return 0;
audio->out_tail = 0;
audio->out_needed = 0;
cfg.tx_rate = RPC_AUD_DEF_SAMPLE_RATE_NONE;
cfg.rx_rate = RPC_AUD_DEF_SAMPLE_RATE_48000;
cfg.def_method = RPC_AUD_DEF_METHOD_PLAYBACK;
cfg.codec = RPC_AUD_DEF_CODEC_MP3;
cfg.snd_method = RPC_SND_METHOD_MIDI;
rc = audmgr_enable(&audio->audmgr, &cfg);
if (rc < 0)
return rc;
if (msm_adsp_enable(audio->audplay)) {
pr_err("audio: msm_adsp_enable(audplay) failed\n");
audmgr_disable(&audio->audmgr);
return -ENODEV;
}
if (audpp_enable(audio->dec_id, audio_dsp_event, audio)) {
pr_err("audio: audpp_enable() failed\n");
msm_adsp_disable(audio->audplay);
audmgr_disable(&audio->audmgr);
return -ENODEV;
}
audio->enabled = 1;
return 0;
}
/* must be called with audio->lock held */
static int audio_disable(struct audio *audio)
{
pr_info("audio_disable()\n");
if (audio->enabled) {
audio->enabled = 0;
auddec_dsp_config(audio, 0);
wake_up(&audio->write_wait);
wake_up(&audio->read_wait);
msm_adsp_disable(audio->audplay);
audpp_disable(audio->dec_id, audio);
audmgr_disable(&audio->audmgr);
audio->out_needed = 0;
}
return 0;
}
/* ------------------- dsp --------------------- */
static void audio_update_pcm_buf_entry(struct audio *audio, uint32_t *payload)
{
uint8_t index;
unsigned long flags;
if (audio->rflush) {
audio->buf_refresh = 1;
return;
}
spin_lock_irqsave(&audio->dsp_lock, flags);
for (index = 0; index < payload[1]; index++) {
if (audio->in[audio->fill_next].addr ==
payload[2 + index * 2]) {
pr_info("audio_update_pcm_buf_entry: in[%d] ready\n",
audio->fill_next);
audio->in[audio->fill_next].used =
payload[3 + index * 2];
if ((++audio->fill_next) == audio->pcm_buf_count)
audio->fill_next = 0;
} else {
pr_err
("audio_update_pcm_buf_entry: expected=%x ret=%x\n"
, audio->in[audio->fill_next].addr,
payload[1 + index * 2]);
break;
}
}
if (audio->in[audio->fill_next].used == 0) {
audplay_buffer_refresh(audio);
} else {
pr_info("audio_update_pcm_buf_entry: read cannot keep up\n");
audio->buf_refresh = 1;
}
wake_up(&audio->read_wait);
spin_unlock_irqrestore(&audio->dsp_lock, flags);
}
static void audplay_dsp_event(void *data, unsigned id, size_t len,
void (*getevent) (void *ptr, size_t len))
{
struct audio *audio = data;
uint32_t msg[28];
getevent(msg, sizeof(msg));
dprintk("audplay_dsp_event: msg_id=%x\n", id);
switch (id) {
case AUDPLAY_MSG_DEC_NEEDS_DATA:
audplay_send_data(audio, 1);
break;
case AUDPLAY_MSG_BUFFER_UPDATE:
audio_update_pcm_buf_entry(audio, msg);
break;
default:
pr_err("unexpected message from decoder \n");
break;
}
}
static void audio_dsp_event(void *private, unsigned id, uint16_t *msg)
{
struct audio *audio = private;
switch (id) {
case AUDPP_MSG_STATUS_MSG:{
unsigned status = msg[1];
switch (status) {
case AUDPP_DEC_STATUS_SLEEP:
pr_info("decoder status: sleep \n");
break;
case AUDPP_DEC_STATUS_INIT:
pr_info("decoder status: init \n");
audpp_cmd_cfg_routing_mode(audio);
break;
case AUDPP_DEC_STATUS_CFG:
pr_info("decoder status: cfg \n");
break;
case AUDPP_DEC_STATUS_PLAY:
pr_info("decoder status: play \n");
if (audio->pcm_feedback) {
audplay_config_hostpcm(audio);
audplay_buffer_refresh(audio);
}
break;
default:
pr_err("unknown decoder status \n");
break;
}
break;
}
case AUDPP_MSG_CFG_MSG:
if (msg[0] == AUDPP_MSG_ENA_ENA) {
pr_info("audio_dsp_event: CFG_MSG ENABLE\n");
auddec_dsp_config(audio, 1);
audio->out_needed = 0;
audio->running = 1;
audpp_set_volume_and_pan(audio->dec_id, audio->volume,
0);
audpp_avsync(audio->dec_id, 22050);
} else if (msg[0] == AUDPP_MSG_ENA_DIS) {
pr_info("audio_dsp_event: CFG_MSG DISABLE\n");
audpp_avsync(audio->dec_id, 0);
audio->running = 0;
} else {
pr_err("audio_dsp_event: CFG_MSG %d?\n", msg[0]);
}
break;
case AUDPP_MSG_ROUTING_ACK:
pr_info("audio_dsp_event: ROUTING_ACK mode=%d\n", msg[1]);
audpp_cmd_cfg_adec_params(audio);
break;
case AUDPP_MSG_FLUSH_ACK:
dprintk("%s: FLUSH_ACK\n", __func__);
audio->wflush = 0;
audio->rflush = 0;
if (audio->pcm_feedback)
audplay_buffer_refresh(audio);
break;
default:
pr_err("audio_dsp_event: UNKNOWN (%d)\n", id);
}
}
struct msm_adsp_ops audplay_adsp_ops = {
.event = audplay_dsp_event,
};
#define audplay_send_queue0(audio, cmd, len) \
msm_adsp_write(audio->audplay, QDSP_uPAudPlay0BitStreamCtrlQueue, \
cmd, len)
static int auddec_dsp_config(struct audio *audio, int enable)
{
audpp_cmd_cfg_dec_type cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.cmd_id = AUDPP_CMD_CFG_DEC_TYPE;
if (enable)
cmd.dec0_cfg = AUDPP_CMD_UPDATDE_CFG_DEC |
AUDPP_CMD_ENA_DEC_V |
AUDDEC_DEC_MP3;
else
cmd.dec0_cfg = AUDPP_CMD_UPDATDE_CFG_DEC |
AUDPP_CMD_DIS_DEC_V;
return audpp_send_queue1(&cmd, sizeof(cmd));
}
static void audpp_cmd_cfg_adec_params(struct audio *audio)
{
audpp_cmd_cfg_adec_params_mp3 cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.common.cmd_id = AUDPP_CMD_CFG_ADEC_PARAMS;
cmd.common.length = AUDPP_CMD_CFG_ADEC_PARAMS_MP3_LEN;
cmd.common.dec_id = audio->dec_id;
cmd.common.input_sampling_frequency = audio->out_sample_rate;
audpp_send_queue2(&cmd, sizeof(cmd));
}
static void audpp_cmd_cfg_routing_mode(struct audio *audio)
{
struct audpp_cmd_routing_mode cmd;
pr_info("audpp_cmd_cfg_routing_mode()\n");
memset(&cmd, 0, sizeof(cmd));
cmd.cmd_id = AUDPP_CMD_ROUTING_MODE;
cmd.object_number = audio->dec_id;
if (audio->pcm_feedback)
cmd.routing_mode = ROUTING_MODE_FTRT;
else
cmd.routing_mode = ROUTING_MODE_RT;
audpp_send_queue1(&cmd, sizeof(cmd));
}
static int audplay_dsp_send_data_avail(struct audio *audio,
unsigned idx, unsigned len)
{
audplay_cmd_bitstream_data_avail cmd;
cmd.cmd_id = AUDPLAY_CMD_BITSTREAM_DATA_AVAIL;
cmd.decoder_id = audio->dec_id;
cmd.buf_ptr = audio->out[idx].addr;
cmd.buf_size = len/2;
cmd.partition_number = 0;
return audplay_send_queue0(audio, &cmd, sizeof(cmd));
}
static void audplay_buffer_refresh(struct audio *audio)
{
struct audplay_cmd_buffer_refresh refresh_cmd;
refresh_cmd.cmd_id = AUDPLAY_CMD_BUFFER_REFRESH;
refresh_cmd.num_buffers = 1;
refresh_cmd.buf0_address = audio->in[audio->fill_next].addr;
refresh_cmd.buf0_length = audio->in[audio->fill_next].size -
(audio->in[audio->fill_next].size % 576); /* Mp3 frame size */
refresh_cmd.buf_read_count = 0;
pr_info("audplay_buffer_fresh: buf0_addr=%x buf0_len=%d\n",
refresh_cmd.buf0_address, refresh_cmd.buf0_length);
(void)audplay_send_queue0(audio, &refresh_cmd, sizeof(refresh_cmd));
}
static void audplay_config_hostpcm(struct audio *audio)
{
struct audplay_cmd_hpcm_buf_cfg cfg_cmd;
pr_info("audplay_config_hostpcm()\n");
cfg_cmd.cmd_id = AUDPLAY_CMD_HPCM_BUF_CFG;
cfg_cmd.max_buffers = 1;
cfg_cmd.byte_swap = 0;
cfg_cmd.hostpcm_config = (0x8000) | (0x4000);
cfg_cmd.feedback_frequency = 1;
cfg_cmd.partition_number = 0;
(void)audplay_send_queue0(audio, &cfg_cmd, sizeof(cfg_cmd));
}
static void audplay_send_data(struct audio *audio, unsigned needed)
{
struct buffer *frame;
unsigned long flags;
spin_lock_irqsave(&audio->dsp_lock, flags);
if (!audio->running)
goto done;
if (audio->wflush) {
audio->out_needed = 1;
goto done;
}
if (needed && !audio->wflush) {
/* We were called from the callback because the DSP
* requested more data. Note that the DSP does want
* more data, and if a buffer was in-flight, mark it
* as available (since the DSP must now be done with
* it).
*/
audio->out_needed = 1;
frame = audio->out + audio->out_tail;
if (frame->used == 0xffffffff) {
dprintk("frame %d free\n", audio->out_tail);
frame->used = 0;
audio->out_tail ^= 1;
wake_up(&audio->write_wait);
}
}
if (audio->out_needed) {
/* If the DSP currently wants data and we have a
* buffer available, we will send it and reset
* the needed flag. We'll mark the buffer as in-flight
* so that it won't be recycled until the next buffer
* is requested
*/
frame = audio->out + audio->out_tail;
if (frame->used) {
BUG_ON(frame->used == 0xffffffff);
dprintk("frame %d busy\n", audio->out_tail);
audplay_dsp_send_data_avail(audio, audio->out_tail,
frame->used);
frame->used = 0xffffffff;
audio->out_needed = 0;
}
}
done:
spin_unlock_irqrestore(&audio->dsp_lock, flags);
}
/* ------------------- device --------------------- */
static void audio_flush(struct audio *audio)
{
audio->out[0].used = 0;
audio->out[1].used = 0;
audio->out_head = 0;
audio->out_tail = 0;
audio->reserved = 0;
atomic_set(&audio->out_bytes, 0);
}
static void audio_flush_pcm_buf(struct audio *audio)
{
uint8_t index;
for (index = 0; index < PCM_BUF_MAX_COUNT; index++)
audio->in[index].used = 0;
audio->read_next = 0;
audio->fill_next = 0;
}
static void audio_ioport_reset(struct audio *audio)
{
/* Make sure read/write thread are free from
* sleep and knowing that system is not able
* to process io request at the moment
*/
wake_up(&audio->write_wait);
mutex_lock(&audio->write_lock);
audio_flush(audio);
mutex_unlock(&audio->write_lock);
wake_up(&audio->read_wait);
mutex_lock(&audio->read_lock);
audio_flush_pcm_buf(audio);
mutex_unlock(&audio->read_lock);
}
static long audio_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
struct audio *audio = file->private_data;
int rc = 0;
pr_info("audio_ioctl() cmd = %d\n", cmd);
if (cmd == AUDIO_GET_STATS) {
struct msm_audio_stats stats;
stats.byte_count = audpp_avsync_byte_count(audio->dec_id);
stats.sample_count = audpp_avsync_sample_count(audio->dec_id);
if (copy_to_user((void *) arg, &stats, sizeof(stats)))
return -EFAULT;
return 0;
}
if (cmd == AUDIO_SET_VOLUME) {
unsigned long flags;
spin_lock_irqsave(&audio->dsp_lock, flags);
audio->volume = arg;
if (audio->running)
audpp_set_volume_and_pan(audio->dec_id, arg, 0);
spin_unlock_irqrestore(&audio->dsp_lock, flags);
return 0;
}
mutex_lock(&audio->lock);
switch (cmd) {
case AUDIO_START:
rc = audio_enable(audio);
break;
case AUDIO_STOP:
rc = audio_disable(audio);
audio->stopped = 1;
audio_ioport_reset(audio);
audio->stopped = 0;
break;
case AUDIO_FLUSH:
dprintk("%s: AUDIO_FLUSH\n", __func__);
audio->rflush = 1;
audio->wflush = 1;
audio_ioport_reset(audio);
audio->rflush = 0;
audio->wflush = 0;
if (audio->buf_refresh) {
audio->buf_refresh = 0;
audplay_buffer_refresh(audio);
}
break;
case AUDIO_SET_CONFIG: {
struct msm_audio_config config;
if (copy_from_user(&config, (void *) arg, sizeof(config))) {
rc = -EFAULT;
break;
}
if (config.channel_count == 1) {
config.channel_count = AUDPP_CMD_PCM_INTF_MONO_V;
} else if (config.channel_count == 2) {
config.channel_count = AUDPP_CMD_PCM_INTF_STEREO_V;
} else {
rc = -EINVAL;
break;
}
audio->out_sample_rate = config.sample_rate;
audio->out_channel_mode = config.channel_count;
rc = 0;
break;
}
case AUDIO_GET_CONFIG: {
struct msm_audio_config config;
config.buffer_size = (audio->out_dma_sz >> 1);
config.buffer_count = 2;
config.sample_rate = audio->out_sample_rate;
if (audio->out_channel_mode == AUDPP_CMD_PCM_INTF_MONO_V) {
config.channel_count = 1;
} else {
config.channel_count = 2;
}
config.unused[0] = 0;
config.unused[1] = 0;
config.unused[2] = 0;
config.unused[3] = 0;
if (copy_to_user((void *) arg, &config, sizeof(config))) {
rc = -EFAULT;
} else {
rc = 0;
}
break;
}
case AUDIO_GET_PCM_CONFIG:{
struct msm_audio_pcm_config config;
config.pcm_feedback = 0;
config.buffer_count = PCM_BUF_MAX_COUNT;
config.buffer_size = PCM_BUFSZ_MIN;
if (copy_to_user((void *)arg, &config,
sizeof(config)))
rc = -EFAULT;
else
rc = 0;
break;
}
case AUDIO_SET_PCM_CONFIG:{
struct msm_audio_pcm_config config;
if (copy_from_user
(&config, (void *)arg, sizeof(config))) {
rc = -EFAULT;
break;
}
if ((config.buffer_count > PCM_BUF_MAX_COUNT) ||
(config.buffer_count == 1))
config.buffer_count = PCM_BUF_MAX_COUNT;
if (config.buffer_size < PCM_BUFSZ_MIN)
config.buffer_size = PCM_BUFSZ_MIN;
/* Check if pcm feedback is required */
if ((config.pcm_feedback) && (!audio->read_data)) {
pr_info("ioctl: allocate PCM buffer %d\n",
config.buffer_count *
config.buffer_size);
audio->read_data =
dma_alloc_coherent(NULL,
config.buffer_size *
config.buffer_count,
&audio->read_phys,
GFP_KERNEL);
if (!audio->read_data) {
pr_err("audio_mp3: malloc pcm \
buf failed\n");
rc = -1;
} else {
uint8_t index;
uint32_t offset = 0;
audio->pcm_feedback = 1;
audio->buf_refresh = 0;
audio->pcm_buf_count =
config.buffer_count;
audio->read_next = 0;
audio->fill_next = 0;
for (index = 0;
index < config.buffer_count;
index++) {
audio->in[index].data =
audio->read_data + offset;
audio->in[index].addr =
audio->read_phys + offset;
audio->in[index].size =
config.buffer_size;
audio->in[index].used = 0;
offset += config.buffer_size;
}
rc = 0;
}
} else {
rc = 0;
}
break;
}
case AUDIO_PAUSE:
dprintk("%s: AUDIO_PAUSE %ld\n", __func__, arg);
rc = audpp_pause(audio->dec_id, (int) arg);
break;
default:
rc = -EINVAL;
}
mutex_unlock(&audio->lock);
return rc;
}
static ssize_t audio_read(struct file *file, char __user *buf, size_t count,
loff_t *pos)
{
struct audio *audio = file->private_data;
const char __user *start = buf;
int rc = 0;
if (!audio->pcm_feedback)
return 0; /* PCM feedback disabled. Nothing to read */
mutex_lock(&audio->read_lock);
pr_info("audio_read() %d \n", count);
while (count > 0) {
rc = wait_event_interruptible(audio->read_wait,
(audio->in[audio->read_next].
used > 0) || (audio->stopped)
|| (audio->rflush));
if (rc < 0)
break;
if (audio->stopped || audio->rflush) {
rc = -EBUSY;
break;
}
if (count < audio->in[audio->read_next].used) {
/* Read must happen in frame boundary. Since
* driver does not know frame size, read count
* must be greater or equal
* to size of PCM samples
*/
pr_info("audio_read: no partial frame done reading\n");
break;
} else {
pr_info("audio_read: read from in[%d]\n",
audio->read_next);
if (copy_to_user
(buf, audio->in[audio->read_next].data,
audio->in[audio->read_next].used)) {
pr_err("audio_read: invalid addr %x \n",
(unsigned int)buf);
rc = -EFAULT;
break;
}
count -= audio->in[audio->read_next].used;
buf += audio->in[audio->read_next].used;
audio->in[audio->read_next].used = 0;
if ((++audio->read_next) == audio->pcm_buf_count)
audio->read_next = 0;
if (audio->in[audio->read_next].used == 0)
break; /* No data ready at this moment
* Exit while loop to prevent
* output thread sleep too long
*/
}
}
/* don't feed output buffer to HW decoder during flushing
* buffer refresh command will be sent once flush completes
* send buf refresh command here can confuse HW decoder
*/
if (audio->buf_refresh && !audio->rflush) {
audio->buf_refresh = 0;
pr_info("audio_read: kick start pcm feedback again\n");
audplay_buffer_refresh(audio);
}
mutex_unlock(&audio->read_lock);
if (buf > start)
rc = buf - start;
pr_info("audio_read: read %d bytes\n", rc);
return rc;
}
static ssize_t audio_write(struct file *file, const char __user *buf,
size_t count, loff_t *pos)
{
struct audio *audio = file->private_data;
const char __user *start = buf;
struct buffer *frame;
size_t xfer;
char *cpy_ptr;
int rc = 0;
unsigned dsize;
mutex_lock(&audio->write_lock);
while (count > 0) {
frame = audio->out + audio->out_head;
cpy_ptr = frame->data;
dsize = 0;
rc = wait_event_interruptible(audio->write_wait,
(frame->used == 0)
|| (audio->stopped)
|| (audio->wflush));
if (rc < 0)
break;
if (audio->stopped || audio->wflush) {
rc = -EBUSY;
break;
}
if (audio->reserved) {
dprintk("%s: append reserved byte %x\n",
__func__, audio->rsv_byte);
*cpy_ptr = audio->rsv_byte;
xfer = (count > (frame->size - 1)) ?
frame->size - 1 : count;
cpy_ptr++;
dsize = 1;
audio->reserved = 0;
} else
xfer = (count > frame->size) ? frame->size : count;
if (copy_from_user(cpy_ptr, buf, xfer)) {
rc = -EFAULT;
break;
}
dsize += xfer;
if (dsize & 1) {
audio->rsv_byte = ((char *) frame->data)[dsize - 1];
dprintk("%s: odd length buf reserve last byte %x\n",
__func__, audio->rsv_byte);
audio->reserved = 1;
dsize--;
}
count -= xfer;
buf += xfer;
if (dsize > 0) {
audio->out_head ^= 1;
frame->used = dsize;
audplay_send_data(audio, 0);
}
}
mutex_unlock(&audio->write_lock);
if (buf > start)
return buf - start;
return rc;
}
static int audio_release(struct inode *inode, struct file *file)
{
struct audio *audio = file->private_data;
dprintk("audio_release()\n");
mutex_lock(&audio->lock);
audio_disable(audio);
audio_flush(audio);
audio_flush_pcm_buf(audio);
msm_adsp_put(audio->audplay);
audio->audplay = NULL;
audio->opened = 0;
audio->reserved = 0;
dma_free_coherent(NULL, audio->out_dma_sz, audio->data, audio->phys);
audio->data = NULL;
if (audio->read_data != NULL) {
dma_free_coherent(NULL,
audio->in[0].size * audio->pcm_buf_count,
audio->read_data, audio->read_phys);
audio->read_data = NULL;
}
audio->pcm_feedback = 0;
mutex_unlock(&audio->lock);
return 0;
}
struct audio the_mp3_audio;
static int audio_open(struct inode *inode, struct file *file)
{
struct audio *audio = &the_mp3_audio;
int rc;
unsigned pmem_sz;
mutex_lock(&audio->lock);
if (audio->opened) {
pr_err("audio: busy\n");
rc = -EBUSY;
goto done;
}
pmem_sz = DMASZ_MAX;
while (pmem_sz >= DMASZ_MIN) {
audio->data = dma_alloc_coherent(NULL, pmem_sz,
&audio->phys, GFP_KERNEL);
if (audio->data)
break;
else if (pmem_sz == DMASZ_MIN) {
pr_err("audio: could not allocate DMA buffers\n");
rc = -ENOMEM;
goto done;
} else
pmem_sz >>= 1;
}
dprintk("%s: allocated %d bytes DMA buffer\n", __func__, pmem_sz);
rc = audmgr_open(&audio->audmgr);
if (rc) {
dma_free_coherent(NULL, pmem_sz,
audio->data, audio->phys);
goto done;
}
rc = msm_adsp_get("AUDPLAY0TASK", &audio->audplay, &audplay_adsp_ops,
audio);
if (rc) {
pr_err("audio: failed to get audplay0 dsp module\n");
dma_free_coherent(NULL, pmem_sz,
audio->data, audio->phys);
audmgr_close(&audio->audmgr);
goto done;
}
audio->out_dma_sz = pmem_sz;
pmem_sz >>= 1; /* Shift by 1 to get size of ping pong buffer */
audio->out_sample_rate = 44100;
audio->out_channel_mode = AUDPP_CMD_PCM_INTF_STEREO_V;
audio->dec_id = 0;
audio->out[0].data = audio->data + 0;
audio->out[0].addr = audio->phys + 0;
audio->out[0].size = pmem_sz;
audio->out[1].data = audio->data + pmem_sz;
audio->out[1].addr = audio->phys + pmem_sz;
audio->out[1].size = pmem_sz;
audio->volume = 0x2000; /* equal to Q13 number 1.0 Unit Gain */
audio_flush(audio);
file->private_data = audio;
audio->opened = 1;
rc = 0;
done:
mutex_unlock(&audio->lock);
return rc;
}
static struct file_operations audio_mp3_fops = {
.owner = THIS_MODULE,
.open = audio_open,
.release = audio_release,
.read = audio_read,
.write = audio_write,
.unlocked_ioctl = audio_ioctl,
};
struct miscdevice audio_mp3_misc = {
.minor = MISC_DYNAMIC_MINOR,
.name = "msm_mp3",
.fops = &audio_mp3_fops,
};
static int __init audio_init(void)
{
mutex_init(&the_mp3_audio.lock);
mutex_init(&the_mp3_audio.write_lock);
mutex_init(&the_mp3_audio.read_lock);
spin_lock_init(&the_mp3_audio.dsp_lock);
init_waitqueue_head(&the_mp3_audio.write_wait);
init_waitqueue_head(&the_mp3_audio.read_wait);
the_mp3_audio.read_data = NULL;
return misc_register(&audio_mp3_misc);
}
device_initcall(audio_init);
/* arch/arm/mach-msm/qdsp5/audio_out.c
*
* pcm audio output device
*
* Copyright (C) 2008 Google, Inc.
* Copyright (C) 2008 HTC Corporation
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/module.h>
#include <linux/fs.h>
#include <linux/miscdevice.h>
#include <linux/uaccess.h>
#include <linux/kthread.h>
#include <linux/wait.h>
#include <linux/dma-mapping.h>
#include <linux/debugfs.h>
#include <linux/delay.h>
#include <linux/wakelock.h>
#include <linux/msm_audio.h>
#include <asm/atomic.h>
#include <asm/ioctls.h>
#include <mach/msm_adsp.h>
#include "audmgr.h"
#include <mach/qdsp5/qdsp5audppcmdi.h>
#include <mach/qdsp5/qdsp5audppmsg.h>
#include <mach/htc_pwrsink.h>
#include "evlog.h"
#define LOG_AUDIO_EVENTS 1
#define LOG_AUDIO_FAULTS 0
enum {
EV_NULL,
EV_OPEN,
EV_WRITE,
EV_RETURN,
EV_IOCTL,
EV_WRITE_WAIT,
EV_WAIT_EVENT,
EV_FILL_BUFFER,
EV_SEND_BUFFER,
EV_DSP_EVENT,
EV_ENABLE,
};
#if (LOG_AUDIO_EVENTS != 1)
static inline void LOG(unsigned id, unsigned arg) {}
#else
static const char *pcm_log_strings[] = {
"NULL",
"OPEN",
"WRITE",
"RETURN",
"IOCTL",
"WRITE_WAIT",
"WAIT_EVENT",
"FILL_BUFFER",
"SEND_BUFFER",
"DSP_EVENT",
"ENABLE",
};
DECLARE_LOG(pcm_log, 64, pcm_log_strings);
static int __init _pcm_log_init(void)
{
return ev_log_init(&pcm_log);
}
module_init(_pcm_log_init);
#define LOG(id,arg) ev_log_write(&pcm_log, id, arg)
#endif
#define BUFSZ (960 * 5)
#define DMASZ (BUFSZ * 2)
#define AUDPP_CMD_CFG_OBJ_UPDATE 0x8000
#define AUDPP_CMD_EQ_FLAG_DIS 0x0000
#define AUDPP_CMD_EQ_FLAG_ENA -1
#define AUDPP_CMD_IIR_FLAG_DIS 0x0000
#define AUDPP_CMD_IIR_FLAG_ENA -1
#define AUDPP_CMD_IIR_TUNING_FILTER 1
#define AUDPP_CMD_EQUALIZER 2
#define AUDPP_CMD_ADRC 3
#define ADRC_ENABLE 0x0001
#define EQ_ENABLE 0x0002
#define IIR_ENABLE 0x0004
struct adrc_filter {
uint16_t compression_th;
uint16_t compression_slope;
uint16_t rms_time;
uint16_t attack_const_lsw;
uint16_t attack_const_msw;
uint16_t release_const_lsw;
uint16_t release_const_msw;
uint16_t adrc_system_delay;
};
struct eqalizer {
uint16_t num_bands;
uint16_t eq_params[132];
};
struct rx_iir_filter {
uint16_t num_bands;
uint16_t iir_params[48];
};
typedef struct {
audpp_cmd_cfg_object_params_common common;
uint16_t eq_flag;
uint16_t num_bands;
uint16_t eq_params[132];
} audpp_cmd_cfg_object_params_eq;
typedef struct {
audpp_cmd_cfg_object_params_common common;
uint16_t active_flag;
uint16_t num_bands;
uint16_t iir_params[48];
} audpp_cmd_cfg_object_params_rx_iir;
struct buffer {
void *data;
unsigned size;
unsigned used;
unsigned addr;
};
struct audio {
struct buffer out[2];
spinlock_t dsp_lock;
uint8_t out_head;
uint8_t out_tail;
uint8_t out_needed; /* number of buffers the dsp is waiting for */
atomic_t out_bytes;
struct mutex lock;
struct mutex write_lock;
wait_queue_head_t wait;
/* configuration to use on next enable */
uint32_t out_sample_rate;
uint32_t out_channel_mode;
uint32_t out_weight;
uint32_t out_buffer_size;
struct audmgr audmgr;
/* data allocated for various buffers */
char *data;
dma_addr_t phys;
int opened;
int enabled;
int running;
int stopped; /* set when stopped, cleared on flush */
unsigned volume;
struct wake_lock wakelock;
struct wake_lock idlelock;
int adrc_enable;
struct adrc_filter adrc;
int eq_enable;
struct eqalizer eq;
int rx_iir_enable;
struct rx_iir_filter iir;
};
static void audio_prevent_sleep(struct audio *audio)
{
printk(KERN_INFO "++++++++++++++++++++++++++++++\n");
wake_lock(&audio->wakelock);
wake_lock(&audio->idlelock);
}
static void audio_allow_sleep(struct audio *audio)
{
wake_unlock(&audio->wakelock);
wake_unlock(&audio->idlelock);
printk(KERN_INFO "------------------------------\n");
}
static int audio_dsp_out_enable(struct audio *audio, int yes);
static int audio_dsp_send_buffer(struct audio *audio, unsigned id, unsigned len);
static int audio_dsp_set_adrc(struct audio *audio);
static int audio_dsp_set_eq(struct audio *audio);
static int audio_dsp_set_rx_iir(struct audio *audio);
static void audio_dsp_event(void *private, unsigned id, uint16_t *msg);
/* must be called with audio->lock held */
static int audio_enable(struct audio *audio)
{
struct audmgr_config cfg;
int rc;
pr_info("audio_enable()\n");
if (audio->enabled)
return 0;
/* refuse to start if we're not ready */
if (!audio->out[0].used || !audio->out[1].used)
return -EIO;
/* we start buffers 0 and 1, so buffer 0 will be the
* next one the dsp will want
*/
audio->out_tail = 0;
audio->out_needed = 0;
cfg.tx_rate = RPC_AUD_DEF_SAMPLE_RATE_NONE;
cfg.rx_rate = RPC_AUD_DEF_SAMPLE_RATE_48000;
cfg.def_method = RPC_AUD_DEF_METHOD_HOST_PCM;
cfg.codec = RPC_AUD_DEF_CODEC_PCM;
cfg.snd_method = RPC_SND_METHOD_MIDI;
audio_prevent_sleep(audio);
rc = audmgr_enable(&audio->audmgr, &cfg);
if (rc < 0) {
audio_allow_sleep(audio);
return rc;
}
if (audpp_enable(-1, audio_dsp_event, audio)) {
pr_err("audio: audpp_enable() failed\n");
audmgr_disable(&audio->audmgr);
audio_allow_sleep(audio);
return -ENODEV;
}
audio->enabled = 1;
htc_pwrsink_set(PWRSINK_AUDIO, 100);
return 0;
}
/* must be called with audio->lock held */
static int audio_disable(struct audio *audio)
{
pr_info("audio_disable()\n");
if (audio->enabled) {
audio->enabled = 0;
audio_dsp_out_enable(audio, 0);
audpp_disable(-1, audio);
wake_up(&audio->wait);
audmgr_disable(&audio->audmgr);
audio->out_needed = 0;
audio_allow_sleep(audio);
}
return 0;
}
/* ------------------- dsp --------------------- */
static void audio_dsp_event(void *private, unsigned id, uint16_t *msg)
{
struct audio *audio = private;
struct buffer *frame;
unsigned long flags;
LOG(EV_DSP_EVENT, id);
switch (id) {
case AUDPP_MSG_HOST_PCM_INTF_MSG: {
unsigned id = msg[2];
unsigned idx = msg[3] - 1;
/* pr_info("audio_dsp_event: HOST_PCM id %d idx %d\n", id, idx); */
if (id != AUDPP_MSG_HOSTPCM_ID_ARM_RX) {
pr_err("bogus id\n");
break;
}
if (idx > 1) {
pr_err("bogus buffer idx\n");
break;
}
spin_lock_irqsave(&audio->dsp_lock, flags);
if (audio->running) {
atomic_add(audio->out[idx].used, &audio->out_bytes);
audio->out[idx].used = 0;
frame = audio->out + audio->out_tail;
if (frame->used) {
audio_dsp_send_buffer(
audio, audio->out_tail, frame->used);
audio->out_tail ^= 1;
} else {
audio->out_needed++;
}
wake_up(&audio->wait);
}
spin_unlock_irqrestore(&audio->dsp_lock, flags);
break;
}
case AUDPP_MSG_PCMDMAMISSED:
pr_info("audio_dsp_event: PCMDMAMISSED %d\n", msg[0]);
break;
case AUDPP_MSG_CFG_MSG:
if (msg[0] == AUDPP_MSG_ENA_ENA) {
LOG(EV_ENABLE, 1);
pr_info("audio_dsp_event: CFG_MSG ENABLE\n");
audio->out_needed = 0;
audio->running = 1;
audpp_set_volume_and_pan(5, audio->volume, 0);
audio_dsp_set_adrc(audio);
audio_dsp_set_eq(audio);
audio_dsp_set_rx_iir(audio);
audio_dsp_out_enable(audio, 1);
} else if (msg[0] == AUDPP_MSG_ENA_DIS) {
LOG(EV_ENABLE, 0);
pr_info("audio_dsp_event: CFG_MSG DISABLE\n");
audio->running = 0;
} else {
pr_err("audio_dsp_event: CFG_MSG %d?\n", msg[0]);
}
break;
default:
pr_err("audio_dsp_event: UNKNOWN (%d)\n", id);
}
}
static int audio_dsp_out_enable(struct audio *audio, int yes)
{
audpp_cmd_pcm_intf cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.cmd_id = AUDPP_CMD_PCM_INTF_2;
cmd.object_num = AUDPP_CMD_PCM_INTF_OBJECT_NUM;
cmd.config = AUDPP_CMD_PCM_INTF_CONFIG_CMD_V;
cmd.intf_type = AUDPP_CMD_PCM_INTF_RX_ENA_ARMTODSP_V;
if (yes) {
cmd.write_buf1LSW = audio->out[0].addr;
cmd.write_buf1MSW = audio->out[0].addr >> 16;
cmd.write_buf1_len = audio->out[0].size;
cmd.write_buf2LSW = audio->out[1].addr;
cmd.write_buf2MSW = audio->out[1].addr >> 16;
cmd.write_buf2_len = audio->out[1].size;
cmd.arm_to_rx_flag = AUDPP_CMD_PCM_INTF_ENA_V;
cmd.weight_decoder_to_rx = audio->out_weight;
cmd.weight_arm_to_rx = 1;
cmd.partition_number_arm_to_dsp = 0;
cmd.sample_rate = audio->out_sample_rate;
cmd.channel_mode = audio->out_channel_mode;
}
return audpp_send_queue2(&cmd, sizeof(cmd));
}
static int audio_dsp_send_buffer(struct audio *audio, unsigned idx, unsigned len)
{
audpp_cmd_pcm_intf_send_buffer cmd;
cmd.cmd_id = AUDPP_CMD_PCM_INTF_2;
cmd.host_pcm_object = AUDPP_CMD_PCM_INTF_OBJECT_NUM;
cmd.config = AUDPP_CMD_PCM_INTF_BUFFER_CMD_V;
cmd.intf_type = AUDPP_CMD_PCM_INTF_RX_ENA_ARMTODSP_V;
cmd.dsp_to_arm_buf_id = 0;
cmd.arm_to_dsp_buf_id = idx + 1;
cmd.arm_to_dsp_buf_len = len;
LOG(EV_SEND_BUFFER, idx);
return audpp_send_queue2(&cmd, sizeof(cmd));
}
static int audio_dsp_set_adrc(struct audio *audio)
{
audpp_cmd_cfg_object_params_adrc cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.common.comman_cfg = AUDPP_CMD_CFG_OBJ_UPDATE;
cmd.common.command_type = AUDPP_CMD_ADRC;
if (audio->adrc_enable) {
cmd.adrc_flag = AUDPP_CMD_ADRC_FLAG_ENA;
cmd.compression_th = audio->adrc.compression_th;
cmd.compression_slope = audio->adrc.compression_slope;
cmd.rms_time = audio->adrc.rms_time;
cmd.attack_const_lsw = audio->adrc.attack_const_lsw;
cmd.attack_const_msw = audio->adrc.attack_const_msw;
cmd.release_const_lsw = audio->adrc.release_const_lsw;
cmd.release_const_msw = audio->adrc.release_const_msw;
cmd.adrc_system_delay = audio->adrc.adrc_system_delay;
} else {
cmd.adrc_flag = AUDPP_CMD_ADRC_FLAG_DIS;
}
return audpp_send_queue3(&cmd, sizeof(cmd));
}
static int audio_dsp_set_eq(struct audio *audio)
{
audpp_cmd_cfg_object_params_eq cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.common.comman_cfg = AUDPP_CMD_CFG_OBJ_UPDATE;
cmd.common.command_type = AUDPP_CMD_EQUALIZER;
if (audio->eq_enable) {
cmd.eq_flag = AUDPP_CMD_EQ_FLAG_ENA;
cmd.num_bands = audio->eq.num_bands;
memcpy(&cmd.eq_params, audio->eq.eq_params,
sizeof(audio->eq.eq_params));
} else {
cmd.eq_flag = AUDPP_CMD_EQ_FLAG_DIS;
}
return audpp_send_queue3(&cmd, sizeof(cmd));
}
static int audio_dsp_set_rx_iir(struct audio *audio)
{
audpp_cmd_cfg_object_params_rx_iir cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.common.comman_cfg = AUDPP_CMD_CFG_OBJ_UPDATE;
cmd.common.command_type = AUDPP_CMD_IIR_TUNING_FILTER;
if (audio->rx_iir_enable) {
cmd.active_flag = AUDPP_CMD_IIR_FLAG_ENA;
cmd.num_bands = audio->iir.num_bands;
memcpy(&cmd.iir_params, audio->iir.iir_params,
sizeof(audio->iir.iir_params));
} else {
cmd.active_flag = AUDPP_CMD_IIR_FLAG_DIS;
}
return audpp_send_queue3(&cmd, sizeof(cmd));
}
/* ------------------- device --------------------- */
static int audio_enable_adrc(struct audio *audio, int enable)
{
if (audio->adrc_enable != enable) {
audio->adrc_enable = enable;
if (audio->running)
audio_dsp_set_adrc(audio);
}
return 0;
}
static int audio_enable_eq(struct audio *audio, int enable)
{
if (audio->eq_enable != enable) {
audio->eq_enable = enable;
if (audio->running)
audio_dsp_set_eq(audio);
}
return 0;
}
static int audio_enable_rx_iir(struct audio *audio, int enable)
{
if (audio->rx_iir_enable != enable) {
audio->rx_iir_enable = enable;
if (audio->running)
audio_dsp_set_rx_iir(audio);
}
return 0;
}
static void audio_flush(struct audio *audio)
{
audio->out[0].used = 0;
audio->out[1].used = 0;
audio->out_head = 0;
audio->out_tail = 0;
audio->stopped = 0;
}
static long audio_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
struct audio *audio = file->private_data;
int rc;
if (cmd == AUDIO_GET_STATS) {
struct msm_audio_stats stats;
stats.byte_count = atomic_read(&audio->out_bytes);
if (copy_to_user((void*) arg, &stats, sizeof(stats)))
return -EFAULT;
return 0;
}
if (cmd == AUDIO_SET_VOLUME) {
unsigned long flags;
spin_lock_irqsave(&audio->dsp_lock, flags);
audio->volume = arg;
if (audio->running)
audpp_set_volume_and_pan(6, arg, 0);
spin_unlock_irqrestore(&audio->dsp_lock, flags);
}
LOG(EV_IOCTL, cmd);
mutex_lock(&audio->lock);
switch (cmd) {
case AUDIO_START:
rc = audio_enable(audio);
break;
case AUDIO_STOP:
rc = audio_disable(audio);
audio->stopped = 1;
break;
case AUDIO_FLUSH:
if (audio->stopped) {
/* Make sure we're stopped and we wake any threads
* that might be blocked holding the write_lock.
* While audio->stopped write threads will always
* exit immediately.
*/
wake_up(&audio->wait);
mutex_lock(&audio->write_lock);
audio_flush(audio);
mutex_unlock(&audio->write_lock);
}
case AUDIO_SET_CONFIG: {
struct msm_audio_config config;
if (copy_from_user(&config, (void*) arg, sizeof(config))) {
rc = -EFAULT;
break;
}
if (config.channel_count == 1) {
config.channel_count = AUDPP_CMD_PCM_INTF_MONO_V;
} else if (config.channel_count == 2) {
config.channel_count= AUDPP_CMD_PCM_INTF_STEREO_V;
} else {
rc = -EINVAL;
break;
}
audio->out_sample_rate = config.sample_rate;
audio->out_channel_mode = config.channel_count;
rc = 0;
break;
}
case AUDIO_GET_CONFIG: {
struct msm_audio_config config;
config.buffer_size = BUFSZ;
config.buffer_count = 2;
config.sample_rate = audio->out_sample_rate;
if (audio->out_channel_mode == AUDPP_CMD_PCM_INTF_MONO_V) {
config.channel_count = 1;
} else {
config.channel_count = 2;
}
config.unused[0] = 0;
config.unused[1] = 0;
config.unused[2] = 0;
config.unused[3] = 0;
if (copy_to_user((void*) arg, &config, sizeof(config))) {
rc = -EFAULT;
} else {
rc = 0;
}
break;
}
default:
rc = -EINVAL;
}
mutex_unlock(&audio->lock);
return rc;
}
static ssize_t audio_read(struct file *file, char __user *buf, size_t count, loff_t *pos)
{
return -EINVAL;
}
static inline int rt_policy(int policy)
{
if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
return 1;
return 0;
}
static inline int task_has_rt_policy(struct task_struct *p)
{
return rt_policy(p->policy);
}
static ssize_t audio_write(struct file *file, const char __user *buf,
size_t count, loff_t *pos)
{
struct sched_param s = { .sched_priority = 1 };
struct audio *audio = file->private_data;
unsigned long flags;
const char __user *start = buf;
struct buffer *frame;
size_t xfer;
int old_prio = current->rt_priority;
int old_policy = current->policy;
int cap_nice = cap_raised(current_cap(), CAP_SYS_NICE);
int rc = 0;
LOG(EV_WRITE, count | (audio->running << 28) | (audio->stopped << 24));
/* just for this write, set us real-time */
if (!task_has_rt_policy(current)) {
struct cred *new = prepare_creds();
cap_raise(new->cap_effective, CAP_SYS_NICE);
commit_creds(new);
sched_setscheduler(current, SCHED_RR, &s);
}
mutex_lock(&audio->write_lock);
while (count > 0) {
frame = audio->out + audio->out_head;
LOG(EV_WAIT_EVENT, 0);
rc = wait_event_interruptible(audio->wait,
(frame->used == 0) || (audio->stopped));
LOG(EV_WAIT_EVENT, 1);
if (rc < 0)
break;
if (audio->stopped) {
rc = -EBUSY;
break;
}
xfer = count > frame->size ? frame->size : count;
if (copy_from_user(frame->data, buf, xfer)) {
rc = -EFAULT;
break;
}
frame->used = xfer;
audio->out_head ^= 1;
count -= xfer;
buf += xfer;
spin_lock_irqsave(&audio->dsp_lock, flags);
LOG(EV_FILL_BUFFER, audio->out_head ^ 1);
frame = audio->out + audio->out_tail;
if (frame->used && audio->out_needed) {
audio_dsp_send_buffer(audio, audio->out_tail, frame->used);
audio->out_tail ^= 1;
audio->out_needed--;
}
spin_unlock_irqrestore(&audio->dsp_lock, flags);
}
mutex_unlock(&audio->write_lock);
/* restore scheduling policy and priority */
if (!rt_policy(old_policy)) {
struct sched_param v = { .sched_priority = old_prio };
sched_setscheduler(current, old_policy, &v);
if (likely(!cap_nice)) {
struct cred *new = prepare_creds();
cap_lower(new->cap_effective, CAP_SYS_NICE);
commit_creds(new);
sched_setscheduler(current, SCHED_RR, &s);
}
}
LOG(EV_RETURN,(buf > start) ? (buf - start) : rc);
if (buf > start)
return buf - start;
return rc;
}
static int audio_release(struct inode *inode, struct file *file)
{
struct audio *audio = file->private_data;
LOG(EV_OPEN, 0);
mutex_lock(&audio->lock);
audio_disable(audio);
audio_flush(audio);
audio->opened = 0;
mutex_unlock(&audio->lock);
htc_pwrsink_set(PWRSINK_AUDIO, 0);
return 0;
}
struct audio the_audio;
static int audio_open(struct inode *inode, struct file *file)
{
struct audio *audio = &the_audio;
int rc;
mutex_lock(&audio->lock);
if (audio->opened) {
pr_err("audio: busy\n");
rc = -EBUSY;
goto done;
}
if (!audio->data) {
audio->data = dma_alloc_coherent(NULL, DMASZ,
&audio->phys, GFP_KERNEL);
if (!audio->data) {
pr_err("audio: could not allocate DMA buffers\n");
rc = -ENOMEM;
goto done;
}
}
rc = audmgr_open(&audio->audmgr);
if (rc)
goto done;
audio->out_buffer_size = BUFSZ;
audio->out_sample_rate = 44100;
audio->out_channel_mode = AUDPP_CMD_PCM_INTF_STEREO_V;
audio->out_weight = 100;
audio->out[0].data = audio->data + 0;
audio->out[0].addr = audio->phys + 0;
audio->out[0].size = BUFSZ;
audio->out[1].data = audio->data + BUFSZ;
audio->out[1].addr = audio->phys + BUFSZ;
audio->out[1].size = BUFSZ;
audio->volume = 0x2000;
audio_flush(audio);
file->private_data = audio;
audio->opened = 1;
rc = 0;
LOG(EV_OPEN, 1);
done:
mutex_unlock(&audio->lock);
return rc;
}
static long audpp_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
struct audio *audio = file->private_data;
int rc = 0, enable;
uint16_t enable_mask;
mutex_lock(&audio->lock);
switch (cmd) {
case AUDIO_ENABLE_AUDPP:
if (copy_from_user(&enable_mask, (void *) arg, sizeof(enable_mask)))
goto out_fault;
enable = (enable_mask & ADRC_ENABLE)? 1 : 0;
audio_enable_adrc(audio, enable);
enable = (enable_mask & EQ_ENABLE)? 1 : 0;
audio_enable_eq(audio, enable);
enable = (enable_mask & IIR_ENABLE)? 1 : 0;
audio_enable_rx_iir(audio, enable);
break;
case AUDIO_SET_ADRC:
if (copy_from_user(&audio->adrc, (void*) arg, sizeof(audio->adrc)))
goto out_fault;
break;
case AUDIO_SET_EQ:
if (copy_from_user(&audio->eq, (void*) arg, sizeof(audio->eq)))
goto out_fault;
break;
case AUDIO_SET_RX_IIR:
if (copy_from_user(&audio->iir, (void*) arg, sizeof(audio->iir)))
goto out_fault;
break;
default:
rc = -EINVAL;
}
goto out;
out_fault:
rc = -EFAULT;
out:
mutex_unlock(&audio->lock);
return rc;
}
static int audpp_open(struct inode *inode, struct file *file)
{
struct audio *audio = &the_audio;
file->private_data = audio;
return 0;
}
static struct file_operations audio_fops = {
.owner = THIS_MODULE,
.open = audio_open,
.release = audio_release,
.read = audio_read,
.write = audio_write,
.unlocked_ioctl = audio_ioctl,
};
static struct file_operations audpp_fops = {
.owner = THIS_MODULE,
.open = audpp_open,
.unlocked_ioctl = audpp_ioctl,
};
struct miscdevice audio_misc = {
.minor = MISC_DYNAMIC_MINOR,
.name = "msm_pcm_out",
.fops = &audio_fops,
};
struct miscdevice audpp_misc = {
.minor = MISC_DYNAMIC_MINOR,
.name = "msm_pcm_ctl",
.fops = &audpp_fops,
};
static int __init audio_init(void)
{
mutex_init(&the_audio.lock);
mutex_init(&the_audio.write_lock);
spin_lock_init(&the_audio.dsp_lock);
init_waitqueue_head(&the_audio.wait);
wake_lock_init(&the_audio.wakelock, WAKE_LOCK_SUSPEND, "audio_pcm");
wake_lock_init(&the_audio.idlelock, WAKE_LOCK_IDLE, "audio_pcm_idle");
return (misc_register(&audio_misc) || misc_register(&audpp_misc));
}
device_initcall(audio_init);
/* arch/arm/mach-msm/qdsp5/audio_qcelp.c
*
* qcelp 13k audio decoder device
*
* Copyright (c) 2008 QUALCOMM USA, INC.
*
* This code is based in part on audio_mp3.c, which is
* Copyright (C) 2008 Google, Inc.
* Copyright (C) 2008 HTC Corporation
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
*
* See the GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program; if not, you can find it at http://www.fsf.org.
*
*/
#include <linux/module.h>
#include <linux/fs.h>
#include <linux/miscdevice.h>
#include <linux/uaccess.h>
#include <linux/sched.h>
#include <linux/wait.h>
#include <linux/dma-mapping.h>
#include <asm/ioctls.h>
#include <mach/msm_adsp.h>
#include <linux/msm_audio.h>
#include <mach/qdsp5/qdsp5audppcmdi.h>
#include <mach/qdsp5/qdsp5audppmsg.h>
#include <mach/qdsp5/qdsp5audplaycmdi.h>
#include <mach/qdsp5/qdsp5audplaymsg.h>
#include "audmgr.h"
/* for queue ids - should be relative to module number*/
#include "adsp.h"
#ifdef DEBUG
#define dprintk(format, arg...) \
printk(KERN_DEBUG format, ## arg)
#else
#define dprintk(format, arg...) do {} while (0)
#endif
#define BUFSZ 1080 /* QCELP 13K Hold 600ms packet data = 36 * 30 */
#define BUF_COUNT 2
#define DMASZ (BUFSZ * BUF_COUNT)
#define PCM_BUFSZ_MIN 1600 /* 100ms worth of data */
#define PCM_BUF_MAX_COUNT 5
#define AUDDEC_DEC_QCELP 9
#define ROUTING_MODE_FTRT 1
#define ROUTING_MODE_RT 2
/* Decoder status received from AUDPPTASK */
#define AUDPP_DEC_STATUS_SLEEP 0
#define AUDPP_DEC_STATUS_INIT 1
#define AUDPP_DEC_STATUS_CFG 2
#define AUDPP_DEC_STATUS_PLAY 3
struct buffer {
void *data;
unsigned size;
unsigned used; /* Input usage actual DSP produced PCM size */
unsigned addr;
};
struct audio {
struct buffer out[BUF_COUNT];
spinlock_t dsp_lock;
uint8_t out_head;
uint8_t out_tail;
uint8_t out_needed; /* number of buffers the dsp is waiting for */
struct mutex lock;
struct mutex write_lock;
wait_queue_head_t write_wait;
/* Host PCM section - START */
struct buffer in[PCM_BUF_MAX_COUNT];
struct mutex read_lock;
wait_queue_head_t read_wait; /* Wait queue for read */
char *read_data; /* pointer to reader buffer */
dma_addr_t read_phys; /* physical address of reader buffer */
uint8_t read_next; /* index to input buffers to be read next */
uint8_t fill_next; /* index to buffer that DSP should be filling */
uint8_t pcm_buf_count; /* number of pcm buffer allocated */
/* Host PCM section - END */
struct msm_adsp_module *audplay;
struct audmgr audmgr;
/* data allocated for various buffers */
char *data;
dma_addr_t phys;
uint8_t opened:1;
uint8_t enabled:1;
uint8_t running:1;
uint8_t stopped:1; /* set when stopped, cleared on flush */
uint8_t pcm_feedback:1; /* set when non-tunnel mode */
uint8_t buf_refresh:1;
unsigned volume;
uint16_t dec_id;
};
static struct audio the_qcelp_audio;
static int auddec_dsp_config(struct audio *audio, int enable);
static void audpp_cmd_cfg_adec_params(struct audio *audio);
static void audpp_cmd_cfg_routing_mode(struct audio *audio);
static void audqcelp_send_data(struct audio *audio, unsigned needed);
static void audqcelp_config_hostpcm(struct audio *audio);
static void audqcelp_buffer_refresh(struct audio *audio);
static void audqcelp_dsp_event(void *private, unsigned id, uint16_t *msg);
/* must be called with audio->lock held */
static int audqcelp_enable(struct audio *audio)
{
struct audmgr_config cfg;
int rc;
dprintk("audqcelp_enable()\n");
if (audio->enabled)
return 0;
audio->out_tail = 0;
audio->out_needed = 0;
cfg.tx_rate = RPC_AUD_DEF_SAMPLE_RATE_NONE;
cfg.rx_rate = RPC_AUD_DEF_SAMPLE_RATE_48000;
cfg.def_method = RPC_AUD_DEF_METHOD_PLAYBACK;
cfg.codec = RPC_AUD_DEF_CODEC_13K;
cfg.snd_method = RPC_SND_METHOD_MIDI;
rc = audmgr_enable(&audio->audmgr, &cfg);
if (rc < 0)
return rc;
if (msm_adsp_enable(audio->audplay)) {
pr_err("audio: msm_adsp_enable(audplay) failed\n");
audmgr_disable(&audio->audmgr);
return -ENODEV;
}
if (audpp_enable(audio->dec_id, audqcelp_dsp_event, audio)) {
pr_err("audio: audpp_enable() failed\n");
msm_adsp_disable(audio->audplay);
audmgr_disable(&audio->audmgr);
return -ENODEV;
}
audio->enabled = 1;
return 0;
}
/* must be called with audio->lock held */
static int audqcelp_disable(struct audio *audio)
{
dprintk("audqcelp_disable()\n");
if (audio->enabled) {
audio->enabled = 0;
auddec_dsp_config(audio, 0);
wake_up(&audio->write_wait);
wake_up(&audio->read_wait);
msm_adsp_disable(audio->audplay);
audpp_disable(audio->dec_id, audio);
audmgr_disable(&audio->audmgr);
audio->out_needed = 0;
}
return 0;
}
/* ------------------- dsp --------------------- */
static void audqcelp_update_pcm_buf_entry(struct audio *audio,
uint32_t *payload)
{
uint8_t index;
unsigned long flags;
spin_lock_irqsave(&audio->dsp_lock, flags);
for (index = 0; index < payload[1]; index++) {
if (audio->in[audio->fill_next].addr ==
payload[2 + index * 2]) {
dprintk("audqcelp_update_pcm_buf_entry: in[%d] ready\n",
audio->fill_next);
audio->in[audio->fill_next].used =
payload[3 + index * 2];
if ((++audio->fill_next) == audio->pcm_buf_count)
audio->fill_next = 0;
} else {
pr_err(
"audqcelp_update_pcm_buf_entry: expected=%x ret=%x\n",
audio->in[audio->fill_next].addr,
payload[1 + index * 2]);
break;
}
}
if (audio->in[audio->fill_next].used == 0) {
audqcelp_buffer_refresh(audio);
} else {
dprintk("audqcelp_update_pcm_buf_entry: read cannot keep up\n");
audio->buf_refresh = 1;
}
spin_unlock_irqrestore(&audio->dsp_lock, flags);
wake_up(&audio->read_wait);
}
static void audplay_dsp_event(void *data, unsigned id, size_t len,
void (*getevent) (void *ptr, size_t len))
{
struct audio *audio = data;
uint32_t msg[28];
getevent(msg, sizeof(msg));
dprintk("audplay_dsp_event: msg_id=%x\n", id);
switch (id) {
case AUDPLAY_MSG_DEC_NEEDS_DATA:
audqcelp_send_data(audio, 1);
break;
case AUDPLAY_MSG_BUFFER_UPDATE:
audqcelp_update_pcm_buf_entry(audio, msg);
break;
default:
pr_err("unexpected message from decoder \n");
}
}
static void audqcelp_dsp_event(void *private, unsigned id, uint16_t *msg)
{
struct audio *audio = private;
switch (id) {
case AUDPP_MSG_STATUS_MSG:{
unsigned status = msg[1];
switch (status) {
case AUDPP_DEC_STATUS_SLEEP:
dprintk("decoder status: sleep \n");
break;
case AUDPP_DEC_STATUS_INIT:
dprintk("decoder status: init \n");
audpp_cmd_cfg_routing_mode(audio);
break;
case AUDPP_DEC_STATUS_CFG:
dprintk("decoder status: cfg \n");
break;
case AUDPP_DEC_STATUS_PLAY:
dprintk("decoder status: play \n");
if (audio->pcm_feedback) {
audqcelp_config_hostpcm(audio);
audqcelp_buffer_refresh(audio);
}
break;
default:
pr_err("unknown decoder status \n");
}
break;
}
case AUDPP_MSG_CFG_MSG:
if (msg[0] == AUDPP_MSG_ENA_ENA) {
dprintk("audqcelp_dsp_event: CFG_MSG ENABLE\n");
auddec_dsp_config(audio, 1);
audio->out_needed = 0;
audio->running = 1;
audpp_set_volume_and_pan(audio->dec_id, audio->volume,
0);
audpp_avsync(audio->dec_id, 22050);
} else if (msg[0] == AUDPP_MSG_ENA_DIS) {
dprintk("audqcelp_dsp_event: CFG_MSG DISABLE\n");
audpp_avsync(audio->dec_id, 0);
audio->running = 0;
} else {
pr_err("audqcelp_dsp_event: CFG_MSG %d?\n", msg[0]);
}
break;
case AUDPP_MSG_ROUTING_ACK:
dprintk("audqcelp_dsp_event: ROUTING_ACK mode=%d\n", msg[1]);
audpp_cmd_cfg_adec_params(audio);
break;
default:
pr_err("audqcelp_dsp_event: UNKNOWN (%d)\n", id);
}
}
struct msm_adsp_ops audplay_adsp_ops_qcelp = {
.event = audplay_dsp_event,
};
#define audplay_send_queue0(audio, cmd, len) \
msm_adsp_write(audio->audplay, QDSP_uPAudPlay0BitStreamCtrlQueue, \
cmd, len)
static int auddec_dsp_config(struct audio *audio, int enable)
{
audpp_cmd_cfg_dec_type cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.cmd_id = AUDPP_CMD_CFG_DEC_TYPE;
if (enable)
cmd.dec0_cfg = AUDPP_CMD_UPDATDE_CFG_DEC |
AUDPP_CMD_ENA_DEC_V | AUDDEC_DEC_QCELP;
else
cmd.dec0_cfg = AUDPP_CMD_UPDATDE_CFG_DEC | AUDPP_CMD_DIS_DEC_V;
return audpp_send_queue1(&cmd, sizeof(cmd));
}
static void audpp_cmd_cfg_adec_params(struct audio *audio)
{
struct audpp_cmd_cfg_adec_params_v13k cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.common.cmd_id = AUDPP_CMD_CFG_ADEC_PARAMS;
cmd.common.length = AUDPP_CMD_CFG_ADEC_PARAMS_V13K_LEN;
cmd.common.dec_id = audio->dec_id;
cmd.common.input_sampling_frequency = 8000;
cmd.stereo_cfg = AUDPP_CMD_PCM_INTF_MONO_V;
audpp_send_queue2(&cmd, sizeof(cmd));
}
static void audpp_cmd_cfg_routing_mode(struct audio *audio)
{
struct audpp_cmd_routing_mode cmd;
dprintk("audpp_cmd_cfg_routing_mode()\n");
memset(&cmd, 0, sizeof(cmd));
cmd.cmd_id = AUDPP_CMD_ROUTING_MODE;
cmd.object_number = audio->dec_id;
if (audio->pcm_feedback)
cmd.routing_mode = ROUTING_MODE_FTRT;
else
cmd.routing_mode = ROUTING_MODE_RT;
audpp_send_queue1(&cmd, sizeof(cmd));
}
static int audplay_dsp_send_data_avail(struct audio *audio,
unsigned idx, unsigned len)
{
audplay_cmd_bitstream_data_avail cmd;
cmd.cmd_id = AUDPLAY_CMD_BITSTREAM_DATA_AVAIL;
cmd.decoder_id = audio->dec_id;
cmd.buf_ptr = audio->out[idx].addr;
cmd.buf_size = len / 2;
cmd.partition_number = 0;
return audplay_send_queue0(audio, &cmd, sizeof(cmd));
}
static void audqcelp_buffer_refresh(struct audio *audio)
{
struct audplay_cmd_buffer_refresh refresh_cmd;
refresh_cmd.cmd_id = AUDPLAY_CMD_BUFFER_REFRESH;
refresh_cmd.num_buffers = 1;
refresh_cmd.buf0_address = audio->in[audio->fill_next].addr;
refresh_cmd.buf0_length = audio->in[audio->fill_next].size;
refresh_cmd.buf_read_count = 0;
dprintk("audplay_buffer_fresh: buf0_addr=%x buf0_len=%d\n",
refresh_cmd.buf0_address, refresh_cmd.buf0_length);
(void)audplay_send_queue0(audio, &refresh_cmd, sizeof(refresh_cmd));
}
static void audqcelp_config_hostpcm(struct audio *audio)
{
struct audplay_cmd_hpcm_buf_cfg cfg_cmd;
dprintk("audqcelp_config_hostpcm()\n");
cfg_cmd.cmd_id = AUDPLAY_CMD_HPCM_BUF_CFG;
cfg_cmd.max_buffers = audio->pcm_buf_count;
cfg_cmd.byte_swap = 0;
cfg_cmd.hostpcm_config = (0x8000) | (0x4000);
cfg_cmd.feedback_frequency = 1;
cfg_cmd.partition_number = 0;
(void)audplay_send_queue0(audio, &cfg_cmd, sizeof(cfg_cmd));
}
static void audqcelp_send_data(struct audio *audio, unsigned needed)
{
struct buffer *frame;
unsigned long flags;
spin_lock_irqsave(&audio->dsp_lock, flags);
if (!audio->running)
goto done;
if (needed) {
/* We were called from the callback because the DSP
* requested more data. Note that the DSP does want
* more data, and if a buffer was in-flight, mark it
* as available (since the DSP must now be done with
* it).
*/
audio->out_needed = 1;
frame = audio->out + audio->out_tail;
if (frame->used == 0xffffffff) {
dprintk("frame %d free\n", audio->out_tail);
frame->used = 0;
audio->out_tail ^= 1;
wake_up(&audio->write_wait);
}
}
if (audio->out_needed) {
/* If the DSP currently wants data and we have a
* buffer available, we will send it and reset
* the needed flag. We'll mark the buffer as in-flight
* so that it won't be recycled until the next buffer
* is requested
*/
frame = audio->out + audio->out_tail;
if (frame->used) {
BUG_ON(frame->used == 0xffffffff);
dprintk("frame %d busy\n", audio->out_tail);
audplay_dsp_send_data_avail(audio, audio->out_tail,
frame->used);
frame->used = 0xffffffff;
audio->out_needed = 0;
}
}
done:
spin_unlock_irqrestore(&audio->dsp_lock, flags);
}
/* ------------------- device --------------------- */
static void audqcelp_flush(struct audio *audio)
{
audio->out[0].used = 0;
audio->out[1].used = 0;
audio->out_head = 0;
audio->out_tail = 0;
audio->stopped = 0;
}
static void audqcelp_flush_pcm_buf(struct audio *audio)
{
uint8_t index;
for (index = 0; index < PCM_BUF_MAX_COUNT; index++)
audio->in[index].used = 0;
audio->read_next = 0;
audio->fill_next = 0;
}
static long audqcelp_ioctl(struct file *file, unsigned int cmd,
unsigned long arg)
{
struct audio *audio = file->private_data;
int rc = 0;
dprintk("audqcelp_ioctl() cmd = %d\n", cmd);
if (cmd == AUDIO_GET_STATS) {
struct msm_audio_stats stats;
stats.byte_count = audpp_avsync_byte_count(audio->dec_id);
stats.sample_count = audpp_avsync_sample_count(audio->dec_id);
if (copy_to_user((void *)arg, &stats, sizeof(stats)))
return -EFAULT;
return 0;
}
if (cmd == AUDIO_SET_VOLUME) {
unsigned long flags;
spin_lock_irqsave(&audio->dsp_lock, flags);
audio->volume = arg;
if (audio->running)
audpp_set_volume_and_pan(audio->dec_id, arg, 0);
spin_unlock_irqrestore(&audio->dsp_lock, flags);
return 0;
}
mutex_lock(&audio->lock);
switch (cmd) {
case AUDIO_START:
rc = audqcelp_enable(audio);
break;
case AUDIO_STOP:
rc = audqcelp_disable(audio);
audio->stopped = 1;
break;
case AUDIO_FLUSH:
if (audio->stopped) {
/* Make sure we're stopped and we wake any threads
* that might be blocked holding the write_lock.
* While audio->stopped write threads will always
* exit immediately.
*/
wake_up(&audio->write_wait);
mutex_lock(&audio->write_lock);
audqcelp_flush(audio);
mutex_unlock(&audio->write_lock);
wake_up(&audio->read_wait);
mutex_lock(&audio->read_lock);
audqcelp_flush_pcm_buf(audio);
mutex_unlock(&audio->read_lock);
break;
}
break;
case AUDIO_SET_CONFIG:
dprintk("AUDIO_SET_CONFIG not applicable \n");
break;
case AUDIO_GET_CONFIG:{
struct msm_audio_config config;
config.buffer_size = BUFSZ;
config.buffer_count = BUF_COUNT;
config.sample_rate = 8000;
config.channel_count = 1;
config.unused[0] = 0;
config.unused[1] = 0;
config.unused[2] = 0;
config.unused[3] = 0;
if (copy_to_user((void *)arg, &config,
sizeof(config)))
rc = -EFAULT;
else
rc = 0;
break;
}
case AUDIO_GET_PCM_CONFIG:{
struct msm_audio_pcm_config config;
config.pcm_feedback = 0;
config.buffer_count = PCM_BUF_MAX_COUNT;
config.buffer_size = PCM_BUFSZ_MIN;
if (copy_to_user((void *)arg, &config,
sizeof(config)))
rc = -EFAULT;
else
rc = 0;
break;
}
case AUDIO_SET_PCM_CONFIG:{
struct msm_audio_pcm_config config;
if (copy_from_user(&config, (void *)arg,
sizeof(config))) {
rc = -EFAULT;
break;
}
if ((config.buffer_count > PCM_BUF_MAX_COUNT) ||
(config.buffer_count == 1))
config.buffer_count = PCM_BUF_MAX_COUNT;
if (config.buffer_size < PCM_BUFSZ_MIN)
config.buffer_size = PCM_BUFSZ_MIN;
/* Check if pcm feedback is required */
if ((config.pcm_feedback) && (!audio->read_data)) {
dprintk(
"audqcelp_ioctl: allocate PCM buf %d\n",
config.buffer_count * config.buffer_size);
audio->read_data = dma_alloc_coherent(NULL,
config.buffer_size * config.buffer_count,
&audio->read_phys, GFP_KERNEL);
if (!audio->read_data) {
pr_err(
"audqcelp_ioctl: no mem for pcm buf\n"
);
rc = -ENOMEM;
} else {
uint8_t index;
uint32_t offset = 0;
audio->pcm_feedback = 1;
audio->buf_refresh = 0;
audio->pcm_buf_count =
config.buffer_count;
audio->read_next = 0;
audio->fill_next = 0;
for (index = 0;
index < config.buffer_count; index++) {
audio->in[index].data =
audio->read_data + offset;
audio->in[index].addr =
audio->read_phys + offset;
audio->in[index].size =
config.buffer_size;
audio->in[index].used = 0;
offset += config.buffer_size;
}
rc = 0;
}
} else {
rc = 0;
}
break;
}
case AUDIO_PAUSE:
dprintk("%s: AUDIO_PAUSE %ld\n", __func__, arg);
rc = audpp_pause(audio->dec_id, (int) arg);
break;
default:
rc = -EINVAL;
}
mutex_unlock(&audio->lock);
return rc;
}
static ssize_t audqcelp_read(struct file *file, char __user *buf, size_t count,
loff_t *pos)
{
struct audio *audio = file->private_data;
const char __user *start = buf;
int rc = 0;
if (!audio->pcm_feedback)
return 0; /* PCM feedback is not enabled. Nothing to read */
mutex_lock(&audio->read_lock);
dprintk("audqcelp_read() %d \n", count);
while (count > 0) {
rc = wait_event_interruptible(audio->read_wait,
(audio->in[audio->read_next].used > 0) ||
(audio->stopped));
if (rc < 0)
break;
if (audio->stopped) {
rc = -EBUSY;
break;
}
if (count < audio->in[audio->read_next].used) {
/* Read must happen in frame boundary. Since driver does
not know frame size, read count must be greater or equal
to size of PCM samples */
dprintk("audqcelp_read:read stop - partial frame\n");
break;
} else {
dprintk("audqcelp_read: read from in[%d]\n",
audio->read_next);
if (copy_to_user(buf,
audio->in[audio->read_next].data,
audio->in[audio->read_next].used)) {
pr_err("audqcelp_read: invalid addr %x \n",
(unsigned int)buf);
rc = -EFAULT;
break;
}
count -= audio->in[audio->read_next].used;
buf += audio->in[audio->read_next].used;
audio->in[audio->read_next].used = 0;
if ((++audio->read_next) == audio->pcm_buf_count)
audio->read_next = 0;
}
}
if (audio->buf_refresh) {
audio->buf_refresh = 0;
dprintk("audqcelp_read: kick start pcm feedback again\n");
audqcelp_buffer_refresh(audio);
}
mutex_unlock(&audio->read_lock);
if (buf > start)
rc = buf - start;
dprintk("audqcelp_read: read %d bytes\n", rc);
return rc;
}
static ssize_t audqcelp_write(struct file *file, const char __user *buf,
size_t count, loff_t *pos)
{
struct audio *audio = file->private_data;
const char __user *start = buf;
struct buffer *frame;
size_t xfer;
int rc = 0;
if (count & 1)
return -EINVAL;
dprintk("audqcelp_write() \n");
mutex_lock(&audio->write_lock);
while (count > 0) {
frame = audio->out + audio->out_head;
rc = wait_event_interruptible(audio->write_wait,
(frame->used == 0)
|| (audio->stopped));
dprintk("audqcelp_write() buffer available\n");
if (rc < 0)
break;
if (audio->stopped) {
rc = -EBUSY;
break;
}
xfer = (count > frame->size) ? frame->size : count;
if (copy_from_user(frame->data, buf, xfer)) {
rc = -EFAULT;
break;
}
frame->used = xfer;
audio->out_head ^= 1;
count -= xfer;
buf += xfer;
audqcelp_send_data(audio, 0);
}
mutex_unlock(&audio->write_lock);
if (buf > start)
return buf - start;
return rc;
}
static int audqcelp_release(struct inode *inode, struct file *file)
{
struct audio *audio = file->private_data;
dprintk("audqcelp_release()\n");
mutex_lock(&audio->lock);
audqcelp_disable(audio);
audqcelp_flush(audio);
audqcelp_flush_pcm_buf(audio);
msm_adsp_put(audio->audplay);
audio->audplay = NULL;
audio->opened = 0;
if (audio->data)
dma_free_coherent(NULL, DMASZ, audio->data, audio->phys);
audio->data = NULL;
if (audio->read_data) {
dma_free_coherent(NULL,
audio->in[0].size * audio->pcm_buf_count,
audio->read_data, audio->read_phys);
audio->read_data = NULL;
}
audio->pcm_feedback = 0;
mutex_unlock(&audio->lock);
return 0;
}
static int audqcelp_open(struct inode *inode, struct file *file)
{
struct audio *audio = &the_qcelp_audio;
int rc;
mutex_lock(&audio->lock);
if (audio->opened) {
pr_err("audio: busy\n");
rc = -EBUSY;
goto done;
}
audio->data = dma_alloc_coherent(NULL, DMASZ,
&audio->phys, GFP_KERNEL);
if (!audio->data) {
pr_err("audio: could not allocate DMA buffers\n");
rc = -ENOMEM;
goto done;
}
rc = audmgr_open(&audio->audmgr);
if (rc)
goto err;
rc = msm_adsp_get("AUDPLAY0TASK", &audio->audplay,
&audplay_adsp_ops_qcelp, audio);
if (rc) {
pr_err("audio: failed to get audplay0 dsp module\n");
audmgr_close(&audio->audmgr);
goto err;
}
audio->dec_id = 0;
audio->out[0].data = audio->data + 0;
audio->out[0].addr = audio->phys + 0;
audio->out[0].size = BUFSZ;
audio->out[1].data = audio->data + BUFSZ;
audio->out[1].addr = audio->phys + BUFSZ;
audio->out[1].size = BUFSZ;
audio->volume = 0x2000; /* Q13 1.0 */
audqcelp_flush(audio);
file->private_data = audio;
audio->opened = 1;
rc = 0;
done:
mutex_unlock(&audio->lock);
return rc;
err:
dma_free_coherent(NULL, DMASZ, audio->data, audio->phys);
mutex_unlock(&audio->lock);
return rc;
}
static struct file_operations audio_qcelp_fops = {
.owner = THIS_MODULE,
.open = audqcelp_open,
.release = audqcelp_release,
.read = audqcelp_read,
.write = audqcelp_write,
.unlocked_ioctl = audqcelp_ioctl,
};
struct miscdevice audio_qcelp_misc = {
.minor = MISC_DYNAMIC_MINOR,
.name = "msm_qcelp",
.fops = &audio_qcelp_fops,
};
static int __init audqcelp_init(void)
{
mutex_init(&the_qcelp_audio.lock);
mutex_init(&the_qcelp_audio.write_lock);
mutex_init(&the_qcelp_audio.read_lock);
spin_lock_init(&the_qcelp_audio.dsp_lock);
init_waitqueue_head(&the_qcelp_audio.write_wait);
init_waitqueue_head(&the_qcelp_audio.read_wait);
the_qcelp_audio.read_data = NULL;
return misc_register(&audio_qcelp_misc);
}
static void __exit audqcelp_exit(void)
{
misc_deregister(&audio_qcelp_misc);
}
module_init(audqcelp_init);
module_exit(audqcelp_exit);
MODULE_DESCRIPTION("MSM QCELP 13K driver");
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("QUALCOMM");
/* arch/arm/mach-msm/qdsp5/audmgr.c
*
* interface to "audmgr" service on the baseband cpu
*
* Copyright (C) 2008 Google, Inc.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/module.h>
#include <linux/fs.h>
#include <linux/uaccess.h>
#include <linux/kthread.h>
#include <linux/wait.h>
#include <asm/atomic.h>
#include <mach/msm_rpcrouter.h>
#include "audmgr.h"
#define STATE_CLOSED 0
#define STATE_DISABLED 1
#define STATE_ENABLING 2
#define STATE_ENABLED 3
#define STATE_DISABLING 4
#define STATE_ERROR 5
static void rpc_ack(struct msm_rpc_endpoint *ept, uint32_t xid)
{
uint32_t rep[6];
rep[0] = cpu_to_be32(xid);
rep[1] = cpu_to_be32(1);
rep[2] = cpu_to_be32(RPCMSG_REPLYSTAT_ACCEPTED);
rep[3] = cpu_to_be32(RPC_ACCEPTSTAT_SUCCESS);
rep[4] = 0;
rep[5] = 0;
msm_rpc_write(ept, rep, sizeof(rep));
}
static void process_audmgr_callback(struct audmgr *am,
struct rpc_audmgr_cb_func_ptr *args,
int len)
{
if (len < (sizeof(uint32_t) * 3))
return;
if (be32_to_cpu(args->set_to_one) != 1)
return;
switch (be32_to_cpu(args->status)) {
case RPC_AUDMGR_STATUS_READY:
if (len < sizeof(uint32_t) * 4)
break;
am->handle = be32_to_cpu(args->u.handle);
pr_info("audmgr: rpc READY handle=0x%08x\n", am->handle);
break;
case RPC_AUDMGR_STATUS_CODEC_CONFIG: {
uint32_t volume;
if (len < sizeof(uint32_t) * 4)
break;
volume = be32_to_cpu(args->u.volume);
pr_info("audmgr: rpc CODEC_CONFIG volume=0x%08x\n", volume);
am->state = STATE_ENABLED;
wake_up(&am->wait);
break;
}
case RPC_AUDMGR_STATUS_PENDING:
pr_err("audmgr: PENDING?\n");
break;
case RPC_AUDMGR_STATUS_SUSPEND:
pr_err("audmgr: SUSPEND?\n");
break;
case RPC_AUDMGR_STATUS_FAILURE:
pr_err("audmgr: FAILURE\n");
break;
case RPC_AUDMGR_STATUS_VOLUME_CHANGE:
pr_err("audmgr: VOLUME_CHANGE?\n");
break;
case RPC_AUDMGR_STATUS_DISABLED:
pr_err("audmgr: DISABLED\n");
am->state = STATE_DISABLED;
wake_up(&am->wait);
break;
case RPC_AUDMGR_STATUS_ERROR:
pr_err("audmgr: ERROR?\n");
am->state = STATE_ERROR;
wake_up(&am->wait);
break;
default:
break;
}
}
static void process_rpc_request(uint32_t proc, uint32_t xid,
void *data, int len, void *private)
{
struct audmgr *am = private;
uint32_t *x = data;
if (0) {
int n = len / 4;
pr_info("rpc_call proc %d:", proc);
while (n--)
printk(" %08x", be32_to_cpu(*x++));
printk("\n");
}
if (proc == AUDMGR_CB_FUNC_PTR)
process_audmgr_callback(am, data, len);
else
pr_err("audmgr: unknown rpc proc %d\n", proc);
rpc_ack(am->ept, xid);
}
#define RPC_TYPE_REQUEST 0
#define RPC_TYPE_REPLY 1
#define RPC_VERSION 2
#define RPC_COMMON_HDR_SZ (sizeof(uint32_t) * 2)
#define RPC_REQUEST_HDR_SZ (sizeof(struct rpc_request_hdr))
#define RPC_REPLY_HDR_SZ (sizeof(uint32_t) * 3)
#define RPC_REPLY_SZ (sizeof(uint32_t) * 6)
static int audmgr_rpc_thread(void *data)
{
struct audmgr *am = data;
struct rpc_request_hdr *hdr = NULL;
uint32_t type;
int len;
pr_info("audmgr_rpc_thread() start\n");
while (!kthread_should_stop()) {
if (hdr) {
kfree(hdr);
hdr = NULL;
}
len = msm_rpc_read(am->ept, (void **) &hdr, -1, -1);
if (len < 0) {
pr_err("audmgr: rpc read failed (%d)\n", len);
break;
}
if (len < RPC_COMMON_HDR_SZ)
continue;
type = be32_to_cpu(hdr->type);
if (type == RPC_TYPE_REPLY) {
struct rpc_reply_hdr *rep = (void *) hdr;
uint32_t status;
if (len < RPC_REPLY_HDR_SZ)
continue;
status = be32_to_cpu(rep->reply_stat);
if (status == RPCMSG_REPLYSTAT_ACCEPTED) {
status = be32_to_cpu(rep->data.acc_hdr.accept_stat);
pr_info("audmgr: rpc_reply status %d\n", status);
} else {
pr_info("audmgr: rpc_reply denied!\n");
}
/* process reply */
continue;
}
if (len < RPC_REQUEST_HDR_SZ)
continue;
process_rpc_request(be32_to_cpu(hdr->procedure),
be32_to_cpu(hdr->xid),
(void *) (hdr + 1),
len - sizeof(*hdr),
data);
}
pr_info("audmgr_rpc_thread() exit\n");
if (hdr) {
kfree(hdr);
hdr = NULL;
}
am->task = NULL;
wake_up(&am->wait);
return 0;
}
struct audmgr_enable_msg {
struct rpc_request_hdr hdr;
struct rpc_audmgr_enable_client_args args;
};
struct audmgr_disable_msg {
struct rpc_request_hdr hdr;
uint32_t handle;
};
int audmgr_open(struct audmgr *am)
{
int rc;
if (am->state != STATE_CLOSED)
return 0;
am->ept = msm_rpc_connect(AUDMGR_PROG,
AUDMGR_VERS,
MSM_RPC_UNINTERRUPTIBLE);
init_waitqueue_head(&am->wait);
if (IS_ERR(am->ept)) {
rc = PTR_ERR(am->ept);
am->ept = NULL;
pr_err("audmgr: failed to connect to audmgr svc\n");
return rc;
}
am->task = kthread_run(audmgr_rpc_thread, am, "audmgr_rpc");
if (IS_ERR(am->task)) {
rc = PTR_ERR(am->task);
am->task = NULL;
msm_rpc_close(am->ept);
am->ept = NULL;
return rc;
}
am->state = STATE_DISABLED;
return 0;
}
EXPORT_SYMBOL(audmgr_open);
int audmgr_close(struct audmgr *am)
{
return -EBUSY;
}
EXPORT_SYMBOL(audmgr_close);
int audmgr_enable(struct audmgr *am, struct audmgr_config *cfg)
{
struct audmgr_enable_msg msg;
int rc;
if (am->state == STATE_ENABLED)
return 0;
if (am->state == STATE_DISABLING)
pr_err("audmgr: state is DISABLING in enable?\n");
am->state = STATE_ENABLING;
msg.args.set_to_one = cpu_to_be32(1);
msg.args.tx_sample_rate = cpu_to_be32(cfg->tx_rate);
msg.args.rx_sample_rate = cpu_to_be32(cfg->rx_rate);
msg.args.def_method = cpu_to_be32(cfg->def_method);
msg.args.codec_type = cpu_to_be32(cfg->codec);
msg.args.snd_method = cpu_to_be32(cfg->snd_method);
msg.args.cb_func = cpu_to_be32(0x11111111);
msg.args.client_data = cpu_to_be32(0x11223344);
msm_rpc_setup_req(&msg.hdr, AUDMGR_PROG, msm_rpc_get_vers(am->ept),
AUDMGR_ENABLE_CLIENT);
rc = msm_rpc_write(am->ept, &msg, sizeof(msg));
if (rc < 0)
return rc;
rc = wait_event_timeout(am->wait, am->state != STATE_ENABLING, 15 * HZ);
if (rc == 0) {
pr_err("audmgr_enable: ARM9 did not reply to RPC am->state = %d\n", am->state);
BUG();
}
if (am->state == STATE_ENABLED)
return 0;
pr_err("audmgr: unexpected state %d while enabling?!\n", am->state);
return -ENODEV;
}
EXPORT_SYMBOL(audmgr_enable);
int audmgr_disable(struct audmgr *am)
{
struct audmgr_disable_msg msg;
int rc;
if (am->state == STATE_DISABLED)
return 0;
msm_rpc_setup_req(&msg.hdr, AUDMGR_PROG, msm_rpc_get_vers(am->ept),
AUDMGR_DISABLE_CLIENT);
msg.handle = cpu_to_be32(am->handle);
am->state = STATE_DISABLING;
rc = msm_rpc_write(am->ept, &msg, sizeof(msg));
if (rc < 0)
return rc;
rc = wait_event_timeout(am->wait, am->state != STATE_DISABLING, 15 * HZ);
if (rc == 0) {
pr_err("audmgr_disable: ARM9 did not reply to RPC am->state = %d\n", am->state);
BUG();
}
if (am->state == STATE_DISABLED)
return 0;
pr_err("audmgr: unexpected state %d while disabling?!\n", am->state);
return -ENODEV;
}
EXPORT_SYMBOL(audmgr_disable);
/* arch/arm/mach-msm/qdsp5/audmgr.h
*
* Copyright 2008 (c) QUALCOMM Incorporated.
* Copyright (C) 2008 Google, Inc.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#ifndef _ARCH_ARM_MACH_MSM_AUDMGR_H
#define _ARCH_ARM_MACH_MSM_AUDMGR_H
#if CONFIG_MSM_AMSS_VERSION==6350
#include "audmgr_new.h"
#else
enum rpc_aud_def_sample_rate_type {
RPC_AUD_DEF_SAMPLE_RATE_NONE,
RPC_AUD_DEF_SAMPLE_RATE_8000,
RPC_AUD_DEF_SAMPLE_RATE_11025,
RPC_AUD_DEF_SAMPLE_RATE_12000,
RPC_AUD_DEF_SAMPLE_RATE_16000,
RPC_AUD_DEF_SAMPLE_RATE_22050,
RPC_AUD_DEF_SAMPLE_RATE_24000,
RPC_AUD_DEF_SAMPLE_RATE_32000,
RPC_AUD_DEF_SAMPLE_RATE_44100,
RPC_AUD_DEF_SAMPLE_RATE_48000,
RPC_AUD_DEF_SAMPLE_RATE_MAX,
};
enum rpc_aud_def_method_type {
RPC_AUD_DEF_METHOD_NONE,
RPC_AUD_DEF_METHOD_KEY_BEEP,
RPC_AUD_DEF_METHOD_PLAYBACK,
RPC_AUD_DEF_METHOD_VOICE,
RPC_AUD_DEF_METHOD_RECORD,
RPC_AUD_DEF_METHOD_HOST_PCM,
RPC_AUD_DEF_METHOD_MIDI_OUT,
RPC_AUD_DEF_METHOD_RECORD_SBC,
RPC_AUD_DEF_METHOD_DTMF_RINGER,
RPC_AUD_DEF_METHOD_MAX,
};
enum rpc_aud_def_codec_type {
RPC_AUD_DEF_CODEC_NONE,
RPC_AUD_DEF_CODEC_DTMF,
RPC_AUD_DEF_CODEC_MIDI,
RPC_AUD_DEF_CODEC_MP3,
RPC_AUD_DEF_CODEC_PCM,
RPC_AUD_DEF_CODEC_AAC,
RPC_AUD_DEF_CODEC_WMA,
RPC_AUD_DEF_CODEC_RA,
RPC_AUD_DEF_CODEC_ADPCM,
RPC_AUD_DEF_CODEC_GAUDIO,
RPC_AUD_DEF_CODEC_VOC_EVRC,
RPC_AUD_DEF_CODEC_VOC_13K,
RPC_AUD_DEF_CODEC_VOC_4GV_NB,
RPC_AUD_DEF_CODEC_VOC_AMR,
RPC_AUD_DEF_CODEC_VOC_EFR,
RPC_AUD_DEF_CODEC_VOC_FR,
RPC_AUD_DEF_CODEC_VOC_HR,
RPC_AUD_DEF_CODEC_VOC,
RPC_AUD_DEF_CODEC_SBC,
RPC_AUD_DEF_CODEC_VOC_PCM,
RPC_AUD_DEF_CODEC_AMR_WB,
RPC_AUD_DEF_CODEC_AMR_WB_PLUS,
RPC_AUD_DEF_CODEC_MAX,
};
enum rpc_snd_method_type {
RPC_SND_METHOD_VOICE = 0,
RPC_SND_METHOD_KEY_BEEP,
RPC_SND_METHOD_MESSAGE,
RPC_SND_METHOD_RING,
RPC_SND_METHOD_MIDI,
RPC_SND_METHOD_AUX,
RPC_SND_METHOD_MAX,
};
enum rpc_voc_codec_type {
RPC_VOC_CODEC_DEFAULT,
RPC_VOC_CODEC_ON_CHIP_0 = RPC_VOC_CODEC_DEFAULT,
RPC_VOC_CODEC_ON_CHIP_1,
RPC_VOC_CODEC_STEREO_HEADSET,
RPC_VOC_CODEC_ON_CHIP_AUX,
RPC_VOC_CODEC_BT_OFF_BOARD,
RPC_VOC_CODEC_BT_A2DP,
RPC_VOC_CODEC_OFF_BOARD,
RPC_VOC_CODEC_SDAC,
RPC_VOC_CODEC_RX_EXT_SDAC_TX_INTERNAL,
RPC_VOC_CODEC_IN_STEREO_SADC_OUT_MONO_HANDSET,
RPC_VOC_CODEC_IN_STEREO_SADC_OUT_STEREO_HEADSET,
RPC_VOC_CODEC_TX_INT_SADC_RX_EXT_AUXPCM,
RPC_VOC_CODEC_EXT_STEREO_SADC_OUT_MONO_HANDSET,
RPC_VOC_CODEC_EXT_STEREO_SADC_OUT_STEREO_HEADSET,
RPC_VOC_CODEC_TTY_ON_CHIP_1,
RPC_VOC_CODEC_TTY_OFF_BOARD,
RPC_VOC_CODEC_TTY_VCO,
RPC_VOC_CODEC_TTY_HCO,
RPC_VOC_CODEC_ON_CHIP_0_DUAL_MIC,
RPC_VOC_CODEC_MAX,
RPC_VOC_CODEC_NONE,
};
enum rpc_audmgr_status_type {
RPC_AUDMGR_STATUS_READY,
RPC_AUDMGR_STATUS_CODEC_CONFIG,
RPC_AUDMGR_STATUS_PENDING,
RPC_AUDMGR_STATUS_SUSPEND,
RPC_AUDMGR_STATUS_FAILURE,
RPC_AUDMGR_STATUS_VOLUME_CHANGE,
RPC_AUDMGR_STATUS_DISABLED,
RPC_AUDMGR_STATUS_ERROR,
};
struct rpc_audmgr_enable_client_args {
uint32_t set_to_one;
uint32_t tx_sample_rate;
uint32_t rx_sample_rate;
uint32_t def_method;
uint32_t codec_type;
uint32_t snd_method;
uint32_t cb_func;
uint32_t client_data;
};
#define AUDMGR_ENABLE_CLIENT 2
#define AUDMGR_DISABLE_CLIENT 3
#define AUDMGR_SUSPEND_EVENT_RSP 4
#define AUDMGR_REGISTER_OPERATION_LISTENER 5
#define AUDMGR_UNREGISTER_OPERATION_LISTENER 6
#define AUDMGR_REGISTER_CODEC_LISTENER 7
#define AUDMGR_GET_RX_SAMPLE_RATE 8
#define AUDMGR_GET_TX_SAMPLE_RATE 9
#define AUDMGR_SET_DEVICE_MODE 10
#if CONFIG_MSM_AMSS_VERSION < 6220
#define AUDMGR_PROG_VERS "rs30000013:46255756"
#define AUDMGR_PROG 0x30000013
#define AUDMGR_VERS 0x46255756
#else
#define AUDMGR_PROG_VERS "rs30000013:e94e8f0c"
#define AUDMGR_PROG 0x30000013
#define AUDMGR_VERS 0xe94e8f0c
#endif
struct rpc_audmgr_cb_func_ptr {
uint32_t cb_id;
uint32_t set_to_one;
uint32_t status;
union {
uint32_t handle;
uint32_t volume;
} u;
};
#define AUDMGR_CB_FUNC_PTR 1
#define AUDMGR_OPR_LSTNR_CB_FUNC_PTR 2
#define AUDMGR_CODEC_LSTR_FUNC_PTR 3
#if CONFIG_MSM_AMSS_VERSION < 6220
#define AUDMGR_CB_PROG 0x31000013
#define AUDMGR_CB_VERS 0x5fa922a9
#else
#define AUDMGR_CB_PROG 0x31000013
#define AUDMGR_CB_VERS 0x21570ba7
#endif
struct audmgr {
wait_queue_head_t wait;
uint32_t handle;
struct msm_rpc_endpoint *ept;
struct task_struct *task;
int state;
};
struct audmgr_config {
uint32_t tx_rate;
uint32_t rx_rate;
uint32_t def_method;
uint32_t codec;
uint32_t snd_method;
};
int audmgr_open(struct audmgr *am);
int audmgr_close(struct audmgr *am);
int audmgr_enable(struct audmgr *am, struct audmgr_config *cfg);
int audmgr_disable(struct audmgr *am);
typedef void (*audpp_event_func)(void *private, unsigned id, uint16_t *msg);
int audpp_enable(int id, audpp_event_func func, void *private);
void audpp_disable(int id, void *private);
int audpp_send_queue1(void *cmd, unsigned len);
int audpp_send_queue2(void *cmd, unsigned len);
int audpp_send_queue3(void *cmd, unsigned len);
int audpp_pause(unsigned id, int pause);
int audpp_set_volume_and_pan(unsigned id, unsigned volume, int pan);
void audpp_avsync(int id, unsigned rate);
unsigned audpp_avsync_sample_count(int id);
unsigned audpp_avsync_byte_count(int id);
#endif
#endif
/* arch/arm/mach-msm/qdsp5/audmgr.h
*
* Copyright 2008 (c) QUALCOMM Incorporated.
* Copyright (C) 2008 Google, Inc.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#ifndef _ARCH_ARM_MACH_MSM_AUDMGR_NEW_H
#define _ARCH_ARM_MACH_MSM_AUDMGR_NEW_H
enum rpc_aud_def_sample_rate_type {
RPC_AUD_DEF_SAMPLE_RATE_NONE,
RPC_AUD_DEF_SAMPLE_RATE_8000,
RPC_AUD_DEF_SAMPLE_RATE_11025,
RPC_AUD_DEF_SAMPLE_RATE_12000,
RPC_AUD_DEF_SAMPLE_RATE_16000,
RPC_AUD_DEF_SAMPLE_RATE_22050,
RPC_AUD_DEF_SAMPLE_RATE_24000,
RPC_AUD_DEF_SAMPLE_RATE_32000,
RPC_AUD_DEF_SAMPLE_RATE_44100,
RPC_AUD_DEF_SAMPLE_RATE_48000,
RPC_AUD_DEF_SAMPLE_RATE_MAX,
};
enum rpc_aud_def_method_type {
RPC_AUD_DEF_METHOD_NONE,
RPC_AUD_DEF_METHOD_KEY_BEEP,
RPC_AUD_DEF_METHOD_PLAYBACK,
RPC_AUD_DEF_METHOD_VOICE,
RPC_AUD_DEF_METHOD_RECORD,
RPC_AUD_DEF_METHOD_HOST_PCM,
RPC_AUD_DEF_METHOD_MIDI_OUT,
RPC_AUD_DEF_METHOD_RECORD_SBC,
RPC_AUD_DEF_METHOD_DTMF_RINGER,
RPC_AUD_DEF_METHOD_MAX,
};
enum rpc_aud_def_codec_type {
RPC_AUD_DEF_CODEC_NONE,
RPC_AUD_DEF_CODEC_DTMF,
RPC_AUD_DEF_CODEC_MIDI,
RPC_AUD_DEF_CODEC_MP3,
RPC_AUD_DEF_CODEC_PCM,
RPC_AUD_DEF_CODEC_AAC,
RPC_AUD_DEF_CODEC_WMA,
RPC_AUD_DEF_CODEC_RA,
RPC_AUD_DEF_CODEC_ADPCM,
RPC_AUD_DEF_CODEC_GAUDIO,
RPC_AUD_DEF_CODEC_VOC_EVRC,
RPC_AUD_DEF_CODEC_VOC_13K,
RPC_AUD_DEF_CODEC_VOC_4GV_NB,
RPC_AUD_DEF_CODEC_VOC_AMR,
RPC_AUD_DEF_CODEC_VOC_EFR,
RPC_AUD_DEF_CODEC_VOC_FR,
RPC_AUD_DEF_CODEC_VOC_HR,
RPC_AUD_DEF_CODEC_VOC_CDMA,
RPC_AUD_DEF_CODEC_VOC_CDMA_WB,
RPC_AUD_DEF_CODEC_VOC_UMTS,
RPC_AUD_DEF_CODEC_VOC_UMTS_WB,
RPC_AUD_DEF_CODEC_SBC,
RPC_AUD_DEF_CODEC_VOC_PCM,
RPC_AUD_DEF_CODEC_AMR_WB,
RPC_AUD_DEF_CODEC_AMR_WB_PLUS,
RPC_AUD_DEF_CODEC_AAC_BSAC,
RPC_AUD_DEF_CODEC_MAX,
RPC_AUD_DEF_CODEC_AMR_NB,
RPC_AUD_DEF_CODEC_13K,
RPC_AUD_DEF_CODEC_EVRC,
RPC_AUD_DEF_CODEC_MAX_002,
};
enum rpc_snd_method_type {
RPC_SND_METHOD_VOICE = 0,
RPC_SND_METHOD_KEY_BEEP,
RPC_SND_METHOD_MESSAGE,
RPC_SND_METHOD_RING,
RPC_SND_METHOD_MIDI,
RPC_SND_METHOD_AUX,
RPC_SND_METHOD_MAX,
};
enum rpc_voc_codec_type {
RPC_VOC_CODEC_DEFAULT,
RPC_VOC_CODEC_ON_CHIP_0 = RPC_VOC_CODEC_DEFAULT,
RPC_VOC_CODEC_ON_CHIP_1,
RPC_VOC_CODEC_STEREO_HEADSET,
RPC_VOC_CODEC_ON_CHIP_AUX,
RPC_VOC_CODEC_BT_OFF_BOARD,
RPC_VOC_CODEC_BT_A2DP,
RPC_VOC_CODEC_OFF_BOARD,
RPC_VOC_CODEC_SDAC,
RPC_VOC_CODEC_RX_EXT_SDAC_TX_INTERNAL,
RPC_VOC_CODEC_IN_STEREO_SADC_OUT_MONO_HANDSET,
RPC_VOC_CODEC_IN_STEREO_SADC_OUT_STEREO_HEADSET,
RPC_VOC_CODEC_TX_INT_SADC_RX_EXT_AUXPCM,
RPC_VOC_CODEC_EXT_STEREO_SADC_OUT_MONO_HANDSET,
RPC_VOC_CODEC_EXT_STEREO_SADC_OUT_STEREO_HEADSET,
RPC_VOC_CODEC_TTY_ON_CHIP_1,
RPC_VOC_CODEC_TTY_OFF_BOARD,
RPC_VOC_CODEC_TTY_VCO,
RPC_VOC_CODEC_TTY_HCO,
RPC_VOC_CODEC_ON_CHIP_0_DUAL_MIC,
RPC_VOC_CODEC_MAX,
RPC_VOC_CODEC_NONE,
};
enum rpc_audmgr_status_type {
RPC_AUDMGR_STATUS_READY,
RPC_AUDMGR_STATUS_CODEC_CONFIG,
RPC_AUDMGR_STATUS_PENDING,
RPC_AUDMGR_STATUS_SUSPEND,
RPC_AUDMGR_STATUS_FAILURE,
RPC_AUDMGR_STATUS_VOLUME_CHANGE,
RPC_AUDMGR_STATUS_DISABLED,
RPC_AUDMGR_STATUS_ERROR,
};
struct rpc_audmgr_enable_client_args {
uint32_t set_to_one;
uint32_t tx_sample_rate;
uint32_t rx_sample_rate;
uint32_t def_method;
uint32_t codec_type;
uint32_t snd_method;
uint32_t cb_func;
uint32_t client_data;
};
#define AUDMGR_ENABLE_CLIENT 2
#define AUDMGR_DISABLE_CLIENT 3
#define AUDMGR_SUSPEND_EVENT_RSP 4
#define AUDMGR_REGISTER_OPERATION_LISTENER 5
#define AUDMGR_UNREGISTER_OPERATION_LISTENER 6
#define AUDMGR_REGISTER_CODEC_LISTENER 7
#define AUDMGR_GET_RX_SAMPLE_RATE 8
#define AUDMGR_GET_TX_SAMPLE_RATE 9
#define AUDMGR_SET_DEVICE_MODE 10
#define AUDMGR_PROG 0x30000013
#define AUDMGR_VERS MSM_RPC_VERS(1,0)
struct rpc_audmgr_cb_func_ptr {
uint32_t cb_id;
uint32_t status; /* Audmgr status */
uint32_t set_to_one; /* Pointer status (1 = valid, 0 = invalid) */
uint32_t disc;
/* disc = AUDMGR_STATUS_READY => data=handle
disc = AUDMGR_STATUS_CODEC_CONFIG => data = handle
disc = AUDMGR_STATUS_DISABLED => data =status_disabled
disc = AUDMGR_STATUS_VOLUME_CHANGE => data = volume-change */
union {
uint32_t handle;
uint32_t volume;
uint32_t status_disabled;
uint32_t volume_change;
} u;
};
#define AUDMGR_CB_FUNC_PTR 1
#define AUDMGR_OPR_LSTNR_CB_FUNC_PTR 2
#define AUDMGR_CODEC_LSTR_FUNC_PTR 3
#define AUDMGR_CB_PROG 0x31000013
#define AUDMGR_CB_VERS 0xf8e3e2d9
struct audmgr {
wait_queue_head_t wait;
uint32_t handle;
struct msm_rpc_endpoint *ept;
struct task_struct *task;
int state;
};
struct audmgr_config {
uint32_t tx_rate;
uint32_t rx_rate;
uint32_t def_method;
uint32_t codec;
uint32_t snd_method;
};
int audmgr_open(struct audmgr *am);
int audmgr_close(struct audmgr *am);
int audmgr_enable(struct audmgr *am, struct audmgr_config *cfg);
int audmgr_disable(struct audmgr *am);
typedef void (*audpp_event_func)(void *private, unsigned id, uint16_t *msg);
int audpp_enable(int id, audpp_event_func func, void *private);
void audpp_disable(int id, void *private);
int audpp_send_queue1(void *cmd, unsigned len);
int audpp_send_queue2(void *cmd, unsigned len);
int audpp_send_queue3(void *cmd, unsigned len);
int audpp_set_volume_and_pan(unsigned id, unsigned volume, int pan);
int audpp_pause(unsigned id, int pause);
int audpp_flush(unsigned id);
void audpp_avsync(int id, unsigned rate);
unsigned audpp_avsync_sample_count(int id);
unsigned audpp_avsync_byte_count(int id);
#endif
/* arch/arm/mach-msm/qdsp5/audpp.c
*
* common code to deal with the AUDPP dsp task (audio postproc)
*
* Copyright (C) 2008 Google, Inc.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/wait.h>
#include <linux/delay.h>
#include <asm/atomic.h>
#include <asm/ioctls.h>
#include <mach/msm_adsp.h>
#include "audmgr.h"
#include <mach/qdsp5/qdsp5audppcmdi.h>
#include <mach/qdsp5/qdsp5audppmsg.h>
/* for queue ids - should be relative to module number*/
#include "adsp.h"
#include "evlog.h"
enum {
EV_NULL,
EV_ENABLE,
EV_DISABLE,
EV_EVENT,
EV_DATA,
};
static const char *dsp_log_strings[] = {
"NULL",
"ENABLE",
"DISABLE",
"EVENT",
"DATA",
};
DECLARE_LOG(dsp_log, 64, dsp_log_strings);
static int __init _dsp_log_init(void)
{
return ev_log_init(&dsp_log);
}
module_init(_dsp_log_init);
#define LOG(id,arg) ev_log_write(&dsp_log, id, arg)
static DEFINE_MUTEX(audpp_lock);
#define CH_COUNT 5
#define AUDPP_CLNT_MAX_COUNT 6
#define AUDPP_AVSYNC_INFO_SIZE 7
struct audpp_state {
struct msm_adsp_module *mod;
audpp_event_func func[AUDPP_CLNT_MAX_COUNT];
void *private[AUDPP_CLNT_MAX_COUNT];
struct mutex *lock;
unsigned open_count;
unsigned enabled;
/* which channels are actually enabled */
unsigned avsync_mask;
/* flags, 48 bits sample/bytes counter per channel */
uint16_t avsync[CH_COUNT * AUDPP_CLNT_MAX_COUNT + 1];
};
struct audpp_state the_audpp_state = {
.lock = &audpp_lock,
};
int audpp_send_queue1(void *cmd, unsigned len)
{
return msm_adsp_write(the_audpp_state.mod,
QDSP_uPAudPPCmd1Queue, cmd, len);
}
EXPORT_SYMBOL(audpp_send_queue1);
int audpp_send_queue2(void *cmd, unsigned len)
{
return msm_adsp_write(the_audpp_state.mod,
QDSP_uPAudPPCmd2Queue, cmd, len);
}
EXPORT_SYMBOL(audpp_send_queue2);
int audpp_send_queue3(void *cmd, unsigned len)
{
return msm_adsp_write(the_audpp_state.mod,
QDSP_uPAudPPCmd3Queue, cmd, len);
}
EXPORT_SYMBOL(audpp_send_queue3);
static int audpp_dsp_config(int enable)
{
audpp_cmd_cfg cmd;
cmd.cmd_id = AUDPP_CMD_CFG;
cmd.cfg = enable ? AUDPP_CMD_CFG_ENABLE : AUDPP_CMD_CFG_SLEEP;
return audpp_send_queue1(&cmd, sizeof(cmd));
}
static void audpp_broadcast(struct audpp_state *audpp, unsigned id,
uint16_t *msg)
{
unsigned n;
for (n = 0; n < AUDPP_CLNT_MAX_COUNT; n++) {
if (audpp->func[n])
audpp->func[n] (audpp->private[n], id, msg);
}
}
static void audpp_notify_clnt(struct audpp_state *audpp, unsigned clnt_id,
unsigned id, uint16_t *msg)
{
if (clnt_id < AUDPP_CLNT_MAX_COUNT && audpp->func[clnt_id])
audpp->func[clnt_id] (audpp->private[clnt_id], id, msg);
}
static void audpp_dsp_event(void *data, unsigned id, size_t len,
void (*getevent)(void *ptr, size_t len))
{
struct audpp_state *audpp = data;
uint16_t msg[8];
if (id == AUDPP_MSG_AVSYNC_MSG) {
getevent(audpp->avsync, sizeof(audpp->avsync));
/* mask off any channels we're not watching to avoid
* cases where we might get one last update after
* disabling avsync and end up in an odd state when
* we next read...
*/
audpp->avsync[0] &= audpp->avsync_mask;
return;
}
getevent(msg, sizeof(msg));
LOG(EV_EVENT, (id << 16) | msg[0]);
LOG(EV_DATA, (msg[1] << 16) | msg[2]);
switch (id) {
case AUDPP_MSG_STATUS_MSG:{
unsigned cid = msg[0];
pr_info("audpp: status %d %d %d\n", cid, msg[1],
msg[2]);
if ((cid < 5) && audpp->func[cid])
audpp->func[cid] (audpp->private[cid], id, msg);
break;
}
case AUDPP_MSG_HOST_PCM_INTF_MSG:
if (audpp->func[5])
audpp->func[5] (audpp->private[5], id, msg);
break;
case AUDPP_MSG_PCMDMAMISSED:
pr_err("audpp: DMA missed obj=%x\n", msg[0]);
break;
case AUDPP_MSG_CFG_MSG:
if (msg[0] == AUDPP_MSG_ENA_ENA) {
pr_info("audpp: ENABLE\n");
audpp->enabled = 1;
audpp_broadcast(audpp, id, msg);
} else if (msg[0] == AUDPP_MSG_ENA_DIS) {
pr_info("audpp: DISABLE\n");
audpp->enabled = 0;
audpp_broadcast(audpp, id, msg);
} else {
pr_err("audpp: invalid config msg %d\n", msg[0]);
}
break;
case AUDPP_MSG_ROUTING_ACK:
audpp_broadcast(audpp, id, msg);
break;
case AUDPP_MSG_FLUSH_ACK:
audpp_notify_clnt(audpp, msg[0], id, msg);
break;
default:
pr_info("audpp: unhandled msg id %x\n", id);
}
}
static struct msm_adsp_ops adsp_ops = {
.event = audpp_dsp_event,
};
static void audpp_fake_event(struct audpp_state *audpp, int id,
unsigned event, unsigned arg)
{
uint16_t msg[1];
msg[0] = arg;
audpp->func[id] (audpp->private[id], event, msg);
}
int audpp_enable(int id, audpp_event_func func, void *private)
{
struct audpp_state *audpp = &the_audpp_state;
int res = 0;
if (id < -1 || id > 4)
return -EINVAL;
if (id == -1)
id = 5;
mutex_lock(audpp->lock);
if (audpp->func[id]) {
res = -EBUSY;
goto out;
}
audpp->func[id] = func;
audpp->private[id] = private;
LOG(EV_ENABLE, 1);
if (audpp->open_count++ == 0) {
pr_info("audpp: enable\n");
res = msm_adsp_get("AUDPPTASK", &audpp->mod, &adsp_ops, audpp);
if (res < 0) {
pr_err("audpp: cannot open AUDPPTASK\n");
audpp->open_count = 0;
audpp->func[id] = NULL;
audpp->private[id] = NULL;
goto out;
}
LOG(EV_ENABLE, 2);
msm_adsp_enable(audpp->mod);
audpp_dsp_config(1);
} else {
unsigned long flags;
local_irq_save(flags);
if (audpp->enabled)
audpp_fake_event(audpp, id,
AUDPP_MSG_CFG_MSG, AUDPP_MSG_ENA_ENA);
local_irq_restore(flags);
}
res = 0;
out:
mutex_unlock(audpp->lock);
return res;
}
EXPORT_SYMBOL(audpp_enable);
void audpp_disable(int id, void *private)
{
struct audpp_state *audpp = &the_audpp_state;
unsigned long flags;
if (id < -1 || id > 4)
return;
if (id == -1)
id = 5;
mutex_lock(audpp->lock);
LOG(EV_DISABLE, 1);
if (!audpp->func[id])
goto out;
if (audpp->private[id] != private)
goto out;
local_irq_save(flags);
audpp_fake_event(audpp, id, AUDPP_MSG_CFG_MSG, AUDPP_MSG_ENA_DIS);
audpp->func[id] = NULL;
audpp->private[id] = NULL;
local_irq_restore(flags);
if (--audpp->open_count == 0) {
pr_info("audpp: disable\n");
LOG(EV_DISABLE, 2);
audpp_dsp_config(0);
msm_adsp_disable(audpp->mod);
msm_adsp_put(audpp->mod);
audpp->mod = NULL;
}
out:
mutex_unlock(audpp->lock);
}
EXPORT_SYMBOL(audpp_disable);
#define BAD_ID(id) ((id < 0) || (id >= CH_COUNT))
void audpp_avsync(int id, unsigned rate)
{
unsigned long flags;
audpp_cmd_avsync cmd;
if (BAD_ID(id))
return;
local_irq_save(flags);
if (rate)
the_audpp_state.avsync_mask |= (1 << id);
else
the_audpp_state.avsync_mask &= (~(1 << id));
the_audpp_state.avsync[0] &= the_audpp_state.avsync_mask;
local_irq_restore(flags);
cmd.cmd_id = AUDPP_CMD_AVSYNC;
cmd.object_number = id;
cmd.interrupt_interval_lsw = rate;
cmd.interrupt_interval_msw = rate >> 16;
audpp_send_queue1(&cmd, sizeof(cmd));
}
EXPORT_SYMBOL(audpp_avsync);
unsigned audpp_avsync_sample_count(int id)
{
uint16_t *avsync = the_audpp_state.avsync;
unsigned val;
unsigned long flags;
unsigned mask;
if (BAD_ID(id))
return 0;
mask = 1 << id;
id = id * AUDPP_AVSYNC_INFO_SIZE + 2;
local_irq_save(flags);
if (avsync[0] & mask)
val = (avsync[id] << 16) | avsync[id + 1];
else
val = 0;
local_irq_restore(flags);
return val;
}
EXPORT_SYMBOL(audpp_avsync_sample_count);
unsigned audpp_avsync_byte_count(int id)
{
uint16_t *avsync = the_audpp_state.avsync;
unsigned val;
unsigned long flags;
unsigned mask;
if (BAD_ID(id))
return 0;
mask = 1 << id;
id = id * AUDPP_AVSYNC_INFO_SIZE + 5;
local_irq_save(flags);
if (avsync[0] & mask)
val = (avsync[id] << 16) | avsync[id + 1];
else
val = 0;
local_irq_restore(flags);
return val;
}
EXPORT_SYMBOL(audpp_avsync_byte_count);
#define AUDPP_CMD_CFG_OBJ_UPDATE 0x8000
#define AUDPP_CMD_VOLUME_PAN 0
int audpp_set_volume_and_pan(unsigned id, unsigned volume, int pan)
{
/* cmd, obj_cfg[7], cmd_type, volume, pan */
uint16_t cmd[11];
if (id > 6)
return -EINVAL;
memset(cmd, 0, sizeof(cmd));
cmd[0] = AUDPP_CMD_CFG_OBJECT_PARAMS;
cmd[1 + id] = AUDPP_CMD_CFG_OBJ_UPDATE;
cmd[8] = AUDPP_CMD_VOLUME_PAN;
cmd[9] = volume;
cmd[10] = pan;
return audpp_send_queue3(cmd, sizeof(cmd));
}
EXPORT_SYMBOL(audpp_set_volume_and_pan);
int audpp_pause(unsigned id, int pause)
{
/* pause 1 = pause 0 = resume */
u16 pause_cmd[AUDPP_CMD_DEC_CTRL_LEN / sizeof(unsigned short)];
if (id >= CH_COUNT)
return -EINVAL;
memset(pause_cmd, 0, sizeof(pause_cmd));
pause_cmd[0] = AUDPP_CMD_DEC_CTRL;
if (pause == 1)
pause_cmd[1 + id] = AUDPP_CMD_UPDATE_V | AUDPP_CMD_PAUSE_V;
else if (pause == 0)
pause_cmd[1 + id] = AUDPP_CMD_UPDATE_V | AUDPP_CMD_RESUME_V;
else
return -EINVAL;
return audpp_send_queue1(pause_cmd, sizeof(pause_cmd));
}
EXPORT_SYMBOL(audpp_pause);
int audpp_flush(unsigned id)
{
u16 flush_cmd[AUDPP_CMD_DEC_CTRL_LEN / sizeof(unsigned short)];
if (id >= CH_COUNT)
return -EINVAL;
memset(flush_cmd, 0, sizeof(flush_cmd));
flush_cmd[0] = AUDPP_CMD_DEC_CTRL;
flush_cmd[1 + id] = AUDPP_CMD_UPDATE_V | AUDPP_CMD_FLUSH_V;
return audpp_send_queue1(flush_cmd, sizeof(flush_cmd));
}
EXPORT_SYMBOL(audpp_flush);
/* arch/arm/mach-msm/qdsp5/evlog.h
*
* simple event log debugging facility
*
* Copyright (C) 2008 Google, Inc.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/fs.h>
#include <linux/hrtimer.h>
#include <linux/debugfs.h>
#define EV_LOG_ENTRY_NAME(n) n##_entry
#define DECLARE_LOG(_name, _size, _str) \
static struct ev_entry EV_LOG_ENTRY_NAME(_name)[_size]; \
static struct ev_log _name = { \
.name = #_name, \
.strings = _str, \
.num_strings = ARRAY_SIZE(_str), \
.entry = EV_LOG_ENTRY_NAME(_name), \
.max = ARRAY_SIZE(EV_LOG_ENTRY_NAME(_name)), \
}
struct ev_entry {
ktime_t when;
uint32_t id;
uint32_t arg;
};
struct ev_log {
struct ev_entry *entry;
unsigned max;
unsigned next;
unsigned fault;
const char **strings;
unsigned num_strings;
const char *name;
};
static char ev_buf[4096];
static ssize_t ev_log_read(struct file *file, char __user *buf,
size_t count, loff_t *ppos)
{
struct ev_log *log = file->private_data;
struct ev_entry *entry;
unsigned long flags;
int size = 0;
unsigned n, id, max;
ktime_t now, t;
max = log->max;
now = ktime_get();
local_irq_save(flags);
n = (log->next - 1) & (max - 1);
entry = log->entry;
while (n != log->next) {
t = ktime_sub(now, entry[n].when);
id = entry[n].id;
if (id) {
const char *str;
if (id < log->num_strings)
str = log->strings[id];
else
str = "UNKNOWN";
size += scnprintf(ev_buf + size, 4096 - size,
"%8d.%03d %08x %s\n",
t.tv.sec, t.tv.nsec / 1000000,
entry[n].arg, str);
}
n = (n - 1) & (max - 1);
}
log->fault = 0;
local_irq_restore(flags);
return simple_read_from_buffer(buf, count, ppos, ev_buf, size);
}
static void ev_log_write(struct ev_log *log, unsigned id, unsigned arg)
{
struct ev_entry *entry;
unsigned long flags;
local_irq_save(flags);
if (log->fault) {
if (log->fault == 1)
goto done;
log->fault--;
}
entry = log->entry + log->next;
entry->when = ktime_get();
entry->id = id;
entry->arg = arg;
log->next = (log->next + 1) & (log->max - 1);
done:
local_irq_restore(flags);
}
static void ev_log_freeze(struct ev_log *log, unsigned count)
{
unsigned long flags;
local_irq_save(flags);
log->fault = count;
local_irq_restore(flags);
}
static int ev_log_open(struct inode *inode, struct file *file)
{
file->private_data = inode->i_private;
return 0;
}
static const struct file_operations ev_log_ops = {
.read = ev_log_read,
.open = ev_log_open,
};
static int ev_log_init(struct ev_log *log)
{
debugfs_create_file(log->name, 0444, 0, log, &ev_log_ops);
return 0;
}
/* arch/arm/mach-msm/qdsp5/snd.c
*
* interface to "snd" service on the baseband cpu
*
* Copyright (C) 2008 HTC Corporation
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/module.h>
#include <linux/fs.h>
#include <linux/miscdevice.h>
#include <linux/uaccess.h>
#include <linux/kthread.h>
#include <linux/delay.h>
#include <linux/msm_audio.h>
#include <asm/atomic.h>
#include <asm/ioctls.h>
#include <mach/board.h>
#include <mach/msm_rpcrouter.h>
struct snd_ctxt {
struct mutex lock;
int opened;
struct msm_rpc_endpoint *ept;
struct msm_snd_endpoints *snd_epts;
};
static struct snd_ctxt the_snd;
#define RPC_SND_PROG 0x30000002
#define RPC_SND_CB_PROG 0x31000002
#if CONFIG_MSM_AMSS_VERSION == 6210
#define RPC_SND_VERS 0x94756085 /* 2490720389 */
#elif (CONFIG_MSM_AMSS_VERSION == 6220) || \
(CONFIG_MSM_AMSS_VERSION == 6225)
#define RPC_SND_VERS 0xaa2b1a44 /* 2854951492 */
#elif CONFIG_MSM_AMSS_VERSION == 6350
#define RPC_SND_VERS MSM_RPC_VERS(1,0)
#endif
#define SND_SET_DEVICE_PROC 2
#define SND_SET_VOLUME_PROC 3
struct rpc_snd_set_device_args {
uint32_t device;
uint32_t ear_mute;
uint32_t mic_mute;
uint32_t cb_func;
uint32_t client_data;
};
struct rpc_snd_set_volume_args {
uint32_t device;
uint32_t method;
uint32_t volume;
uint32_t cb_func;
uint32_t client_data;
};
struct snd_set_device_msg {
struct rpc_request_hdr hdr;
struct rpc_snd_set_device_args args;
};
struct snd_set_volume_msg {
struct rpc_request_hdr hdr;
struct rpc_snd_set_volume_args args;
};
struct snd_endpoint *get_snd_endpoints(int *size);
static inline int check_mute(int mute)
{
return (mute == SND_MUTE_MUTED ||
mute == SND_MUTE_UNMUTED) ? 0 : -EINVAL;
}
static int get_endpoint(struct snd_ctxt *snd, unsigned long arg)
{
int rc = 0, index;
struct msm_snd_endpoint ept;
if (copy_from_user(&ept, (void __user *)arg, sizeof(ept))) {
pr_err("snd_ioctl get endpoint: invalid read pointer.\n");
return -EFAULT;
}
index = ept.id;
if (index < 0 || index >= snd->snd_epts->num) {
pr_err("snd_ioctl get endpoint: invalid index!\n");
return -EINVAL;
}
ept.id = snd->snd_epts->endpoints[index].id;
strncpy(ept.name,
snd->snd_epts->endpoints[index].name,
sizeof(ept.name));
if (copy_to_user((void __user *)arg, &ept, sizeof(ept))) {
pr_err("snd_ioctl get endpoint: invalid write pointer.\n");
rc = -EFAULT;
}
return rc;
}
static long snd_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
struct snd_set_device_msg dmsg;
struct snd_set_volume_msg vmsg;
struct msm_snd_device_config dev;
struct msm_snd_volume_config vol;
struct snd_ctxt *snd = file->private_data;
int rc = 0;
mutex_lock(&snd->lock);
switch (cmd) {
case SND_SET_DEVICE:
if (copy_from_user(&dev, (void __user *) arg, sizeof(dev))) {
pr_err("snd_ioctl set device: invalid pointer.\n");
rc = -EFAULT;
break;
}
dmsg.args.device = cpu_to_be32(dev.device);
dmsg.args.ear_mute = cpu_to_be32(dev.ear_mute);
dmsg.args.mic_mute = cpu_to_be32(dev.mic_mute);
if (check_mute(dev.ear_mute) < 0 ||
check_mute(dev.mic_mute) < 0) {
pr_err("snd_ioctl set device: invalid mute status.\n");
rc = -EINVAL;
break;
}
dmsg.args.cb_func = -1;
dmsg.args.client_data = 0;
pr_info("snd_set_device %d %d %d\n", dev.device,
dev.ear_mute, dev.mic_mute);
rc = msm_rpc_call(snd->ept,
SND_SET_DEVICE_PROC,
&dmsg, sizeof(dmsg), 5 * HZ);
break;
case SND_SET_VOLUME:
if (copy_from_user(&vol, (void __user *) arg, sizeof(vol))) {
pr_err("snd_ioctl set volume: invalid pointer.\n");
rc = -EFAULT;
break;
}
vmsg.args.device = cpu_to_be32(vol.device);
vmsg.args.method = cpu_to_be32(vol.method);
if (vol.method != SND_METHOD_VOICE) {
pr_err("snd_ioctl set volume: invalid method.\n");
rc = -EINVAL;
break;
}
vmsg.args.volume = cpu_to_be32(vol.volume);
vmsg.args.cb_func = -1;
vmsg.args.client_data = 0;
pr_info("snd_set_volume %d %d %d\n", vol.device,
vol.method, vol.volume);
rc = msm_rpc_call(snd->ept,
SND_SET_VOLUME_PROC,
&vmsg, sizeof(vmsg), 5 * HZ);
break;
case SND_GET_NUM_ENDPOINTS:
if (copy_to_user((void __user *)arg,
&snd->snd_epts->num, sizeof(unsigned))) {
pr_err("snd_ioctl get endpoint: invalid pointer.\n");
rc = -EFAULT;
}
break;
case SND_GET_ENDPOINT:
rc = get_endpoint(snd, arg);
break;
default:
pr_err("snd_ioctl unknown command.\n");
rc = -EINVAL;
break;
}
mutex_unlock(&snd->lock);
return rc;
}
static int snd_release(struct inode *inode, struct file *file)
{
struct snd_ctxt *snd = file->private_data;
mutex_lock(&snd->lock);
snd->opened = 0;
mutex_unlock(&snd->lock);
return 0;
}
static int snd_open(struct inode *inode, struct file *file)
{
struct snd_ctxt *snd = &the_snd;
int rc = 0;
mutex_lock(&snd->lock);
if (snd->opened == 0) {
if (snd->ept == NULL) {
snd->ept = msm_rpc_connect(RPC_SND_PROG, RPC_SND_VERS,
MSM_RPC_UNINTERRUPTIBLE);
if (IS_ERR(snd->ept)) {
rc = PTR_ERR(snd->ept);
snd->ept = NULL;
pr_err("snd: failed to connect snd svc\n");
goto err;
}
}
file->private_data = snd;
snd->opened = 1;
} else {
pr_err("snd already opened.\n");
rc = -EBUSY;
}
err:
mutex_unlock(&snd->lock);
return rc;
}
static struct file_operations snd_fops = {
.owner = THIS_MODULE,
.open = snd_open,
.release = snd_release,
.unlocked_ioctl = snd_ioctl,
};
struct miscdevice snd_misc = {
.minor = MISC_DYNAMIC_MINOR,
.name = "msm_snd",
.fops = &snd_fops,
};
static int snd_probe(struct platform_device *pdev)
{
struct snd_ctxt *snd = &the_snd;
mutex_init(&snd->lock);
snd->snd_epts = (struct msm_snd_endpoints *)pdev->dev.platform_data;
return misc_register(&snd_misc);
}
static struct platform_driver snd_plat_driver = {
.probe = snd_probe,
.driver = {
.name = "msm_snd",
.owner = THIS_MODULE,
},
};
static int __init snd_init(void)
{
return platform_driver_register(&snd_plat_driver);
}
module_init(snd_init);
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment