Commit c4a3e0a5 authored by Bagalkote, Sreenivas's avatar Bagalkote, Sreenivas Committed by James Bottomley

[SCSI] MegaRAID SAS RAID: new driver

Signed-off-by: default avatarSreenivas Bagalkote <Sreenivas.Bagalkote@lsil.com>
Signed-off-by: default avatarJames Bottomley <James.Bottomley@SteelEye.com>
parent fe8b2304
...@@ -99,6 +99,7 @@ obj-$(CONFIG_SCSI_DC395x) += dc395x.o ...@@ -99,6 +99,7 @@ obj-$(CONFIG_SCSI_DC395x) += dc395x.o
obj-$(CONFIG_SCSI_DC390T) += tmscsim.o obj-$(CONFIG_SCSI_DC390T) += tmscsim.o
obj-$(CONFIG_MEGARAID_LEGACY) += megaraid.o obj-$(CONFIG_MEGARAID_LEGACY) += megaraid.o
obj-$(CONFIG_MEGARAID_NEWGEN) += megaraid/ obj-$(CONFIG_MEGARAID_NEWGEN) += megaraid/
obj-$(CONFIG_MEGARAID_SAS) += megaraid/
obj-$(CONFIG_SCSI_ACARD) += atp870u.o obj-$(CONFIG_SCSI_ACARD) += atp870u.o
obj-$(CONFIG_SCSI_SUNESP) += esp.o obj-$(CONFIG_SCSI_SUNESP) += esp.o
obj-$(CONFIG_SCSI_GDTH) += gdth.o obj-$(CONFIG_SCSI_GDTH) += gdth.o
......
...@@ -76,3 +76,12 @@ config MEGARAID_LEGACY ...@@ -76,3 +76,12 @@ config MEGARAID_LEGACY
To compile this driver as a module, choose M here: the To compile this driver as a module, choose M here: the
module will be called megaraid module will be called megaraid
endif endif
config MEGARAID_SAS
tristate "LSI Logic MegaRAID SAS RAID Module"
depends on PCI && SCSI
help
Module for LSI Logic's SAS based RAID controllers.
To compile this driver as a module, choose 'm' here.
Module will be called megaraid_sas
obj-$(CONFIG_MEGARAID_MM) += megaraid_mm.o obj-$(CONFIG_MEGARAID_MM) += megaraid_mm.o
obj-$(CONFIG_MEGARAID_MAILBOX) += megaraid_mbox.o obj-$(CONFIG_MEGARAID_MAILBOX) += megaraid_mbox.o
obj-$(CONFIG_MEGARAID_SAS) += megaraid_sas.o
/*
*
* Linux MegaRAID driver for SAS based RAID controllers
*
* Copyright (c) 2003-2005 LSI Logic Corporation.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* FILE : megaraid_sas.c
* Version : v00.00.02.00-rc4
*
* Authors:
* Sreenivas Bagalkote <Sreenivas.Bagalkote@lsil.com>
* Sumant Patro <Sumant.Patro@lsil.com>
*
* List of supported controllers
*
* OEM Product Name VID DID SSVID SSID
* --- ------------ --- --- ---- ----
*/
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/pci.h>
#include <linux/list.h>
#include <linux/version.h>
#include <linux/moduleparam.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/uio.h>
#include <asm/uaccess.h>
#include <linux/compat.h>
#include <scsi/scsi.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_host.h>
#include "megaraid_sas.h"
MODULE_LICENSE("GPL");
MODULE_VERSION(MEGASAS_VERSION);
MODULE_AUTHOR("sreenivas.bagalkote@lsil.com");
MODULE_DESCRIPTION("LSI Logic MegaRAID SAS Driver");
/*
* PCI ID table for all supported controllers
*/
static struct pci_device_id megasas_pci_table[] = {
{
PCI_VENDOR_ID_LSI_LOGIC,
PCI_DEVICE_ID_LSI_SAS1064R,
PCI_ANY_ID,
PCI_ANY_ID,
},
{
PCI_VENDOR_ID_DELL,
PCI_DEVICE_ID_DELL_PERC5,
PCI_ANY_ID,
PCI_ANY_ID,
},
{0} /* Terminating entry */
};
MODULE_DEVICE_TABLE(pci, megasas_pci_table);
static int megasas_mgmt_majorno;
static struct megasas_mgmt_info megasas_mgmt_info;
static struct fasync_struct *megasas_async_queue;
static DECLARE_MUTEX(megasas_async_queue_mutex);
/**
* megasas_get_cmd - Get a command from the free pool
* @instance: Adapter soft state
*
* Returns a free command from the pool
*/
static inline struct megasas_cmd *megasas_get_cmd(struct megasas_instance
*instance)
{
unsigned long flags;
struct megasas_cmd *cmd = NULL;
spin_lock_irqsave(&instance->cmd_pool_lock, flags);
if (!list_empty(&instance->cmd_pool)) {
cmd = list_entry((&instance->cmd_pool)->next,
struct megasas_cmd, list);
list_del_init(&cmd->list);
} else {
printk(KERN_ERR "megasas: Command pool empty!\n");
}
spin_unlock_irqrestore(&instance->cmd_pool_lock, flags);
return cmd;
}
/**
* megasas_return_cmd - Return a cmd to free command pool
* @instance: Adapter soft state
* @cmd: Command packet to be returned to free command pool
*/
static inline void
megasas_return_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd)
{
unsigned long flags;
spin_lock_irqsave(&instance->cmd_pool_lock, flags);
cmd->scmd = NULL;
list_add_tail(&cmd->list, &instance->cmd_pool);
spin_unlock_irqrestore(&instance->cmd_pool_lock, flags);
}
/**
* megasas_enable_intr - Enables interrupts
* @regs: MFI register set
*/
static inline void
megasas_enable_intr(struct megasas_register_set __iomem * regs)
{
writel(1, &(regs)->outbound_intr_mask);
/* Dummy readl to force pci flush */
readl(&regs->outbound_intr_mask);
}
/**
* megasas_disable_intr - Disables interrupts
* @regs: MFI register set
*/
static inline void
megasas_disable_intr(struct megasas_register_set __iomem * regs)
{
u32 mask = readl(&regs->outbound_intr_mask) & (~0x00000001);
writel(mask, &regs->outbound_intr_mask);
/* Dummy readl to force pci flush */
readl(&regs->outbound_intr_mask);
}
/**
* megasas_issue_polled - Issues a polling command
* @instance: Adapter soft state
* @cmd: Command packet to be issued
*
* For polling, MFI requires the cmd_status to be set to 0xFF before posting.
*/
static int
megasas_issue_polled(struct megasas_instance *instance, struct megasas_cmd *cmd)
{
int i;
u32 msecs = MFI_POLL_TIMEOUT_SECS * 1000;
struct megasas_header *frame_hdr = &cmd->frame->hdr;
frame_hdr->cmd_status = 0xFF;
frame_hdr->flags |= MFI_FRAME_DONT_POST_IN_REPLY_QUEUE;
/*
* Issue the frame using inbound queue port
*/
writel(cmd->frame_phys_addr >> 3,
&instance->reg_set->inbound_queue_port);
/*
* Wait for cmd_status to change
*/
for (i = 0; (i < msecs) && (frame_hdr->cmd_status == 0xff); i++) {
rmb();
msleep(1);
}
if (frame_hdr->cmd_status == 0xff)
return -ETIME;
return 0;
}
/**
* megasas_issue_blocked_cmd - Synchronous wrapper around regular FW cmds
* @instance: Adapter soft state
* @cmd: Command to be issued
*
* This function waits on an event for the command to be returned from ISR.
* Used to issue ioctl commands.
*/
static int
megasas_issue_blocked_cmd(struct megasas_instance *instance,
struct megasas_cmd *cmd)
{
cmd->cmd_status = ENODATA;
writel(cmd->frame_phys_addr >> 3,
&instance->reg_set->inbound_queue_port);
wait_event(instance->int_cmd_wait_q, (cmd->cmd_status != ENODATA));
return 0;
}
/**
* megasas_issue_blocked_abort_cmd - Aborts previously issued cmd
* @instance: Adapter soft state
* @cmd_to_abort: Previously issued cmd to be aborted
*
* MFI firmware can abort previously issued AEN comamnd (automatic event
* notification). The megasas_issue_blocked_abort_cmd() issues such abort
* cmd and blocks till it is completed.
*/
static int
megasas_issue_blocked_abort_cmd(struct megasas_instance *instance,
struct megasas_cmd *cmd_to_abort)
{
struct megasas_cmd *cmd;
struct megasas_abort_frame *abort_fr;
cmd = megasas_get_cmd(instance);
if (!cmd)
return -1;
abort_fr = &cmd->frame->abort;
/*
* Prepare and issue the abort frame
*/
abort_fr->cmd = MFI_CMD_ABORT;
abort_fr->cmd_status = 0xFF;
abort_fr->flags = 0;
abort_fr->abort_context = cmd_to_abort->index;
abort_fr->abort_mfi_phys_addr_lo = cmd_to_abort->frame_phys_addr;
abort_fr->abort_mfi_phys_addr_hi = 0;
cmd->sync_cmd = 1;
cmd->cmd_status = 0xFF;
writel(cmd->frame_phys_addr >> 3,
&instance->reg_set->inbound_queue_port);
/*
* Wait for this cmd to complete
*/
wait_event(instance->abort_cmd_wait_q, (cmd->cmd_status != 0xFF));
megasas_return_cmd(instance, cmd);
return 0;
}
/**
* megasas_make_sgl32 - Prepares 32-bit SGL
* @instance: Adapter soft state
* @scp: SCSI command from the mid-layer
* @mfi_sgl: SGL to be filled in
*
* If successful, this function returns the number of SG elements. Otherwise,
* it returnes -1.
*/
static inline int
megasas_make_sgl32(struct megasas_instance *instance, struct scsi_cmnd *scp,
union megasas_sgl *mfi_sgl)
{
int i;
int sge_count;
struct scatterlist *os_sgl;
/*
* Return 0 if there is no data transfer
*/
if (!scp->request_buffer || !scp->request_bufflen)
return 0;
if (!scp->use_sg) {
mfi_sgl->sge32[0].phys_addr = pci_map_single(instance->pdev,
scp->
request_buffer,
scp->
request_bufflen,
scp->
sc_data_direction);
mfi_sgl->sge32[0].length = scp->request_bufflen;
return 1;
}
os_sgl = (struct scatterlist *)scp->request_buffer;
sge_count = pci_map_sg(instance->pdev, os_sgl, scp->use_sg,
scp->sc_data_direction);
for (i = 0; i < sge_count; i++, os_sgl++) {
mfi_sgl->sge32[i].length = sg_dma_len(os_sgl);
mfi_sgl->sge32[i].phys_addr = sg_dma_address(os_sgl);
}
return sge_count;
}
/**
* megasas_make_sgl64 - Prepares 64-bit SGL
* @instance: Adapter soft state
* @scp: SCSI command from the mid-layer
* @mfi_sgl: SGL to be filled in
*
* If successful, this function returns the number of SG elements. Otherwise,
* it returnes -1.
*/
static inline int
megasas_make_sgl64(struct megasas_instance *instance, struct scsi_cmnd *scp,
union megasas_sgl *mfi_sgl)
{
int i;
int sge_count;
struct scatterlist *os_sgl;
/*
* Return 0 if there is no data transfer
*/
if (!scp->request_buffer || !scp->request_bufflen)
return 0;
if (!scp->use_sg) {
mfi_sgl->sge64[0].phys_addr = pci_map_single(instance->pdev,
scp->
request_buffer,
scp->
request_bufflen,
scp->
sc_data_direction);
mfi_sgl->sge64[0].length = scp->request_bufflen;
return 1;
}
os_sgl = (struct scatterlist *)scp->request_buffer;
sge_count = pci_map_sg(instance->pdev, os_sgl, scp->use_sg,
scp->sc_data_direction);
for (i = 0; i < sge_count; i++, os_sgl++) {
mfi_sgl->sge64[i].length = sg_dma_len(os_sgl);
mfi_sgl->sge64[i].phys_addr = sg_dma_address(os_sgl);
}
return sge_count;
}
/**
* megasas_build_dcdb - Prepares a direct cdb (DCDB) command
* @instance: Adapter soft state
* @scp: SCSI command
* @cmd: Command to be prepared in
*
* This function prepares CDB commands. These are typcially pass-through
* commands to the devices.
*/
static inline int
megasas_build_dcdb(struct megasas_instance *instance, struct scsi_cmnd *scp,
struct megasas_cmd *cmd)
{
u32 sge_sz;
int sge_bytes;
u32 is_logical;
u32 device_id;
u16 flags = 0;
struct megasas_pthru_frame *pthru;
is_logical = MEGASAS_IS_LOGICAL(scp);
device_id = MEGASAS_DEV_INDEX(instance, scp);
pthru = (struct megasas_pthru_frame *)cmd->frame;
if (scp->sc_data_direction == PCI_DMA_TODEVICE)
flags = MFI_FRAME_DIR_WRITE;
else if (scp->sc_data_direction == PCI_DMA_FROMDEVICE)
flags = MFI_FRAME_DIR_READ;
else if (scp->sc_data_direction == PCI_DMA_NONE)
flags = MFI_FRAME_DIR_NONE;
/*
* Prepare the DCDB frame
*/
pthru->cmd = (is_logical) ? MFI_CMD_LD_SCSI_IO : MFI_CMD_PD_SCSI_IO;
pthru->cmd_status = 0x0;
pthru->scsi_status = 0x0;
pthru->target_id = device_id;
pthru->lun = scp->device->lun;
pthru->cdb_len = scp->cmd_len;
pthru->timeout = 0;
pthru->flags = flags;
pthru->data_xfer_len = scp->request_bufflen;
memcpy(pthru->cdb, scp->cmnd, scp->cmd_len);
/*
* Construct SGL
*/
sge_sz = (IS_DMA64) ? sizeof(struct megasas_sge64) :
sizeof(struct megasas_sge32);
if (IS_DMA64) {
pthru->flags |= MFI_FRAME_SGL64;
pthru->sge_count = megasas_make_sgl64(instance, scp,
&pthru->sgl);
} else
pthru->sge_count = megasas_make_sgl32(instance, scp,
&pthru->sgl);
/*
* Sense info specific
*/
pthru->sense_len = SCSI_SENSE_BUFFERSIZE;
pthru->sense_buf_phys_addr_hi = 0;
pthru->sense_buf_phys_addr_lo = cmd->sense_phys_addr;
sge_bytes = sge_sz * pthru->sge_count;
/*
* Compute the total number of frames this command consumes. FW uses
* this number to pull sufficient number of frames from host memory.
*/
cmd->frame_count = (sge_bytes / MEGAMFI_FRAME_SIZE) +
((sge_bytes % MEGAMFI_FRAME_SIZE) ? 1 : 0) + 1;
if (cmd->frame_count > 7)
cmd->frame_count = 8;
return cmd->frame_count;
}
/**
* megasas_build_ldio - Prepares IOs to logical devices
* @instance: Adapter soft state
* @scp: SCSI command
* @cmd: Command to to be prepared
*
* Frames (and accompanying SGLs) for regular SCSI IOs use this function.
*/
static inline int
megasas_build_ldio(struct megasas_instance *instance, struct scsi_cmnd *scp,
struct megasas_cmd *cmd)
{
u32 sge_sz;
int sge_bytes;
u32 device_id;
u8 sc = scp->cmnd[0];
u16 flags = 0;
struct megasas_io_frame *ldio;
device_id = MEGASAS_DEV_INDEX(instance, scp);
ldio = (struct megasas_io_frame *)cmd->frame;
if (scp->sc_data_direction == PCI_DMA_TODEVICE)
flags = MFI_FRAME_DIR_WRITE;
else if (scp->sc_data_direction == PCI_DMA_FROMDEVICE)
flags = MFI_FRAME_DIR_READ;
/*
* Preare the Logical IO frame: 2nd bit is zero for all read cmds
*/
ldio->cmd = (sc & 0x02) ? MFI_CMD_LD_WRITE : MFI_CMD_LD_READ;
ldio->cmd_status = 0x0;
ldio->scsi_status = 0x0;
ldio->target_id = device_id;
ldio->timeout = 0;
ldio->reserved_0 = 0;
ldio->pad_0 = 0;
ldio->flags = flags;
ldio->start_lba_hi = 0;
ldio->access_byte = (scp->cmd_len != 6) ? scp->cmnd[1] : 0;
/*
* 6-byte READ(0x08) or WRITE(0x0A) cdb
*/
if (scp->cmd_len == 6) {
ldio->lba_count = (u32) scp->cmnd[4];
ldio->start_lba_lo = ((u32) scp->cmnd[1] << 16) |
((u32) scp->cmnd[2] << 8) | (u32) scp->cmnd[3];
ldio->start_lba_lo &= 0x1FFFFF;
}
/*
* 10-byte READ(0x28) or WRITE(0x2A) cdb
*/
else if (scp->cmd_len == 10) {
ldio->lba_count = (u32) scp->cmnd[8] |
((u32) scp->cmnd[7] << 8);
ldio->start_lba_lo = ((u32) scp->cmnd[2] << 24) |
((u32) scp->cmnd[3] << 16) |
((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5];
}
/*
* 12-byte READ(0xA8) or WRITE(0xAA) cdb
*/
else if (scp->cmd_len == 12) {
ldio->lba_count = ((u32) scp->cmnd[6] << 24) |
((u32) scp->cmnd[7] << 16) |
((u32) scp->cmnd[8] << 8) | (u32) scp->cmnd[9];
ldio->start_lba_lo = ((u32) scp->cmnd[2] << 24) |
((u32) scp->cmnd[3] << 16) |
((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5];
}
/*
* 16-byte READ(0x88) or WRITE(0x8A) cdb
*/
else if (scp->cmd_len == 16) {
ldio->lba_count = ((u32) scp->cmnd[10] << 24) |
((u32) scp->cmnd[11] << 16) |
((u32) scp->cmnd[12] << 8) | (u32) scp->cmnd[13];
ldio->start_lba_lo = ((u32) scp->cmnd[6] << 24) |
((u32) scp->cmnd[7] << 16) |
((u32) scp->cmnd[8] << 8) | (u32) scp->cmnd[9];
ldio->start_lba_hi = ((u32) scp->cmnd[2] << 24) |
((u32) scp->cmnd[3] << 16) |
((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5];
}
/*
* Construct SGL
*/
sge_sz = (IS_DMA64) ? sizeof(struct megasas_sge64) :
sizeof(struct megasas_sge32);
if (IS_DMA64) {
ldio->flags |= MFI_FRAME_SGL64;
ldio->sge_count = megasas_make_sgl64(instance, scp, &ldio->sgl);
} else
ldio->sge_count = megasas_make_sgl32(instance, scp, &ldio->sgl);
/*
* Sense info specific
*/
ldio->sense_len = SCSI_SENSE_BUFFERSIZE;
ldio->sense_buf_phys_addr_hi = 0;
ldio->sense_buf_phys_addr_lo = cmd->sense_phys_addr;
sge_bytes = sge_sz * ldio->sge_count;
cmd->frame_count = (sge_bytes / MEGAMFI_FRAME_SIZE) +
((sge_bytes % MEGAMFI_FRAME_SIZE) ? 1 : 0) + 1;
if (cmd->frame_count > 7)
cmd->frame_count = 8;
return cmd->frame_count;
}
/**
* megasas_build_cmd - Prepares a command packet
* @instance: Adapter soft state
* @scp: SCSI command
* @frame_count: [OUT] Number of frames used to prepare this command
*/
static inline struct megasas_cmd *megasas_build_cmd(struct megasas_instance
*instance,
struct scsi_cmnd *scp,
int *frame_count)
{
u32 logical_cmd;
struct megasas_cmd *cmd;
/*
* Find out if this is logical or physical drive command.
*/
logical_cmd = MEGASAS_IS_LOGICAL(scp);
/*
* Logical drive command
*/
if (logical_cmd) {
if (scp->device->id >= MEGASAS_MAX_LD) {
scp->result = DID_BAD_TARGET << 16;
return NULL;
}
switch (scp->cmnd[0]) {
case READ_10:
case WRITE_10:
case READ_12:
case WRITE_12:
case READ_6:
case WRITE_6:
case READ_16:
case WRITE_16:
/*
* Fail for LUN > 0
*/
if (scp->device->lun) {
scp->result = DID_BAD_TARGET << 16;
return NULL;
}
cmd = megasas_get_cmd(instance);
if (!cmd) {
scp->result = DID_IMM_RETRY << 16;
return NULL;
}
*frame_count = megasas_build_ldio(instance, scp, cmd);
if (!(*frame_count)) {
megasas_return_cmd(instance, cmd);
return NULL;
}
return cmd;
default:
/*
* Fail for LUN > 0
*/
if (scp->device->lun) {
scp->result = DID_BAD_TARGET << 16;
return NULL;
}
cmd = megasas_get_cmd(instance);
if (!cmd) {
scp->result = DID_IMM_RETRY << 16;
return NULL;
}
*frame_count = megasas_build_dcdb(instance, scp, cmd);
if (!(*frame_count)) {
megasas_return_cmd(instance, cmd);
return NULL;
}
return cmd;
}
} else {
cmd = megasas_get_cmd(instance);
if (!cmd) {
scp->result = DID_IMM_RETRY << 16;
return NULL;
}
*frame_count = megasas_build_dcdb(instance, scp, cmd);
if (!(*frame_count)) {
megasas_return_cmd(instance, cmd);
return NULL;
}
return cmd;
}
return NULL;
}
/**
* megasas_queue_command - Queue entry point
* @scmd: SCSI command to be queued
* @done: Callback entry point
*/
static int
megasas_queue_command(struct scsi_cmnd *scmd, void (*done) (struct scsi_cmnd *))
{
u32 frame_count;
unsigned long flags;
struct megasas_cmd *cmd;
struct megasas_instance *instance;
instance = (struct megasas_instance *)
scmd->device->host->hostdata;
scmd->scsi_done = done;
scmd->result = 0;
cmd = megasas_build_cmd(instance, scmd, &frame_count);
if (!cmd) {
done(scmd);
return 0;
}
cmd->scmd = scmd;
scmd->SCp.ptr = (char *)cmd;
scmd->SCp.sent_command = jiffies;
/*
* Issue the command to the FW
*/
spin_lock_irqsave(&instance->instance_lock, flags);
instance->fw_outstanding++;
spin_unlock_irqrestore(&instance->instance_lock, flags);
writel(((cmd->frame_phys_addr >> 3) | (cmd->frame_count - 1)),
&instance->reg_set->inbound_queue_port);
return 0;
}
/**
* megasas_wait_for_outstanding - Wait for all outstanding cmds
* @instance: Adapter soft state
*
* This function waits for upto MEGASAS_RESET_WAIT_TIME seconds for FW to
* complete all its outstanding commands. Returns error if one or more IOs
* are pending after this time period. It also marks the controller dead.
*/
static int megasas_wait_for_outstanding(struct megasas_instance *instance)
{
int i;
u32 wait_time = MEGASAS_RESET_WAIT_TIME;
for (i = 0; i < wait_time; i++) {
if (!instance->fw_outstanding)
break;
if (!(i % MEGASAS_RESET_NOTICE_INTERVAL)) {
printk(KERN_NOTICE "megasas: [%2d]waiting for %d "
"commands to complete\n", i,
instance->fw_outstanding);
}
msleep(1000);
}
if (instance->fw_outstanding) {
instance->hw_crit_error = 1;
return FAILED;
}
return SUCCESS;
}
/**
* megasas_generic_reset - Generic reset routine
* @scmd: Mid-layer SCSI command
*
* This routine implements a generic reset handler for device, bus and host
* reset requests. Device, bus and host specific reset handlers can use this
* function after they do their specific tasks.
*/
static int megasas_generic_reset(struct scsi_cmnd *scmd)
{
int ret_val;
struct megasas_instance *instance;
instance = (struct megasas_instance *)scmd->device->host->hostdata;
printk(KERN_NOTICE "megasas: RESET -%ld cmd=%x <c=%d t=%d l=%d>\n",
scmd->serial_number, scmd->cmnd[0], scmd->device->channel,
scmd->device->id, scmd->device->lun);
if (instance->hw_crit_error) {
printk(KERN_ERR "megasas: cannot recover from previous reset "
"failures\n");
return FAILED;
}
spin_unlock(scmd->device->host->host_lock);
ret_val = megasas_wait_for_outstanding(instance);
if (ret_val == SUCCESS)
printk(KERN_NOTICE "megasas: reset successful \n");
else
printk(KERN_ERR "megasas: failed to do reset\n");
spin_lock(scmd->device->host->host_lock);
return ret_val;
}
static enum scsi_eh_timer_return megasas_reset_timer(struct scsi_cmnd *scmd)
{
unsigned long seconds;
if (scmd->SCp.ptr) {
seconds = (jiffies - scmd->SCp.sent_command) / HZ;
if (seconds < 90) {
return EH_RESET_TIMER;
} else {
return EH_NOT_HANDLED;
}
}
return EH_HANDLED;
}
/**
* megasas_reset_device - Device reset handler entry point
*/
static int megasas_reset_device(struct scsi_cmnd *scmd)
{
int ret;
/*
* First wait for all commands to complete
*/
ret = megasas_generic_reset(scmd);
return ret;
}
/**
* megasas_reset_bus_host - Bus & host reset handler entry point
*/
static int megasas_reset_bus_host(struct scsi_cmnd *scmd)
{
int ret;
/*
* Frist wait for all commands to complete
*/
ret = megasas_generic_reset(scmd);
return ret;
}
/**
* megasas_service_aen - Processes an event notification
* @instance: Adapter soft state
* @cmd: AEN command completed by the ISR
*
* For AEN, driver sends a command down to FW that is held by the FW till an
* event occurs. When an event of interest occurs, FW completes the command
* that it was previously holding.
*
* This routines sends SIGIO signal to processes that have registered with the
* driver for AEN.
*/
static void
megasas_service_aen(struct megasas_instance *instance, struct megasas_cmd *cmd)
{
/*
* Don't signal app if it is just an aborted previously registered aen
*/
if (!cmd->abort_aen)
kill_fasync(&megasas_async_queue, SIGIO, POLL_IN);
else
cmd->abort_aen = 0;
instance->aen_cmd = NULL;
megasas_return_cmd(instance, cmd);
}
/*
* Scsi host template for megaraid_sas driver
*/
static struct scsi_host_template megasas_template = {
.module = THIS_MODULE,
.name = "LSI Logic SAS based MegaRAID driver",
.proc_name = "megaraid_sas",
.queuecommand = megasas_queue_command,
.eh_device_reset_handler = megasas_reset_device,
.eh_bus_reset_handler = megasas_reset_bus_host,
.eh_host_reset_handler = megasas_reset_bus_host,
.eh_timed_out = megasas_reset_timer,
.use_clustering = ENABLE_CLUSTERING,
};
/**
* megasas_complete_int_cmd - Completes an internal command
* @instance: Adapter soft state
* @cmd: Command to be completed
*
* The megasas_issue_blocked_cmd() function waits for a command to complete
* after it issues a command. This function wakes up that waiting routine by
* calling wake_up() on the wait queue.
*/
static void
megasas_complete_int_cmd(struct megasas_instance *instance,
struct megasas_cmd *cmd)
{
cmd->cmd_status = cmd->frame->io.cmd_status;
if (cmd->cmd_status == ENODATA) {
cmd->cmd_status = 0;
}
wake_up(&instance->int_cmd_wait_q);
}
/**
* megasas_complete_abort - Completes aborting a command
* @instance: Adapter soft state
* @cmd: Cmd that was issued to abort another cmd
*
* The megasas_issue_blocked_abort_cmd() function waits on abort_cmd_wait_q
* after it issues an abort on a previously issued command. This function
* wakes up all functions waiting on the same wait queue.
*/
static void
megasas_complete_abort(struct megasas_instance *instance,
struct megasas_cmd *cmd)
{
if (cmd->sync_cmd) {
cmd->sync_cmd = 0;
cmd->cmd_status = 0;
wake_up(&instance->abort_cmd_wait_q);
}
return;
}
/**
* megasas_unmap_sgbuf - Unmap SG buffers
* @instance: Adapter soft state
* @cmd: Completed command
*/
static inline void
megasas_unmap_sgbuf(struct megasas_instance *instance, struct megasas_cmd *cmd)
{
dma_addr_t buf_h;
u8 opcode;
if (cmd->scmd->use_sg) {
pci_unmap_sg(instance->pdev, cmd->scmd->request_buffer,
cmd->scmd->use_sg, cmd->scmd->sc_data_direction);
return;
}
if (!cmd->scmd->request_bufflen)
return;
opcode = cmd->frame->hdr.cmd;
if ((opcode == MFI_CMD_LD_READ) || (opcode == MFI_CMD_LD_WRITE)) {
if (IS_DMA64)
buf_h = cmd->frame->io.sgl.sge64[0].phys_addr;
else
buf_h = cmd->frame->io.sgl.sge32[0].phys_addr;
} else {
if (IS_DMA64)
buf_h = cmd->frame->pthru.sgl.sge64[0].phys_addr;
else
buf_h = cmd->frame->pthru.sgl.sge32[0].phys_addr;
}
pci_unmap_single(instance->pdev, buf_h, cmd->scmd->request_bufflen,
cmd->scmd->sc_data_direction);
return;
}
/**
* megasas_complete_cmd - Completes a command
* @instance: Adapter soft state
* @cmd: Command to be completed
* @alt_status: If non-zero, use this value as status to
* SCSI mid-layer instead of the value returned
* by the FW. This should be used if caller wants
* an alternate status (as in the case of aborted
* commands)
*/
static inline void
megasas_complete_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd,
u8 alt_status)
{
int exception = 0;
struct megasas_header *hdr = &cmd->frame->hdr;
unsigned long flags;
if (cmd->scmd) {
cmd->scmd->SCp.ptr = (char *)0;
}
switch (hdr->cmd) {
case MFI_CMD_PD_SCSI_IO:
case MFI_CMD_LD_SCSI_IO:
/*
* MFI_CMD_PD_SCSI_IO and MFI_CMD_LD_SCSI_IO could have been
* issued either through an IO path or an IOCTL path. If it
* was via IOCTL, we will send it to internal completion.
*/
if (cmd->sync_cmd) {
cmd->sync_cmd = 0;
megasas_complete_int_cmd(instance, cmd);
break;
}
/*
* Don't export physical disk devices to mid-layer.
*/
if (!MEGASAS_IS_LOGICAL(cmd->scmd) &&
(hdr->cmd_status == MFI_STAT_OK) &&
(cmd->scmd->cmnd[0] == INQUIRY)) {
if (((*(u8 *) cmd->scmd->request_buffer) & 0x1F) ==
TYPE_DISK) {
cmd->scmd->result = DID_BAD_TARGET << 16;
exception = 1;
}
}
case MFI_CMD_LD_READ:
case MFI_CMD_LD_WRITE:
if (alt_status) {
cmd->scmd->result = alt_status << 16;
exception = 1;
}
if (exception) {
spin_lock_irqsave(&instance->instance_lock, flags);
instance->fw_outstanding--;
spin_unlock_irqrestore(&instance->instance_lock, flags);
megasas_unmap_sgbuf(instance, cmd);
cmd->scmd->scsi_done(cmd->scmd);
megasas_return_cmd(instance, cmd);
break;
}
switch (hdr->cmd_status) {
case MFI_STAT_OK:
cmd->scmd->result = DID_OK << 16;
break;
case MFI_STAT_SCSI_IO_FAILED:
case MFI_STAT_LD_INIT_IN_PROGRESS:
cmd->scmd->result =
(DID_ERROR << 16) | hdr->scsi_status;
break;
case MFI_STAT_SCSI_DONE_WITH_ERROR:
cmd->scmd->result = (DID_OK << 16) | hdr->scsi_status;
if (hdr->scsi_status == SAM_STAT_CHECK_CONDITION) {
memset(cmd->scmd->sense_buffer, 0,
SCSI_SENSE_BUFFERSIZE);
memcpy(cmd->scmd->sense_buffer, cmd->sense,
hdr->sense_len);
cmd->scmd->result |= DRIVER_SENSE << 24;
}
break;
case MFI_STAT_LD_OFFLINE:
case MFI_STAT_DEVICE_NOT_FOUND:
cmd->scmd->result = DID_BAD_TARGET << 16;
break;
default:
printk(KERN_DEBUG "megasas: MFI FW status %#x\n",
hdr->cmd_status);
cmd->scmd->result = DID_ERROR << 16;
break;
}
spin_lock_irqsave(&instance->instance_lock, flags);
instance->fw_outstanding--;
spin_unlock_irqrestore(&instance->instance_lock, flags);
megasas_unmap_sgbuf(instance, cmd);
cmd->scmd->scsi_done(cmd->scmd);
megasas_return_cmd(instance, cmd);
break;
case MFI_CMD_SMP:
case MFI_CMD_STP:
case MFI_CMD_DCMD:
/*
* See if got an event notification
*/
if (cmd->frame->dcmd.opcode == MR_DCMD_CTRL_EVENT_WAIT)
megasas_service_aen(instance, cmd);
else
megasas_complete_int_cmd(instance, cmd);
break;
case MFI_CMD_ABORT:
/*
* Cmd issued to abort another cmd returned
*/
megasas_complete_abort(instance, cmd);
break;
default:
printk("megasas: Unknown command completed! [0x%X]\n",
hdr->cmd);
break;
}
}
/**
* megasas_deplete_reply_queue - Processes all completed commands
* @instance: Adapter soft state
* @alt_status: Alternate status to be returned to
* SCSI mid-layer instead of the status
* returned by the FW
*/
static inline int
megasas_deplete_reply_queue(struct megasas_instance *instance, u8 alt_status)
{
u32 status;
u32 producer;
u32 consumer;
u32 context;
struct megasas_cmd *cmd;
/*
* Check if it is our interrupt
*/
status = readl(&instance->reg_set->outbound_intr_status);
if (!(status & MFI_OB_INTR_STATUS_MASK)) {
return IRQ_NONE;
}
/*
* Clear the interrupt by writing back the same value
*/
writel(status, &instance->reg_set->outbound_intr_status);
producer = *instance->producer;
consumer = *instance->consumer;
while (consumer != producer) {
context = instance->reply_queue[consumer];
cmd = instance->cmd_list[context];
megasas_complete_cmd(instance, cmd, alt_status);
consumer++;
if (consumer == (instance->max_fw_cmds + 1)) {
consumer = 0;
}
}
*instance->consumer = producer;
return IRQ_HANDLED;
}
/**
* megasas_isr - isr entry point
*/
static irqreturn_t megasas_isr(int irq, void *devp, struct pt_regs *regs)
{
return megasas_deplete_reply_queue((struct megasas_instance *)devp,
DID_OK);
}
/**
* megasas_transition_to_ready - Move the FW to READY state
* @reg_set: MFI register set
*
* During the initialization, FW passes can potentially be in any one of
* several possible states. If the FW in operational, waiting-for-handshake
* states, driver must take steps to bring it to ready state. Otherwise, it
* has to wait for the ready state.
*/
static int
megasas_transition_to_ready(struct megasas_register_set __iomem * reg_set)
{
int i;
u8 max_wait;
u32 fw_state;
u32 cur_state;
fw_state = readl(&reg_set->outbound_msg_0) & MFI_STATE_MASK;
while (fw_state != MFI_STATE_READY) {
printk(KERN_INFO "megasas: Waiting for FW to come to ready"
" state\n");
switch (fw_state) {
case MFI_STATE_FAULT:
printk(KERN_DEBUG "megasas: FW in FAULT state!!\n");
return -ENODEV;
case MFI_STATE_WAIT_HANDSHAKE:
/*
* Set the CLR bit in inbound doorbell
*/
writel(MFI_INIT_CLEAR_HANDSHAKE,
&reg_set->inbound_doorbell);
max_wait = 2;
cur_state = MFI_STATE_WAIT_HANDSHAKE;
break;
case MFI_STATE_OPERATIONAL:
/*
* Bring it to READY state; assuming max wait 2 secs
*/
megasas_disable_intr(reg_set);
writel(MFI_INIT_READY, &reg_set->inbound_doorbell);
max_wait = 10;
cur_state = MFI_STATE_OPERATIONAL;
break;
case MFI_STATE_UNDEFINED:
/*
* This state should not last for more than 2 seconds
*/
max_wait = 2;
cur_state = MFI_STATE_UNDEFINED;
break;
case MFI_STATE_BB_INIT:
max_wait = 2;
cur_state = MFI_STATE_BB_INIT;
break;
case MFI_STATE_FW_INIT:
max_wait = 20;
cur_state = MFI_STATE_FW_INIT;
break;
case MFI_STATE_FW_INIT_2:
max_wait = 20;
cur_state = MFI_STATE_FW_INIT_2;
break;
case MFI_STATE_DEVICE_SCAN:
max_wait = 20;
cur_state = MFI_STATE_DEVICE_SCAN;
break;
case MFI_STATE_FLUSH_CACHE:
max_wait = 20;
cur_state = MFI_STATE_FLUSH_CACHE;
break;
default:
printk(KERN_DEBUG "megasas: Unknown state 0x%x\n",
fw_state);
return -ENODEV;
}
/*
* The cur_state should not last for more than max_wait secs
*/
for (i = 0; i < (max_wait * 1000); i++) {
fw_state = MFI_STATE_MASK &
readl(&reg_set->outbound_msg_0);
if (fw_state == cur_state) {
msleep(1);
} else
break;
}
/*
* Return error if fw_state hasn't changed after max_wait
*/
if (fw_state == cur_state) {
printk(KERN_DEBUG "FW state [%d] hasn't changed "
"in %d secs\n", fw_state, max_wait);
return -ENODEV;
}
};
return 0;
}
/**
* megasas_teardown_frame_pool - Destroy the cmd frame DMA pool
* @instance: Adapter soft state
*/
static void megasas_teardown_frame_pool(struct megasas_instance *instance)
{
int i;
u32 max_cmd = instance->max_fw_cmds;
struct megasas_cmd *cmd;
if (!instance->frame_dma_pool)
return;
/*
* Return all frames to pool
*/
for (i = 0; i < max_cmd; i++) {
cmd = instance->cmd_list[i];
if (cmd->frame)
pci_pool_free(instance->frame_dma_pool, cmd->frame,
cmd->frame_phys_addr);
if (cmd->sense)
pci_pool_free(instance->sense_dma_pool, cmd->frame,
cmd->sense_phys_addr);
}
/*
* Now destroy the pool itself
*/
pci_pool_destroy(instance->frame_dma_pool);
pci_pool_destroy(instance->sense_dma_pool);
instance->frame_dma_pool = NULL;
instance->sense_dma_pool = NULL;
}
/**
* megasas_create_frame_pool - Creates DMA pool for cmd frames
* @instance: Adapter soft state
*
* Each command packet has an embedded DMA memory buffer that is used for
* filling MFI frame and the SG list that immediately follows the frame. This
* function creates those DMA memory buffers for each command packet by using
* PCI pool facility.
*/
static int megasas_create_frame_pool(struct megasas_instance *instance)
{
int i;
u32 max_cmd;
u32 sge_sz;
u32 sgl_sz;
u32 total_sz;
u32 frame_count;
struct megasas_cmd *cmd;
max_cmd = instance->max_fw_cmds;
/*
* Size of our frame is 64 bytes for MFI frame, followed by max SG
* elements and finally SCSI_SENSE_BUFFERSIZE bytes for sense buffer
*/
sge_sz = (IS_DMA64) ? sizeof(struct megasas_sge64) :
sizeof(struct megasas_sge32);
/*
* Calculated the number of 64byte frames required for SGL
*/
sgl_sz = sge_sz * instance->max_num_sge;
frame_count = (sgl_sz + MEGAMFI_FRAME_SIZE - 1) / MEGAMFI_FRAME_SIZE;
/*
* We need one extra frame for the MFI command
*/
frame_count++;
total_sz = MEGAMFI_FRAME_SIZE * frame_count;
/*
* Use DMA pool facility provided by PCI layer
*/
instance->frame_dma_pool = pci_pool_create("megasas frame pool",
instance->pdev, total_sz, 64,
0);
if (!instance->frame_dma_pool) {
printk(KERN_DEBUG "megasas: failed to setup frame pool\n");
return -ENOMEM;
}
instance->sense_dma_pool = pci_pool_create("megasas sense pool",
instance->pdev, 128, 4, 0);
if (!instance->sense_dma_pool) {
printk(KERN_DEBUG "megasas: failed to setup sense pool\n");
pci_pool_destroy(instance->frame_dma_pool);
instance->frame_dma_pool = NULL;
return -ENOMEM;
}
/*
* Allocate and attach a frame to each of the commands in cmd_list.
* By making cmd->index as the context instead of the &cmd, we can
* always use 32bit context regardless of the architecture
*/
for (i = 0; i < max_cmd; i++) {
cmd = instance->cmd_list[i];
cmd->frame = pci_pool_alloc(instance->frame_dma_pool,
GFP_KERNEL, &cmd->frame_phys_addr);
cmd->sense = pci_pool_alloc(instance->sense_dma_pool,
GFP_KERNEL, &cmd->sense_phys_addr);
/*
* megasas_teardown_frame_pool() takes care of freeing
* whatever has been allocated
*/
if (!cmd->frame || !cmd->sense) {
printk(KERN_DEBUG "megasas: pci_pool_alloc failed \n");
megasas_teardown_frame_pool(instance);
return -ENOMEM;
}
cmd->frame->io.context = cmd->index;
}
return 0;
}
/**
* megasas_free_cmds - Free all the cmds in the free cmd pool
* @instance: Adapter soft state
*/
static void megasas_free_cmds(struct megasas_instance *instance)
{
int i;
/* First free the MFI frame pool */
megasas_teardown_frame_pool(instance);
/* Free all the commands in the cmd_list */
for (i = 0; i < instance->max_fw_cmds; i++)
kfree(instance->cmd_list[i]);
/* Free the cmd_list buffer itself */
kfree(instance->cmd_list);
instance->cmd_list = NULL;
INIT_LIST_HEAD(&instance->cmd_pool);
}
/**
* megasas_alloc_cmds - Allocates the command packets
* @instance: Adapter soft state
*
* Each command that is issued to the FW, whether IO commands from the OS or
* internal commands like IOCTLs, are wrapped in local data structure called
* megasas_cmd. The frame embedded in this megasas_cmd is actually issued to
* the FW.
*
* Each frame has a 32-bit field called context (tag). This context is used
* to get back the megasas_cmd from the frame when a frame gets completed in
* the ISR. Typically the address of the megasas_cmd itself would be used as
* the context. But we wanted to keep the differences between 32 and 64 bit
* systems to the mininum. We always use 32 bit integers for the context. In
* this driver, the 32 bit values are the indices into an array cmd_list.
* This array is used only to look up the megasas_cmd given the context. The
* free commands themselves are maintained in a linked list called cmd_pool.
*/
static int megasas_alloc_cmds(struct megasas_instance *instance)
{
int i;
int j;
u32 max_cmd;
struct megasas_cmd *cmd;
max_cmd = instance->max_fw_cmds;
/*
* instance->cmd_list is an array of struct megasas_cmd pointers.
* Allocate the dynamic array first and then allocate individual
* commands.
*/
instance->cmd_list = kmalloc(sizeof(struct megasas_cmd *) * max_cmd,
GFP_KERNEL);
if (!instance->cmd_list) {
printk(KERN_DEBUG "megasas: out of memory\n");
return -ENOMEM;
}
memset(instance->cmd_list, 0, sizeof(struct megasas_cmd *) * max_cmd);
for (i = 0; i < max_cmd; i++) {
instance->cmd_list[i] = kmalloc(sizeof(struct megasas_cmd),
GFP_KERNEL);
if (!instance->cmd_list[i]) {
for (j = 0; j < i; j++)
kfree(instance->cmd_list[j]);
kfree(instance->cmd_list);
instance->cmd_list = NULL;
return -ENOMEM;
}
}
/*
* Add all the commands to command pool (instance->cmd_pool)
*/
for (i = 0; i < max_cmd; i++) {
cmd = instance->cmd_list[i];
memset(cmd, 0, sizeof(struct megasas_cmd));
cmd->index = i;
cmd->instance = instance;
list_add_tail(&cmd->list, &instance->cmd_pool);
}
/*
* Create a frame pool and assign one frame to each cmd
*/
if (megasas_create_frame_pool(instance)) {
printk(KERN_DEBUG "megasas: Error creating frame DMA pool\n");
megasas_free_cmds(instance);
}
return 0;
}
/**
* megasas_get_controller_info - Returns FW's controller structure
* @instance: Adapter soft state
* @ctrl_info: Controller information structure
*
* Issues an internal command (DCMD) to get the FW's controller structure.
* This information is mainly used to find out the maximum IO transfer per
* command supported by the FW.
*/
static int
megasas_get_ctrl_info(struct megasas_instance *instance,
struct megasas_ctrl_info *ctrl_info)
{
int ret = 0;
struct megasas_cmd *cmd;
struct megasas_dcmd_frame *dcmd;
struct megasas_ctrl_info *ci;
dma_addr_t ci_h = 0;
cmd = megasas_get_cmd(instance);
if (!cmd) {
printk(KERN_DEBUG "megasas: Failed to get a free cmd\n");
return -ENOMEM;
}
dcmd = &cmd->frame->dcmd;
ci = pci_alloc_consistent(instance->pdev,
sizeof(struct megasas_ctrl_info), &ci_h);
if (!ci) {
printk(KERN_DEBUG "Failed to alloc mem for ctrl info\n");
megasas_return_cmd(instance, cmd);
return -ENOMEM;
}
memset(ci, 0, sizeof(*ci));
memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
dcmd->cmd = MFI_CMD_DCMD;
dcmd->cmd_status = 0xFF;
dcmd->sge_count = 1;
dcmd->flags = MFI_FRAME_DIR_READ;
dcmd->timeout = 0;
dcmd->data_xfer_len = sizeof(struct megasas_ctrl_info);
dcmd->opcode = MR_DCMD_CTRL_GET_INFO;
dcmd->sgl.sge32[0].phys_addr = ci_h;
dcmd->sgl.sge32[0].length = sizeof(struct megasas_ctrl_info);
if (!megasas_issue_polled(instance, cmd)) {
ret = 0;
memcpy(ctrl_info, ci, sizeof(struct megasas_ctrl_info));
} else {
ret = -1;
}
pci_free_consistent(instance->pdev, sizeof(struct megasas_ctrl_info),
ci, ci_h);
megasas_return_cmd(instance, cmd);
return ret;
}
/**
* megasas_init_mfi - Initializes the FW
* @instance: Adapter soft state
*
* This is the main function for initializing MFI firmware.
*/
static int megasas_init_mfi(struct megasas_instance *instance)
{
u32 context_sz;
u32 reply_q_sz;
u32 max_sectors_1;
u32 max_sectors_2;
struct megasas_register_set __iomem *reg_set;
struct megasas_cmd *cmd;
struct megasas_ctrl_info *ctrl_info;
struct megasas_init_frame *init_frame;
struct megasas_init_queue_info *initq_info;
dma_addr_t init_frame_h;
dma_addr_t initq_info_h;
/*
* Map the message registers
*/
instance->base_addr = pci_resource_start(instance->pdev, 0);
if (pci_request_regions(instance->pdev, "megasas: LSI Logic")) {
printk(KERN_DEBUG "megasas: IO memory region busy!\n");
return -EBUSY;
}
instance->reg_set = ioremap_nocache(instance->base_addr, 8192);
if (!instance->reg_set) {
printk(KERN_DEBUG "megasas: Failed to map IO mem\n");
goto fail_ioremap;
}
reg_set = instance->reg_set;
/*
* We expect the FW state to be READY
*/
if (megasas_transition_to_ready(instance->reg_set))
goto fail_ready_state;
/*
* Get various operational parameters from status register
*/
instance->max_fw_cmds = readl(&reg_set->outbound_msg_0) & 0x00FFFF;
instance->max_num_sge = (readl(&reg_set->outbound_msg_0) & 0xFF0000) >>
0x10;
/*
* Create a pool of commands
*/
if (megasas_alloc_cmds(instance))
goto fail_alloc_cmds;
/*
* Allocate memory for reply queue. Length of reply queue should
* be _one_ more than the maximum commands handled by the firmware.
*
* Note: When FW completes commands, it places corresponding contex
* values in this circular reply queue. This circular queue is a fairly
* typical producer-consumer queue. FW is the producer (of completed
* commands) and the driver is the consumer.
*/
context_sz = sizeof(u32);
reply_q_sz = context_sz * (instance->max_fw_cmds + 1);
instance->reply_queue = pci_alloc_consistent(instance->pdev,
reply_q_sz,
&instance->reply_queue_h);
if (!instance->reply_queue) {
printk(KERN_DEBUG "megasas: Out of DMA mem for reply queue\n");
goto fail_reply_queue;
}
/*
* Prepare a init frame. Note the init frame points to queue info
* structure. Each frame has SGL allocated after first 64 bytes. For
* this frame - since we don't need any SGL - we use SGL's space as
* queue info structure
*
* We will not get a NULL command below. We just created the pool.
*/
cmd = megasas_get_cmd(instance);
init_frame = (struct megasas_init_frame *)cmd->frame;
initq_info = (struct megasas_init_queue_info *)
((unsigned long)init_frame + 64);
init_frame_h = cmd->frame_phys_addr;
initq_info_h = init_frame_h + 64;
memset(init_frame, 0, MEGAMFI_FRAME_SIZE);
memset(initq_info, 0, sizeof(struct megasas_init_queue_info));
initq_info->reply_queue_entries = instance->max_fw_cmds + 1;
initq_info->reply_queue_start_phys_addr_lo = instance->reply_queue_h;
initq_info->producer_index_phys_addr_lo = instance->producer_h;
initq_info->consumer_index_phys_addr_lo = instance->consumer_h;
init_frame->cmd = MFI_CMD_INIT;
init_frame->cmd_status = 0xFF;
init_frame->queue_info_new_phys_addr_lo = initq_info_h;
init_frame->data_xfer_len = sizeof(struct megasas_init_queue_info);
/*
* Issue the init frame in polled mode
*/
if (megasas_issue_polled(instance, cmd)) {
printk(KERN_DEBUG "megasas: Failed to init firmware\n");
goto fail_fw_init;
}
megasas_return_cmd(instance, cmd);
ctrl_info = kmalloc(sizeof(struct megasas_ctrl_info), GFP_KERNEL);
/*
* Compute the max allowed sectors per IO: The controller info has two
* limits on max sectors. Driver should use the minimum of these two.
*
* 1 << stripe_sz_ops.min = max sectors per strip
*
* Note that older firmwares ( < FW ver 30) didn't report information
* to calculate max_sectors_1. So the number ended up as zero always.
*/
if (ctrl_info && !megasas_get_ctrl_info(instance, ctrl_info)) {
max_sectors_1 = (1 << ctrl_info->stripe_sz_ops.min) *
ctrl_info->max_strips_per_io;
max_sectors_2 = ctrl_info->max_request_size;
instance->max_sectors_per_req = (max_sectors_1 < max_sectors_2)
? max_sectors_1 : max_sectors_2;
} else
instance->max_sectors_per_req = instance->max_num_sge *
PAGE_SIZE / 512;
kfree(ctrl_info);
return 0;
fail_fw_init:
megasas_return_cmd(instance, cmd);
pci_free_consistent(instance->pdev, reply_q_sz,
instance->reply_queue, instance->reply_queue_h);
fail_reply_queue:
megasas_free_cmds(instance);
fail_alloc_cmds:
fail_ready_state:
iounmap(instance->reg_set);
fail_ioremap:
pci_release_regions(instance->pdev);
return -EINVAL;
}
/**
* megasas_release_mfi - Reverses the FW initialization
* @intance: Adapter soft state
*/
static void megasas_release_mfi(struct megasas_instance *instance)
{
u32 reply_q_sz = sizeof(u32) * (instance->max_fw_cmds + 1);
pci_free_consistent(instance->pdev, reply_q_sz,
instance->reply_queue, instance->reply_queue_h);
megasas_free_cmds(instance);
iounmap(instance->reg_set);
pci_release_regions(instance->pdev);
}
/**
* megasas_get_seq_num - Gets latest event sequence numbers
* @instance: Adapter soft state
* @eli: FW event log sequence numbers information
*
* FW maintains a log of all events in a non-volatile area. Upper layers would
* usually find out the latest sequence number of the events, the seq number at
* the boot etc. They would "read" all the events below the latest seq number
* by issuing a direct fw cmd (DCMD). For the future events (beyond latest seq
* number), they would subsribe to AEN (asynchronous event notification) and
* wait for the events to happen.
*/
static int
megasas_get_seq_num(struct megasas_instance *instance,
struct megasas_evt_log_info *eli)
{
struct megasas_cmd *cmd;
struct megasas_dcmd_frame *dcmd;
struct megasas_evt_log_info *el_info;
dma_addr_t el_info_h = 0;
cmd = megasas_get_cmd(instance);
if (!cmd) {
return -ENOMEM;
}
dcmd = &cmd->frame->dcmd;
el_info = pci_alloc_consistent(instance->pdev,
sizeof(struct megasas_evt_log_info),
&el_info_h);
if (!el_info) {
megasas_return_cmd(instance, cmd);
return -ENOMEM;
}
memset(el_info, 0, sizeof(*el_info));
memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
dcmd->cmd = MFI_CMD_DCMD;
dcmd->cmd_status = 0x0;
dcmd->sge_count = 1;
dcmd->flags = MFI_FRAME_DIR_READ;
dcmd->timeout = 0;
dcmd->data_xfer_len = sizeof(struct megasas_evt_log_info);
dcmd->opcode = MR_DCMD_CTRL_EVENT_GET_INFO;
dcmd->sgl.sge32[0].phys_addr = el_info_h;
dcmd->sgl.sge32[0].length = sizeof(struct megasas_evt_log_info);
megasas_issue_blocked_cmd(instance, cmd);
/*
* Copy the data back into callers buffer
*/
memcpy(eli, el_info, sizeof(struct megasas_evt_log_info));
pci_free_consistent(instance->pdev, sizeof(struct megasas_evt_log_info),
el_info, el_info_h);
megasas_return_cmd(instance, cmd);
return 0;
}
/**
* megasas_register_aen - Registers for asynchronous event notification
* @instance: Adapter soft state
* @seq_num: The starting sequence number
* @class_locale: Class of the event
*
* This function subscribes for AEN for events beyond the @seq_num. It requests
* to be notified if and only if the event is of type @class_locale
*/
static int
megasas_register_aen(struct megasas_instance *instance, u32 seq_num,
u32 class_locale_word)
{
int ret_val;
struct megasas_cmd *cmd;
struct megasas_dcmd_frame *dcmd;
union megasas_evt_class_locale curr_aen;
union megasas_evt_class_locale prev_aen;
/*
* If there an AEN pending already (aen_cmd), check if the
* class_locale of that pending AEN is inclusive of the new
* AEN request we currently have. If it is, then we don't have
* to do anything. In other words, whichever events the current
* AEN request is subscribing to, have already been subscribed
* to.
*
* If the old_cmd is _not_ inclusive, then we have to abort
* that command, form a class_locale that is superset of both
* old and current and re-issue to the FW
*/
curr_aen.word = class_locale_word;
if (instance->aen_cmd) {
prev_aen.word = instance->aen_cmd->frame->dcmd.mbox.w[1];
/*
* A class whose enum value is smaller is inclusive of all
* higher values. If a PROGRESS (= -1) was previously
* registered, then a new registration requests for higher
* classes need not be sent to FW. They are automatically
* included.
*
* Locale numbers don't have such hierarchy. They are bitmap
* values
*/
if ((prev_aen.members.class <= curr_aen.members.class) &&
!((prev_aen.members.locale & curr_aen.members.locale) ^
curr_aen.members.locale)) {
/*
* Previously issued event registration includes
* current request. Nothing to do.
*/
return 0;
} else {
curr_aen.members.locale |= prev_aen.members.locale;
if (prev_aen.members.class < curr_aen.members.class)
curr_aen.members.class = prev_aen.members.class;
instance->aen_cmd->abort_aen = 1;
ret_val = megasas_issue_blocked_abort_cmd(instance,
instance->
aen_cmd);
if (ret_val) {
printk(KERN_DEBUG "megasas: Failed to abort "
"previous AEN command\n");
return ret_val;
}
}
}
cmd = megasas_get_cmd(instance);
if (!cmd)
return -ENOMEM;
dcmd = &cmd->frame->dcmd;
memset(instance->evt_detail, 0, sizeof(struct megasas_evt_detail));
/*
* Prepare DCMD for aen registration
*/
memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
dcmd->cmd = MFI_CMD_DCMD;
dcmd->cmd_status = 0x0;
dcmd->sge_count = 1;
dcmd->flags = MFI_FRAME_DIR_READ;
dcmd->timeout = 0;
dcmd->data_xfer_len = sizeof(struct megasas_evt_detail);
dcmd->opcode = MR_DCMD_CTRL_EVENT_WAIT;
dcmd->mbox.w[0] = seq_num;
dcmd->mbox.w[1] = curr_aen.word;
dcmd->sgl.sge32[0].phys_addr = (u32) instance->evt_detail_h;
dcmd->sgl.sge32[0].length = sizeof(struct megasas_evt_detail);
/*
* Store reference to the cmd used to register for AEN. When an
* application wants us to register for AEN, we have to abort this
* cmd and re-register with a new EVENT LOCALE supplied by that app
*/
instance->aen_cmd = cmd;
/*
* Issue the aen registration frame
*/
writel(cmd->frame_phys_addr >> 3,
&instance->reg_set->inbound_queue_port);
return 0;
}
/**
* megasas_start_aen - Subscribes to AEN during driver load time
* @instance: Adapter soft state
*/
static int megasas_start_aen(struct megasas_instance *instance)
{
struct megasas_evt_log_info eli;
union megasas_evt_class_locale class_locale;
/*
* Get the latest sequence number from FW
*/
memset(&eli, 0, sizeof(eli));
if (megasas_get_seq_num(instance, &eli))
return -1;
/*
* Register AEN with FW for latest sequence number plus 1
*/
class_locale.members.reserved = 0;
class_locale.members.locale = MR_EVT_LOCALE_ALL;
class_locale.members.class = MR_EVT_CLASS_DEBUG;
return megasas_register_aen(instance, eli.newest_seq_num + 1,
class_locale.word);
}
/**
* megasas_io_attach - Attaches this driver to SCSI mid-layer
* @instance: Adapter soft state
*/
static int megasas_io_attach(struct megasas_instance *instance)
{
struct Scsi_Host *host = instance->host;
/*
* Export parameters required by SCSI mid-layer
*/
host->irq = instance->pdev->irq;
host->unique_id = instance->unique_id;
host->can_queue = instance->max_fw_cmds - MEGASAS_INT_CMDS;
host->this_id = instance->init_id;
host->sg_tablesize = instance->max_num_sge;
host->max_sectors = instance->max_sectors_per_req;
host->cmd_per_lun = 128;
host->max_channel = MEGASAS_MAX_CHANNELS - 1;
host->max_id = MEGASAS_MAX_DEV_PER_CHANNEL;
host->max_lun = MEGASAS_MAX_LUN;
/*
* Notify the mid-layer about the new controller
*/
if (scsi_add_host(host, &instance->pdev->dev)) {
printk(KERN_DEBUG "megasas: scsi_add_host failed\n");
return -ENODEV;
}
/*
* Trigger SCSI to scan our drives
*/
scsi_scan_host(host);
return 0;
}
/**
* megasas_probe_one - PCI hotplug entry point
* @pdev: PCI device structure
* @id: PCI ids of supported hotplugged adapter
*/
static int __devinit
megasas_probe_one(struct pci_dev *pdev, const struct pci_device_id *id)
{
int rval;
struct Scsi_Host *host;
struct megasas_instance *instance;
/*
* Announce PCI information
*/
printk(KERN_INFO "megasas: %#4.04x:%#4.04x:%#4.04x:%#4.04x: ",
pdev->vendor, pdev->device, pdev->subsystem_vendor,
pdev->subsystem_device);
printk("bus %d:slot %d:func %d\n",
pdev->bus->number, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
/*
* PCI prepping: enable device set bus mastering and dma mask
*/
rval = pci_enable_device(pdev);
if (rval) {
return rval;
}
pci_set_master(pdev);
/*
* All our contollers are capable of performing 64-bit DMA
*/
if (IS_DMA64) {
if (pci_set_dma_mask(pdev, DMA_64BIT_MASK) != 0) {
if (pci_set_dma_mask(pdev, DMA_32BIT_MASK) != 0)
goto fail_set_dma_mask;
}
} else {
if (pci_set_dma_mask(pdev, DMA_32BIT_MASK) != 0)
goto fail_set_dma_mask;
}
host = scsi_host_alloc(&megasas_template,
sizeof(struct megasas_instance));
if (!host) {
printk(KERN_DEBUG "megasas: scsi_host_alloc failed\n");
goto fail_alloc_instance;
}
instance = (struct megasas_instance *)host->hostdata;
memset(instance, 0, sizeof(*instance));
instance->producer = pci_alloc_consistent(pdev, sizeof(u32),
&instance->producer_h);
instance->consumer = pci_alloc_consistent(pdev, sizeof(u32),
&instance->consumer_h);
if (!instance->producer || !instance->consumer) {
printk(KERN_DEBUG "megasas: Failed to allocate memory for "
"producer, consumer\n");
goto fail_alloc_dma_buf;
}
*instance->producer = 0;
*instance->consumer = 0;
instance->evt_detail = pci_alloc_consistent(pdev,
sizeof(struct
megasas_evt_detail),
&instance->evt_detail_h);
if (!instance->evt_detail) {
printk(KERN_DEBUG "megasas: Failed to allocate memory for "
"event detail structure\n");
goto fail_alloc_dma_buf;
}
/*
* Initialize locks and queues
*/
INIT_LIST_HEAD(&instance->cmd_pool);
init_waitqueue_head(&instance->int_cmd_wait_q);
init_waitqueue_head(&instance->abort_cmd_wait_q);
spin_lock_init(&instance->cmd_pool_lock);
spin_lock_init(&instance->instance_lock);
sema_init(&instance->aen_mutex, 1);
sema_init(&instance->ioctl_sem, MEGASAS_INT_CMDS);
/*
* Initialize PCI related and misc parameters
*/
instance->pdev = pdev;
instance->host = host;
instance->unique_id = pdev->bus->number << 8 | pdev->devfn;
instance->init_id = MEGASAS_DEFAULT_INIT_ID;
/*
* Initialize MFI Firmware
*/
if (megasas_init_mfi(instance))
goto fail_init_mfi;
/*
* Register IRQ
*/
if (request_irq(pdev->irq, megasas_isr, SA_SHIRQ, "megasas", instance)) {
printk(KERN_DEBUG "megasas: Failed to register IRQ\n");
goto fail_irq;
}
megasas_enable_intr(instance->reg_set);
/*
* Store instance in PCI softstate
*/
pci_set_drvdata(pdev, instance);
/*
* Add this controller to megasas_mgmt_info structure so that it
* can be exported to management applications
*/
megasas_mgmt_info.count++;
megasas_mgmt_info.instance[megasas_mgmt_info.max_index] = instance;
megasas_mgmt_info.max_index++;
/*
* Initiate AEN (Asynchronous Event Notification)
*/
if (megasas_start_aen(instance)) {
printk(KERN_DEBUG "megasas: start aen failed\n");
goto fail_start_aen;
}
/*
* Register with SCSI mid-layer
*/
if (megasas_io_attach(instance))
goto fail_io_attach;
return 0;
fail_start_aen:
fail_io_attach:
megasas_mgmt_info.count--;
megasas_mgmt_info.instance[megasas_mgmt_info.max_index] = NULL;
megasas_mgmt_info.max_index--;
pci_set_drvdata(pdev, NULL);
megasas_disable_intr(instance->reg_set);
free_irq(instance->pdev->irq, instance);
megasas_release_mfi(instance);
fail_irq:
fail_init_mfi:
fail_alloc_dma_buf:
if (instance->evt_detail)
pci_free_consistent(pdev, sizeof(struct megasas_evt_detail),
instance->evt_detail,
instance->evt_detail_h);
if (instance->producer)
pci_free_consistent(pdev, sizeof(u32), instance->producer,
instance->producer_h);
if (instance->consumer)
pci_free_consistent(pdev, sizeof(u32), instance->consumer,
instance->consumer_h);
scsi_host_put(host);
fail_alloc_instance:
fail_set_dma_mask:
pci_disable_device(pdev);
return -ENODEV;
}
/**
* megasas_flush_cache - Requests FW to flush all its caches
* @instance: Adapter soft state
*/
static void megasas_flush_cache(struct megasas_instance *instance)
{
struct megasas_cmd *cmd;
struct megasas_dcmd_frame *dcmd;
cmd = megasas_get_cmd(instance);
if (!cmd)
return;
dcmd = &cmd->frame->dcmd;
memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
dcmd->cmd = MFI_CMD_DCMD;
dcmd->cmd_status = 0x0;
dcmd->sge_count = 0;
dcmd->flags = MFI_FRAME_DIR_NONE;
dcmd->timeout = 0;
dcmd->data_xfer_len = 0;
dcmd->opcode = MR_DCMD_CTRL_CACHE_FLUSH;
dcmd->mbox.b[0] = MR_FLUSH_CTRL_CACHE | MR_FLUSH_DISK_CACHE;
megasas_issue_blocked_cmd(instance, cmd);
megasas_return_cmd(instance, cmd);
return;
}
/**
* megasas_shutdown_controller - Instructs FW to shutdown the controller
* @instance: Adapter soft state
*/
static void megasas_shutdown_controller(struct megasas_instance *instance)
{
struct megasas_cmd *cmd;
struct megasas_dcmd_frame *dcmd;
cmd = megasas_get_cmd(instance);
if (!cmd)
return;
if (instance->aen_cmd)
megasas_issue_blocked_abort_cmd(instance, instance->aen_cmd);
dcmd = &cmd->frame->dcmd;
memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
dcmd->cmd = MFI_CMD_DCMD;
dcmd->cmd_status = 0x0;
dcmd->sge_count = 0;
dcmd->flags = MFI_FRAME_DIR_NONE;
dcmd->timeout = 0;
dcmd->data_xfer_len = 0;
dcmd->opcode = MR_DCMD_CTRL_SHUTDOWN;
megasas_issue_blocked_cmd(instance, cmd);
megasas_return_cmd(instance, cmd);
return;
}
/**
* megasas_detach_one - PCI hot"un"plug entry point
* @pdev: PCI device structure
*/
static void megasas_detach_one(struct pci_dev *pdev)
{
int i;
struct Scsi_Host *host;
struct megasas_instance *instance;
instance = pci_get_drvdata(pdev);
host = instance->host;
scsi_remove_host(instance->host);
megasas_flush_cache(instance);
megasas_shutdown_controller(instance);
/*
* Take the instance off the instance array. Note that we will not
* decrement the max_index. We let this array be sparse array
*/
for (i = 0; i < megasas_mgmt_info.max_index; i++) {
if (megasas_mgmt_info.instance[i] == instance) {
megasas_mgmt_info.count--;
megasas_mgmt_info.instance[i] = NULL;
break;
}
}
pci_set_drvdata(instance->pdev, NULL);
megasas_disable_intr(instance->reg_set);
free_irq(instance->pdev->irq, instance);
megasas_release_mfi(instance);
pci_free_consistent(pdev, sizeof(struct megasas_evt_detail),
instance->evt_detail, instance->evt_detail_h);
pci_free_consistent(pdev, sizeof(u32), instance->producer,
instance->producer_h);
pci_free_consistent(pdev, sizeof(u32), instance->consumer,
instance->consumer_h);
scsi_host_put(host);
pci_set_drvdata(pdev, NULL);
pci_disable_device(pdev);
return;
}
/**
* megasas_shutdown - Shutdown entry point
* @device: Generic device structure
*/
static void megasas_shutdown(struct pci_dev *pdev)
{
struct megasas_instance *instance = pci_get_drvdata(pdev);
megasas_flush_cache(instance);
}
/**
* megasas_mgmt_open - char node "open" entry point
*/
static int megasas_mgmt_open(struct inode *inode, struct file *filep)
{
/*
* Allow only those users with admin rights
*/
if (!capable(CAP_SYS_ADMIN))
return -EACCES;
return 0;
}
/**
* megasas_mgmt_release - char node "release" entry point
*/
static int megasas_mgmt_release(struct inode *inode, struct file *filep)
{
filep->private_data = NULL;
fasync_helper(-1, filep, 0, &megasas_async_queue);
return 0;
}
/**
* megasas_mgmt_fasync - Async notifier registration from applications
*
* This function adds the calling process to a driver global queue. When an
* event occurs, SIGIO will be sent to all processes in this queue.
*/
static int megasas_mgmt_fasync(int fd, struct file *filep, int mode)
{
int rc;
down(&megasas_async_queue_mutex);
rc = fasync_helper(fd, filep, mode, &megasas_async_queue);
up(&megasas_async_queue_mutex);
if (rc >= 0) {
/* For sanity check when we get ioctl */
filep->private_data = filep;
return 0;
}
printk(KERN_DEBUG "megasas: fasync_helper failed [%d]\n", rc);
return rc;
}
/**
* megasas_mgmt_fw_ioctl - Issues management ioctls to FW
* @instance: Adapter soft state
* @argp: User's ioctl packet
*/
static int
megasas_mgmt_fw_ioctl(struct megasas_instance *instance,
struct megasas_iocpacket __user * user_ioc,
struct megasas_iocpacket *ioc)
{
struct megasas_sge32 *kern_sge32;
struct megasas_cmd *cmd;
void *kbuff_arr[MAX_IOCTL_SGE];
dma_addr_t buf_handle = 0;
int error = 0, i;
void *sense = NULL;
dma_addr_t sense_handle;
u32 *sense_ptr;
memset(kbuff_arr, 0, sizeof(kbuff_arr));
if (ioc->sge_count > MAX_IOCTL_SGE) {
printk(KERN_DEBUG "megasas: SGE count [%d] > max limit [%d]\n",
ioc->sge_count, MAX_IOCTL_SGE);
return -EINVAL;
}
cmd = megasas_get_cmd(instance);
if (!cmd) {
printk(KERN_DEBUG "megasas: Failed to get a cmd packet\n");
return -ENOMEM;
}
/*
* User's IOCTL packet has 2 frames (maximum). Copy those two
* frames into our cmd's frames. cmd->frame's context will get
* overwritten when we copy from user's frames. So set that value
* alone separately
*/
memcpy(cmd->frame, ioc->frame.raw, 2 * MEGAMFI_FRAME_SIZE);
cmd->frame->hdr.context = cmd->index;
/*
* The management interface between applications and the fw uses
* MFI frames. E.g, RAID configuration changes, LD property changes
* etc are accomplishes through different kinds of MFI frames. The
* driver needs to care only about substituting user buffers with
* kernel buffers in SGLs. The location of SGL is embedded in the
* struct iocpacket itself.
*/
kern_sge32 = (struct megasas_sge32 *)
((unsigned long)cmd->frame + ioc->sgl_off);
/*
* For each user buffer, create a mirror buffer and copy in
*/
for (i = 0; i < ioc->sge_count; i++) {
kbuff_arr[i] = pci_alloc_consistent(instance->pdev,
ioc->sgl[i].iov_len,
&buf_handle);
if (!kbuff_arr[i]) {
printk(KERN_DEBUG "megasas: Failed to alloc "
"kernel SGL buffer for IOCTL \n");
error = -ENOMEM;
goto out;
}
/*
* We don't change the dma_coherent_mask, so
* pci_alloc_consistent only returns 32bit addresses
*/
kern_sge32[i].phys_addr = (u32) buf_handle;
kern_sge32[i].length = ioc->sgl[i].iov_len;
/*
* We created a kernel buffer corresponding to the
* user buffer. Now copy in from the user buffer
*/
if (copy_from_user(kbuff_arr[i], ioc->sgl[i].iov_base,
(u32) (ioc->sgl[i].iov_len))) {
error = -EFAULT;
goto out;
}
}
if (ioc->sense_len) {
sense = pci_alloc_consistent(instance->pdev, ioc->sense_len,
&sense_handle);
if (!sense) {
error = -ENOMEM;
goto out;
}
sense_ptr =
(u32 *) ((unsigned long)cmd->frame + ioc->sense_off);
*sense_ptr = sense_handle;
}
/*
* Set the sync_cmd flag so that the ISR knows not to complete this
* cmd to the SCSI mid-layer
*/
cmd->sync_cmd = 1;
megasas_issue_blocked_cmd(instance, cmd);
cmd->sync_cmd = 0;
/*
* copy out the kernel buffers to user buffers
*/
for (i = 0; i < ioc->sge_count; i++) {
if (copy_to_user(ioc->sgl[i].iov_base, kbuff_arr[i],
ioc->sgl[i].iov_len)) {
error = -EFAULT;
goto out;
}
}
/*
* copy out the sense
*/
if (ioc->sense_len) {
/*
* sense_ptr points to the location that has the user
* sense buffer address
*/
sense_ptr = (u32 *) ((unsigned long)ioc->frame.raw +
ioc->sense_off);
if (copy_to_user((void __user *)((unsigned long)(*sense_ptr)),
sense, ioc->sense_len)) {
error = -EFAULT;
goto out;
}
}
/*
* copy the status codes returned by the fw
*/
if (copy_to_user(&user_ioc->frame.hdr.cmd_status,
&cmd->frame->hdr.cmd_status, sizeof(u8))) {
printk(KERN_DEBUG "megasas: Error copying out cmd_status\n");
error = -EFAULT;
}
out:
if (sense) {
pci_free_consistent(instance->pdev, ioc->sense_len,
sense, sense_handle);
}
for (i = 0; i < ioc->sge_count && kbuff_arr[i]; i++) {
pci_free_consistent(instance->pdev,
kern_sge32[i].length,
kbuff_arr[i], kern_sge32[i].phys_addr);
}
megasas_return_cmd(instance, cmd);
return error;
}
static struct megasas_instance *megasas_lookup_instance(u16 host_no)
{
int i;
for (i = 0; i < megasas_mgmt_info.max_index; i++) {
if ((megasas_mgmt_info.instance[i]) &&
(megasas_mgmt_info.instance[i]->host->host_no == host_no))
return megasas_mgmt_info.instance[i];
}
return NULL;
}
static int megasas_mgmt_ioctl_fw(struct file *file, unsigned long arg)
{
struct megasas_iocpacket __user *user_ioc =
(struct megasas_iocpacket __user *)arg;
struct megasas_iocpacket *ioc;
struct megasas_instance *instance;
int error;
ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
if (!ioc)
return -ENOMEM;
if (copy_from_user(ioc, user_ioc, sizeof(*ioc))) {
error = -EFAULT;
goto out_kfree_ioc;
}
instance = megasas_lookup_instance(ioc->host_no);
if (!instance) {
error = -ENODEV;
goto out_kfree_ioc;
}
/*
* We will allow only MEGASAS_INT_CMDS number of parallel ioctl cmds
*/
if (down_interruptible(&instance->ioctl_sem)) {
error = -ERESTARTSYS;
goto out_kfree_ioc;
}
error = megasas_mgmt_fw_ioctl(instance, user_ioc, ioc);
up(&instance->ioctl_sem);
out_kfree_ioc:
kfree(ioc);
return error;
}
static int megasas_mgmt_ioctl_aen(struct file *file, unsigned long arg)
{
struct megasas_instance *instance;
struct megasas_aen aen;
int error;
if (file->private_data != file) {
printk(KERN_DEBUG "megasas: fasync_helper was not "
"called first\n");
return -EINVAL;
}
if (copy_from_user(&aen, (void __user *)arg, sizeof(aen)))
return -EFAULT;
instance = megasas_lookup_instance(aen.host_no);
if (!instance)
return -ENODEV;
down(&instance->aen_mutex);
error = megasas_register_aen(instance, aen.seq_num,
aen.class_locale_word);
up(&instance->aen_mutex);
return error;
}
/**
* megasas_mgmt_ioctl - char node ioctl entry point
*/
static long
megasas_mgmt_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
switch (cmd) {
case MEGASAS_IOC_FIRMWARE:
return megasas_mgmt_ioctl_fw(file, arg);
case MEGASAS_IOC_GET_AEN:
return megasas_mgmt_ioctl_aen(file, arg);
}
return -ENOTTY;
}
#ifdef CONFIG_COMPAT
static int megasas_mgmt_compat_ioctl_fw(struct file *file, unsigned long arg)
{
struct compat_megasas_iocpacket __user *cioc =
(struct compat_megasas_iocpacket __user *)arg;
struct megasas_iocpacket __user *ioc =
compat_alloc_user_space(sizeof(struct megasas_iocpacket));
int i;
int error = 0;
clear_user(ioc, sizeof(*ioc));
if (copy_in_user(&ioc->host_no, &cioc->host_no, sizeof(u16)) ||
copy_in_user(&ioc->sgl_off, &cioc->sgl_off, sizeof(u32)) ||
copy_in_user(&ioc->sense_off, &cioc->sense_off, sizeof(u32)) ||
copy_in_user(&ioc->sense_len, &cioc->sense_len, sizeof(u32)) ||
copy_in_user(ioc->frame.raw, cioc->frame.raw, 128) ||
copy_in_user(&ioc->sge_count, &cioc->sge_count, sizeof(u32)))
return -EFAULT;
for (i = 0; i < MAX_IOCTL_SGE; i++) {
compat_uptr_t ptr;
if (get_user(ptr, &cioc->sgl[i].iov_base) ||
put_user(compat_ptr(ptr), &ioc->sgl[i].iov_base) ||
copy_in_user(&ioc->sgl[i].iov_len,
&cioc->sgl[i].iov_len, sizeof(compat_size_t)))
return -EFAULT;
}
error = megasas_mgmt_ioctl_fw(file, (unsigned long)ioc);
if (copy_in_user(&cioc->frame.hdr.cmd_status,
&ioc->frame.hdr.cmd_status, sizeof(u8))) {
printk(KERN_DEBUG "megasas: error copy_in_user cmd_status\n");
return -EFAULT;
}
return error;
}
static long
megasas_mgmt_compat_ioctl(struct file *file, unsigned int cmd,
unsigned long arg)
{
switch (cmd) {
case MEGASAS_IOC_FIRMWARE:{
return megasas_mgmt_compat_ioctl_fw(file, arg);
}
case MEGASAS_IOC_GET_AEN:
return megasas_mgmt_ioctl_aen(file, arg);
}
return -ENOTTY;
}
#endif
/*
* File operations structure for management interface
*/
static struct file_operations megasas_mgmt_fops = {
.owner = THIS_MODULE,
.open = megasas_mgmt_open,
.release = megasas_mgmt_release,
.fasync = megasas_mgmt_fasync,
.unlocked_ioctl = megasas_mgmt_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = megasas_mgmt_compat_ioctl,
#endif
};
/*
* PCI hotplug support registration structure
*/
static struct pci_driver megasas_pci_driver = {
.name = "megaraid_sas",
.id_table = megasas_pci_table,
.probe = megasas_probe_one,
.remove = __devexit_p(megasas_detach_one),
.shutdown = megasas_shutdown,
};
/*
* Sysfs driver attributes
*/
static ssize_t megasas_sysfs_show_version(struct device_driver *dd, char *buf)
{
return snprintf(buf, strlen(MEGASAS_VERSION) + 2, "%s\n",
MEGASAS_VERSION);
}
static DRIVER_ATTR(version, S_IRUGO, megasas_sysfs_show_version, NULL);
static ssize_t
megasas_sysfs_show_release_date(struct device_driver *dd, char *buf)
{
return snprintf(buf, strlen(MEGASAS_RELDATE) + 2, "%s\n",
MEGASAS_RELDATE);
}
static DRIVER_ATTR(release_date, S_IRUGO, megasas_sysfs_show_release_date,
NULL);
/**
* megasas_init - Driver load entry point
*/
static int __init megasas_init(void)
{
int rval;
/*
* Announce driver version and other information
*/
printk(KERN_INFO "megasas: %s %s\n", MEGASAS_VERSION,
MEGASAS_EXT_VERSION);
memset(&megasas_mgmt_info, 0, sizeof(megasas_mgmt_info));
/*
* Register character device node
*/
rval = register_chrdev(0, "megaraid_sas_ioctl", &megasas_mgmt_fops);
if (rval < 0) {
printk(KERN_DEBUG "megasas: failed to open device node\n");
return rval;
}
megasas_mgmt_majorno = rval;
/*
* Register ourselves as PCI hotplug module
*/
rval = pci_module_init(&megasas_pci_driver);
if (rval) {
printk(KERN_DEBUG "megasas: PCI hotplug regisration failed \n");
unregister_chrdev(megasas_mgmt_majorno, "megaraid_sas_ioctl");
}
driver_create_file(&megasas_pci_driver.driver, &driver_attr_version);
driver_create_file(&megasas_pci_driver.driver,
&driver_attr_release_date);
return rval;
}
/**
* megasas_exit - Driver unload entry point
*/
static void __exit megasas_exit(void)
{
driver_remove_file(&megasas_pci_driver.driver, &driver_attr_version);
driver_remove_file(&megasas_pci_driver.driver,
&driver_attr_release_date);
pci_unregister_driver(&megasas_pci_driver);
unregister_chrdev(megasas_mgmt_majorno, "megaraid_sas_ioctl");
}
module_init(megasas_init);
module_exit(megasas_exit);
/*
*
* Linux MegaRAID driver for SAS based RAID controllers
*
* Copyright (c) 2003-2005 LSI Logic Corporation.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* FILE : megaraid_sas.h
*/
#ifndef LSI_MEGARAID_SAS_H
#define LSI_MEGARAID_SAS_H
/**
* MegaRAID SAS Driver meta data
*/
#define MEGASAS_VERSION "00.00.02.00-rc4"
#define MEGASAS_RELDATE "Sep 16, 2005"
#define MEGASAS_EXT_VERSION "Fri Sep 16 12:37:08 EDT 2005"
/*
* =====================================
* MegaRAID SAS MFI firmware definitions
* =====================================
*/
/*
* MFI stands for MegaRAID SAS FW Interface. This is just a moniker for
* protocol between the software and firmware. Commands are issued using
* "message frames"
*/
/**
* FW posts its state in upper 4 bits of outbound_msg_0 register
*/
#define MFI_STATE_MASK 0xF0000000
#define MFI_STATE_UNDEFINED 0x00000000
#define MFI_STATE_BB_INIT 0x10000000
#define MFI_STATE_FW_INIT 0x40000000
#define MFI_STATE_WAIT_HANDSHAKE 0x60000000
#define MFI_STATE_FW_INIT_2 0x70000000
#define MFI_STATE_DEVICE_SCAN 0x80000000
#define MFI_STATE_FLUSH_CACHE 0xA0000000
#define MFI_STATE_READY 0xB0000000
#define MFI_STATE_OPERATIONAL 0xC0000000
#define MFI_STATE_FAULT 0xF0000000
#define MEGAMFI_FRAME_SIZE 64
/**
* During FW init, clear pending cmds & reset state using inbound_msg_0
*
* ABORT : Abort all pending cmds
* READY : Move from OPERATIONAL to READY state; discard queue info
* MFIMODE : Discard (possible) low MFA posted in 64-bit mode (??)
* CLR_HANDSHAKE: FW is waiting for HANDSHAKE from BIOS or Driver
*/
#define MFI_INIT_ABORT 0x00000000
#define MFI_INIT_READY 0x00000002
#define MFI_INIT_MFIMODE 0x00000004
#define MFI_INIT_CLEAR_HANDSHAKE 0x00000008
#define MFI_RESET_FLAGS MFI_INIT_READY|MFI_INIT_MFIMODE
/**
* MFI frame flags
*/
#define MFI_FRAME_POST_IN_REPLY_QUEUE 0x0000
#define MFI_FRAME_DONT_POST_IN_REPLY_QUEUE 0x0001
#define MFI_FRAME_SGL32 0x0000
#define MFI_FRAME_SGL64 0x0002
#define MFI_FRAME_SENSE32 0x0000
#define MFI_FRAME_SENSE64 0x0004
#define MFI_FRAME_DIR_NONE 0x0000
#define MFI_FRAME_DIR_WRITE 0x0008
#define MFI_FRAME_DIR_READ 0x0010
#define MFI_FRAME_DIR_BOTH 0x0018
/**
* Definition for cmd_status
*/
#define MFI_CMD_STATUS_POLL_MODE 0xFF
/**
* MFI command opcodes
*/
#define MFI_CMD_INIT 0x00
#define MFI_CMD_LD_READ 0x01
#define MFI_CMD_LD_WRITE 0x02
#define MFI_CMD_LD_SCSI_IO 0x03
#define MFI_CMD_PD_SCSI_IO 0x04
#define MFI_CMD_DCMD 0x05
#define MFI_CMD_ABORT 0x06
#define MFI_CMD_SMP 0x07
#define MFI_CMD_STP 0x08
#define MR_DCMD_CTRL_GET_INFO 0x01010000
#define MR_DCMD_CTRL_CACHE_FLUSH 0x01101000
#define MR_FLUSH_CTRL_CACHE 0x01
#define MR_FLUSH_DISK_CACHE 0x02
#define MR_DCMD_CTRL_SHUTDOWN 0x01050000
#define MR_ENABLE_DRIVE_SPINDOWN 0x01
#define MR_DCMD_CTRL_EVENT_GET_INFO 0x01040100
#define MR_DCMD_CTRL_EVENT_GET 0x01040300
#define MR_DCMD_CTRL_EVENT_WAIT 0x01040500
#define MR_DCMD_LD_GET_PROPERTIES 0x03030000
#define MR_DCMD_CLUSTER 0x08000000
#define MR_DCMD_CLUSTER_RESET_ALL 0x08010100
#define MR_DCMD_CLUSTER_RESET_LD 0x08010200
/**
* MFI command completion codes
*/
enum MFI_STAT {
MFI_STAT_OK = 0x00,
MFI_STAT_INVALID_CMD = 0x01,
MFI_STAT_INVALID_DCMD = 0x02,
MFI_STAT_INVALID_PARAMETER = 0x03,
MFI_STAT_INVALID_SEQUENCE_NUMBER = 0x04,
MFI_STAT_ABORT_NOT_POSSIBLE = 0x05,
MFI_STAT_APP_HOST_CODE_NOT_FOUND = 0x06,
MFI_STAT_APP_IN_USE = 0x07,
MFI_STAT_APP_NOT_INITIALIZED = 0x08,
MFI_STAT_ARRAY_INDEX_INVALID = 0x09,
MFI_STAT_ARRAY_ROW_NOT_EMPTY = 0x0a,
MFI_STAT_CONFIG_RESOURCE_CONFLICT = 0x0b,
MFI_STAT_DEVICE_NOT_FOUND = 0x0c,
MFI_STAT_DRIVE_TOO_SMALL = 0x0d,
MFI_STAT_FLASH_ALLOC_FAIL = 0x0e,
MFI_STAT_FLASH_BUSY = 0x0f,
MFI_STAT_FLASH_ERROR = 0x10,
MFI_STAT_FLASH_IMAGE_BAD = 0x11,
MFI_STAT_FLASH_IMAGE_INCOMPLETE = 0x12,
MFI_STAT_FLASH_NOT_OPEN = 0x13,
MFI_STAT_FLASH_NOT_STARTED = 0x14,
MFI_STAT_FLUSH_FAILED = 0x15,
MFI_STAT_HOST_CODE_NOT_FOUNT = 0x16,
MFI_STAT_LD_CC_IN_PROGRESS = 0x17,
MFI_STAT_LD_INIT_IN_PROGRESS = 0x18,
MFI_STAT_LD_LBA_OUT_OF_RANGE = 0x19,
MFI_STAT_LD_MAX_CONFIGURED = 0x1a,
MFI_STAT_LD_NOT_OPTIMAL = 0x1b,
MFI_STAT_LD_RBLD_IN_PROGRESS = 0x1c,
MFI_STAT_LD_RECON_IN_PROGRESS = 0x1d,
MFI_STAT_LD_WRONG_RAID_LEVEL = 0x1e,
MFI_STAT_MAX_SPARES_EXCEEDED = 0x1f,
MFI_STAT_MEMORY_NOT_AVAILABLE = 0x20,
MFI_STAT_MFC_HW_ERROR = 0x21,
MFI_STAT_NO_HW_PRESENT = 0x22,
MFI_STAT_NOT_FOUND = 0x23,
MFI_STAT_NOT_IN_ENCL = 0x24,
MFI_STAT_PD_CLEAR_IN_PROGRESS = 0x25,
MFI_STAT_PD_TYPE_WRONG = 0x26,
MFI_STAT_PR_DISABLED = 0x27,
MFI_STAT_ROW_INDEX_INVALID = 0x28,
MFI_STAT_SAS_CONFIG_INVALID_ACTION = 0x29,
MFI_STAT_SAS_CONFIG_INVALID_DATA = 0x2a,
MFI_STAT_SAS_CONFIG_INVALID_PAGE = 0x2b,
MFI_STAT_SAS_CONFIG_INVALID_TYPE = 0x2c,
MFI_STAT_SCSI_DONE_WITH_ERROR = 0x2d,
MFI_STAT_SCSI_IO_FAILED = 0x2e,
MFI_STAT_SCSI_RESERVATION_CONFLICT = 0x2f,
MFI_STAT_SHUTDOWN_FAILED = 0x30,
MFI_STAT_TIME_NOT_SET = 0x31,
MFI_STAT_WRONG_STATE = 0x32,
MFI_STAT_LD_OFFLINE = 0x33,
MFI_STAT_PEER_NOTIFICATION_REJECTED = 0x34,
MFI_STAT_PEER_NOTIFICATION_FAILED = 0x35,
MFI_STAT_RESERVATION_IN_PROGRESS = 0x36,
MFI_STAT_I2C_ERRORS_DETECTED = 0x37,
MFI_STAT_PCI_ERRORS_DETECTED = 0x38,
MFI_STAT_INVALID_STATUS = 0xFF
};
/*
* Number of mailbox bytes in DCMD message frame
*/
#define MFI_MBOX_SIZE 12
enum MR_EVT_CLASS {
MR_EVT_CLASS_DEBUG = -2,
MR_EVT_CLASS_PROGRESS = -1,
MR_EVT_CLASS_INFO = 0,
MR_EVT_CLASS_WARNING = 1,
MR_EVT_CLASS_CRITICAL = 2,
MR_EVT_CLASS_FATAL = 3,
MR_EVT_CLASS_DEAD = 4,
};
enum MR_EVT_LOCALE {
MR_EVT_LOCALE_LD = 0x0001,
MR_EVT_LOCALE_PD = 0x0002,
MR_EVT_LOCALE_ENCL = 0x0004,
MR_EVT_LOCALE_BBU = 0x0008,
MR_EVT_LOCALE_SAS = 0x0010,
MR_EVT_LOCALE_CTRL = 0x0020,
MR_EVT_LOCALE_CONFIG = 0x0040,
MR_EVT_LOCALE_CLUSTER = 0x0080,
MR_EVT_LOCALE_ALL = 0xffff,
};
enum MR_EVT_ARGS {
MR_EVT_ARGS_NONE,
MR_EVT_ARGS_CDB_SENSE,
MR_EVT_ARGS_LD,
MR_EVT_ARGS_LD_COUNT,
MR_EVT_ARGS_LD_LBA,
MR_EVT_ARGS_LD_OWNER,
MR_EVT_ARGS_LD_LBA_PD_LBA,
MR_EVT_ARGS_LD_PROG,
MR_EVT_ARGS_LD_STATE,
MR_EVT_ARGS_LD_STRIP,
MR_EVT_ARGS_PD,
MR_EVT_ARGS_PD_ERR,
MR_EVT_ARGS_PD_LBA,
MR_EVT_ARGS_PD_LBA_LD,
MR_EVT_ARGS_PD_PROG,
MR_EVT_ARGS_PD_STATE,
MR_EVT_ARGS_PCI,
MR_EVT_ARGS_RATE,
MR_EVT_ARGS_STR,
MR_EVT_ARGS_TIME,
MR_EVT_ARGS_ECC,
};
/*
* SAS controller properties
*/
struct megasas_ctrl_prop {
u16 seq_num;
u16 pred_fail_poll_interval;
u16 intr_throttle_count;
u16 intr_throttle_timeouts;
u8 rebuild_rate;
u8 patrol_read_rate;
u8 bgi_rate;
u8 cc_rate;
u8 recon_rate;
u8 cache_flush_interval;
u8 spinup_drv_count;
u8 spinup_delay;
u8 cluster_enable;
u8 coercion_mode;
u8 alarm_enable;
u8 disable_auto_rebuild;
u8 disable_battery_warn;
u8 ecc_bucket_size;
u16 ecc_bucket_leak_rate;
u8 restore_hotspare_on_insertion;
u8 expose_encl_devices;
u8 reserved[38];
} __attribute__ ((packed));
/*
* SAS controller information
*/
struct megasas_ctrl_info {
/*
* PCI device information
*/
struct {
u16 vendor_id;
u16 device_id;
u16 sub_vendor_id;
u16 sub_device_id;
u8 reserved[24];
} __attribute__ ((packed)) pci;
/*
* Host interface information
*/
struct {
u8 PCIX:1;
u8 PCIE:1;
u8 iSCSI:1;
u8 SAS_3G:1;
u8 reserved_0:4;
u8 reserved_1[6];
u8 port_count;
u64 port_addr[8];
} __attribute__ ((packed)) host_interface;
/*
* Device (backend) interface information
*/
struct {
u8 SPI:1;
u8 SAS_3G:1;
u8 SATA_1_5G:1;
u8 SATA_3G:1;
u8 reserved_0:4;
u8 reserved_1[6];
u8 port_count;
u64 port_addr[8];
} __attribute__ ((packed)) device_interface;
/*
* List of components residing in flash. All str are null terminated
*/
u32 image_check_word;
u32 image_component_count;
struct {
char name[8];
char version[32];
char build_date[16];
char built_time[16];
} __attribute__ ((packed)) image_component[8];
/*
* List of flash components that have been flashed on the card, but
* are not in use, pending reset of the adapter. This list will be
* empty if a flash operation has not occurred. All stings are null
* terminated
*/
u32 pending_image_component_count;
struct {
char name[8];
char version[32];
char build_date[16];
char build_time[16];
} __attribute__ ((packed)) pending_image_component[8];
u8 max_arms;
u8 max_spans;
u8 max_arrays;
u8 max_lds;
char product_name[80];
char serial_no[32];
/*
* Other physical/controller/operation information. Indicates the
* presence of the hardware
*/
struct {
u32 bbu:1;
u32 alarm:1;
u32 nvram:1;
u32 uart:1;
u32 reserved:28;
} __attribute__ ((packed)) hw_present;
u32 current_fw_time;
/*
* Maximum data transfer sizes
*/
u16 max_concurrent_cmds;
u16 max_sge_count;
u32 max_request_size;
/*
* Logical and physical device counts
*/
u16 ld_present_count;
u16 ld_degraded_count;
u16 ld_offline_count;
u16 pd_present_count;
u16 pd_disk_present_count;
u16 pd_disk_pred_failure_count;
u16 pd_disk_failed_count;
/*
* Memory size information
*/
u16 nvram_size;
u16 memory_size;
u16 flash_size;
/*
* Error counters
*/
u16 mem_correctable_error_count;
u16 mem_uncorrectable_error_count;
/*
* Cluster information
*/
u8 cluster_permitted;
u8 cluster_active;
/*
* Additional max data transfer sizes
*/
u16 max_strips_per_io;
/*
* Controller capabilities structures
*/
struct {
u32 raid_level_0:1;
u32 raid_level_1:1;
u32 raid_level_5:1;
u32 raid_level_1E:1;
u32 raid_level_6:1;
u32 reserved:27;
} __attribute__ ((packed)) raid_levels;
struct {
u32 rbld_rate:1;
u32 cc_rate:1;
u32 bgi_rate:1;
u32 recon_rate:1;
u32 patrol_rate:1;
u32 alarm_control:1;
u32 cluster_supported:1;
u32 bbu:1;
u32 spanning_allowed:1;
u32 dedicated_hotspares:1;
u32 revertible_hotspares:1;
u32 foreign_config_import:1;
u32 self_diagnostic:1;
u32 mixed_redundancy_arr:1;
u32 global_hot_spares:1;
u32 reserved:17;
} __attribute__ ((packed)) adapter_operations;
struct {
u32 read_policy:1;
u32 write_policy:1;
u32 io_policy:1;
u32 access_policy:1;
u32 disk_cache_policy:1;
u32 reserved:27;
} __attribute__ ((packed)) ld_operations;
struct {
u8 min;
u8 max;
u8 reserved[2];
} __attribute__ ((packed)) stripe_sz_ops;
struct {
u32 force_online:1;
u32 force_offline:1;
u32 force_rebuild:1;
u32 reserved:29;
} __attribute__ ((packed)) pd_operations;
struct {
u32 ctrl_supports_sas:1;
u32 ctrl_supports_sata:1;
u32 allow_mix_in_encl:1;
u32 allow_mix_in_ld:1;
u32 allow_sata_in_cluster:1;
u32 reserved:27;
} __attribute__ ((packed)) pd_mix_support;
/*
* Define ECC single-bit-error bucket information
*/
u8 ecc_bucket_count;
u8 reserved_2[11];
/*
* Include the controller properties (changeable items)
*/
struct megasas_ctrl_prop properties;
/*
* Define FW pkg version (set in envt v'bles on OEM basis)
*/
char package_version[0x60];
u8 pad[0x800 - 0x6a0];
} __attribute__ ((packed));
/*
* ===============================
* MegaRAID SAS driver definitions
* ===============================
*/
#define MEGASAS_MAX_PD_CHANNELS 2
#define MEGASAS_MAX_LD_CHANNELS 2
#define MEGASAS_MAX_CHANNELS (MEGASAS_MAX_PD_CHANNELS + \
MEGASAS_MAX_LD_CHANNELS)
#define MEGASAS_MAX_DEV_PER_CHANNEL 128
#define MEGASAS_DEFAULT_INIT_ID -1
#define MEGASAS_MAX_LUN 8
#define MEGASAS_MAX_LD 64
/*
* When SCSI mid-layer calls driver's reset routine, driver waits for
* MEGASAS_RESET_WAIT_TIME seconds for all outstanding IO to complete. Note
* that the driver cannot _actually_ abort or reset pending commands. While
* it is waiting for the commands to complete, it prints a diagnostic message
* every MEGASAS_RESET_NOTICE_INTERVAL seconds
*/
#define MEGASAS_RESET_WAIT_TIME 180
#define MEGASAS_RESET_NOTICE_INTERVAL 5
#define MEGASAS_IOCTL_CMD 0
/*
* FW reports the maximum of number of commands that it can accept (maximum
* commands that can be outstanding) at any time. The driver must report a
* lower number to the mid layer because it can issue a few internal commands
* itself (E.g, AEN, abort cmd, IOCTLs etc). The number of commands it needs
* is shown below
*/
#define MEGASAS_INT_CMDS 32
/*
* FW can accept both 32 and 64 bit SGLs. We want to allocate 32/64 bit
* SGLs based on the size of dma_addr_t
*/
#define IS_DMA64 (sizeof(dma_addr_t) == 8)
#define MFI_OB_INTR_STATUS_MASK 0x00000002
#define MFI_POLL_TIMEOUT_SECS 10
struct megasas_register_set {
u32 reserved_0[4]; /*0000h */
u32 inbound_msg_0; /*0010h */
u32 inbound_msg_1; /*0014h */
u32 outbound_msg_0; /*0018h */
u32 outbound_msg_1; /*001Ch */
u32 inbound_doorbell; /*0020h */
u32 inbound_intr_status; /*0024h */
u32 inbound_intr_mask; /*0028h */
u32 outbound_doorbell; /*002Ch */
u32 outbound_intr_status; /*0030h */
u32 outbound_intr_mask; /*0034h */
u32 reserved_1[2]; /*0038h */
u32 inbound_queue_port; /*0040h */
u32 outbound_queue_port; /*0044h */
u32 reserved_2; /*004Ch */
u32 index_registers[1004]; /*0050h */
} __attribute__ ((packed));
struct megasas_sge32 {
u32 phys_addr;
u32 length;
} __attribute__ ((packed));
struct megasas_sge64 {
u64 phys_addr;
u32 length;
} __attribute__ ((packed));
union megasas_sgl {
struct megasas_sge32 sge32[1];
struct megasas_sge64 sge64[1];
} __attribute__ ((packed));
struct megasas_header {
u8 cmd; /*00h */
u8 sense_len; /*01h */
u8 cmd_status; /*02h */
u8 scsi_status; /*03h */
u8 target_id; /*04h */
u8 lun; /*05h */
u8 cdb_len; /*06h */
u8 sge_count; /*07h */
u32 context; /*08h */
u32 pad_0; /*0Ch */
u16 flags; /*10h */
u16 timeout; /*12h */
u32 data_xferlen; /*14h */
} __attribute__ ((packed));
union megasas_sgl_frame {
struct megasas_sge32 sge32[8];
struct megasas_sge64 sge64[5];
} __attribute__ ((packed));
struct megasas_init_frame {
u8 cmd; /*00h */
u8 reserved_0; /*01h */
u8 cmd_status; /*02h */
u8 reserved_1; /*03h */
u32 reserved_2; /*04h */
u32 context; /*08h */
u32 pad_0; /*0Ch */
u16 flags; /*10h */
u16 reserved_3; /*12h */
u32 data_xfer_len; /*14h */
u32 queue_info_new_phys_addr_lo; /*18h */
u32 queue_info_new_phys_addr_hi; /*1Ch */
u32 queue_info_old_phys_addr_lo; /*20h */
u32 queue_info_old_phys_addr_hi; /*24h */
u32 reserved_4[6]; /*28h */
} __attribute__ ((packed));
struct megasas_init_queue_info {
u32 init_flags; /*00h */
u32 reply_queue_entries; /*04h */
u32 reply_queue_start_phys_addr_lo; /*08h */
u32 reply_queue_start_phys_addr_hi; /*0Ch */
u32 producer_index_phys_addr_lo; /*10h */
u32 producer_index_phys_addr_hi; /*14h */
u32 consumer_index_phys_addr_lo; /*18h */
u32 consumer_index_phys_addr_hi; /*1Ch */
} __attribute__ ((packed));
struct megasas_io_frame {
u8 cmd; /*00h */
u8 sense_len; /*01h */
u8 cmd_status; /*02h */
u8 scsi_status; /*03h */
u8 target_id; /*04h */
u8 access_byte; /*05h */
u8 reserved_0; /*06h */
u8 sge_count; /*07h */
u32 context; /*08h */
u32 pad_0; /*0Ch */
u16 flags; /*10h */
u16 timeout; /*12h */
u32 lba_count; /*14h */
u32 sense_buf_phys_addr_lo; /*18h */
u32 sense_buf_phys_addr_hi; /*1Ch */
u32 start_lba_lo; /*20h */
u32 start_lba_hi; /*24h */
union megasas_sgl sgl; /*28h */
} __attribute__ ((packed));
struct megasas_pthru_frame {
u8 cmd; /*00h */
u8 sense_len; /*01h */
u8 cmd_status; /*02h */
u8 scsi_status; /*03h */
u8 target_id; /*04h */
u8 lun; /*05h */
u8 cdb_len; /*06h */
u8 sge_count; /*07h */
u32 context; /*08h */
u32 pad_0; /*0Ch */
u16 flags; /*10h */
u16 timeout; /*12h */
u32 data_xfer_len; /*14h */
u32 sense_buf_phys_addr_lo; /*18h */
u32 sense_buf_phys_addr_hi; /*1Ch */
u8 cdb[16]; /*20h */
union megasas_sgl sgl; /*30h */
} __attribute__ ((packed));
struct megasas_dcmd_frame {
u8 cmd; /*00h */
u8 reserved_0; /*01h */
u8 cmd_status; /*02h */
u8 reserved_1[4]; /*03h */
u8 sge_count; /*07h */
u32 context; /*08h */
u32 pad_0; /*0Ch */
u16 flags; /*10h */
u16 timeout; /*12h */
u32 data_xfer_len; /*14h */
u32 opcode; /*18h */
union { /*1Ch */
u8 b[12];
u16 s[6];
u32 w[3];
} mbox;
union megasas_sgl sgl; /*28h */
} __attribute__ ((packed));
struct megasas_abort_frame {
u8 cmd; /*00h */
u8 reserved_0; /*01h */
u8 cmd_status; /*02h */
u8 reserved_1; /*03h */
u32 reserved_2; /*04h */
u32 context; /*08h */
u32 pad_0; /*0Ch */
u16 flags; /*10h */
u16 reserved_3; /*12h */
u32 reserved_4; /*14h */
u32 abort_context; /*18h */
u32 pad_1; /*1Ch */
u32 abort_mfi_phys_addr_lo; /*20h */
u32 abort_mfi_phys_addr_hi; /*24h */
u32 reserved_5[6]; /*28h */
} __attribute__ ((packed));
struct megasas_smp_frame {
u8 cmd; /*00h */
u8 reserved_1; /*01h */
u8 cmd_status; /*02h */
u8 connection_status; /*03h */
u8 reserved_2[3]; /*04h */
u8 sge_count; /*07h */
u32 context; /*08h */
u32 pad_0; /*0Ch */
u16 flags; /*10h */
u16 timeout; /*12h */
u32 data_xfer_len; /*14h */
u64 sas_addr; /*18h */
union {
struct megasas_sge32 sge32[2]; /* [0]: resp [1]: req */
struct megasas_sge64 sge64[2]; /* [0]: resp [1]: req */
} sgl;
} __attribute__ ((packed));
struct megasas_stp_frame {
u8 cmd; /*00h */
u8 reserved_1; /*01h */
u8 cmd_status; /*02h */
u8 reserved_2; /*03h */
u8 target_id; /*04h */
u8 reserved_3[2]; /*05h */
u8 sge_count; /*07h */
u32 context; /*08h */
u32 pad_0; /*0Ch */
u16 flags; /*10h */
u16 timeout; /*12h */
u32 data_xfer_len; /*14h */
u16 fis[10]; /*18h */
u32 stp_flags;
union {
struct megasas_sge32 sge32[2]; /* [0]: resp [1]: data */
struct megasas_sge64 sge64[2]; /* [0]: resp [1]: data */
} sgl;
} __attribute__ ((packed));
union megasas_frame {
struct megasas_header hdr;
struct megasas_init_frame init;
struct megasas_io_frame io;
struct megasas_pthru_frame pthru;
struct megasas_dcmd_frame dcmd;
struct megasas_abort_frame abort;
struct megasas_smp_frame smp;
struct megasas_stp_frame stp;
u8 raw_bytes[64];
};
struct megasas_cmd;
union megasas_evt_class_locale {
struct {
u16 locale;
u8 reserved;
s8 class;
} __attribute__ ((packed)) members;
u32 word;
} __attribute__ ((packed));
struct megasas_evt_log_info {
u32 newest_seq_num;
u32 oldest_seq_num;
u32 clear_seq_num;
u32 shutdown_seq_num;
u32 boot_seq_num;
} __attribute__ ((packed));
struct megasas_progress {
u16 progress;
u16 elapsed_seconds;
} __attribute__ ((packed));
struct megasas_evtarg_ld {
u16 target_id;
u8 ld_index;
u8 reserved;
} __attribute__ ((packed));
struct megasas_evtarg_pd {
u16 device_id;
u8 encl_index;
u8 slot_number;
} __attribute__ ((packed));
struct megasas_evt_detail {
u32 seq_num;
u32 time_stamp;
u32 code;
union megasas_evt_class_locale cl;
u8 arg_type;
u8 reserved1[15];
union {
struct {
struct megasas_evtarg_pd pd;
u8 cdb_length;
u8 sense_length;
u8 reserved[2];
u8 cdb[16];
u8 sense[64];
} __attribute__ ((packed)) cdbSense;
struct megasas_evtarg_ld ld;
struct {
struct megasas_evtarg_ld ld;
u64 count;
} __attribute__ ((packed)) ld_count;
struct {
u64 lba;
struct megasas_evtarg_ld ld;
} __attribute__ ((packed)) ld_lba;
struct {
struct megasas_evtarg_ld ld;
u32 prevOwner;
u32 newOwner;
} __attribute__ ((packed)) ld_owner;
struct {
u64 ld_lba;
u64 pd_lba;
struct megasas_evtarg_ld ld;
struct megasas_evtarg_pd pd;
} __attribute__ ((packed)) ld_lba_pd_lba;
struct {
struct megasas_evtarg_ld ld;
struct megasas_progress prog;
} __attribute__ ((packed)) ld_prog;
struct {
struct megasas_evtarg_ld ld;
u32 prev_state;
u32 new_state;
} __attribute__ ((packed)) ld_state;
struct {
u64 strip;
struct megasas_evtarg_ld ld;
} __attribute__ ((packed)) ld_strip;
struct megasas_evtarg_pd pd;
struct {
struct megasas_evtarg_pd pd;
u32 err;
} __attribute__ ((packed)) pd_err;
struct {
u64 lba;
struct megasas_evtarg_pd pd;
} __attribute__ ((packed)) pd_lba;
struct {
u64 lba;
struct megasas_evtarg_pd pd;
struct megasas_evtarg_ld ld;
} __attribute__ ((packed)) pd_lba_ld;
struct {
struct megasas_evtarg_pd pd;
struct megasas_progress prog;
} __attribute__ ((packed)) pd_prog;
struct {
struct megasas_evtarg_pd pd;
u32 prevState;
u32 newState;
} __attribute__ ((packed)) pd_state;
struct {
u16 vendorId;
u16 deviceId;
u16 subVendorId;
u16 subDeviceId;
} __attribute__ ((packed)) pci;
u32 rate;
char str[96];
struct {
u32 rtc;
u32 elapsedSeconds;
} __attribute__ ((packed)) time;
struct {
u32 ecar;
u32 elog;
char str[64];
} __attribute__ ((packed)) ecc;
u8 b[96];
u16 s[48];
u32 w[24];
u64 d[12];
} args;
char description[128];
} __attribute__ ((packed));
struct megasas_instance {
u32 *producer;
dma_addr_t producer_h;
u32 *consumer;
dma_addr_t consumer_h;
u32 *reply_queue;
dma_addr_t reply_queue_h;
unsigned long base_addr;
struct megasas_register_set __iomem *reg_set;
s8 init_id;
u8 reserved[3];
u16 max_num_sge;
u16 max_fw_cmds;
u32 max_sectors_per_req;
struct megasas_cmd **cmd_list;
struct list_head cmd_pool;
spinlock_t cmd_pool_lock;
struct dma_pool *frame_dma_pool;
struct dma_pool *sense_dma_pool;
struct megasas_evt_detail *evt_detail;
dma_addr_t evt_detail_h;
struct megasas_cmd *aen_cmd;
struct semaphore aen_mutex;
struct semaphore ioctl_sem;
struct Scsi_Host *host;
wait_queue_head_t int_cmd_wait_q;
wait_queue_head_t abort_cmd_wait_q;
struct pci_dev *pdev;
u32 unique_id;
u32 fw_outstanding;
u32 hw_crit_error;
spinlock_t instance_lock;
};
#define MEGASAS_IS_LOGICAL(scp) \
(scp->device->channel < MEGASAS_MAX_PD_CHANNELS) ? 0 : 1
#define MEGASAS_DEV_INDEX(inst, scp) \
((scp->device->channel % 2) * MEGASAS_MAX_DEV_PER_CHANNEL) + \
scp->device->id
struct megasas_cmd {
union megasas_frame *frame;
dma_addr_t frame_phys_addr;
u8 *sense;
dma_addr_t sense_phys_addr;
u32 index;
u8 sync_cmd;
u8 cmd_status;
u16 abort_aen;
struct list_head list;
struct scsi_cmnd *scmd;
struct megasas_instance *instance;
u32 frame_count;
};
#define MAX_MGMT_ADAPTERS 1024
#define MAX_IOCTL_SGE 16
struct megasas_iocpacket {
u16 host_no;
u16 __pad1;
u32 sgl_off;
u32 sge_count;
u32 sense_off;
u32 sense_len;
union {
u8 raw[128];
struct megasas_header hdr;
} frame;
struct iovec sgl[MAX_IOCTL_SGE];
} __attribute__ ((packed));
struct megasas_aen {
u16 host_no;
u16 __pad1;
u32 seq_num;
u32 class_locale_word;
} __attribute__ ((packed));
#ifdef CONFIG_COMPAT
struct compat_megasas_iocpacket {
u16 host_no;
u16 __pad1;
u32 sgl_off;
u32 sge_count;
u32 sense_off;
u32 sense_len;
union {
u8 raw[128];
struct megasas_header hdr;
} frame;
struct compat_iovec sgl[MAX_IOCTL_SGE];
} __attribute__ ((packed));
#define MEGASAS_IOC_FIRMWARE _IOWR('M', 1, struct compat_megasas_iocpacket)
#else
#define MEGASAS_IOC_FIRMWARE _IOWR('M', 1, struct megasas_iocpacket)
#endif
#define MEGASAS_IOC_GET_AEN _IOW('M', 3, struct megasas_aen)
struct megasas_mgmt_info {
u16 count;
struct megasas_instance *instance[MAX_MGMT_ADAPTERS];
int max_index;
};
#endif /*LSI_MEGARAID_SAS_H */
...@@ -185,6 +185,7 @@ ...@@ -185,6 +185,7 @@
#define PCI_DEVICE_ID_LSI_61C102 0x0901 #define PCI_DEVICE_ID_LSI_61C102 0x0901
#define PCI_DEVICE_ID_LSI_63C815 0x1000 #define PCI_DEVICE_ID_LSI_63C815 0x1000
#define PCI_DEVICE_ID_LSI_SAS1064 0x0050 #define PCI_DEVICE_ID_LSI_SAS1064 0x0050
#define PCI_DEVICE_ID_LSI_SAS1064R 0x0411
#define PCI_DEVICE_ID_LSI_SAS1066 0x005E #define PCI_DEVICE_ID_LSI_SAS1066 0x005E
#define PCI_DEVICE_ID_LSI_SAS1068 0x0054 #define PCI_DEVICE_ID_LSI_SAS1068 0x0054
#define PCI_DEVICE_ID_LSI_SAS1064A 0x005C #define PCI_DEVICE_ID_LSI_SAS1064A 0x005C
...@@ -559,6 +560,7 @@ ...@@ -559,6 +560,7 @@
#define PCI_VENDOR_ID_DELL 0x1028 #define PCI_VENDOR_ID_DELL 0x1028
#define PCI_DEVICE_ID_DELL_RACIII 0x0008 #define PCI_DEVICE_ID_DELL_RACIII 0x0008
#define PCI_DEVICE_ID_DELL_RAC4 0x0012 #define PCI_DEVICE_ID_DELL_RAC4 0x0012
#define PCI_DEVICE_ID_DELL_PERC5 0x0015
#define PCI_VENDOR_ID_MATROX 0x102B #define PCI_VENDOR_ID_MATROX 0x102B
#define PCI_DEVICE_ID_MATROX_MGA_2 0x0518 #define PCI_DEVICE_ID_MATROX_MGA_2 0x0518
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment