Commit c0bc8721 authored by Jeff Garzik's avatar Jeff Garzik

Merge branch 'upstream' of git://lost.foo-projects.org/~ahkok/git/netdev-2.6 into upstream

Conflicts:

	drivers/net/e1000/e1000_main.c
parents bce305f4 e4ac9773
......@@ -68,7 +68,6 @@
#ifdef NETIF_F_TSO
#include <net/checksum.h>
#endif
#include <linux/workqueue.h>
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/if_vlan.h>
......@@ -143,6 +142,7 @@ struct e1000_adapter;
#define AUTO_ALL_MODES 0
#define E1000_EEPROM_82544_APM 0x0004
#define E1000_EEPROM_ICH8_APME 0x0004
#define E1000_EEPROM_APME 0x0400
#ifndef E1000_MASTER_SLAVE
......@@ -254,7 +254,6 @@ struct e1000_adapter {
spinlock_t tx_queue_lock;
#endif
atomic_t irq_sem;
struct work_struct watchdog_task;
struct work_struct reset_task;
uint8_t fc_autoneg;
......@@ -339,8 +338,14 @@ struct e1000_adapter {
#ifdef NETIF_F_TSO
boolean_t tso_force;
#endif
boolean_t smart_power_down; /* phy smart power down */
unsigned long flags;
};
enum e1000_state_t {
__E1000_DRIVER_TESTING,
__E1000_RESETTING,
};
/* e1000_main.c */
extern char e1000_driver_name[];
......@@ -348,6 +353,7 @@ extern char e1000_driver_version[];
int e1000_up(struct e1000_adapter *adapter);
void e1000_down(struct e1000_adapter *adapter);
void e1000_reset(struct e1000_adapter *adapter);
void e1000_reinit_locked(struct e1000_adapter *adapter);
int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
......
......@@ -109,7 +109,8 @@ e1000_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
SUPPORTED_1000baseT_Full|
SUPPORTED_Autoneg |
SUPPORTED_TP);
if (hw->phy_type == e1000_phy_ife)
ecmd->supported &= ~SUPPORTED_1000baseT_Full;
ecmd->advertising = ADVERTISED_TP;
if (hw->autoneg == 1) {
......@@ -203,11 +204,9 @@ e1000_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
/* reset the link */
if (netif_running(adapter->netdev)) {
e1000_down(adapter);
e1000_reset(adapter);
e1000_up(adapter);
} else
if (netif_running(adapter->netdev))
e1000_reinit_locked(adapter);
else
e1000_reset(adapter);
return 0;
......@@ -254,10 +253,9 @@ e1000_set_pauseparam(struct net_device *netdev,
hw->original_fc = hw->fc;
if (adapter->fc_autoneg == AUTONEG_ENABLE) {
if (netif_running(adapter->netdev)) {
e1000_down(adapter);
e1000_up(adapter);
} else
if (netif_running(adapter->netdev))
e1000_reinit_locked(adapter);
else
e1000_reset(adapter);
} else
return ((hw->media_type == e1000_media_type_fiber) ?
......@@ -279,10 +277,9 @@ e1000_set_rx_csum(struct net_device *netdev, uint32_t data)
struct e1000_adapter *adapter = netdev_priv(netdev);
adapter->rx_csum = data;
if (netif_running(netdev)) {
e1000_down(adapter);
e1000_up(adapter);
} else
if (netif_running(netdev))
e1000_reinit_locked(adapter);
else
e1000_reset(adapter);
return 0;
}
......@@ -577,6 +574,7 @@ e1000_get_drvinfo(struct net_device *netdev,
case e1000_82572:
case e1000_82573:
case e1000_80003es2lan:
case e1000_ich8lan:
sprintf(firmware_version, "%d.%d-%d",
(eeprom_data & 0xF000) >> 12,
(eeprom_data & 0x0FF0) >> 4,
......@@ -631,6 +629,9 @@ e1000_set_ringparam(struct net_device *netdev,
tx_ring_size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
rx_ring_size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
msleep(1);
if (netif_running(adapter->netdev))
e1000_down(adapter);
......@@ -691,9 +692,11 @@ e1000_set_ringparam(struct net_device *netdev,
adapter->rx_ring = rx_new;
adapter->tx_ring = tx_new;
if ((err = e1000_up(adapter)))
return err;
goto err_setup;
}
clear_bit(__E1000_RESETTING, &adapter->flags);
return 0;
err_setup_tx:
e1000_free_all_rx_resources(adapter);
......@@ -701,6 +704,8 @@ err_setup_rx:
adapter->rx_ring = rx_old;
adapter->tx_ring = tx_old;
e1000_up(adapter);
err_setup:
clear_bit(__E1000_RESETTING, &adapter->flags);
return err;
}
......@@ -754,6 +759,7 @@ e1000_reg_test(struct e1000_adapter *adapter, uint64_t *data)
toggle = 0x7FFFF3FF;
break;
case e1000_82573:
case e1000_ich8lan:
toggle = 0x7FFFF033;
break;
default:
......@@ -773,11 +779,12 @@ e1000_reg_test(struct e1000_adapter *adapter, uint64_t *data)
}
/* restore previous status */
E1000_WRITE_REG(&adapter->hw, STATUS, before);
REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
if (adapter->hw.mac_type != e1000_ich8lan) {
REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
}
REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
......@@ -790,20 +797,22 @@ e1000_reg_test(struct e1000_adapter *adapter, uint64_t *data)
REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0x003FFFFB);
before = (adapter->hw.mac_type == e1000_ich8lan ?
0x06C3B33E : 0x06DFB3FE);
REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB);
REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
if (adapter->hw.mac_type >= e1000_82543) {
REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0xFFFFFFFF);
REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF);
REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
if (adapter->hw.mac_type != e1000_ich8lan)
REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
for (i = 0; i < E1000_RAR_ENTRIES; i++) {
REG_PATTERN_TEST(RA + ((i << 1) << 2), 0xFFFFFFFF,
0xFFFFFFFF);
value = (adapter->hw.mac_type == e1000_ich8lan ?
E1000_RAR_ENTRIES_ICH8LAN : E1000_RAR_ENTRIES);
for (i = 0; i < value; i++) {
REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
0xFFFFFFFF);
}
......@@ -817,7 +826,9 @@ e1000_reg_test(struct e1000_adapter *adapter, uint64_t *data)
}
for (i = 0; i < E1000_MC_TBL_SIZE; i++)
value = (adapter->hw.mac_type == e1000_ich8lan ?
E1000_MC_TBL_SIZE_ICH8LAN : E1000_MC_TBL_SIZE);
for (i = 0; i < value; i++)
REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
*data = 0;
......@@ -889,6 +900,8 @@ e1000_intr_test(struct e1000_adapter *adapter, uint64_t *data)
/* Test each interrupt */
for (; i < 10; i++) {
if (adapter->hw.mac_type == e1000_ich8lan && i == 8)
continue;
/* Interrupt to test */
mask = 1 << i;
......@@ -1246,18 +1259,33 @@ e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
} else if (adapter->hw.phy_type == e1000_phy_gg82563) {
e1000_write_phy_reg(&adapter->hw,
GG82563_PHY_KMRN_MODE_CTRL,
0x1CE);
0x1CC);
}
/* force 1000, set loopback */
e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x4140);
/* Now set up the MAC to the same speed/duplex as the PHY. */
ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
E1000_CTRL_FD); /* Force Duplex to FULL */
if (adapter->hw.phy_type == e1000_phy_ife) {
/* force 100, set loopback */
e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x6100);
/* Now set up the MAC to the same speed/duplex as the PHY. */
ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
E1000_CTRL_SPD_100 |/* Force Speed to 100 */
E1000_CTRL_FD); /* Force Duplex to FULL */
} else {
/* force 1000, set loopback */
e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x4140);
/* Now set up the MAC to the same speed/duplex as the PHY. */
ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
E1000_CTRL_FD); /* Force Duplex to FULL */
}
if (adapter->hw.media_type == e1000_media_type_copper &&
adapter->hw.phy_type == e1000_phy_m88) {
......@@ -1317,6 +1345,7 @@ e1000_set_phy_loopback(struct e1000_adapter *adapter)
case e1000_82572:
case e1000_82573:
case e1000_80003es2lan:
case e1000_ich8lan:
return e1000_integrated_phy_loopback(adapter);
break;
......@@ -1568,6 +1597,7 @@ e1000_diag_test(struct net_device *netdev,
struct e1000_adapter *adapter = netdev_priv(netdev);
boolean_t if_running = netif_running(netdev);
set_bit(__E1000_DRIVER_TESTING, &adapter->flags);
if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
/* Offline tests */
......@@ -1582,7 +1612,8 @@ e1000_diag_test(struct net_device *netdev,
eth_test->flags |= ETH_TEST_FL_FAILED;
if (if_running)
e1000_down(adapter);
/* indicate we're in test mode */
dev_close(netdev);
else
e1000_reset(adapter);
......@@ -1607,8 +1638,9 @@ e1000_diag_test(struct net_device *netdev,
adapter->hw.autoneg = autoneg;
e1000_reset(adapter);
clear_bit(__E1000_DRIVER_TESTING, &adapter->flags);
if (if_running)
e1000_up(adapter);
dev_open(netdev);
} else {
/* Online tests */
if (e1000_link_test(adapter, &data[4]))
......@@ -1619,6 +1651,8 @@ e1000_diag_test(struct net_device *netdev,
data[1] = 0;
data[2] = 0;
data[3] = 0;
clear_bit(__E1000_DRIVER_TESTING, &adapter->flags);
}
msleep_interruptible(4 * 1000);
}
......@@ -1778,21 +1812,18 @@ e1000_phys_id(struct net_device *netdev, uint32_t data)
mod_timer(&adapter->blink_timer, jiffies);
msleep_interruptible(data * 1000);
del_timer_sync(&adapter->blink_timer);
} else if (adapter->hw.mac_type < e1000_82573) {
E1000_WRITE_REG(&adapter->hw, LEDCTL,
(E1000_LEDCTL_LED2_BLINK_RATE |
E1000_LEDCTL_LED0_BLINK | E1000_LEDCTL_LED2_BLINK |
(E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED2_MODE_SHIFT) |
(E1000_LEDCTL_MODE_LINK_ACTIVITY << E1000_LEDCTL_LED0_MODE_SHIFT) |
(E1000_LEDCTL_MODE_LED_OFF << E1000_LEDCTL_LED1_MODE_SHIFT)));
} else if (adapter->hw.phy_type == e1000_phy_ife) {
if (!adapter->blink_timer.function) {
init_timer(&adapter->blink_timer);
adapter->blink_timer.function = e1000_led_blink_callback;
adapter->blink_timer.data = (unsigned long) adapter;
}
mod_timer(&adapter->blink_timer, jiffies);
msleep_interruptible(data * 1000);
del_timer_sync(&adapter->blink_timer);
e1000_write_phy_reg(&(adapter->hw), IFE_PHY_SPECIAL_CONTROL_LED, 0);
} else {
E1000_WRITE_REG(&adapter->hw, LEDCTL,
(E1000_LEDCTL_LED2_BLINK_RATE |
E1000_LEDCTL_LED1_BLINK | E1000_LEDCTL_LED2_BLINK |
(E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED2_MODE_SHIFT) |
(E1000_LEDCTL_MODE_LINK_ACTIVITY << E1000_LEDCTL_LED1_MODE_SHIFT) |
(E1000_LEDCTL_MODE_LED_OFF << E1000_LEDCTL_LED0_MODE_SHIFT)));
e1000_blink_led_start(&adapter->hw);
msleep_interruptible(data * 1000);
}
......@@ -1807,10 +1838,8 @@ static int
e1000_nway_reset(struct net_device *netdev)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
if (netif_running(netdev)) {
e1000_down(adapter);
e1000_up(adapter);
}
if (netif_running(netdev))
e1000_reinit_locked(adapter);
return 0;
}
......
......@@ -101,7 +101,8 @@ static void e1000_write_reg_io(struct e1000_hw *hw, uint32_t offset,
#define E1000_WRITE_REG_IO(a, reg, val) \
e1000_write_reg_io((a), E1000_##reg, val)
static int32_t e1000_configure_kmrn_for_10_100(struct e1000_hw *hw);
static int32_t e1000_configure_kmrn_for_10_100(struct e1000_hw *hw,
uint16_t duplex);
static int32_t e1000_configure_kmrn_for_1000(struct e1000_hw *hw);
/* IGP cable length table */
......@@ -156,6 +157,14 @@ e1000_set_phy_type(struct e1000_hw *hw)
hw->phy_type = e1000_phy_igp;
break;
}
case IGP03E1000_E_PHY_ID:
hw->phy_type = e1000_phy_igp_3;
break;
case IFE_E_PHY_ID:
case IFE_PLUS_E_PHY_ID:
case IFE_C_E_PHY_ID:
hw->phy_type = e1000_phy_ife;
break;
case GG82563_E_PHY_ID:
if (hw->mac_type == e1000_80003es2lan) {
hw->phy_type = e1000_phy_gg82563;
......@@ -332,6 +341,7 @@ e1000_set_mac_type(struct e1000_hw *hw)
break;
case E1000_DEV_ID_82541EI:
case E1000_DEV_ID_82541EI_MOBILE:
case E1000_DEV_ID_82541ER_LOM:
hw->mac_type = e1000_82541;
break;
case E1000_DEV_ID_82541ER:
......@@ -341,6 +351,7 @@ e1000_set_mac_type(struct e1000_hw *hw)
hw->mac_type = e1000_82541_rev_2;
break;
case E1000_DEV_ID_82547EI:
case E1000_DEV_ID_82547EI_MOBILE:
hw->mac_type = e1000_82547;
break;
case E1000_DEV_ID_82547GI:
......@@ -354,6 +365,7 @@ e1000_set_mac_type(struct e1000_hw *hw)
case E1000_DEV_ID_82572EI_COPPER:
case E1000_DEV_ID_82572EI_FIBER:
case E1000_DEV_ID_82572EI_SERDES:
case E1000_DEV_ID_82572EI:
hw->mac_type = e1000_82572;
break;
case E1000_DEV_ID_82573E:
......@@ -361,16 +373,29 @@ e1000_set_mac_type(struct e1000_hw *hw)
case E1000_DEV_ID_82573L:
hw->mac_type = e1000_82573;
break;
case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
hw->mac_type = e1000_80003es2lan;
break;
case E1000_DEV_ID_ICH8_IGP_M_AMT:
case E1000_DEV_ID_ICH8_IGP_AMT:
case E1000_DEV_ID_ICH8_IGP_C:
case E1000_DEV_ID_ICH8_IFE:
case E1000_DEV_ID_ICH8_IGP_M:
hw->mac_type = e1000_ich8lan;
break;
default:
/* Should never have loaded on this device */
return -E1000_ERR_MAC_TYPE;
}
switch(hw->mac_type) {
case e1000_ich8lan:
hw->swfwhw_semaphore_present = TRUE;
hw->asf_firmware_present = TRUE;
break;
case e1000_80003es2lan:
hw->swfw_sync_present = TRUE;
/* fall through */
......@@ -423,6 +448,7 @@ e1000_set_media_type(struct e1000_hw *hw)
case e1000_82542_rev2_1:
hw->media_type = e1000_media_type_fiber;
break;
case e1000_ich8lan:
case e1000_82573:
/* The STATUS_TBIMODE bit is reserved or reused for the this
* device.
......@@ -527,6 +553,14 @@ e1000_reset_hw(struct e1000_hw *hw)
} while(timeout);
}
/* Workaround for ICH8 bit corruption issue in FIFO memory */
if (hw->mac_type == e1000_ich8lan) {
/* Set Tx and Rx buffer allocation to 8k apiece. */
E1000_WRITE_REG(hw, PBA, E1000_PBA_8K);
/* Set Packet Buffer Size to 16k. */
E1000_WRITE_REG(hw, PBS, E1000_PBS_16K);
}
/* Issue a global reset to the MAC. This will reset the chip's
* transmit, receive, DMA, and link units. It will not effect
* the current PCI configuration. The global reset bit is self-
......@@ -550,6 +584,20 @@ e1000_reset_hw(struct e1000_hw *hw)
/* Reset is performed on a shadow of the control register */
E1000_WRITE_REG(hw, CTRL_DUP, (ctrl | E1000_CTRL_RST));
break;
case e1000_ich8lan:
if (!hw->phy_reset_disable &&
e1000_check_phy_reset_block(hw) == E1000_SUCCESS) {
/* e1000_ich8lan PHY HW reset requires MAC CORE reset
* at the same time to make sure the interface between
* MAC and the external PHY is reset.
*/
ctrl |= E1000_CTRL_PHY_RST;
}
e1000_get_software_flag(hw);
E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
msec_delay(5);
break;
default:
E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
break;
......@@ -591,6 +639,7 @@ e1000_reset_hw(struct e1000_hw *hw)
/* fall through */
case e1000_82571:
case e1000_82572:
case e1000_ich8lan:
case e1000_80003es2lan:
ret_val = e1000_get_auto_rd_done(hw);
if(ret_val)
......@@ -633,6 +682,12 @@ e1000_reset_hw(struct e1000_hw *hw)
e1000_pci_set_mwi(hw);
}
if (hw->mac_type == e1000_ich8lan) {
uint32_t kab = E1000_READ_REG(hw, KABGTXD);
kab |= E1000_KABGTXD_BGSQLBIAS;
E1000_WRITE_REG(hw, KABGTXD, kab);
}
return E1000_SUCCESS;
}
......@@ -675,9 +730,12 @@ e1000_init_hw(struct e1000_hw *hw)
/* Disabling VLAN filtering. */
DEBUGOUT("Initializing the IEEE VLAN\n");
if (hw->mac_type < e1000_82545_rev_3)
E1000_WRITE_REG(hw, VET, 0);
e1000_clear_vfta(hw);
/* VET hardcoded to standard value and VFTA removed in ICH8 LAN */
if (hw->mac_type != e1000_ich8lan) {
if (hw->mac_type < e1000_82545_rev_3)
E1000_WRITE_REG(hw, VET, 0);
e1000_clear_vfta(hw);
}
/* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
if(hw->mac_type == e1000_82542_rev2_0) {
......@@ -705,8 +763,14 @@ e1000_init_hw(struct e1000_hw *hw)
/* Zero out the Multicast HASH table */
DEBUGOUT("Zeroing the MTA\n");
mta_size = E1000_MC_TBL_SIZE;
for(i = 0; i < mta_size; i++)
if (hw->mac_type == e1000_ich8lan)
mta_size = E1000_MC_TBL_SIZE_ICH8LAN;
for(i = 0; i < mta_size; i++) {
E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
/* use write flush to prevent Memory Write Block (MWB) from
* occuring when accessing our register space */
E1000_WRITE_FLUSH(hw);
}
/* Set the PCI priority bit correctly in the CTRL register. This
* determines if the adapter gives priority to receives, or if it
......@@ -744,6 +808,10 @@ e1000_init_hw(struct e1000_hw *hw)
break;
}
/* More time needed for PHY to initialize */
if (hw->mac_type == e1000_ich8lan)
msec_delay(15);
/* Call a subroutine to configure the link and setup flow control. */
ret_val = e1000_setup_link(hw);
......@@ -757,6 +825,7 @@ e1000_init_hw(struct e1000_hw *hw)
case e1000_82571:
case e1000_82572:
case e1000_82573:
case e1000_ich8lan:
case e1000_80003es2lan:
ctrl |= E1000_TXDCTL_COUNT_DESC;
break;
......@@ -795,6 +864,7 @@ e1000_init_hw(struct e1000_hw *hw)
/* Fall through */
case e1000_82571:
case e1000_82572:
case e1000_ich8lan:
ctrl = E1000_READ_REG(hw, TXDCTL1);
ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB;
if(hw->mac_type >= e1000_82571)
......@@ -818,6 +888,11 @@ e1000_init_hw(struct e1000_hw *hw)
*/
e1000_clear_hw_cntrs(hw);
/* ICH8 No-snoop bits are opposite polarity.
* Set to snoop by default after reset. */
if (hw->mac_type == e1000_ich8lan)
e1000_set_pci_ex_no_snoop(hw, PCI_EX_82566_SNOOP_ALL);
if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
......@@ -905,6 +980,7 @@ e1000_setup_link(struct e1000_hw *hw)
*/
if (hw->fc == e1000_fc_default) {
switch (hw->mac_type) {
case e1000_ich8lan:
case e1000_82573:
hw->fc = e1000_fc_full;
break;
......@@ -971,9 +1047,12 @@ e1000_setup_link(struct e1000_hw *hw)
*/
DEBUGOUT("Initializing the Flow Control address, type and timer regs\n");
E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
/* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */
if (hw->mac_type != e1000_ich8lan) {
E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
}
E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
......@@ -1237,12 +1316,13 @@ e1000_copper_link_igp_setup(struct e1000_hw *hw)
/* Wait 10ms for MAC to configure PHY from eeprom settings */
msec_delay(15);
if (hw->mac_type != e1000_ich8lan) {
/* Configure activity LED after PHY reset */
led_ctrl = E1000_READ_REG(hw, LEDCTL);
led_ctrl &= IGP_ACTIVITY_LED_MASK;
led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
}
/* disable lplu d3 during driver init */
ret_val = e1000_set_d3_lplu_state(hw, FALSE);
......@@ -1478,8 +1558,7 @@ e1000_copper_link_ggp_setup(struct e1000_hw *hw)
if (ret_val)
return ret_val;
/* Enable Pass False Carrier on the PHY */
phy_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
phy_data);
......@@ -1561,28 +1640,40 @@ e1000_copper_link_mgp_setup(struct e1000_hw *hw)
phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
if(hw->disable_polarity_correction == 1)
phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
if(ret_val)
return ret_val;
/* Force TX_CLK in the Extended PHY Specific Control Register
* to 25MHz clock.
*/
ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
if(ret_val)
ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
if (ret_val)
return ret_val;
phy_data |= M88E1000_EPSCR_TX_CLK_25;
if (hw->phy_revision < M88E1011_I_REV_4) {
/* Configure Master and Slave downshift values */
phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
/* Force TX_CLK in the Extended PHY Specific Control Register
* to 25MHz clock.
*/
ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
if (ret_val)
return ret_val;
phy_data |= M88E1000_EPSCR_TX_CLK_25;
if ((hw->phy_revision == E1000_REVISION_2) &&
(hw->phy_id == M88E1111_I_PHY_ID)) {
/* Vidalia Phy, set the downshift counter to 5x */
phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
ret_val = e1000_write_phy_reg(hw,
M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
if (ret_val)
return ret_val;
} else {
/* Configure Master and Slave downshift values */
phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
ret_val = e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
if(ret_val)
return ret_val;
ret_val = e1000_write_phy_reg(hw,
M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
if (ret_val)
return ret_val;
}
}
/* SW Reset the PHY so all changes take effect */
......@@ -1620,6 +1711,10 @@ e1000_copper_link_autoneg(struct e1000_hw *hw)
if(hw->autoneg_advertised == 0)
hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
/* IFE phy only supports 10/100 */
if (hw->phy_type == e1000_phy_ife)
hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
ret_val = e1000_phy_setup_autoneg(hw);
if(ret_val) {
......@@ -1717,6 +1812,26 @@ e1000_setup_copper_link(struct e1000_hw *hw)
DEBUGFUNC("e1000_setup_copper_link");
switch (hw->mac_type) {
case e1000_80003es2lan:
case e1000_ich8lan:
/* Set the mac to wait the maximum time between each
* iteration and increase the max iterations when
* polling the phy; this fixes erroneous timeouts at 10Mbps. */
ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
if (ret_val)
return ret_val;
ret_val = e1000_read_kmrn_reg(hw, GG82563_REG(0x34, 9), &reg_data);
if (ret_val)
return ret_val;
reg_data |= 0x3F;
ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
if (ret_val)
return ret_val;
default:
break;
}
/* Check if it is a valid PHY and set PHY mode if necessary. */
ret_val = e1000_copper_link_preconfig(hw);
if(ret_val)
......@@ -1724,10 +1839,8 @@ e1000_setup_copper_link(struct e1000_hw *hw)
switch (hw->mac_type) {
case e1000_80003es2lan:
ret_val = e1000_read_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_INB_CTRL,
&reg_data);
if (ret_val)
return ret_val;
/* Kumeran registers are written-only */
reg_data = E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT;
reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING;
ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_INB_CTRL,
reg_data);
......@@ -1739,6 +1852,7 @@ e1000_setup_copper_link(struct e1000_hw *hw)
}
if (hw->phy_type == e1000_phy_igp ||
hw->phy_type == e1000_phy_igp_3 ||
hw->phy_type == e1000_phy_igp_2) {
ret_val = e1000_copper_link_igp_setup(hw);
if(ret_val)
......@@ -1803,7 +1917,7 @@ e1000_setup_copper_link(struct e1000_hw *hw)
* hw - Struct containing variables accessed by shared code
******************************************************************************/
static int32_t
e1000_configure_kmrn_for_10_100(struct e1000_hw *hw)
e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, uint16_t duplex)
{
int32_t ret_val = E1000_SUCCESS;
uint32_t tipg;
......@@ -1823,6 +1937,18 @@ e1000_configure_kmrn_for_10_100(struct e1000_hw *hw)
tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100;
E1000_WRITE_REG(hw, TIPG, tipg);
ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
if (ret_val)
return ret_val;
if (duplex == HALF_DUPLEX)
reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
else
reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
return ret_val;
}
......@@ -1847,6 +1973,14 @@ e1000_configure_kmrn_for_1000(struct e1000_hw *hw)
tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
E1000_WRITE_REG(hw, TIPG, tipg);
ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
if (ret_val)
return ret_val;
reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
return ret_val;
}
......@@ -1869,10 +2003,13 @@ e1000_phy_setup_autoneg(struct e1000_hw *hw)
if(ret_val)
return ret_val;
/* Read the MII 1000Base-T Control Register (Address 9). */
ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
if(ret_val)
return ret_val;
if (hw->phy_type != e1000_phy_ife) {
/* Read the MII 1000Base-T Control Register (Address 9). */
ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
if (ret_val)
return ret_val;
} else
mii_1000t_ctrl_reg=0;
/* Need to parse both autoneg_advertised and fc and set up
* the appropriate PHY registers. First we will parse for
......@@ -1923,6 +2060,9 @@ e1000_phy_setup_autoneg(struct e1000_hw *hw)
if(hw->autoneg_advertised & ADVERTISE_1000_FULL) {
DEBUGOUT("Advertise 1000mb Full duplex\n");
mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
if (hw->phy_type == e1000_phy_ife) {
DEBUGOUT("e1000_phy_ife is a 10/100 PHY. Gigabit speed is not supported.\n");
}
}
/* Check for a software override of the flow control settings, and
......@@ -1984,9 +2124,11 @@ e1000_phy_setup_autoneg(struct e1000_hw *hw)
DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
if(ret_val)
return ret_val;
if (hw->phy_type != e1000_phy_ife) {
ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
if (ret_val)
return ret_val;
}
return E1000_SUCCESS;
}
......@@ -2089,6 +2231,18 @@ e1000_phy_force_speed_duplex(struct e1000_hw *hw)
/* Need to reset the PHY or these changes will be ignored */
mii_ctrl_reg |= MII_CR_RESET;
/* Disable MDI-X support for 10/100 */
} else if (hw->phy_type == e1000_phy_ife) {
ret_val = e1000_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &phy_data);
if (ret_val)
return ret_val;
phy_data &= ~IFE_PMC_AUTO_MDIX;
phy_data &= ~IFE_PMC_FORCE_MDIX;
ret_val = e1000_write_phy_reg(hw, IFE_PHY_MDIX_CONTROL, phy_data);
if (ret_val)
return ret_val;
} else {
/* Clear Auto-Crossover to force MDI manually. IGP requires MDI
* forced whenever speed or duplex are forced.
......@@ -2721,8 +2875,12 @@ e1000_check_for_link(struct e1000_hw *hw)
*/
if(hw->tbi_compatibility_en) {
uint16_t speed, duplex;
e1000_get_speed_and_duplex(hw, &speed, &duplex);
if(speed != SPEED_1000) {
ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
if (ret_val) {
DEBUGOUT("Error getting link speed and duplex\n");
return ret_val;
}
if (speed != SPEED_1000) {
/* If link speed is not set to gigabit speed, we do not need
* to enable TBI compatibility.
*/
......@@ -2889,7 +3047,13 @@ e1000_get_speed_and_duplex(struct e1000_hw *hw,
if (*speed == SPEED_1000)
ret_val = e1000_configure_kmrn_for_1000(hw);
else
ret_val = e1000_configure_kmrn_for_10_100(hw);
ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex);
if (ret_val)
return ret_val;
}
if ((hw->phy_type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
ret_val = e1000_kumeran_lock_loss_workaround(hw);
if (ret_val)
return ret_val;
}
......@@ -3079,6 +3243,9 @@ e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask)
DEBUGFUNC("e1000_swfw_sync_acquire");
if (hw->swfwhw_semaphore_present)
return e1000_get_software_flag(hw);
if (!hw->swfw_sync_present)
return e1000_get_hw_eeprom_semaphore(hw);
......@@ -3118,6 +3285,11 @@ e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask)
DEBUGFUNC("e1000_swfw_sync_release");
if (hw->swfwhw_semaphore_present) {
e1000_release_software_flag(hw);
return;
}
if (!hw->swfw_sync_present) {
e1000_put_hw_eeprom_semaphore(hw);
return;
......@@ -3160,7 +3332,8 @@ e1000_read_phy_reg(struct e1000_hw *hw,
if (e1000_swfw_sync_acquire(hw, swfw))
return -E1000_ERR_SWFW_SYNC;
if((hw->phy_type == e1000_phy_igp ||
if ((hw->phy_type == e1000_phy_igp ||
hw->phy_type == e1000_phy_igp_3 ||
hw->phy_type == e1000_phy_igp_2) &&
(reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
......@@ -3299,7 +3472,8 @@ e1000_write_phy_reg(struct e1000_hw *hw,
if (e1000_swfw_sync_acquire(hw, swfw))
return -E1000_ERR_SWFW_SYNC;
if((hw->phy_type == e1000_phy_igp ||
if ((hw->phy_type == e1000_phy_igp ||
hw->phy_type == e1000_phy_igp_3 ||
hw->phy_type == e1000_phy_igp_2) &&
(reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
......@@ -3514,7 +3688,7 @@ e1000_phy_hw_reset(struct e1000_hw *hw)
E1000_WRITE_FLUSH(hw);
if (hw->mac_type >= e1000_82571)
msec_delay(10);
msec_delay_irq(10);
e1000_swfw_sync_release(hw, swfw);
} else {
/* Read the Extended Device Control Register, assert the PHY_RESET_DIR
......@@ -3544,6 +3718,12 @@ e1000_phy_hw_reset(struct e1000_hw *hw)
ret_val = e1000_get_phy_cfg_done(hw);
e1000_release_software_semaphore(hw);
if ((hw->mac_type == e1000_ich8lan) &&
(hw->phy_type == e1000_phy_igp_3)) {
ret_val = e1000_init_lcd_from_nvm(hw);
if (ret_val)
return ret_val;
}
return ret_val;
}
......@@ -3572,9 +3752,11 @@ e1000_phy_reset(struct e1000_hw *hw)
case e1000_82541_rev_2:
case e1000_82571:
case e1000_82572:
case e1000_ich8lan:
ret_val = e1000_phy_hw_reset(hw);
if(ret_val)
return ret_val;
break;
default:
ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
......@@ -3596,12 +3778,121 @@ e1000_phy_reset(struct e1000_hw *hw)
return E1000_SUCCESS;
}
/******************************************************************************
* Work-around for 82566 power-down: on D3 entry-
* 1) disable gigabit link
* 2) write VR power-down enable
* 3) read it back
* if successful continue, else issue LCD reset and repeat
*
* hw - struct containing variables accessed by shared code
******************************************************************************/
void
e1000_phy_powerdown_workaround(struct e1000_hw *hw)
{
int32_t reg;
uint16_t phy_data;
int32_t retry = 0;
DEBUGFUNC("e1000_phy_powerdown_workaround");
if (hw->phy_type != e1000_phy_igp_3)
return;
do {
/* Disable link */
reg = E1000_READ_REG(hw, PHY_CTRL);
E1000_WRITE_REG(hw, PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE |
E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
/* Write VR power-down enable */
e1000_read_phy_reg(hw, IGP3_VR_CTRL, &phy_data);
e1000_write_phy_reg(hw, IGP3_VR_CTRL, phy_data |
IGP3_VR_CTRL_MODE_SHUT);
/* Read it back and test */
e1000_read_phy_reg(hw, IGP3_VR_CTRL, &phy_data);
if ((phy_data & IGP3_VR_CTRL_MODE_SHUT) || retry)
break;
/* Issue PHY reset and repeat at most one more time */
reg = E1000_READ_REG(hw, CTRL);
E1000_WRITE_REG(hw, CTRL, reg | E1000_CTRL_PHY_RST);
retry++;
} while (retry);
return;
}
/******************************************************************************
* Work-around for 82566 Kumeran PCS lock loss:
* On link status change (i.e. PCI reset, speed change) and link is up and
* speed is gigabit-
* 0) if workaround is optionally disabled do nothing
* 1) wait 1ms for Kumeran link to come up
* 2) check Kumeran Diagnostic register PCS lock loss bit
* 3) if not set the link is locked (all is good), otherwise...
* 4) reset the PHY
* 5) repeat up to 10 times
* Note: this is only called for IGP3 copper when speed is 1gb.
*
* hw - struct containing variables accessed by shared code
******************************************************************************/
int32_t
e1000_kumeran_lock_loss_workaround(struct e1000_hw *hw)
{
int32_t ret_val;
int32_t reg;
int32_t cnt;
uint16_t phy_data;
if (hw->kmrn_lock_loss_workaround_disabled)
return E1000_SUCCESS;
/* Make sure link is up before proceeding. If not just return.
* Attempting this while link is negotiating fouls up link
* stability */
ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
if (phy_data & MII_SR_LINK_STATUS) {
for (cnt = 0; cnt < 10; cnt++) {
/* read once to clear */
ret_val = e1000_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data);
if (ret_val)
return ret_val;
/* and again to get new status */
ret_val = e1000_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data);
if (ret_val)
return ret_val;
/* check for PCS lock */
if (!(phy_data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
return E1000_SUCCESS;
/* Issue PHY reset */
e1000_phy_hw_reset(hw);
msec_delay_irq(5);
}
/* Disable GigE link negotiation */
reg = E1000_READ_REG(hw, PHY_CTRL);
E1000_WRITE_REG(hw, PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE |
E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
/* unable to acquire PCS lock */
return E1000_ERR_PHY;
}
return E1000_SUCCESS;
}
/******************************************************************************
* Probes the expected PHY address for known PHY IDs
*
* hw - Struct containing variables accessed by shared code
******************************************************************************/
static int32_t
int32_t
e1000_detect_gig_phy(struct e1000_hw *hw)
{
int32_t phy_init_status, ret_val;
......@@ -3613,8 +3904,8 @@ e1000_detect_gig_phy(struct e1000_hw *hw)
/* The 82571 firmware may still be configuring the PHY. In this
* case, we cannot access the PHY until the configuration is done. So
* we explicitly set the PHY values. */
if(hw->mac_type == e1000_82571 ||
hw->mac_type == e1000_82572) {
if (hw->mac_type == e1000_82571 ||
hw->mac_type == e1000_82572) {
hw->phy_id = IGP01E1000_I_PHY_ID;
hw->phy_type = e1000_phy_igp_2;
return E1000_SUCCESS;
......@@ -3631,7 +3922,7 @@ e1000_detect_gig_phy(struct e1000_hw *hw)
/* Read the PHY ID Registers to identify which PHY is onboard. */
ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
if(ret_val)
if (ret_val)
return ret_val;
hw->phy_id = (uint32_t) (phy_id_high << 16);
......@@ -3669,6 +3960,12 @@ e1000_detect_gig_phy(struct e1000_hw *hw)
case e1000_80003es2lan:
if (hw->phy_id == GG82563_E_PHY_ID) match = TRUE;
break;
case e1000_ich8lan:
if (hw->phy_id == IGP03E1000_E_PHY_ID) match = TRUE;
if (hw->phy_id == IFE_E_PHY_ID) match = TRUE;
if (hw->phy_id == IFE_PLUS_E_PHY_ID) match = TRUE;
if (hw->phy_id == IFE_C_E_PHY_ID) match = TRUE;
break;
default:
DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type);
return -E1000_ERR_CONFIG;
......@@ -3783,6 +4080,53 @@ e1000_phy_igp_get_info(struct e1000_hw *hw,
return E1000_SUCCESS;
}
/******************************************************************************
* Get PHY information from various PHY registers for ife PHY only.
*
* hw - Struct containing variables accessed by shared code
* phy_info - PHY information structure
******************************************************************************/
int32_t
e1000_phy_ife_get_info(struct e1000_hw *hw,
struct e1000_phy_info *phy_info)
{
int32_t ret_val;
uint16_t phy_data, polarity;
DEBUGFUNC("e1000_phy_ife_get_info");
phy_info->downshift = (e1000_downshift)hw->speed_downgraded;
phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal;
ret_val = e1000_read_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, &phy_data);
if (ret_val)
return ret_val;
phy_info->polarity_correction =
(phy_data & IFE_PSC_AUTO_POLARITY_DISABLE) >>
IFE_PSC_AUTO_POLARITY_DISABLE_SHIFT;
if (phy_info->polarity_correction == e1000_polarity_reversal_enabled) {
ret_val = e1000_check_polarity(hw, &polarity);
if (ret_val)
return ret_val;
} else {
/* Polarity is forced. */
polarity = (phy_data & IFE_PSC_FORCE_POLARITY) >>
IFE_PSC_FORCE_POLARITY_SHIFT;
}
phy_info->cable_polarity = polarity;
ret_val = e1000_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &phy_data);
if (ret_val)
return ret_val;
phy_info->mdix_mode =
(phy_data & (IFE_PMC_AUTO_MDIX | IFE_PMC_FORCE_MDIX)) >>
IFE_PMC_MDIX_MODE_SHIFT;
return E1000_SUCCESS;
}
/******************************************************************************
* Get PHY information from various PHY registers fot m88 PHY only.
*
......@@ -3898,9 +4242,12 @@ e1000_phy_get_info(struct e1000_hw *hw,
return -E1000_ERR_CONFIG;
}
if(hw->phy_type == e1000_phy_igp ||
if (hw->phy_type == e1000_phy_igp ||
hw->phy_type == e1000_phy_igp_3 ||
hw->phy_type == e1000_phy_igp_2)
return e1000_phy_igp_get_info(hw, phy_info);
else if (hw->phy_type == e1000_phy_ife)
return e1000_phy_ife_get_info(hw, phy_info);
else
return e1000_phy_m88_get_info(hw, phy_info);
}
......@@ -4049,6 +4396,35 @@ e1000_init_eeprom_params(struct e1000_hw *hw)
eeprom->use_eerd = TRUE;
eeprom->use_eewr = FALSE;
break;
case e1000_ich8lan:
{
int32_t i = 0;
uint32_t flash_size = E1000_READ_ICH8_REG(hw, ICH8_FLASH_GFPREG);
eeprom->type = e1000_eeprom_ich8;
eeprom->use_eerd = FALSE;
eeprom->use_eewr = FALSE;
eeprom->word_size = E1000_SHADOW_RAM_WORDS;
/* Zero the shadow RAM structure. But don't load it from NVM
* so as to save time for driver init */
if (hw->eeprom_shadow_ram != NULL) {
for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
hw->eeprom_shadow_ram[i].modified = FALSE;
hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
}
}
hw->flash_base_addr = (flash_size & ICH8_GFPREG_BASE_MASK) *
ICH8_FLASH_SECTOR_SIZE;
hw->flash_bank_size = ((flash_size >> 16) & ICH8_GFPREG_BASE_MASK) + 1;
hw->flash_bank_size -= (flash_size & ICH8_GFPREG_BASE_MASK);
hw->flash_bank_size *= ICH8_FLASH_SECTOR_SIZE;
hw->flash_bank_size /= 2 * sizeof(uint16_t);
break;
}
default:
break;
}
......@@ -4469,7 +4845,10 @@ e1000_read_eeprom(struct e1000_hw *hw,
return ret_val;
}
if(eeprom->type == e1000_eeprom_spi) {
if (eeprom->type == e1000_eeprom_ich8)
return e1000_read_eeprom_ich8(hw, offset, words, data);
if (eeprom->type == e1000_eeprom_spi) {
uint16_t word_in;
uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
......@@ -4636,7 +5015,10 @@ e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw)
DEBUGFUNC("e1000_is_onboard_nvm_eeprom");
if(hw->mac_type == e1000_82573) {
if (hw->mac_type == e1000_ich8lan)
return FALSE;
if (hw->mac_type == e1000_82573) {
eecd = E1000_READ_REG(hw, EECD);
/* Isolate bits 15 & 16 */
......@@ -4686,8 +5068,22 @@ e1000_validate_eeprom_checksum(struct e1000_hw *hw)
}
}
for(i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
if(e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
if (hw->mac_type == e1000_ich8lan) {
/* Drivers must allocate the shadow ram structure for the
* EEPROM checksum to be updated. Otherwise, this bit as well
* as the checksum must both be set correctly for this
* validation to pass.
*/
e1000_read_eeprom(hw, 0x19, 1, &eeprom_data);
if ((eeprom_data & 0x40) == 0) {
eeprom_data |= 0x40;
e1000_write_eeprom(hw, 0x19, 1, &eeprom_data);
e1000_update_eeprom_checksum(hw);
}
}
for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
DEBUGOUT("EEPROM Read Error\n");
return -E1000_ERR_EEPROM;
}
......@@ -4713,6 +5109,7 @@ e1000_validate_eeprom_checksum(struct e1000_hw *hw)
int32_t
e1000_update_eeprom_checksum(struct e1000_hw *hw)
{
uint32_t ctrl_ext;
uint16_t checksum = 0;
uint16_t i, eeprom_data;
......@@ -4731,6 +5128,14 @@ e1000_update_eeprom_checksum(struct e1000_hw *hw)
return -E1000_ERR_EEPROM;
} else if (hw->eeprom.type == e1000_eeprom_flash) {
e1000_commit_shadow_ram(hw);
} else if (hw->eeprom.type == e1000_eeprom_ich8) {
e1000_commit_shadow_ram(hw);
/* Reload the EEPROM, or else modifications will not appear
* until after next adapter reset. */
ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
ctrl_ext |= E1000_CTRL_EXT_EE_RST;
E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
msec_delay(10);
}
return E1000_SUCCESS;
}
......@@ -4770,6 +5175,9 @@ e1000_write_eeprom(struct e1000_hw *hw,
if(eeprom->use_eewr == TRUE)
return e1000_write_eeprom_eewr(hw, offset, words, data);
if (eeprom->type == e1000_eeprom_ich8)
return e1000_write_eeprom_ich8(hw, offset, words, data);
/* Prepare the EEPROM for writing */
if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
return -E1000_ERR_EEPROM;
......@@ -4957,11 +5365,17 @@ e1000_commit_shadow_ram(struct e1000_hw *hw)
uint32_t flop = 0;
uint32_t i = 0;
int32_t error = E1000_SUCCESS;
/* The flop register will be used to determine if flash type is STM */
flop = E1000_READ_REG(hw, FLOP);
uint32_t old_bank_offset = 0;
uint32_t new_bank_offset = 0;
uint32_t sector_retries = 0;
uint8_t low_byte = 0;
uint8_t high_byte = 0;
uint8_t temp_byte = 0;
boolean_t sector_write_failed = FALSE;
if (hw->mac_type == e1000_82573) {
/* The flop register will be used to determine if flash type is STM */
flop = E1000_READ_REG(hw, FLOP);
for (i=0; i < attempts; i++) {
eecd = E1000_READ_REG(hw, EECD);
if ((eecd & E1000_EECD_FLUPD) == 0) {
......@@ -4995,6 +5409,106 @@ e1000_commit_shadow_ram(struct e1000_hw *hw)
}
}
if (hw->mac_type == e1000_ich8lan && hw->eeprom_shadow_ram != NULL) {
/* We're writing to the opposite bank so if we're on bank 1,
* write to bank 0 etc. We also need to erase the segment that
* is going to be written */
if (!(E1000_READ_REG(hw, EECD) & E1000_EECD_SEC1VAL)) {
new_bank_offset = hw->flash_bank_size * 2;
old_bank_offset = 0;
e1000_erase_ich8_4k_segment(hw, 1);
} else {
old_bank_offset = hw->flash_bank_size * 2;
new_bank_offset = 0;
e1000_erase_ich8_4k_segment(hw, 0);
}
do {
sector_write_failed = FALSE;
/* Loop for every byte in the shadow RAM,
* which is in units of words. */
for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
/* Determine whether to write the value stored
* in the other NVM bank or a modified value stored
* in the shadow RAM */
if (hw->eeprom_shadow_ram[i].modified == TRUE) {
low_byte = (uint8_t)hw->eeprom_shadow_ram[i].eeprom_word;
e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset,
&temp_byte);
udelay(100);
error = e1000_verify_write_ich8_byte(hw,
(i << 1) + new_bank_offset,
low_byte);
if (error != E1000_SUCCESS)
sector_write_failed = TRUE;
high_byte =
(uint8_t)(hw->eeprom_shadow_ram[i].eeprom_word >> 8);
e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset + 1,
&temp_byte);
udelay(100);
} else {
e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset,
&low_byte);
udelay(100);
error = e1000_verify_write_ich8_byte(hw,
(i << 1) + new_bank_offset, low_byte);
if (error != E1000_SUCCESS)
sector_write_failed = TRUE;
e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset + 1,
&high_byte);
}
/* If the word is 0x13, then make sure the signature bits
* (15:14) are 11b until the commit has completed.
* This will allow us to write 10b which indicates the
* signature is valid. We want to do this after the write
* has completed so that we don't mark the segment valid
* while the write is still in progress */
if (i == E1000_ICH8_NVM_SIG_WORD)
high_byte = E1000_ICH8_NVM_SIG_MASK | high_byte;
error = e1000_verify_write_ich8_byte(hw,
(i << 1) + new_bank_offset + 1, high_byte);
if (error != E1000_SUCCESS)
sector_write_failed = TRUE;
if (sector_write_failed == FALSE) {
/* Clear the now not used entry in the cache */
hw->eeprom_shadow_ram[i].modified = FALSE;
hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
}
}
/* Don't bother writing the segment valid bits if sector
* programming failed. */
if (sector_write_failed == FALSE) {
/* Finally validate the new segment by setting bit 15:14
* to 10b in word 0x13 , this can be done without an
* erase as well since these bits are 11 to start with
* and we need to change bit 14 to 0b */
e1000_read_ich8_byte(hw,
E1000_ICH8_NVM_SIG_WORD * 2 + 1 + new_bank_offset,
&high_byte);
high_byte &= 0xBF;
error = e1000_verify_write_ich8_byte(hw,
E1000_ICH8_NVM_SIG_WORD * 2 + 1 + new_bank_offset,
high_byte);
if (error != E1000_SUCCESS)
sector_write_failed = TRUE;
/* And invalidate the previously valid segment by setting
* its signature word (0x13) high_byte to 0b. This can be
* done without an erase because flash erase sets all bits
* to 1's. We can write 1's to 0's without an erase */
error = e1000_verify_write_ich8_byte(hw,
E1000_ICH8_NVM_SIG_WORD * 2 + 1 + old_bank_offset,
0);
if (error != E1000_SUCCESS)
sector_write_failed = TRUE;
}
} while (++sector_retries < 10 && sector_write_failed == TRUE);
}
return error;
}
......@@ -5102,15 +5616,19 @@ e1000_init_rx_addrs(struct e1000_hw *hw)
* the other port. */
if ((hw->mac_type == e1000_82571) && (hw->laa_is_present == TRUE))
rar_num -= 1;
if (hw->mac_type == e1000_ich8lan)
rar_num = E1000_RAR_ENTRIES_ICH8LAN;
/* Zero out the other 15 receive addresses. */
DEBUGOUT("Clearing RAR[1-15]\n");
for(i = 1; i < rar_num; i++) {
E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
E1000_WRITE_FLUSH(hw);
E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
E1000_WRITE_FLUSH(hw);
}
}
#if 0
/******************************************************************************
* Updates the MAC's list of multicast addresses.
*
......@@ -5145,6 +5663,8 @@ e1000_mc_addr_list_update(struct e1000_hw *hw,
/* Clear RAR[1-15] */
DEBUGOUT(" Clearing RAR[1-15]\n");
num_rar_entry = E1000_RAR_ENTRIES;
if (hw->mac_type == e1000_ich8lan)
num_rar_entry = E1000_RAR_ENTRIES_ICH8LAN;
/* Reserve a spot for the Locally Administered Address to work around
* an 82571 issue in which a reset on one port will reload the MAC on
* the other port. */
......@@ -5153,14 +5673,19 @@ e1000_mc_addr_list_update(struct e1000_hw *hw,
for(i = rar_used_count; i < num_rar_entry; i++) {
E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
E1000_WRITE_FLUSH(hw);
E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
E1000_WRITE_FLUSH(hw);
}
/* Clear the MTA */
DEBUGOUT(" Clearing MTA\n");
num_mta_entry = E1000_NUM_MTA_REGISTERS;
if (hw->mac_type == e1000_ich8lan)
num_mta_entry = E1000_NUM_MTA_REGISTERS_ICH8LAN;
for(i = 0; i < num_mta_entry; i++) {
E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
E1000_WRITE_FLUSH(hw);
}
/* Add the new addresses */
......@@ -5194,7 +5719,6 @@ e1000_mc_addr_list_update(struct e1000_hw *hw,
}
DEBUGOUT("MC Update Complete\n");
}
#endif /* 0 */
/******************************************************************************
* Hashes an address to determine its location in the multicast table
......@@ -5217,24 +5741,46 @@ e1000_hash_mc_addr(struct e1000_hw *hw,
* LSB MSB
*/
case 0:
/* [47:36] i.e. 0x563 for above example address */
hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4));
if (hw->mac_type == e1000_ich8lan) {
/* [47:38] i.e. 0x158 for above example address */
hash_value = ((mc_addr[4] >> 6) | (((uint16_t) mc_addr[5]) << 2));
} else {
/* [47:36] i.e. 0x563 for above example address */
hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4));
}
break;
case 1:
/* [46:35] i.e. 0xAC6 for above example address */
hash_value = ((mc_addr[4] >> 3) | (((uint16_t) mc_addr[5]) << 5));
if (hw->mac_type == e1000_ich8lan) {
/* [46:37] i.e. 0x2B1 for above example address */
hash_value = ((mc_addr[4] >> 5) | (((uint16_t) mc_addr[5]) << 3));
} else {
/* [46:35] i.e. 0xAC6 for above example address */
hash_value = ((mc_addr[4] >> 3) | (((uint16_t) mc_addr[5]) << 5));
}
break;
case 2:
/* [45:34] i.e. 0x5D8 for above example address */
hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6));
if (hw->mac_type == e1000_ich8lan) {
/*[45:36] i.e. 0x163 for above example address */
hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4));
} else {
/* [45:34] i.e. 0x5D8 for above example address */
hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6));
}
break;
case 3:
/* [43:32] i.e. 0x634 for above example address */
hash_value = ((mc_addr[4]) | (((uint16_t) mc_addr[5]) << 8));
if (hw->mac_type == e1000_ich8lan) {
/* [43:34] i.e. 0x18D for above example address */
hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6));
} else {
/* [43:32] i.e. 0x634 for above example address */
hash_value = ((mc_addr[4]) | (((uint16_t) mc_addr[5]) << 8));
}
break;
}
hash_value &= 0xFFF;
if (hw->mac_type == e1000_ich8lan)
hash_value &= 0x3FF;
return hash_value;
}
......@@ -5262,6 +5808,8 @@ e1000_mta_set(struct e1000_hw *hw,
* register are determined by the lower 5 bits of the value.
*/
hash_reg = (hash_value >> 5) & 0x7F;
if (hw->mac_type == e1000_ich8lan)
hash_reg &= 0x1F;
hash_bit = hash_value & 0x1F;
mta = E1000_READ_REG_ARRAY(hw, MTA, hash_reg);
......@@ -5275,9 +5823,12 @@ e1000_mta_set(struct e1000_hw *hw,
if((hw->mac_type == e1000_82544) && ((hash_reg & 0x1) == 1)) {
temp = E1000_READ_REG_ARRAY(hw, MTA, (hash_reg - 1));
E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta);
E1000_WRITE_FLUSH(hw);
E1000_WRITE_REG_ARRAY(hw, MTA, (hash_reg - 1), temp);
E1000_WRITE_FLUSH(hw);
} else {
E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta);
E1000_WRITE_FLUSH(hw);
}
}
......@@ -5334,7 +5885,9 @@ e1000_rar_set(struct e1000_hw *hw,
}
E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
E1000_WRITE_FLUSH(hw);
E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
E1000_WRITE_FLUSH(hw);
}
/******************************************************************************
......@@ -5351,12 +5904,18 @@ e1000_write_vfta(struct e1000_hw *hw,
{
uint32_t temp;
if((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) {
if (hw->mac_type == e1000_ich8lan)
return;
if ((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) {
temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1));
E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
E1000_WRITE_FLUSH(hw);
E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp);
E1000_WRITE_FLUSH(hw);
} else {
E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
E1000_WRITE_FLUSH(hw);
}
}
......@@ -5373,6 +5932,9 @@ e1000_clear_vfta(struct e1000_hw *hw)
uint32_t vfta_offset = 0;
uint32_t vfta_bit_in_reg = 0;
if (hw->mac_type == e1000_ich8lan)
return;
if (hw->mac_type == e1000_82573) {
if (hw->mng_cookie.vlan_id != 0) {
/* The VFTA is a 4096b bit-field, each identifying a single VLAN
......@@ -5392,6 +5954,7 @@ e1000_clear_vfta(struct e1000_hw *hw)
* manageability unit */
vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value);
E1000_WRITE_FLUSH(hw);
}
}
......@@ -5421,9 +5984,18 @@ e1000_id_led_init(struct e1000_hw * hw)
DEBUGOUT("EEPROM Read Error\n");
return -E1000_ERR_EEPROM;
}
if((eeprom_data== ID_LED_RESERVED_0000) ||
(eeprom_data == ID_LED_RESERVED_FFFF)) eeprom_data = ID_LED_DEFAULT;
for(i = 0; i < 4; i++) {
if ((hw->mac_type == e1000_82573) &&
(eeprom_data == ID_LED_RESERVED_82573))
eeprom_data = ID_LED_DEFAULT_82573;
else if ((eeprom_data == ID_LED_RESERVED_0000) ||
(eeprom_data == ID_LED_RESERVED_FFFF)) {
if (hw->mac_type == e1000_ich8lan)
eeprom_data = ID_LED_DEFAULT_ICH8LAN;
else
eeprom_data = ID_LED_DEFAULT;
}
for (i = 0; i < 4; i++) {
temp = (eeprom_data >> (i << 2)) & led_mask;
switch(temp) {
case ID_LED_ON1_DEF2:
......@@ -5518,6 +6090,44 @@ e1000_setup_led(struct e1000_hw *hw)
return E1000_SUCCESS;
}
/******************************************************************************
* Used on 82571 and later Si that has LED blink bits.
* Callers must use their own timer and should have already called
* e1000_id_led_init()
* Call e1000_cleanup led() to stop blinking
*
* hw - Struct containing variables accessed by shared code
*****************************************************************************/
int32_t
e1000_blink_led_start(struct e1000_hw *hw)
{
int16_t i;
uint32_t ledctl_blink = 0;
DEBUGFUNC("e1000_id_led_blink_on");
if (hw->mac_type < e1000_82571) {
/* Nothing to do */
return E1000_SUCCESS;
}
if (hw->media_type == e1000_media_type_fiber) {
/* always blink LED0 for PCI-E fiber */
ledctl_blink = E1000_LEDCTL_LED0_BLINK |
(E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
} else {
/* set the blink bit for each LED that's "on" (0x0E) in ledctl_mode2 */
ledctl_blink = hw->ledctl_mode2;
for (i=0; i < 4; i++)
if (((hw->ledctl_mode2 >> (i * 8)) & 0xFF) ==
E1000_LEDCTL_MODE_LED_ON)
ledctl_blink |= (E1000_LEDCTL_LED0_BLINK << (i * 8));
}
E1000_WRITE_REG(hw, LEDCTL, ledctl_blink);
return E1000_SUCCESS;
}
/******************************************************************************
* Restores the saved state of the SW controlable LED.
*
......@@ -5548,6 +6158,10 @@ e1000_cleanup_led(struct e1000_hw *hw)
return ret_val;
/* Fall Through */
default:
if (hw->phy_type == e1000_phy_ife) {
e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
break;
}
/* Restore LEDCTL settings */
E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_default);
break;
......@@ -5592,7 +6206,10 @@ e1000_led_on(struct e1000_hw *hw)
/* Clear SW Defineable Pin 0 to turn on the LED */
ctrl &= ~E1000_CTRL_SWDPIN0;
ctrl |= E1000_CTRL_SWDPIO0;
} else if(hw->media_type == e1000_media_type_copper) {
} else if (hw->phy_type == e1000_phy_ife) {
e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
} else if (hw->media_type == e1000_media_type_copper) {
E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode2);
return E1000_SUCCESS;
}
......@@ -5640,7 +6257,10 @@ e1000_led_off(struct e1000_hw *hw)
/* Set SW Defineable Pin 0 to turn off the LED */
ctrl |= E1000_CTRL_SWDPIN0;
ctrl |= E1000_CTRL_SWDPIO0;
} else if(hw->media_type == e1000_media_type_copper) {
} else if (hw->phy_type == e1000_phy_ife) {
e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
} else if (hw->media_type == e1000_media_type_copper) {
E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1);
return E1000_SUCCESS;
}
......@@ -5678,12 +6298,16 @@ e1000_clear_hw_cntrs(struct e1000_hw *hw)
temp = E1000_READ_REG(hw, XOFFRXC);
temp = E1000_READ_REG(hw, XOFFTXC);
temp = E1000_READ_REG(hw, FCRUC);
if (hw->mac_type != e1000_ich8lan) {
temp = E1000_READ_REG(hw, PRC64);
temp = E1000_READ_REG(hw, PRC127);
temp = E1000_READ_REG(hw, PRC255);
temp = E1000_READ_REG(hw, PRC511);
temp = E1000_READ_REG(hw, PRC1023);
temp = E1000_READ_REG(hw, PRC1522);
}
temp = E1000_READ_REG(hw, GPRC);
temp = E1000_READ_REG(hw, BPRC);
temp = E1000_READ_REG(hw, MPRC);
......@@ -5703,12 +6327,16 @@ e1000_clear_hw_cntrs(struct e1000_hw *hw)
temp = E1000_READ_REG(hw, TOTH);
temp = E1000_READ_REG(hw, TPR);
temp = E1000_READ_REG(hw, TPT);
if (hw->mac_type != e1000_ich8lan) {
temp = E1000_READ_REG(hw, PTC64);
temp = E1000_READ_REG(hw, PTC127);
temp = E1000_READ_REG(hw, PTC255);
temp = E1000_READ_REG(hw, PTC511);
temp = E1000_READ_REG(hw, PTC1023);
temp = E1000_READ_REG(hw, PTC1522);
}
temp = E1000_READ_REG(hw, MPTC);
temp = E1000_READ_REG(hw, BPTC);
......@@ -5731,6 +6359,9 @@ e1000_clear_hw_cntrs(struct e1000_hw *hw)
temp = E1000_READ_REG(hw, IAC);
temp = E1000_READ_REG(hw, ICRXOC);
if (hw->mac_type == e1000_ich8lan) return;
temp = E1000_READ_REG(hw, ICRXPTC);
temp = E1000_READ_REG(hw, ICRXATC);
temp = E1000_READ_REG(hw, ICTXPTC);
......@@ -5911,6 +6542,7 @@ e1000_get_bus_info(struct e1000_hw *hw)
hw->bus_width = e1000_bus_width_pciex_1;
break;
case e1000_82571:
case e1000_ich8lan:
case e1000_80003es2lan:
hw->bus_type = e1000_bus_type_pci_express;
hw->bus_speed = e1000_bus_speed_2500;
......@@ -5948,8 +6580,6 @@ e1000_get_bus_info(struct e1000_hw *hw)
break;
}
}
#if 0
/******************************************************************************
* Reads a value from one of the devices registers using port I/O (as opposed
* memory mapped I/O). Only 82544 and newer devices support port I/O.
......@@ -5967,7 +6597,6 @@ e1000_read_reg_io(struct e1000_hw *hw,
e1000_io_write(hw, io_addr, offset);
return e1000_io_read(hw, io_data);
}
#endif /* 0 */
/******************************************************************************
* Writes a value to one of the devices registers using port I/O (as opposed to
......@@ -6012,8 +6641,6 @@ e1000_get_cable_length(struct e1000_hw *hw,
{
int32_t ret_val;
uint16_t agc_value = 0;
uint16_t cur_agc, min_agc = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
uint16_t max_agc = 0;
uint16_t i, phy_data;
uint16_t cable_length;
......@@ -6086,6 +6713,8 @@ e1000_get_cable_length(struct e1000_hw *hw,
break;
}
} else if(hw->phy_type == e1000_phy_igp) { /* For IGP PHY */
uint16_t cur_agc_value;
uint16_t min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
uint16_t agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
{IGP01E1000_PHY_AGC_A,
IGP01E1000_PHY_AGC_B,
......@@ -6098,23 +6727,23 @@ e1000_get_cable_length(struct e1000_hw *hw,
if(ret_val)
return ret_val;
cur_agc = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT;
cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT;
/* Array bound check. */
if((cur_agc >= IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) ||
(cur_agc == 0))
/* Value bound check. */
if ((cur_agc_value >= IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) ||
(cur_agc_value == 0))
return -E1000_ERR_PHY;
agc_value += cur_agc;
agc_value += cur_agc_value;
/* Update minimal AGC value. */
if(min_agc > cur_agc)
min_agc = cur_agc;
if (min_agc_value > cur_agc_value)
min_agc_value = cur_agc_value;
}
/* Remove the minimal AGC result for length < 50m */
if(agc_value < IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) {
agc_value -= min_agc;
if (agc_value < IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) {
agc_value -= min_agc_value;
/* Get the average length of the remaining 3 channels */
agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1);
......@@ -6130,7 +6759,10 @@ e1000_get_cable_length(struct e1000_hw *hw,
IGP01E1000_AGC_RANGE) : 0;
*max_length = e1000_igp_cable_length_table[agc_value] +
IGP01E1000_AGC_RANGE;
} else if (hw->phy_type == e1000_phy_igp_2) {
} else if (hw->phy_type == e1000_phy_igp_2 ||
hw->phy_type == e1000_phy_igp_3) {
uint16_t cur_agc_index, max_agc_index = 0;
uint16_t min_agc_index = IGP02E1000_AGC_LENGTH_TABLE_SIZE - 1;
uint16_t agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] =
{IGP02E1000_PHY_AGC_A,
IGP02E1000_PHY_AGC_B,
......@@ -6145,19 +6777,27 @@ e1000_get_cable_length(struct e1000_hw *hw,
/* Getting bits 15:9, which represent the combination of course and
* fine gain values. The result is a number that can be put into
* the lookup table to obtain the approximate cable length. */
cur_agc = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
IGP02E1000_AGC_LENGTH_MASK;
cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
IGP02E1000_AGC_LENGTH_MASK;
/* Remove min & max AGC values from calculation. */
if (e1000_igp_2_cable_length_table[min_agc] > e1000_igp_2_cable_length_table[cur_agc])
min_agc = cur_agc;
if (e1000_igp_2_cable_length_table[max_agc] < e1000_igp_2_cable_length_table[cur_agc])
max_agc = cur_agc;
/* Array index bound check. */
if ((cur_agc_index >= IGP02E1000_AGC_LENGTH_TABLE_SIZE) ||
(cur_agc_index == 0))
return -E1000_ERR_PHY;
agc_value += e1000_igp_2_cable_length_table[cur_agc];
/* Remove min & max AGC values from calculation. */
if (e1000_igp_2_cable_length_table[min_agc_index] >
e1000_igp_2_cable_length_table[cur_agc_index])
min_agc_index = cur_agc_index;
if (e1000_igp_2_cable_length_table[max_agc_index] <
e1000_igp_2_cable_length_table[cur_agc_index])
max_agc_index = cur_agc_index;
agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
}
agc_value -= (e1000_igp_2_cable_length_table[min_agc] + e1000_igp_2_cable_length_table[max_agc]);
agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
e1000_igp_2_cable_length_table[max_agc_index]);
agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
/* Calculate cable length with the error range of +/- 10 meters. */
......@@ -6203,7 +6843,8 @@ e1000_check_polarity(struct e1000_hw *hw,
return ret_val;
*polarity = (phy_data & M88E1000_PSSR_REV_POLARITY) >>
M88E1000_PSSR_REV_POLARITY_SHIFT;
} else if(hw->phy_type == e1000_phy_igp ||
} else if (hw->phy_type == e1000_phy_igp ||
hw->phy_type == e1000_phy_igp_3 ||
hw->phy_type == e1000_phy_igp_2) {
/* Read the Status register to check the speed */
ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS,
......@@ -6229,6 +6870,13 @@ e1000_check_polarity(struct e1000_hw *hw,
* 100 Mbps this bit is always 0) */
*polarity = phy_data & IGP01E1000_PSSR_POLARITY_REVERSED;
}
} else if (hw->phy_type == e1000_phy_ife) {
ret_val = e1000_read_phy_reg(hw, IFE_PHY_EXTENDED_STATUS_CONTROL,
&phy_data);
if (ret_val)
return ret_val;
*polarity = (phy_data & IFE_PESC_POLARITY_REVERSED) >>
IFE_PESC_POLARITY_REVERSED_SHIFT;
}
return E1000_SUCCESS;
}
......@@ -6256,7 +6904,8 @@ e1000_check_downshift(struct e1000_hw *hw)
DEBUGFUNC("e1000_check_downshift");
if(hw->phy_type == e1000_phy_igp ||
if (hw->phy_type == e1000_phy_igp ||
hw->phy_type == e1000_phy_igp_3 ||
hw->phy_type == e1000_phy_igp_2) {
ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH,
&phy_data);
......@@ -6273,6 +6922,9 @@ e1000_check_downshift(struct e1000_hw *hw)
hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >>
M88E1000_PSSR_DOWNSHIFT_SHIFT;
} else if (hw->phy_type == e1000_phy_ife) {
/* e1000_phy_ife supports 10/100 speed only */
hw->speed_downgraded = FALSE;
}
return E1000_SUCCESS;
......@@ -6317,7 +6969,9 @@ e1000_config_dsp_after_link_change(struct e1000_hw *hw,
if(speed == SPEED_1000) {
e1000_get_cable_length(hw, &min_length, &max_length);
ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
if (ret_val)
return ret_val;
if((hw->dsp_config_state == e1000_dsp_config_enabled) &&
min_length >= e1000_igp_cable_length_50) {
......@@ -6525,20 +7179,27 @@ static int32_t
e1000_set_d3_lplu_state(struct e1000_hw *hw,
boolean_t active)
{
uint32_t phy_ctrl = 0;
int32_t ret_val;
uint16_t phy_data;
DEBUGFUNC("e1000_set_d3_lplu_state");
if(hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2)
if (hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2
&& hw->phy_type != e1000_phy_igp_3)
return E1000_SUCCESS;
/* During driver activity LPLU should not be used or it will attain link
* from the lowest speeds starting from 10Mbps. The capability is used for
* Dx transitions and states */
if(hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2) {
if (hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2) {
ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data);
if(ret_val)
if (ret_val)
return ret_val;
} else if (hw->mac_type == e1000_ich8lan) {
/* MAC writes into PHY register based on the state transition
* and start auto-negotiation. SW driver can overwrite the settings
* in CSR PHY power control E1000_PHY_CTRL register. */
phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
} else {
ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
if(ret_val)
......@@ -6553,11 +7214,16 @@ e1000_set_d3_lplu_state(struct e1000_hw *hw,
if(ret_val)
return ret_val;
} else {
if (hw->mac_type == e1000_ich8lan) {
phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
} else {
phy_data &= ~IGP02E1000_PM_D3_LPLU;
ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
phy_data);
if (ret_val)
return ret_val;
}
}
/* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
......@@ -6593,17 +7259,22 @@ e1000_set_d3_lplu_state(struct e1000_hw *hw,
(hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
if(hw->mac_type == e1000_82541_rev_2 ||
hw->mac_type == e1000_82547_rev_2) {
hw->mac_type == e1000_82547_rev_2) {
phy_data |= IGP01E1000_GMII_FLEX_SPD;
ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data);
if(ret_val)
return ret_val;
} else {
if (hw->mac_type == e1000_ich8lan) {
phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
} else {
phy_data |= IGP02E1000_PM_D3_LPLU;
ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
phy_data);
if (ret_val)
return ret_val;
}
}
/* When LPLU is enabled we should disable SmartSpeed */
......@@ -6638,6 +7309,7 @@ static int32_t
e1000_set_d0_lplu_state(struct e1000_hw *hw,
boolean_t active)
{
uint32_t phy_ctrl = 0;
int32_t ret_val;
uint16_t phy_data;
DEBUGFUNC("e1000_set_d0_lplu_state");
......@@ -6645,15 +7317,24 @@ e1000_set_d0_lplu_state(struct e1000_hw *hw,
if(hw->mac_type <= e1000_82547_rev_2)
return E1000_SUCCESS;
if (hw->mac_type == e1000_ich8lan) {
phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
} else {
ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
if(ret_val)
return ret_val;
}
if (!active) {
if (hw->mac_type == e1000_ich8lan) {
phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
} else {
phy_data &= ~IGP02E1000_PM_D0_LPLU;
ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
if (ret_val)
return ret_val;
}
/* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
* Dx states where the power conservation is most important. During
......@@ -6686,10 +7367,15 @@ e1000_set_d0_lplu_state(struct e1000_hw *hw,
} else {
if (hw->mac_type == e1000_ich8lan) {
phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
} else {
phy_data |= IGP02E1000_PM_D0_LPLU;
ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
if (ret_val)
return ret_val;
}
/* When LPLU is enabled we should disable SmartSpeed */
ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data);
......@@ -6928,8 +7614,10 @@ e1000_mng_write_cmd_header(struct e1000_hw * hw,
length >>= 2;
/* The device driver writes the relevant command block into the ram area. */
for (i = 0; i < length; i++)
for (i = 0; i < length; i++) {
E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, i, *((uint32_t *) hdr + i));
E1000_WRITE_FLUSH(hw);
}
return E1000_SUCCESS;
}
......@@ -6961,15 +7649,18 @@ e1000_mng_write_commit(
* returns - TRUE when the mode is IAMT or FALSE.
****************************************************************************/
boolean_t
e1000_check_mng_mode(
struct e1000_hw *hw)
e1000_check_mng_mode(struct e1000_hw *hw)
{
uint32_t fwsm;
fwsm = E1000_READ_REG(hw, FWSM);
if((fwsm & E1000_FWSM_MODE_MASK) ==
(E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
if (hw->mac_type == e1000_ich8lan) {
if ((fwsm & E1000_FWSM_MODE_MASK) ==
(E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
return TRUE;
} else if ((fwsm & E1000_FWSM_MODE_MASK) ==
(E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
return TRUE;
return FALSE;
......@@ -7209,7 +7900,6 @@ e1000_set_pci_express_master_disable(struct e1000_hw *hw)
E1000_WRITE_REG(hw, CTRL, ctrl);
}
#if 0
/***************************************************************************
*
* Enables PCI-Express master access.
......@@ -7233,7 +7923,6 @@ e1000_enable_pciex_master(struct e1000_hw *hw)
ctrl &= ~E1000_CTRL_GIO_MASTER_DISABLE;
E1000_WRITE_REG(hw, CTRL, ctrl);
}
#endif /* 0 */
/*******************************************************************************
*
......@@ -7299,8 +7988,10 @@ e1000_get_auto_rd_done(struct e1000_hw *hw)
case e1000_82572:
case e1000_82573:
case e1000_80003es2lan:
while(timeout) {
if (E1000_READ_REG(hw, EECD) & E1000_EECD_AUTO_RD) break;
case e1000_ich8lan:
while (timeout) {
if (E1000_READ_REG(hw, EECD) & E1000_EECD_AUTO_RD)
break;
else msec_delay(1);
timeout--;
}
......@@ -7340,7 +8031,7 @@ e1000_get_phy_cfg_done(struct e1000_hw *hw)
switch (hw->mac_type) {
default:
msec_delay(10);
msec_delay_irq(10);
break;
case e1000_80003es2lan:
/* Separate *_CFG_DONE_* bit for each port */
......@@ -7523,6 +8214,13 @@ int32_t
e1000_check_phy_reset_block(struct e1000_hw *hw)
{
uint32_t manc = 0;
uint32_t fwsm = 0;
if (hw->mac_type == e1000_ich8lan) {
fwsm = E1000_READ_REG(hw, FWSM);
return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS
: E1000_BLK_PHY_RESET;
}
if (hw->mac_type > e1000_82547_rev_2)
manc = E1000_READ_REG(hw, MANC);
......@@ -7549,6 +8247,8 @@ e1000_arc_subsystem_valid(struct e1000_hw *hw)
if((fwsm & E1000_FWSM_MODE_MASK) != 0)
return TRUE;
break;
case e1000_ich8lan:
return TRUE;
default:
break;
}
......@@ -7556,4 +8256,846 @@ e1000_arc_subsystem_valid(struct e1000_hw *hw)
}
/******************************************************************************
* Configure PCI-Ex no-snoop
*
* hw - Struct containing variables accessed by shared code.
* no_snoop - Bitmap of no-snoop events.
*
* returns: E1000_SUCCESS
*
*****************************************************************************/
int32_t
e1000_set_pci_ex_no_snoop(struct e1000_hw *hw, uint32_t no_snoop)
{
uint32_t gcr_reg = 0;
DEBUGFUNC("e1000_set_pci_ex_no_snoop");
if (hw->bus_type == e1000_bus_type_unknown)
e1000_get_bus_info(hw);
if (hw->bus_type != e1000_bus_type_pci_express)
return E1000_SUCCESS;
if (no_snoop) {
gcr_reg = E1000_READ_REG(hw, GCR);
gcr_reg &= ~(PCI_EX_NO_SNOOP_ALL);
gcr_reg |= no_snoop;
E1000_WRITE_REG(hw, GCR, gcr_reg);
}
if (hw->mac_type == e1000_ich8lan) {
uint32_t ctrl_ext;
E1000_WRITE_REG(hw, GCR, PCI_EX_82566_SNOOP_ALL);
ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
}
return E1000_SUCCESS;
}
/***************************************************************************
*
* Get software semaphore FLAG bit (SWFLAG).
* SWFLAG is used to synchronize the access to all shared resource between
* SW, FW and HW.
*
* hw: Struct containing variables accessed by shared code
*
***************************************************************************/
int32_t
e1000_get_software_flag(struct e1000_hw *hw)
{
int32_t timeout = PHY_CFG_TIMEOUT;
uint32_t extcnf_ctrl;
DEBUGFUNC("e1000_get_software_flag");
if (hw->mac_type == e1000_ich8lan) {
while (timeout) {
extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl);
extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
break;
msec_delay_irq(1);
timeout--;
}
if (!timeout) {
DEBUGOUT("FW or HW locks the resource too long.\n");
return -E1000_ERR_CONFIG;
}
}
return E1000_SUCCESS;
}
/***************************************************************************
*
* Release software semaphore FLAG bit (SWFLAG).
* SWFLAG is used to synchronize the access to all shared resource between
* SW, FW and HW.
*
* hw: Struct containing variables accessed by shared code
*
***************************************************************************/
void
e1000_release_software_flag(struct e1000_hw *hw)
{
uint32_t extcnf_ctrl;
DEBUGFUNC("e1000_release_software_flag");
if (hw->mac_type == e1000_ich8lan) {
extcnf_ctrl= E1000_READ_REG(hw, EXTCNF_CTRL);
extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl);
}
return;
}
/***************************************************************************
*
* Disable dynamic power down mode in ife PHY.
* It can be used to workaround band-gap problem.
*
* hw: Struct containing variables accessed by shared code
*
***************************************************************************/
int32_t
e1000_ife_disable_dynamic_power_down(struct e1000_hw *hw)
{
uint16_t phy_data;
int32_t ret_val = E1000_SUCCESS;
DEBUGFUNC("e1000_ife_disable_dynamic_power_down");
if (hw->phy_type == e1000_phy_ife) {
ret_val = e1000_read_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, &phy_data);
if (ret_val)
return ret_val;
phy_data |= IFE_PSC_DISABLE_DYNAMIC_POWER_DOWN;
ret_val = e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, phy_data);
}
return ret_val;
}
/***************************************************************************
*
* Enable dynamic power down mode in ife PHY.
* It can be used to workaround band-gap problem.
*
* hw: Struct containing variables accessed by shared code
*
***************************************************************************/
int32_t
e1000_ife_enable_dynamic_power_down(struct e1000_hw *hw)
{
uint16_t phy_data;
int32_t ret_val = E1000_SUCCESS;
DEBUGFUNC("e1000_ife_enable_dynamic_power_down");
if (hw->phy_type == e1000_phy_ife) {
ret_val = e1000_read_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, &phy_data);
if (ret_val)
return ret_val;
phy_data &= ~IFE_PSC_DISABLE_DYNAMIC_POWER_DOWN;
ret_val = e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, phy_data);
}
return ret_val;
}
/******************************************************************************
* Reads a 16 bit word or words from the EEPROM using the ICH8's flash access
* register.
*
* hw - Struct containing variables accessed by shared code
* offset - offset of word in the EEPROM to read
* data - word read from the EEPROM
* words - number of words to read
*****************************************************************************/
int32_t
e1000_read_eeprom_ich8(struct e1000_hw *hw, uint16_t offset, uint16_t words,
uint16_t *data)
{
int32_t error = E1000_SUCCESS;
uint32_t flash_bank = 0;
uint32_t act_offset = 0;
uint32_t bank_offset = 0;
uint16_t word = 0;
uint16_t i = 0;
/* We need to know which is the valid flash bank. In the event
* that we didn't allocate eeprom_shadow_ram, we may not be
* managing flash_bank. So it cannot be trusted and needs
* to be updated with each read.
*/
/* Value of bit 22 corresponds to the flash bank we're on. */
flash_bank = (E1000_READ_REG(hw, EECD) & E1000_EECD_SEC1VAL) ? 1 : 0;
/* Adjust offset appropriately if we're on bank 1 - adjust for word size */
bank_offset = flash_bank * (hw->flash_bank_size * 2);
error = e1000_get_software_flag(hw);
if (error != E1000_SUCCESS)
return error;
for (i = 0; i < words; i++) {
if (hw->eeprom_shadow_ram != NULL &&
hw->eeprom_shadow_ram[offset+i].modified == TRUE) {
data[i] = hw->eeprom_shadow_ram[offset+i].eeprom_word;
} else {
/* The NVM part needs a byte offset, hence * 2 */
act_offset = bank_offset + ((offset + i) * 2);
error = e1000_read_ich8_word(hw, act_offset, &word);
if (error != E1000_SUCCESS)
break;
data[i] = word;
}
}
e1000_release_software_flag(hw);
return error;
}
/******************************************************************************
* Writes a 16 bit word or words to the EEPROM using the ICH8's flash access
* register. Actually, writes are written to the shadow ram cache in the hw
* structure hw->e1000_shadow_ram. e1000_commit_shadow_ram flushes this to
* the NVM, which occurs when the NVM checksum is updated.
*
* hw - Struct containing variables accessed by shared code
* offset - offset of word in the EEPROM to write
* words - number of words to write
* data - words to write to the EEPROM
*****************************************************************************/
int32_t
e1000_write_eeprom_ich8(struct e1000_hw *hw, uint16_t offset, uint16_t words,
uint16_t *data)
{
uint32_t i = 0;
int32_t error = E1000_SUCCESS;
error = e1000_get_software_flag(hw);
if (error != E1000_SUCCESS)
return error;
/* A driver can write to the NVM only if it has eeprom_shadow_ram
* allocated. Subsequent reads to the modified words are read from
* this cached structure as well. Writes will only go into this
* cached structure unless it's followed by a call to
* e1000_update_eeprom_checksum() where it will commit the changes
* and clear the "modified" field.
*/
if (hw->eeprom_shadow_ram != NULL) {
for (i = 0; i < words; i++) {
if ((offset + i) < E1000_SHADOW_RAM_WORDS) {
hw->eeprom_shadow_ram[offset+i].modified = TRUE;
hw->eeprom_shadow_ram[offset+i].eeprom_word = data[i];
} else {
error = -E1000_ERR_EEPROM;
break;
}
}
} else {
/* Drivers have the option to not allocate eeprom_shadow_ram as long
* as they don't perform any NVM writes. An attempt in doing so
* will result in this error.
*/
error = -E1000_ERR_EEPROM;
}
e1000_release_software_flag(hw);
return error;
}
/******************************************************************************
* This function does initial flash setup so that a new read/write/erase cycle
* can be started.
*
* hw - The pointer to the hw structure
****************************************************************************/
int32_t
e1000_ich8_cycle_init(struct e1000_hw *hw)
{
union ich8_hws_flash_status hsfsts;
int32_t error = E1000_ERR_EEPROM;
int32_t i = 0;
DEBUGFUNC("e1000_ich8_cycle_init");
hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
/* May be check the Flash Des Valid bit in Hw status */
if (hsfsts.hsf_status.fldesvalid == 0) {
DEBUGOUT("Flash descriptor invalid. SW Sequencing must be used.");
return error;
}
/* Clear FCERR in Hw status by writing 1 */
/* Clear DAEL in Hw status by writing a 1 */
hsfsts.hsf_status.flcerr = 1;
hsfsts.hsf_status.dael = 1;
E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFSTS, hsfsts.regval);
/* Either we should have a hardware SPI cycle in progress bit to check
* against, in order to start a new cycle or FDONE bit should be changed
* in the hardware so that it is 1 after harware reset, which can then be
* used as an indication whether a cycle is in progress or has been
* completed .. we should also have some software semaphore mechanism to
* guard FDONE or the cycle in progress bit so that two threads access to
* those bits can be sequentiallized or a way so that 2 threads dont
* start the cycle at the same time */
if (hsfsts.hsf_status.flcinprog == 0) {
/* There is no cycle running at present, so we can start a cycle */
/* Begin by setting Flash Cycle Done. */
hsfsts.hsf_status.flcdone = 1;
E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFSTS, hsfsts.regval);
error = E1000_SUCCESS;
} else {
/* otherwise poll for sometime so the current cycle has a chance
* to end before giving up. */
for (i = 0; i < ICH8_FLASH_COMMAND_TIMEOUT; i++) {
hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
if (hsfsts.hsf_status.flcinprog == 0) {
error = E1000_SUCCESS;
break;
}
udelay(1);
}
if (error == E1000_SUCCESS) {
/* Successful in waiting for previous cycle to timeout,
* now set the Flash Cycle Done. */
hsfsts.hsf_status.flcdone = 1;
E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFSTS, hsfsts.regval);
} else {
DEBUGOUT("Flash controller busy, cannot get access");
}
}
return error;
}
/******************************************************************************
* This function starts a flash cycle and waits for its completion
*
* hw - The pointer to the hw structure
****************************************************************************/
int32_t
e1000_ich8_flash_cycle(struct e1000_hw *hw, uint32_t timeout)
{
union ich8_hws_flash_ctrl hsflctl;
union ich8_hws_flash_status hsfsts;
int32_t error = E1000_ERR_EEPROM;
uint32_t i = 0;
/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL);
hsflctl.hsf_ctrl.flcgo = 1;
E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval);
/* wait till FDONE bit is set to 1 */
do {
hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
if (hsfsts.hsf_status.flcdone == 1)
break;
udelay(1);
i++;
} while (i < timeout);
if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0) {
error = E1000_SUCCESS;
}
return error;
}
/******************************************************************************
* Reads a byte or word from the NVM using the ICH8 flash access registers.
*
* hw - The pointer to the hw structure
* index - The index of the byte or word to read.
* size - Size of data to read, 1=byte 2=word
* data - Pointer to the word to store the value read.
*****************************************************************************/
int32_t
e1000_read_ich8_data(struct e1000_hw *hw, uint32_t index,
uint32_t size, uint16_t* data)
{
union ich8_hws_flash_status hsfsts;
union ich8_hws_flash_ctrl hsflctl;
uint32_t flash_linear_address;
uint32_t flash_data = 0;
int32_t error = -E1000_ERR_EEPROM;
int32_t count = 0;
DEBUGFUNC("e1000_read_ich8_data");
if (size < 1 || size > 2 || data == 0x0 ||
index > ICH8_FLASH_LINEAR_ADDR_MASK)
return error;
flash_linear_address = (ICH8_FLASH_LINEAR_ADDR_MASK & index) +
hw->flash_base_addr;
do {
udelay(1);
/* Steps */
error = e1000_ich8_cycle_init(hw);
if (error != E1000_SUCCESS)
break;
hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL);
/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
hsflctl.hsf_ctrl.fldbcount = size - 1;
hsflctl.hsf_ctrl.flcycle = ICH8_CYCLE_READ;
E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval);
/* Write the last 24 bits of index into Flash Linear address field in
* Flash Address */
/* TODO: TBD maybe check the index against the size of flash */
E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FADDR, flash_linear_address);
error = e1000_ich8_flash_cycle(hw, ICH8_FLASH_COMMAND_TIMEOUT);
/* Check if FCERR is set to 1, if set to 1, clear it and try the whole
* sequence a few more times, else read in (shift in) the Flash Data0,
* the order is least significant byte first msb to lsb */
if (error == E1000_SUCCESS) {
flash_data = E1000_READ_ICH8_REG(hw, ICH8_FLASH_FDATA0);
if (size == 1) {
*data = (uint8_t)(flash_data & 0x000000FF);
} else if (size == 2) {
*data = (uint16_t)(flash_data & 0x0000FFFF);
}
break;
} else {
/* If we've gotten here, then things are probably completely hosed,
* but if the error condition is detected, it won't hurt to give
* it another try...ICH8_FLASH_CYCLE_REPEAT_COUNT times.
*/
hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
if (hsfsts.hsf_status.flcerr == 1) {
/* Repeat for some time before giving up. */
continue;
} else if (hsfsts.hsf_status.flcdone == 0) {
DEBUGOUT("Timeout error - flash cycle did not complete.");
break;
}
}
} while (count++ < ICH8_FLASH_CYCLE_REPEAT_COUNT);
return error;
}
/******************************************************************************
* Writes One /two bytes to the NVM using the ICH8 flash access registers.
*
* hw - The pointer to the hw structure
* index - The index of the byte/word to read.
* size - Size of data to read, 1=byte 2=word
* data - The byte(s) to write to the NVM.
*****************************************************************************/
int32_t
e1000_write_ich8_data(struct e1000_hw *hw, uint32_t index, uint32_t size,
uint16_t data)
{
union ich8_hws_flash_status hsfsts;
union ich8_hws_flash_ctrl hsflctl;
uint32_t flash_linear_address;
uint32_t flash_data = 0;
int32_t error = -E1000_ERR_EEPROM;
int32_t count = 0;
DEBUGFUNC("e1000_write_ich8_data");
if (size < 1 || size > 2 || data > size * 0xff ||
index > ICH8_FLASH_LINEAR_ADDR_MASK)
return error;
flash_linear_address = (ICH8_FLASH_LINEAR_ADDR_MASK & index) +
hw->flash_base_addr;
do {
udelay(1);
/* Steps */
error = e1000_ich8_cycle_init(hw);
if (error != E1000_SUCCESS)
break;
hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL);
/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
hsflctl.hsf_ctrl.fldbcount = size -1;
hsflctl.hsf_ctrl.flcycle = ICH8_CYCLE_WRITE;
E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval);
/* Write the last 24 bits of index into Flash Linear address field in
* Flash Address */
E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FADDR, flash_linear_address);
if (size == 1)
flash_data = (uint32_t)data & 0x00FF;
else
flash_data = (uint32_t)data;
E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FDATA0, flash_data);
/* check if FCERR is set to 1 , if set to 1, clear it and try the whole
* sequence a few more times else done */
error = e1000_ich8_flash_cycle(hw, ICH8_FLASH_COMMAND_TIMEOUT);
if (error == E1000_SUCCESS) {
break;
} else {
/* If we're here, then things are most likely completely hosed,
* but if the error condition is detected, it won't hurt to give
* it another try...ICH8_FLASH_CYCLE_REPEAT_COUNT times.
*/
hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
if (hsfsts.hsf_status.flcerr == 1) {
/* Repeat for some time before giving up. */
continue;
} else if (hsfsts.hsf_status.flcdone == 0) {
DEBUGOUT("Timeout error - flash cycle did not complete.");
break;
}
}
} while (count++ < ICH8_FLASH_CYCLE_REPEAT_COUNT);
return error;
}
/******************************************************************************
* Reads a single byte from the NVM using the ICH8 flash access registers.
*
* hw - pointer to e1000_hw structure
* index - The index of the byte to read.
* data - Pointer to a byte to store the value read.
*****************************************************************************/
int32_t
e1000_read_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t* data)
{
int32_t status = E1000_SUCCESS;
uint16_t word = 0;
status = e1000_read_ich8_data(hw, index, 1, &word);
if (status == E1000_SUCCESS) {
*data = (uint8_t)word;
}
return status;
}
/******************************************************************************
* Writes a single byte to the NVM using the ICH8 flash access registers.
* Performs verification by reading back the value and then going through
* a retry algorithm before giving up.
*
* hw - pointer to e1000_hw structure
* index - The index of the byte to write.
* byte - The byte to write to the NVM.
*****************************************************************************/
int32_t
e1000_verify_write_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t byte)
{
int32_t error = E1000_SUCCESS;
int32_t program_retries;
uint8_t temp_byte;
e1000_write_ich8_byte(hw, index, byte);
udelay(100);
for (program_retries = 0; program_retries < 100; program_retries++) {
e1000_read_ich8_byte(hw, index, &temp_byte);
if (temp_byte == byte)
break;
udelay(10);
e1000_write_ich8_byte(hw, index, byte);
udelay(100);
}
if (program_retries == 100)
error = E1000_ERR_EEPROM;
return error;
}
/******************************************************************************
* Writes a single byte to the NVM using the ICH8 flash access registers.
*
* hw - pointer to e1000_hw structure
* index - The index of the byte to read.
* data - The byte to write to the NVM.
*****************************************************************************/
int32_t
e1000_write_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t data)
{
int32_t status = E1000_SUCCESS;
uint16_t word = (uint16_t)data;
status = e1000_write_ich8_data(hw, index, 1, word);
return status;
}
/******************************************************************************
* Reads a word from the NVM using the ICH8 flash access registers.
*
* hw - pointer to e1000_hw structure
* index - The starting byte index of the word to read.
* data - Pointer to a word to store the value read.
*****************************************************************************/
int32_t
e1000_read_ich8_word(struct e1000_hw *hw, uint32_t index, uint16_t *data)
{
int32_t status = E1000_SUCCESS;
status = e1000_read_ich8_data(hw, index, 2, data);
return status;
}
/******************************************************************************
* Writes a word to the NVM using the ICH8 flash access registers.
*
* hw - pointer to e1000_hw structure
* index - The starting byte index of the word to read.
* data - The word to write to the NVM.
*****************************************************************************/
int32_t
e1000_write_ich8_word(struct e1000_hw *hw, uint32_t index, uint16_t data)
{
int32_t status = E1000_SUCCESS;
status = e1000_write_ich8_data(hw, index, 2, data);
return status;
}
/******************************************************************************
* Erases the bank specified. Each bank is a 4k block. Segments are 0 based.
* segment N is 4096 * N + flash_reg_addr.
*
* hw - pointer to e1000_hw structure
* segment - 0 for first segment, 1 for second segment, etc.
*****************************************************************************/
int32_t
e1000_erase_ich8_4k_segment(struct e1000_hw *hw, uint32_t segment)
{
union ich8_hws_flash_status hsfsts;
union ich8_hws_flash_ctrl hsflctl;
uint32_t flash_linear_address;
int32_t count = 0;
int32_t error = E1000_ERR_EEPROM;
int32_t iteration, seg_size;
int32_t sector_size;
int32_t j = 0;
int32_t error_flag = 0;
hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
/* Determine HW Sector size: Read BERASE bits of Hw flash Status register */
/* 00: The Hw sector is 256 bytes, hence we need to erase 16
* consecutive sectors. The start index for the nth Hw sector can be
* calculated as = segment * 4096 + n * 256
* 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
* The start index for the nth Hw sector can be calculated
* as = segment * 4096
* 10: Error condition
* 11: The Hw sector size is much bigger than the size asked to
* erase...error condition */
if (hsfsts.hsf_status.berasesz == 0x0) {
/* Hw sector size 256 */
sector_size = seg_size = ICH8_FLASH_SEG_SIZE_256;
iteration = ICH8_FLASH_SECTOR_SIZE / ICH8_FLASH_SEG_SIZE_256;
} else if (hsfsts.hsf_status.berasesz == 0x1) {
sector_size = seg_size = ICH8_FLASH_SEG_SIZE_4K;
iteration = 1;
} else if (hsfsts.hsf_status.berasesz == 0x3) {
sector_size = seg_size = ICH8_FLASH_SEG_SIZE_64K;
iteration = 1;
} else {
return error;
}
for (j = 0; j < iteration ; j++) {
do {
count++;
/* Steps */
error = e1000_ich8_cycle_init(hw);
if (error != E1000_SUCCESS) {
error_flag = 1;
break;
}
/* Write a value 11 (block Erase) in Flash Cycle field in Hw flash
* Control */
hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL);
hsflctl.hsf_ctrl.flcycle = ICH8_CYCLE_ERASE;
E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval);
/* Write the last 24 bits of an index within the block into Flash
* Linear address field in Flash Address. This probably needs to
* be calculated here based off the on-chip segment size and the
* software segment size assumed (4K) */
/* TBD */
flash_linear_address = segment * sector_size + j * seg_size;
flash_linear_address &= ICH8_FLASH_LINEAR_ADDR_MASK;
flash_linear_address += hw->flash_base_addr;
E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FADDR, flash_linear_address);
error = e1000_ich8_flash_cycle(hw, 1000000);
/* Check if FCERR is set to 1. If 1, clear it and try the whole
* sequence a few more times else Done */
if (error == E1000_SUCCESS) {
break;
} else {
hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
if (hsfsts.hsf_status.flcerr == 1) {
/* repeat for some time before giving up */
continue;
} else if (hsfsts.hsf_status.flcdone == 0) {
error_flag = 1;
break;
}
}
} while ((count < ICH8_FLASH_CYCLE_REPEAT_COUNT) && !error_flag);
if (error_flag == 1)
break;
}
if (error_flag != 1)
error = E1000_SUCCESS;
return error;
}
/******************************************************************************
*
* Reverse duplex setting without breaking the link.
*
* hw: Struct containing variables accessed by shared code
*
*****************************************************************************/
int32_t
e1000_duplex_reversal(struct e1000_hw *hw)
{
int32_t ret_val;
uint16_t phy_data;
if (hw->phy_type != e1000_phy_igp_3)
return E1000_SUCCESS;
ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
if (ret_val)
return ret_val;
phy_data ^= MII_CR_FULL_DUPLEX;
ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
if (ret_val)
return ret_val;
ret_val = e1000_read_phy_reg(hw, IGP3E1000_PHY_MISC_CTRL, &phy_data);
if (ret_val)
return ret_val;
phy_data |= IGP3_PHY_MISC_DUPLEX_MANUAL_SET;
ret_val = e1000_write_phy_reg(hw, IGP3E1000_PHY_MISC_CTRL, phy_data);
return ret_val;
}
int32_t
e1000_init_lcd_from_nvm_config_region(struct e1000_hw *hw,
uint32_t cnf_base_addr, uint32_t cnf_size)
{
uint32_t ret_val = E1000_SUCCESS;
uint16_t word_addr, reg_data, reg_addr;
uint16_t i;
/* cnf_base_addr is in DWORD */
word_addr = (uint16_t)(cnf_base_addr << 1);
/* cnf_size is returned in size of dwords */
for (i = 0; i < cnf_size; i++) {
ret_val = e1000_read_eeprom(hw, (word_addr + i*2), 1, &reg_data);
if (ret_val)
return ret_val;
ret_val = e1000_read_eeprom(hw, (word_addr + i*2 + 1), 1, &reg_addr);
if (ret_val)
return ret_val;
ret_val = e1000_get_software_flag(hw);
if (ret_val != E1000_SUCCESS)
return ret_val;
ret_val = e1000_write_phy_reg_ex(hw, (uint32_t)reg_addr, reg_data);
e1000_release_software_flag(hw);
}
return ret_val;
}
int32_t
e1000_init_lcd_from_nvm(struct e1000_hw *hw)
{
uint32_t reg_data, cnf_base_addr, cnf_size, ret_val, loop;
if (hw->phy_type != e1000_phy_igp_3)
return E1000_SUCCESS;
/* Check if SW needs configure the PHY */
reg_data = E1000_READ_REG(hw, FEXTNVM);
if (!(reg_data & FEXTNVM_SW_CONFIG))
return E1000_SUCCESS;
/* Wait for basic configuration completes before proceeding*/
loop = 0;
do {
reg_data = E1000_READ_REG(hw, STATUS) & E1000_STATUS_LAN_INIT_DONE;
udelay(100);
loop++;
} while ((!reg_data) && (loop < 50));
/* Clear the Init Done bit for the next init event */
reg_data = E1000_READ_REG(hw, STATUS);
reg_data &= ~E1000_STATUS_LAN_INIT_DONE;
E1000_WRITE_REG(hw, STATUS, reg_data);
/* Make sure HW does not configure LCD from PHY extended configuration
before SW configuration */
reg_data = E1000_READ_REG(hw, EXTCNF_CTRL);
if ((reg_data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE) == 0x0000) {
reg_data = E1000_READ_REG(hw, EXTCNF_SIZE);
cnf_size = reg_data & E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH;
cnf_size >>= 16;
if (cnf_size) {
reg_data = E1000_READ_REG(hw, EXTCNF_CTRL);
cnf_base_addr = reg_data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER;
/* cnf_base_addr is in DWORD */
cnf_base_addr >>= 16;
/* Configure LCD from extended configuration region. */
ret_val = e1000_init_lcd_from_nvm_config_region(hw, cnf_base_addr,
cnf_size);
if (ret_val)
return ret_val;
}
}
return E1000_SUCCESS;
}
......@@ -62,6 +62,7 @@ typedef enum {
e1000_82572,
e1000_82573,
e1000_80003es2lan,
e1000_ich8lan,
e1000_num_macs
} e1000_mac_type;
......@@ -70,6 +71,7 @@ typedef enum {
e1000_eeprom_spi,
e1000_eeprom_microwire,
e1000_eeprom_flash,
e1000_eeprom_ich8,
e1000_eeprom_none, /* No NVM support */
e1000_num_eeprom_types
} e1000_eeprom_type;
......@@ -98,6 +100,11 @@ typedef enum {
e1000_fc_default = 0xFF
} e1000_fc_type;
struct e1000_shadow_ram {
uint16_t eeprom_word;
boolean_t modified;
};
/* PCI bus types */
typedef enum {
e1000_bus_type_unknown = 0,
......@@ -218,6 +225,8 @@ typedef enum {
e1000_phy_igp,
e1000_phy_igp_2,
e1000_phy_gg82563,
e1000_phy_igp_3,
e1000_phy_ife,
e1000_phy_undefined = 0xFF
} e1000_phy_type;
......@@ -313,6 +322,10 @@ int32_t e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *phy
int32_t e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data);
int32_t e1000_phy_hw_reset(struct e1000_hw *hw);
int32_t e1000_phy_reset(struct e1000_hw *hw);
void e1000_phy_powerdown_workaround(struct e1000_hw *hw);
int32_t e1000_kumeran_lock_loss_workaround(struct e1000_hw *hw);
int32_t e1000_init_lcd_from_nvm_config_region(struct e1000_hw *hw, uint32_t cnf_base_addr, uint32_t cnf_size);
int32_t e1000_init_lcd_from_nvm(struct e1000_hw *hw);
int32_t e1000_phy_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info);
int32_t e1000_validate_mdi_setting(struct e1000_hw *hw);
int32_t e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *data);
......@@ -331,6 +344,7 @@ uint32_t e1000_enable_mng_pass_thru(struct e1000_hw *hw);
#define E1000_MNG_DHCP_COOKIE_OFFSET 0x6F0 /* Cookie offset */
#define E1000_MNG_DHCP_COOKIE_LENGTH 0x10 /* Cookie length */
#define E1000_MNG_IAMT_MODE 0x3
#define E1000_MNG_ICH_IAMT_MODE 0x2
#define E1000_IAMT_SIGNATURE 0x544D4149 /* Intel(R) Active Management Technology signature */
#define E1000_MNG_DHCP_COOKIE_STATUS_PARSING_SUPPORT 0x1 /* DHCP parsing enabled */
......@@ -388,6 +402,8 @@ int32_t e1000_read_part_num(struct e1000_hw *hw, uint32_t * part_num);
int32_t e1000_read_mac_addr(struct e1000_hw * hw);
int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask);
void e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask);
void e1000_release_software_flag(struct e1000_hw *hw);
int32_t e1000_get_software_flag(struct e1000_hw *hw);
/* Filters (multicast, vlan, receive) */
void e1000_mc_addr_list_update(struct e1000_hw *hw, uint8_t * mc_addr_list, uint32_t mc_addr_count, uint32_t pad, uint32_t rar_used_count);
......@@ -401,6 +417,7 @@ int32_t e1000_setup_led(struct e1000_hw *hw);
int32_t e1000_cleanup_led(struct e1000_hw *hw);
int32_t e1000_led_on(struct e1000_hw *hw);
int32_t e1000_led_off(struct e1000_hw *hw);
int32_t e1000_blink_led_start(struct e1000_hw *hw);
/* Adaptive IFS Functions */
......@@ -422,6 +439,29 @@ int32_t e1000_disable_pciex_master(struct e1000_hw *hw);
int32_t e1000_get_software_semaphore(struct e1000_hw *hw);
void e1000_release_software_semaphore(struct e1000_hw *hw);
int32_t e1000_check_phy_reset_block(struct e1000_hw *hw);
int32_t e1000_set_pci_ex_no_snoop(struct e1000_hw *hw, uint32_t no_snoop);
int32_t e1000_read_ich8_byte(struct e1000_hw *hw, uint32_t index,
uint8_t *data);
int32_t e1000_verify_write_ich8_byte(struct e1000_hw *hw, uint32_t index,
uint8_t byte);
int32_t e1000_write_ich8_byte(struct e1000_hw *hw, uint32_t index,
uint8_t byte);
int32_t e1000_read_ich8_word(struct e1000_hw *hw, uint32_t index,
uint16_t *data);
int32_t e1000_read_ich8_data(struct e1000_hw *hw, uint32_t index,
uint32_t size, uint16_t *data);
int32_t e1000_read_eeprom_ich8(struct e1000_hw *hw, uint16_t offset,
uint16_t words, uint16_t *data);
int32_t e1000_write_eeprom_ich8(struct e1000_hw *hw, uint16_t offset,
uint16_t words, uint16_t *data);
int32_t e1000_erase_ich8_4k_segment(struct e1000_hw *hw, uint32_t segment);
#define E1000_READ_REG_IO(a, reg) \
e1000_read_reg_io((a), E1000_##reg)
#define E1000_WRITE_REG_IO(a, reg, val) \
e1000_write_reg_io((a), E1000_##reg, val)
/* PCI Device IDs */
#define E1000_DEV_ID_82542 0x1000
......@@ -446,6 +486,7 @@ int32_t e1000_check_phy_reset_block(struct e1000_hw *hw);
#define E1000_DEV_ID_82546EB_QUAD_COPPER 0x101D
#define E1000_DEV_ID_82541EI 0x1013
#define E1000_DEV_ID_82541EI_MOBILE 0x1018
#define E1000_DEV_ID_82541ER_LOM 0x1014
#define E1000_DEV_ID_82541ER 0x1078
#define E1000_DEV_ID_82547GI 0x1075
#define E1000_DEV_ID_82541GI 0x1076
......@@ -457,18 +498,28 @@ int32_t e1000_check_phy_reset_block(struct e1000_hw *hw);
#define E1000_DEV_ID_82546GB_PCIE 0x108A
#define E1000_DEV_ID_82546GB_QUAD_COPPER 0x1099
#define E1000_DEV_ID_82547EI 0x1019
#define E1000_DEV_ID_82547EI_MOBILE 0x101A
#define E1000_DEV_ID_82571EB_COPPER 0x105E
#define E1000_DEV_ID_82571EB_FIBER 0x105F
#define E1000_DEV_ID_82571EB_SERDES 0x1060
#define E1000_DEV_ID_82572EI_COPPER 0x107D
#define E1000_DEV_ID_82572EI_FIBER 0x107E
#define E1000_DEV_ID_82572EI_SERDES 0x107F
#define E1000_DEV_ID_82572EI 0x10B9
#define E1000_DEV_ID_82573E 0x108B
#define E1000_DEV_ID_82573E_IAMT 0x108C
#define E1000_DEV_ID_82573L 0x109A
#define E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3 0x10B5
#define E1000_DEV_ID_80003ES2LAN_COPPER_DPT 0x1096
#define E1000_DEV_ID_80003ES2LAN_SERDES_DPT 0x1098
#define E1000_DEV_ID_80003ES2LAN_COPPER_SPT 0x10BA
#define E1000_DEV_ID_80003ES2LAN_SERDES_SPT 0x10BB
#define E1000_DEV_ID_ICH8_IGP_M_AMT 0x1049
#define E1000_DEV_ID_ICH8_IGP_AMT 0x104A
#define E1000_DEV_ID_ICH8_IGP_C 0x104B
#define E1000_DEV_ID_ICH8_IFE 0x104C
#define E1000_DEV_ID_ICH8_IGP_M 0x104D
#define NODE_ADDRESS_SIZE 6
......@@ -539,6 +590,14 @@ int32_t e1000_check_phy_reset_block(struct e1000_hw *hw);
E1000_IMS_RXSEQ | \
E1000_IMS_LSC)
/* Additional interrupts need to be handled for e1000_ich8lan:
DSW = The FW changed the status of the DISSW bit in FWSM
PHYINT = The LAN connected device generates an interrupt
EPRST = Manageability reset event */
#define IMS_ICH8LAN_ENABLE_MASK (\
E1000_IMS_DSW | \
E1000_IMS_PHYINT | \
E1000_IMS_EPRST)
/* Number of high/low register pairs in the RAR. The RAR (Receive Address
* Registers) holds the directed and multicast addresses that we monitor. We
......@@ -546,6 +605,7 @@ int32_t e1000_check_phy_reset_block(struct e1000_hw *hw);
* E1000_RAR_ENTRIES - 1 multicast addresses.
*/
#define E1000_RAR_ENTRIES 15
#define E1000_RAR_ENTRIES_ICH8LAN 7
#define MIN_NUMBER_OF_DESCRIPTORS 8
#define MAX_NUMBER_OF_DESCRIPTORS 0xFFF8
......@@ -767,6 +827,9 @@ struct e1000_data_desc {
#define E1000_MC_TBL_SIZE 128 /* Multicast Filter Table (4096 bits) */
#define E1000_VLAN_FILTER_TBL_SIZE 128 /* VLAN Filter Table (4096 bits) */
#define E1000_NUM_UNICAST_ICH8LAN 7
#define E1000_MC_TBL_SIZE_ICH8LAN 32
/* Receive Address Register */
struct e1000_rar {
......@@ -776,6 +839,7 @@ struct e1000_rar {
/* Number of entries in the Multicast Table Array (MTA). */
#define E1000_NUM_MTA_REGISTERS 128
#define E1000_NUM_MTA_REGISTERS_ICH8LAN 32
/* IPv4 Address Table Entry */
struct e1000_ipv4_at_entry {
......@@ -786,6 +850,7 @@ struct e1000_ipv4_at_entry {
/* Four wakeup IP addresses are supported */
#define E1000_WAKEUP_IP_ADDRESS_COUNT_MAX 4
#define E1000_IP4AT_SIZE E1000_WAKEUP_IP_ADDRESS_COUNT_MAX
#define E1000_IP4AT_SIZE_ICH8LAN 3
#define E1000_IP6AT_SIZE 1
/* IPv6 Address Table Entry */
......@@ -844,6 +909,7 @@ struct e1000_ffvt_entry {
#define E1000_FLA 0x0001C /* Flash Access - RW */
#define E1000_MDIC 0x00020 /* MDI Control - RW */
#define E1000_SCTL 0x00024 /* SerDes Control - RW */
#define E1000_FEXTNVM 0x00028 /* Future Extended NVM register */
#define E1000_FCAL 0x00028 /* Flow Control Address Low - RW */
#define E1000_FCAH 0x0002C /* Flow Control Address High -RW */
#define E1000_FCT 0x00030 /* Flow Control Type - RW */
......@@ -872,6 +938,8 @@ struct e1000_ffvt_entry {
#define E1000_LEDCTL 0x00E00 /* LED Control - RW */
#define E1000_EXTCNF_CTRL 0x00F00 /* Extended Configuration Control */
#define E1000_EXTCNF_SIZE 0x00F08 /* Extended Configuration Size */
#define E1000_PHY_CTRL 0x00F10 /* PHY Control Register in CSR */
#define FEXTNVM_SW_CONFIG 0x0001
#define E1000_PBA 0x01000 /* Packet Buffer Allocation - RW */
#define E1000_PBS 0x01008 /* Packet Buffer Size */
#define E1000_EEMNGCTL 0x01010 /* MNG EEprom Control */
......@@ -899,11 +967,13 @@ struct e1000_ffvt_entry {
#define E1000_RDH0 E1000_RDH /* RX Desc Head (0) - RW */
#define E1000_RDT0 E1000_RDT /* RX Desc Tail (0) - RW */
#define E1000_RDTR0 E1000_RDTR /* RX Delay Timer (0) - RW */
#define E1000_RXDCTL 0x02828 /* RX Descriptor Control - RW */
#define E1000_RXDCTL 0x02828 /* RX Descriptor Control queue 0 - RW */
#define E1000_RXDCTL1 0x02928 /* RX Descriptor Control queue 1 - RW */
#define E1000_RADV 0x0282C /* RX Interrupt Absolute Delay Timer - RW */
#define E1000_RSRPD 0x02C00 /* RX Small Packet Detect - RW */
#define E1000_RAID 0x02C08 /* Receive Ack Interrupt Delay - RW */
#define E1000_TXDMAC 0x03000 /* TX DMA Control - RW */
#define E1000_KABGTXD 0x03004 /* AFE Band Gap Transmit Ref Data */
#define E1000_TDFH 0x03410 /* TX Data FIFO Head - RW */
#define E1000_TDFT 0x03418 /* TX Data FIFO Tail - RW */
#define E1000_TDFHS 0x03420 /* TX Data FIFO Head Saved - RW */
......@@ -1050,6 +1120,7 @@ struct e1000_ffvt_entry {
#define E1000_82542_FLA E1000_FLA
#define E1000_82542_MDIC E1000_MDIC
#define E1000_82542_SCTL E1000_SCTL
#define E1000_82542_FEXTNVM E1000_FEXTNVM
#define E1000_82542_FCAL E1000_FCAL
#define E1000_82542_FCAH E1000_FCAH
#define E1000_82542_FCT E1000_FCT
......@@ -1073,6 +1144,19 @@ struct e1000_ffvt_entry {
#define E1000_82542_RDLEN0 E1000_82542_RDLEN
#define E1000_82542_RDH0 E1000_82542_RDH
#define E1000_82542_RDT0 E1000_82542_RDT
#define E1000_82542_SRRCTL(_n) (0x280C + ((_n) << 8)) /* Split and Replication
* RX Control - RW */
#define E1000_82542_DCA_RXCTRL(_n) (0x02814 + ((_n) << 8))
#define E1000_82542_RDBAH3 0x02B04 /* RX Desc Base High Queue 3 - RW */
#define E1000_82542_RDBAL3 0x02B00 /* RX Desc Low Queue 3 - RW */
#define E1000_82542_RDLEN3 0x02B08 /* RX Desc Length Queue 3 - RW */
#define E1000_82542_RDH3 0x02B10 /* RX Desc Head Queue 3 - RW */
#define E1000_82542_RDT3 0x02B18 /* RX Desc Tail Queue 3 - RW */
#define E1000_82542_RDBAL2 0x02A00 /* RX Desc Base Low Queue 2 - RW */
#define E1000_82542_RDBAH2 0x02A04 /* RX Desc Base High Queue 2 - RW */
#define E1000_82542_RDLEN2 0x02A08 /* RX Desc Length Queue 2 - RW */
#define E1000_82542_RDH2 0x02A10 /* RX Desc Head Queue 2 - RW */
#define E1000_82542_RDT2 0x02A18 /* RX Desc Tail Queue 2 - RW */
#define E1000_82542_RDTR1 0x00130
#define E1000_82542_RDBAL1 0x00138
#define E1000_82542_RDBAH1 0x0013C
......@@ -1110,11 +1194,14 @@ struct e1000_ffvt_entry {
#define E1000_82542_FLOP E1000_FLOP
#define E1000_82542_EXTCNF_CTRL E1000_EXTCNF_CTRL
#define E1000_82542_EXTCNF_SIZE E1000_EXTCNF_SIZE
#define E1000_82542_PHY_CTRL E1000_PHY_CTRL
#define E1000_82542_ERT E1000_ERT
#define E1000_82542_RXDCTL E1000_RXDCTL
#define E1000_82542_RXDCTL1 E1000_RXDCTL1
#define E1000_82542_RADV E1000_RADV
#define E1000_82542_RSRPD E1000_RSRPD
#define E1000_82542_TXDMAC E1000_TXDMAC
#define E1000_82542_KABGTXD E1000_KABGTXD
#define E1000_82542_TDFHS E1000_TDFHS
#define E1000_82542_TDFTS E1000_TDFTS
#define E1000_82542_TDFPC E1000_TDFPC
......@@ -1310,13 +1397,16 @@ struct e1000_hw_stats {
/* Structure containing variables used by the shared code (e1000_hw.c) */
struct e1000_hw {
uint8_t __iomem *hw_addr;
uint8_t *hw_addr;
uint8_t *flash_address;
e1000_mac_type mac_type;
e1000_phy_type phy_type;
uint32_t phy_init_script;
e1000_media_type media_type;
void *back;
struct e1000_shadow_ram *eeprom_shadow_ram;
uint32_t flash_bank_size;
uint32_t flash_base_addr;
e1000_fc_type fc;
e1000_bus_speed bus_speed;
e1000_bus_width bus_width;
......@@ -1328,6 +1418,7 @@ struct e1000_hw {
uint32_t asf_firmware_present;
uint32_t eeprom_semaphore_present;
uint32_t swfw_sync_present;
uint32_t swfwhw_semaphore_present;
unsigned long io_base;
uint32_t phy_id;
uint32_t phy_revision;
......@@ -1387,6 +1478,7 @@ struct e1000_hw {
boolean_t in_ifs_mode;
boolean_t mng_reg_access_disabled;
boolean_t leave_av_bit_off;
boolean_t kmrn_lock_loss_workaround_disabled;
};
......@@ -1435,6 +1527,7 @@ struct e1000_hw {
#define E1000_CTRL_RTE 0x20000000 /* Routing tag enable */
#define E1000_CTRL_VME 0x40000000 /* IEEE VLAN mode enable */
#define E1000_CTRL_PHY_RST 0x80000000 /* PHY Reset */
#define E1000_CTRL_SW2FW_INT 0x02000000 /* Initiate an interrupt to manageability engine */
/* Device Status */
#define E1000_STATUS_FD 0x00000001 /* Full duplex.0=half,1=full */
......@@ -1449,6 +1542,8 @@ struct e1000_hw {
#define E1000_STATUS_SPEED_10 0x00000000 /* Speed 10Mb/s */
#define E1000_STATUS_SPEED_100 0x00000040 /* Speed 100Mb/s */
#define E1000_STATUS_SPEED_1000 0x00000080 /* Speed 1000Mb/s */
#define E1000_STATUS_LAN_INIT_DONE 0x00000200 /* Lan Init Completion
by EEPROM/Flash */
#define E1000_STATUS_ASDV 0x00000300 /* Auto speed detect value */
#define E1000_STATUS_DOCK_CI 0x00000800 /* Change in Dock/Undock state. Clear on write '0'. */
#define E1000_STATUS_GIO_MASTER_ENABLE 0x00080000 /* Status of Master requests. */
......@@ -1506,6 +1601,10 @@ struct e1000_hw {
#define E1000_STM_OPCODE 0xDB00
#define E1000_HICR_FW_RESET 0xC0
#define E1000_SHADOW_RAM_WORDS 2048
#define E1000_ICH8_NVM_SIG_WORD 0x13
#define E1000_ICH8_NVM_SIG_MASK 0xC0
/* EEPROM Read */
#define E1000_EERD_START 0x00000001 /* Start Read */
#define E1000_EERD_DONE 0x00000010 /* Read Done */
......@@ -1551,7 +1650,6 @@ struct e1000_hw {
#define E1000_CTRL_EXT_WR_WMARK_320 0x01000000
#define E1000_CTRL_EXT_WR_WMARK_384 0x02000000
#define E1000_CTRL_EXT_WR_WMARK_448 0x03000000
#define E1000_CTRL_EXT_CANC 0x04000000 /* Interrupt delay cancellation */
#define E1000_CTRL_EXT_DRV_LOAD 0x10000000 /* Driver loaded bit for FW */
#define E1000_CTRL_EXT_IAME 0x08000000 /* Interrupt acknowledge Auto-mask */
#define E1000_CTRL_EXT_INT_TIMER_CLR 0x20000000 /* Clear Interrupt timers after IMS clear */
......@@ -1591,12 +1689,31 @@ struct e1000_hw {
#define E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS 0x00000800
/* In-Band Control */
#define E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT 0x00000500
#define E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING 0x00000010
/* Half-Duplex Control */
#define E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT 0x00000004
#define E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT 0x00000000
#define E1000_KUMCTRLSTA_OFFSET_K0S_CTRL 0x0000001E
#define E1000_KUMCTRLSTA_DIAG_FELPBK 0x2000
#define E1000_KUMCTRLSTA_DIAG_NELPBK 0x1000
#define E1000_KUMCTRLSTA_K0S_100_EN 0x2000
#define E1000_KUMCTRLSTA_K0S_GBE_EN 0x1000
#define E1000_KUMCTRLSTA_K0S_ENTRY_LATENCY_MASK 0x0003
#define E1000_KABGTXD_BGSQLBIAS 0x00050000
#define E1000_PHY_CTRL_SPD_EN 0x00000001
#define E1000_PHY_CTRL_D0A_LPLU 0x00000002
#define E1000_PHY_CTRL_NOND0A_LPLU 0x00000004
#define E1000_PHY_CTRL_NOND0A_GBE_DISABLE 0x00000008
#define E1000_PHY_CTRL_GBE_DISABLE 0x00000040
#define E1000_PHY_CTRL_B2B_EN 0x00000080
/* LED Control */
#define E1000_LEDCTL_LED0_MODE_MASK 0x0000000F
#define E1000_LEDCTL_LED0_MODE_SHIFT 0
......@@ -1666,6 +1783,9 @@ struct e1000_hw {
#define E1000_ICR_RXD_FIFO_PAR1 0x01000000 /* queue 1 Rx descriptor FIFO parity error */
#define E1000_ICR_TXD_FIFO_PAR1 0x02000000 /* queue 1 Tx descriptor FIFO parity error */
#define E1000_ICR_ALL_PARITY 0x03F00000 /* all parity error bits */
#define E1000_ICR_DSW 0x00000020 /* FW changed the status of DISSW bit in the FWSM */
#define E1000_ICR_PHYINT 0x00001000 /* LAN connected device generates an interrupt */
#define E1000_ICR_EPRST 0x00100000 /* ME handware reset occurs */
/* Interrupt Cause Set */
#define E1000_ICS_TXDW E1000_ICR_TXDW /* Transmit desc written back */
......@@ -1692,6 +1812,9 @@ struct e1000_hw {
#define E1000_ICS_PB_PAR E1000_ICR_PB_PAR /* packet buffer parity error */
#define E1000_ICS_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1 /* queue 1 Rx descriptor FIFO parity error */
#define E1000_ICS_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1 /* queue 1 Tx descriptor FIFO parity error */
#define E1000_ICS_DSW E1000_ICR_DSW
#define E1000_ICS_PHYINT E1000_ICR_PHYINT
#define E1000_ICS_EPRST E1000_ICR_EPRST
/* Interrupt Mask Set */
#define E1000_IMS_TXDW E1000_ICR_TXDW /* Transmit desc written back */
......@@ -1718,6 +1841,9 @@ struct e1000_hw {
#define E1000_IMS_PB_PAR E1000_ICR_PB_PAR /* packet buffer parity error */
#define E1000_IMS_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1 /* queue 1 Rx descriptor FIFO parity error */
#define E1000_IMS_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1 /* queue 1 Tx descriptor FIFO parity error */
#define E1000_IMS_DSW E1000_ICR_DSW
#define E1000_IMS_PHYINT E1000_ICR_PHYINT
#define E1000_IMS_EPRST E1000_ICR_EPRST
/* Interrupt Mask Clear */
#define E1000_IMC_TXDW E1000_ICR_TXDW /* Transmit desc written back */
......@@ -1744,6 +1870,9 @@ struct e1000_hw {
#define E1000_IMC_PB_PAR E1000_ICR_PB_PAR /* packet buffer parity error */
#define E1000_IMC_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1 /* queue 1 Rx descriptor FIFO parity error */
#define E1000_IMC_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1 /* queue 1 Tx descriptor FIFO parity error */
#define E1000_IMC_DSW E1000_ICR_DSW
#define E1000_IMC_PHYINT E1000_ICR_PHYINT
#define E1000_IMC_EPRST E1000_ICR_EPRST
/* Receive Control */
#define E1000_RCTL_RST 0x00000001 /* Software reset */
......@@ -1918,9 +2047,10 @@ struct e1000_hw {
#define E1000_MRQC_RSS_FIELD_MASK 0xFFFF0000
#define E1000_MRQC_RSS_FIELD_IPV4_TCP 0x00010000
#define E1000_MRQC_RSS_FIELD_IPV4 0x00020000
#define E1000_MRQC_RSS_FIELD_IPV6_TCP 0x00040000
#define E1000_MRQC_RSS_FIELD_IPV6_TCP_EX 0x00040000
#define E1000_MRQC_RSS_FIELD_IPV6_EX 0x00080000
#define E1000_MRQC_RSS_FIELD_IPV6 0x00100000
#define E1000_MRQC_RSS_FIELD_IPV6_TCP 0x00200000
/* Definitions for power management and wakeup registers */
/* Wake Up Control */
......@@ -2010,6 +2140,15 @@ struct e1000_hw {
#define E1000_FWSM_MODE_SHIFT 1
#define E1000_FWSM_FW_VALID 0x00008000 /* FW established a valid mode */
#define E1000_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI reset */
#define E1000_FWSM_DISSW 0x10000000 /* FW disable SW Write Access */
#define E1000_FWSM_SKUSEL_MASK 0x60000000 /* LAN SKU select */
#define E1000_FWSM_SKUEL_SHIFT 29
#define E1000_FWSM_SKUSEL_EMB 0x0 /* Embedded SKU */
#define E1000_FWSM_SKUSEL_CONS 0x1 /* Consumer SKU */
#define E1000_FWSM_SKUSEL_PERF_100 0x2 /* Perf & Corp 10/100 SKU */
#define E1000_FWSM_SKUSEL_PERF_GBE 0x3 /* Perf & Copr GbE SKU */
/* FFLT Debug Register */
#define E1000_FFLT_DBG_INVC 0x00100000 /* Invalid /C/ code handling */
......@@ -2082,6 +2221,8 @@ struct e1000_host_command_info {
E1000_GCR_TXDSCW_NO_SNOOP | \
E1000_GCR_TXDSCR_NO_SNOOP)
#define PCI_EX_82566_SNOOP_ALL PCI_EX_NO_SNOOP_ALL
#define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000
/* Function Active and Power State to MNG */
#define E1000_FACTPS_FUNC0_POWER_STATE_MASK 0x00000003
......@@ -2140,8 +2281,10 @@ struct e1000_host_command_info {
#define EEPROM_PHY_CLASS_WORD 0x0007
#define EEPROM_INIT_CONTROL1_REG 0x000A
#define EEPROM_INIT_CONTROL2_REG 0x000F
#define EEPROM_SWDEF_PINS_CTRL_PORT_1 0x0010
#define EEPROM_INIT_CONTROL3_PORT_B 0x0014
#define EEPROM_INIT_3GIO_3 0x001A
#define EEPROM_SWDEF_PINS_CTRL_PORT_0 0x0020
#define EEPROM_INIT_CONTROL3_PORT_A 0x0024
#define EEPROM_CFG 0x0012
#define EEPROM_FLASH_VERSION 0x0032
......@@ -2153,10 +2296,16 @@ struct e1000_host_command_info {
/* Word definitions for ID LED Settings */
#define ID_LED_RESERVED_0000 0x0000
#define ID_LED_RESERVED_FFFF 0xFFFF
#define ID_LED_RESERVED_82573 0xF746
#define ID_LED_DEFAULT_82573 0x1811
#define ID_LED_DEFAULT ((ID_LED_OFF1_ON2 << 12) | \
(ID_LED_OFF1_OFF2 << 8) | \
(ID_LED_DEF1_DEF2 << 4) | \
(ID_LED_DEF1_DEF2))
#define ID_LED_DEFAULT_ICH8LAN ((ID_LED_DEF1_DEF2 << 12) | \
(ID_LED_DEF1_OFF2 << 8) | \
(ID_LED_DEF1_ON2 << 4) | \
(ID_LED_DEF1_DEF2))
#define ID_LED_DEF1_DEF2 0x1
#define ID_LED_DEF1_ON2 0x2
#define ID_LED_DEF1_OFF2 0x3
......@@ -2191,6 +2340,11 @@ struct e1000_host_command_info {
#define EEPROM_WORD0F_ASM_DIR 0x2000
#define EEPROM_WORD0F_ANE 0x0800
#define EEPROM_WORD0F_SWPDIO_EXT 0x00F0
#define EEPROM_WORD0F_LPLU 0x0001
/* Mask bits for fields in Word 0x10/0x20 of the EEPROM */
#define EEPROM_WORD1020_GIGA_DISABLE 0x0010
#define EEPROM_WORD1020_GIGA_DISABLE_NON_D0A 0x0008
/* Mask bits for fields in Word 0x1a of the EEPROM */
#define EEPROM_WORD1A_ASPM_MASK 0x000C
......@@ -2265,23 +2419,29 @@ struct e1000_host_command_info {
#define E1000_EXTCNF_CTRL_D_UD_OWNER 0x00000010
#define E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP 0x00000020
#define E1000_EXTCNF_CTRL_MDIO_HW_OWNERSHIP 0x00000040
#define E1000_EXTCNF_CTRL_EXT_CNF_POINTER 0x1FFF0000
#define E1000_EXTCNF_CTRL_EXT_CNF_POINTER 0x0FFF0000
#define E1000_EXTCNF_SIZE_EXT_PHY_LENGTH 0x000000FF
#define E1000_EXTCNF_SIZE_EXT_DOCK_LENGTH 0x0000FF00
#define E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH 0x00FF0000
#define E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE 0x00000001
#define E1000_EXTCNF_CTRL_SWFLAG 0x00000020
/* PBA constants */
#define E1000_PBA_8K 0x0008 /* 8KB, default Rx allocation */
#define E1000_PBA_12K 0x000C /* 12KB, default Rx allocation */
#define E1000_PBA_16K 0x0010 /* 16KB, default TX allocation */
#define E1000_PBA_22K 0x0016
#define E1000_PBA_24K 0x0018
#define E1000_PBA_30K 0x001E
#define E1000_PBA_32K 0x0020
#define E1000_PBA_34K 0x0022
#define E1000_PBA_38K 0x0026
#define E1000_PBA_40K 0x0028
#define E1000_PBA_48K 0x0030 /* 48KB, default RX allocation */
#define E1000_PBS_16K E1000_PBA_16K
/* Flow Control Constants */
#define FLOW_CONTROL_ADDRESS_LOW 0x00C28001
#define FLOW_CONTROL_ADDRESS_HIGH 0x00000100
......@@ -2336,7 +2496,7 @@ struct e1000_host_command_info {
/* Number of milliseconds we wait for Eeprom auto read bit done after MAC reset */
#define AUTO_READ_DONE_TIMEOUT 10
/* Number of milliseconds we wait for PHY configuration done after MAC reset */
#define PHY_CFG_TIMEOUT 40
#define PHY_CFG_TIMEOUT 100
#define E1000_TX_BUFFER_SIZE ((uint32_t)1514)
......@@ -2764,6 +2924,17 @@ struct e1000_host_command_info {
#define M88E1000_EPSCR_TX_CLK_25 0x0070 /* 25 MHz TX_CLK */
#define M88E1000_EPSCR_TX_CLK_0 0x0000 /* NO TX_CLK */
/* M88EC018 Rev 2 specific DownShift settings */
#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK 0x0E00
#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_1X 0x0000
#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_2X 0x0200
#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_3X 0x0400
#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_4X 0x0600
#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X 0x0800
#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_6X 0x0A00
#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_7X 0x0C00
#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_8X 0x0E00
/* IGP01E1000 Specific Port Config Register - R/W */
#define IGP01E1000_PSCFR_AUTO_MDIX_PAR_DETECT 0x0010
#define IGP01E1000_PSCFR_PRE_EN 0x0020
......@@ -2990,6 +3161,221 @@ struct e1000_host_command_info {
#define L1LXT971A_PHY_ID 0x001378E0
#define GG82563_E_PHY_ID 0x01410CA0
/* Bits...
* 15-5: page
* 4-0: register offset
*/
#define PHY_PAGE_SHIFT 5
#define PHY_REG(page, reg) \
(((page) << PHY_PAGE_SHIFT) | ((reg) & MAX_PHY_REG_ADDRESS))
#define IGP3_PHY_PORT_CTRL \
PHY_REG(769, 17) /* Port General Configuration */
#define IGP3_PHY_RATE_ADAPT_CTRL \
PHY_REG(769, 25) /* Rate Adapter Control Register */
#define IGP3_KMRN_FIFO_CTRL_STATS \
PHY_REG(770, 16) /* KMRN FIFO's control/status register */
#define IGP3_KMRN_POWER_MNG_CTRL \
PHY_REG(770, 17) /* KMRN Power Management Control Register */
#define IGP3_KMRN_INBAND_CTRL \
PHY_REG(770, 18) /* KMRN Inband Control Register */
#define IGP3_KMRN_DIAG \
PHY_REG(770, 19) /* KMRN Diagnostic register */
#define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002 /* RX PCS is not synced */
#define IGP3_KMRN_ACK_TIMEOUT \
PHY_REG(770, 20) /* KMRN Acknowledge Timeouts register */
#define IGP3_VR_CTRL \
PHY_REG(776, 18) /* Voltage regulator control register */
#define IGP3_VR_CTRL_MODE_SHUT 0x0200 /* Enter powerdown, shutdown VRs */
#define IGP3_CAPABILITY \
PHY_REG(776, 19) /* IGP3 Capability Register */
/* Capabilities for SKU Control */
#define IGP3_CAP_INITIATE_TEAM 0x0001 /* Able to initiate a team */
#define IGP3_CAP_WFM 0x0002 /* Support WoL and PXE */
#define IGP3_CAP_ASF 0x0004 /* Support ASF */
#define IGP3_CAP_LPLU 0x0008 /* Support Low Power Link Up */
#define IGP3_CAP_DC_AUTO_SPEED 0x0010 /* Support AC/DC Auto Link Speed */
#define IGP3_CAP_SPD 0x0020 /* Support Smart Power Down */
#define IGP3_CAP_MULT_QUEUE 0x0040 /* Support 2 tx & 2 rx queues */
#define IGP3_CAP_RSS 0x0080 /* Support RSS */
#define IGP3_CAP_8021PQ 0x0100 /* Support 802.1Q & 802.1p */
#define IGP3_CAP_AMT_CB 0x0200 /* Support active manageability and circuit breaker */
#define IGP3_PPC_JORDAN_EN 0x0001
#define IGP3_PPC_JORDAN_GIGA_SPEED 0x0002
#define IGP3_KMRN_PMC_EE_IDLE_LINK_DIS 0x0001
#define IGP3_KMRN_PMC_K0S_ENTRY_LATENCY_MASK 0x001E
#define IGP3_KMRN_PMC_K0S_MODE1_EN_GIGA 0x0020
#define IGP3_KMRN_PMC_K0S_MODE1_EN_100 0x0040
#define IGP3E1000_PHY_MISC_CTRL 0x1B /* Misc. Ctrl register */
#define IGP3_PHY_MISC_DUPLEX_MANUAL_SET 0x1000 /* Duplex Manual Set */
#define IGP3_KMRN_EXT_CTRL PHY_REG(770, 18)
#define IGP3_KMRN_EC_DIS_INBAND 0x0080
#define IGP03E1000_E_PHY_ID 0x02A80390
#define IFE_E_PHY_ID 0x02A80330 /* 10/100 PHY */
#define IFE_PLUS_E_PHY_ID 0x02A80320
#define IFE_C_E_PHY_ID 0x02A80310
#define IFE_PHY_EXTENDED_STATUS_CONTROL 0x10 /* 100BaseTx Extended Status, Control and Address */
#define IFE_PHY_SPECIAL_CONTROL 0x11 /* 100BaseTx PHY special control register */
#define IFE_PHY_RCV_FALSE_CARRIER 0x13 /* 100BaseTx Receive False Carrier Counter */
#define IFE_PHY_RCV_DISCONNECT 0x14 /* 100BaseTx Receive Disconnet Counter */
#define IFE_PHY_RCV_ERROT_FRAME 0x15 /* 100BaseTx Receive Error Frame Counter */
#define IFE_PHY_RCV_SYMBOL_ERR 0x16 /* Receive Symbol Error Counter */
#define IFE_PHY_PREM_EOF_ERR 0x17 /* 100BaseTx Receive Premature End Of Frame Error Counter */
#define IFE_PHY_RCV_EOF_ERR 0x18 /* 10BaseT Receive End Of Frame Error Counter */
#define IFE_PHY_TX_JABBER_DETECT 0x19 /* 10BaseT Transmit Jabber Detect Counter */
#define IFE_PHY_EQUALIZER 0x1A /* PHY Equalizer Control and Status */
#define IFE_PHY_SPECIAL_CONTROL_LED 0x1B /* PHY special control and LED configuration */
#define IFE_PHY_MDIX_CONTROL 0x1C /* MDI/MDI-X Control register */
#define IFE_PHY_HWI_CONTROL 0x1D /* Hardware Integrity Control (HWI) */
#define IFE_PESC_REDUCED_POWER_DOWN_DISABLE 0x2000 /* Defaut 1 = Disable auto reduced power down */
#define IFE_PESC_100BTX_POWER_DOWN 0x0400 /* Indicates the power state of 100BASE-TX */
#define IFE_PESC_10BTX_POWER_DOWN 0x0200 /* Indicates the power state of 10BASE-T */
#define IFE_PESC_POLARITY_REVERSED 0x0100 /* Indicates 10BASE-T polarity */
#define IFE_PESC_PHY_ADDR_MASK 0x007C /* Bit 6:2 for sampled PHY address */
#define IFE_PESC_SPEED 0x0002 /* Auto-negotiation speed result 1=100Mbs, 0=10Mbs */
#define IFE_PESC_DUPLEX 0x0001 /* Auto-negotiation duplex result 1=Full, 0=Half */
#define IFE_PESC_POLARITY_REVERSED_SHIFT 8
#define IFE_PSC_DISABLE_DYNAMIC_POWER_DOWN 0x0100 /* 1 = Dyanmic Power Down disabled */
#define IFE_PSC_FORCE_POLARITY 0x0020 /* 1=Reversed Polarity, 0=Normal */
#define IFE_PSC_AUTO_POLARITY_DISABLE 0x0010 /* 1=Auto Polarity Disabled, 0=Enabled */
#define IFE_PSC_JABBER_FUNC_DISABLE 0x0001 /* 1=Jabber Disabled, 0=Normal Jabber Operation */
#define IFE_PSC_FORCE_POLARITY_SHIFT 5
#define IFE_PSC_AUTO_POLARITY_DISABLE_SHIFT 4
#define IFE_PMC_AUTO_MDIX 0x0080 /* 1=enable MDI/MDI-X feature, default 0=disabled */
#define IFE_PMC_FORCE_MDIX 0x0040 /* 1=force MDIX-X, 0=force MDI */
#define IFE_PMC_MDIX_STATUS 0x0020 /* 1=MDI-X, 0=MDI */
#define IFE_PMC_AUTO_MDIX_COMPLETE 0x0010 /* Resolution algorthm is completed */
#define IFE_PMC_MDIX_MODE_SHIFT 6
#define IFE_PHC_MDIX_RESET_ALL_MASK 0x0000 /* Disable auto MDI-X */
#define IFE_PHC_HWI_ENABLE 0x8000 /* Enable the HWI feature */
#define IFE_PHC_ABILITY_CHECK 0x4000 /* 1= Test Passed, 0=failed */
#define IFE_PHC_TEST_EXEC 0x2000 /* PHY launch test pulses on the wire */
#define IFE_PHC_HIGHZ 0x0200 /* 1 = Open Circuit */
#define IFE_PHC_LOWZ 0x0400 /* 1 = Short Circuit */
#define IFE_PHC_LOW_HIGH_Z_MASK 0x0600 /* Mask for indication type of problem on the line */
#define IFE_PHC_DISTANCE_MASK 0x01FF /* Mask for distance to the cable problem, in 80cm granularity */
#define IFE_PHC_RESET_ALL_MASK 0x0000 /* Disable HWI */
#define IFE_PSCL_PROBE_MODE 0x0020 /* LED Probe mode */
#define IFE_PSCL_PROBE_LEDS_OFF 0x0006 /* Force LEDs 0 and 2 off */
#define IFE_PSCL_PROBE_LEDS_ON 0x0007 /* Force LEDs 0 and 2 on */
#define ICH8_FLASH_COMMAND_TIMEOUT 500 /* 500 ms , should be adjusted */
#define ICH8_FLASH_CYCLE_REPEAT_COUNT 10 /* 10 cycles , should be adjusted */
#define ICH8_FLASH_SEG_SIZE_256 256
#define ICH8_FLASH_SEG_SIZE_4K 4096
#define ICH8_FLASH_SEG_SIZE_64K 65536
#define ICH8_CYCLE_READ 0x0
#define ICH8_CYCLE_RESERVED 0x1
#define ICH8_CYCLE_WRITE 0x2
#define ICH8_CYCLE_ERASE 0x3
#define ICH8_FLASH_GFPREG 0x0000
#define ICH8_FLASH_HSFSTS 0x0004
#define ICH8_FLASH_HSFCTL 0x0006
#define ICH8_FLASH_FADDR 0x0008
#define ICH8_FLASH_FDATA0 0x0010
#define ICH8_FLASH_FRACC 0x0050
#define ICH8_FLASH_FREG0 0x0054
#define ICH8_FLASH_FREG1 0x0058
#define ICH8_FLASH_FREG2 0x005C
#define ICH8_FLASH_FREG3 0x0060
#define ICH8_FLASH_FPR0 0x0074
#define ICH8_FLASH_FPR1 0x0078
#define ICH8_FLASH_SSFSTS 0x0090
#define ICH8_FLASH_SSFCTL 0x0092
#define ICH8_FLASH_PREOP 0x0094
#define ICH8_FLASH_OPTYPE 0x0096
#define ICH8_FLASH_OPMENU 0x0098
#define ICH8_FLASH_REG_MAPSIZE 0x00A0
#define ICH8_FLASH_SECTOR_SIZE 4096
#define ICH8_GFPREG_BASE_MASK 0x1FFF
#define ICH8_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF
/* ICH8 GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
/* Offset 04h HSFSTS */
union ich8_hws_flash_status {
struct ich8_hsfsts {
#ifdef E1000_BIG_ENDIAN
uint16_t reserved2 :6;
uint16_t fldesvalid :1;
uint16_t flockdn :1;
uint16_t flcdone :1;
uint16_t flcerr :1;
uint16_t dael :1;
uint16_t berasesz :2;
uint16_t flcinprog :1;
uint16_t reserved1 :2;
#else
uint16_t flcdone :1; /* bit 0 Flash Cycle Done */
uint16_t flcerr :1; /* bit 1 Flash Cycle Error */
uint16_t dael :1; /* bit 2 Direct Access error Log */
uint16_t berasesz :2; /* bit 4:3 Block/Sector Erase Size */
uint16_t flcinprog :1; /* bit 5 flash SPI cycle in Progress */
uint16_t reserved1 :2; /* bit 13:6 Reserved */
uint16_t reserved2 :6; /* bit 13:6 Reserved */
uint16_t fldesvalid :1; /* bit 14 Flash Descriptor Valid */
uint16_t flockdn :1; /* bit 15 Flash Configuration Lock-Down */
#endif
} hsf_status;
uint16_t regval;
};
/* ICH8 GbE Flash Hardware Sequencing Flash control Register bit breakdown */
/* Offset 06h FLCTL */
union ich8_hws_flash_ctrl {
struct ich8_hsflctl {
#ifdef E1000_BIG_ENDIAN
uint16_t fldbcount :2;
uint16_t flockdn :6;
uint16_t flcgo :1;
uint16_t flcycle :2;
uint16_t reserved :5;
#else
uint16_t flcgo :1; /* 0 Flash Cycle Go */
uint16_t flcycle :2; /* 2:1 Flash Cycle */
uint16_t reserved :5; /* 7:3 Reserved */
uint16_t fldbcount :2; /* 9:8 Flash Data Byte Count */
uint16_t flockdn :6; /* 15:10 Reserved */
#endif
} hsf_ctrl;
uint16_t regval;
};
/* ICH8 Flash Region Access Permissions */
union ich8_hws_flash_regacc {
struct ich8_flracc {
#ifdef E1000_BIG_ENDIAN
uint32_t gmwag :8;
uint32_t gmrag :8;
uint32_t grwa :8;
uint32_t grra :8;
#else
uint32_t grra :8; /* 0:7 GbE region Read Access */
uint32_t grwa :8; /* 8:15 GbE region Write Access */
uint32_t gmrag :8; /* 23:16 GbE Master Read Access Grant */
uint32_t gmwag :8; /* 31:24 GbE Master Write Access Grant */
#endif
} hsf_flregacc;
uint16_t regval;
};
/* Miscellaneous PHY bit definitions. */
#define PHY_PREAMBLE 0xFFFFFFFF
#define PHY_SOF 0x01
......
......@@ -36,7 +36,7 @@ static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
#else
#define DRIVERNAPI "-NAPI"
#endif
#define DRV_VERSION "7.0.38-k4"DRIVERNAPI
#define DRV_VERSION "7.1.9-k2"DRIVERNAPI
char e1000_driver_version[] = DRV_VERSION;
static char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
......@@ -73,6 +73,11 @@ static struct pci_device_id e1000_pci_tbl[] = {
INTEL_E1000_ETHERNET_DEVICE(0x1026),
INTEL_E1000_ETHERNET_DEVICE(0x1027),
INTEL_E1000_ETHERNET_DEVICE(0x1028),
INTEL_E1000_ETHERNET_DEVICE(0x1049),
INTEL_E1000_ETHERNET_DEVICE(0x104A),
INTEL_E1000_ETHERNET_DEVICE(0x104B),
INTEL_E1000_ETHERNET_DEVICE(0x104C),
INTEL_E1000_ETHERNET_DEVICE(0x104D),
INTEL_E1000_ETHERNET_DEVICE(0x105E),
INTEL_E1000_ETHERNET_DEVICE(0x105F),
INTEL_E1000_ETHERNET_DEVICE(0x1060),
......@@ -96,6 +101,8 @@ static struct pci_device_id e1000_pci_tbl[] = {
INTEL_E1000_ETHERNET_DEVICE(0x109A),
INTEL_E1000_ETHERNET_DEVICE(0x10B5),
INTEL_E1000_ETHERNET_DEVICE(0x10B9),
INTEL_E1000_ETHERNET_DEVICE(0x10BA),
INTEL_E1000_ETHERNET_DEVICE(0x10BB),
/* required last entry */
{0,}
};
......@@ -133,7 +140,6 @@ static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
static void e1000_set_multi(struct net_device *netdev);
static void e1000_update_phy_info(unsigned long data);
static void e1000_watchdog(unsigned long data);
static void e1000_watchdog_task(struct e1000_adapter *adapter);
static void e1000_82547_tx_fifo_stall(unsigned long data);
static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
......@@ -178,8 +184,8 @@ static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
static void e1000_restore_vlan(struct e1000_adapter *adapter);
#ifdef CONFIG_PM
static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
#ifdef CONFIG_PM
static int e1000_resume(struct pci_dev *pdev);
#endif
static void e1000_shutdown(struct pci_dev *pdev);
......@@ -206,8 +212,8 @@ static struct pci_driver e1000_driver = {
.probe = e1000_probe,
.remove = __devexit_p(e1000_remove),
/* Power Managment Hooks */
#ifdef CONFIG_PM
.suspend = e1000_suspend,
#ifdef CONFIG_PM
.resume = e1000_resume,
#endif
.shutdown = e1000_shutdown,
......@@ -261,6 +267,44 @@ e1000_exit_module(void)
module_exit(e1000_exit_module);
static int e1000_request_irq(struct e1000_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
int flags, err = 0;
flags = IRQF_SHARED;
#ifdef CONFIG_PCI_MSI
if (adapter->hw.mac_type > e1000_82547_rev_2) {
adapter->have_msi = TRUE;
if ((err = pci_enable_msi(adapter->pdev))) {
DPRINTK(PROBE, ERR,
"Unable to allocate MSI interrupt Error: %d\n", err);
adapter->have_msi = FALSE;
}
}
if (adapter->have_msi)
flags &= ~SA_SHIRQ;
#endif
if ((err = request_irq(adapter->pdev->irq, &e1000_intr, flags,
netdev->name, netdev)))
DPRINTK(PROBE, ERR,
"Unable to allocate interrupt Error: %d\n", err);
return err;
}
static void e1000_free_irq(struct e1000_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
free_irq(adapter->pdev->irq, netdev);
#ifdef CONFIG_PCI_MSI
if (adapter->have_msi)
pci_disable_msi(adapter->pdev);
#endif
}
/**
* e1000_irq_disable - Mask off interrupt generation on the NIC
* @adapter: board private structure
......@@ -329,6 +373,7 @@ e1000_release_hw_control(struct e1000_adapter *adapter)
{
uint32_t ctrl_ext;
uint32_t swsm;
uint32_t extcnf;
/* Let firmware taken over control of h/w */
switch (adapter->hw.mac_type) {
......@@ -343,6 +388,11 @@ e1000_release_hw_control(struct e1000_adapter *adapter)
swsm = E1000_READ_REG(&adapter->hw, SWSM);
E1000_WRITE_REG(&adapter->hw, SWSM,
swsm & ~E1000_SWSM_DRV_LOAD);
case e1000_ich8lan:
extcnf = E1000_READ_REG(&adapter->hw, CTRL_EXT);
E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
extcnf & ~E1000_CTRL_EXT_DRV_LOAD);
break;
default:
break;
}
......@@ -364,6 +414,7 @@ e1000_get_hw_control(struct e1000_adapter *adapter)
{
uint32_t ctrl_ext;
uint32_t swsm;
uint32_t extcnf;
/* Let firmware know the driver has taken over */
switch (adapter->hw.mac_type) {
case e1000_82571:
......@@ -378,6 +429,11 @@ e1000_get_hw_control(struct e1000_adapter *adapter)
E1000_WRITE_REG(&adapter->hw, SWSM,
swsm | E1000_SWSM_DRV_LOAD);
break;
case e1000_ich8lan:
extcnf = E1000_READ_REG(&adapter->hw, EXTCNF_CTRL);
E1000_WRITE_REG(&adapter->hw, EXTCNF_CTRL,
extcnf | E1000_EXTCNF_CTRL_SWFLAG);
break;
default:
break;
}
......@@ -387,18 +443,10 @@ int
e1000_up(struct e1000_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
int i, err;
int i;
/* hardware has been reset, we need to reload some things */
/* Reset the PHY if it was previously powered down */
if (adapter->hw.media_type == e1000_media_type_copper) {
uint16_t mii_reg;
e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
if (mii_reg & MII_CR_POWER_DOWN)
e1000_phy_hw_reset(&adapter->hw);
}
e1000_set_multi(netdev);
e1000_restore_vlan(adapter);
......@@ -415,24 +463,6 @@ e1000_up(struct e1000_adapter *adapter)
E1000_DESC_UNUSED(ring));
}
#ifdef CONFIG_PCI_MSI
if (adapter->hw.mac_type > e1000_82547_rev_2) {
adapter->have_msi = TRUE;
if ((err = pci_enable_msi(adapter->pdev))) {
DPRINTK(PROBE, ERR,
"Unable to allocate MSI interrupt Error: %d\n", err);
adapter->have_msi = FALSE;
}
}
#endif
if ((err = request_irq(adapter->pdev->irq, &e1000_intr,
IRQF_SHARED | IRQF_SAMPLE_RANDOM,
netdev->name, netdev))) {
DPRINTK(PROBE, ERR,
"Unable to allocate interrupt Error: %d\n", err);
return err;
}
adapter->tx_queue_len = netdev->tx_queue_len;
mod_timer(&adapter->watchdog_timer, jiffies);
......@@ -445,21 +475,60 @@ e1000_up(struct e1000_adapter *adapter)
return 0;
}
/**
* e1000_power_up_phy - restore link in case the phy was powered down
* @adapter: address of board private structure
*
* The phy may be powered down to save power and turn off link when the
* driver is unloaded and wake on lan is not enabled (among others)
* *** this routine MUST be followed by a call to e1000_reset ***
*
**/
static void e1000_power_up_phy(struct e1000_adapter *adapter)
{
uint16_t mii_reg = 0;
/* Just clear the power down bit to wake the phy back up */
if (adapter->hw.media_type == e1000_media_type_copper) {
/* according to the manual, the phy will retain its
* settings across a power-down/up cycle */
e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
mii_reg &= ~MII_CR_POWER_DOWN;
e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
}
}
static void e1000_power_down_phy(struct e1000_adapter *adapter)
{
boolean_t mng_mode_enabled = (adapter->hw.mac_type >= e1000_82571) &&
e1000_check_mng_mode(&adapter->hw);
/* Power down the PHY so no link is implied when interface is down
* The PHY cannot be powered down if any of the following is TRUE
* (a) WoL is enabled
* (b) AMT is active
* (c) SoL/IDER session is active */
if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
adapter->hw.mac_type != e1000_ich8lan &&
adapter->hw.media_type == e1000_media_type_copper &&
!(E1000_READ_REG(&adapter->hw, MANC) & E1000_MANC_SMBUS_EN) &&
!mng_mode_enabled &&
!e1000_check_phy_reset_block(&adapter->hw)) {
uint16_t mii_reg = 0;
e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
mii_reg |= MII_CR_POWER_DOWN;
e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
mdelay(1);
}
}
void
e1000_down(struct e1000_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
boolean_t mng_mode_enabled = (adapter->hw.mac_type >= e1000_82571) &&
e1000_check_mng_mode(&adapter->hw);
e1000_irq_disable(adapter);
free_irq(adapter->pdev->irq, netdev);
#ifdef CONFIG_PCI_MSI
if (adapter->hw.mac_type > e1000_82547_rev_2 &&
adapter->have_msi == TRUE)
pci_disable_msi(adapter->pdev);
#endif
del_timer_sync(&adapter->tx_fifo_stall_timer);
del_timer_sync(&adapter->watchdog_timer);
del_timer_sync(&adapter->phy_info_timer);
......@@ -476,23 +545,17 @@ e1000_down(struct e1000_adapter *adapter)
e1000_reset(adapter);
e1000_clean_all_tx_rings(adapter);
e1000_clean_all_rx_rings(adapter);
}
/* Power down the PHY so no link is implied when interface is down *
* The PHY cannot be powered down if any of the following is TRUE *
* (a) WoL is enabled
* (b) AMT is active
* (c) SoL/IDER session is active */
if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
adapter->hw.media_type == e1000_media_type_copper &&
!(E1000_READ_REG(&adapter->hw, MANC) & E1000_MANC_SMBUS_EN) &&
!mng_mode_enabled &&
!e1000_check_phy_reset_block(&adapter->hw)) {
uint16_t mii_reg;
e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
mii_reg |= MII_CR_POWER_DOWN;
e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
mdelay(1);
}
void
e1000_reinit_locked(struct e1000_adapter *adapter)
{
WARN_ON(in_interrupt());
while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
msleep(1);
e1000_down(adapter);
e1000_up(adapter);
clear_bit(__E1000_RESETTING, &adapter->flags);
}
void
......@@ -518,6 +581,9 @@ e1000_reset(struct e1000_adapter *adapter)
case e1000_82573:
pba = E1000_PBA_12K;
break;
case e1000_ich8lan:
pba = E1000_PBA_8K;
break;
default:
pba = E1000_PBA_48K;
break;
......@@ -542,6 +608,12 @@ e1000_reset(struct e1000_adapter *adapter)
/* Set the FC high water mark to 90% of the FIFO size.
* Required to clear last 3 LSB */
fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
/* We can't use 90% on small FIFOs because the remainder
* would be less than 1 full frame. In this case, we size
* it to allow at least a full frame above the high water
* mark. */
if (pba < E1000_PBA_16K)
fc_high_water_mark = (pba * 1024) - 1600;
adapter->hw.fc_high_water = fc_high_water_mark;
adapter->hw.fc_low_water = fc_high_water_mark - 8;
......@@ -564,6 +636,23 @@ e1000_reset(struct e1000_adapter *adapter)
e1000_reset_adaptive(&adapter->hw);
e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
if (!adapter->smart_power_down &&
(adapter->hw.mac_type == e1000_82571 ||
adapter->hw.mac_type == e1000_82572)) {
uint16_t phy_data = 0;
/* speed up time to link by disabling smart power down, ignore
* the return value of this function because there is nothing
* different we would do if it failed */
e1000_read_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
&phy_data);
phy_data &= ~IGP02E1000_PM_SPD;
e1000_write_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
phy_data);
}
if (adapter->hw.mac_type < e1000_ich8lan)
/* FIXME: this code is duplicate and wrong for PCI Express */
if (adapter->en_mng_pt) {
manc = E1000_READ_REG(&adapter->hw, MANC);
manc |= (E1000_MANC_ARP_EN | E1000_MANC_EN_MNG2HOST);
......@@ -590,6 +679,7 @@ e1000_probe(struct pci_dev *pdev,
struct net_device *netdev;
struct e1000_adapter *adapter;
unsigned long mmio_start, mmio_len;
unsigned long flash_start, flash_len;
static int cards_found = 0;
static int e1000_ksp3_port_a = 0; /* global ksp3 port a indication */
......@@ -599,10 +689,12 @@ e1000_probe(struct pci_dev *pdev,
if ((err = pci_enable_device(pdev)))
return err;
if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK))) {
if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK)) &&
!(err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK))) {
pci_using_dac = 1;
} else {
if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK)) &&
(err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK))) {
E1000_ERR("No usable DMA configuration, aborting\n");
return err;
}
......@@ -682,6 +774,19 @@ e1000_probe(struct pci_dev *pdev,
if ((err = e1000_sw_init(adapter)))
goto err_sw_init;
/* Flash BAR mapping must happen after e1000_sw_init
* because it depends on mac_type */
if ((adapter->hw.mac_type == e1000_ich8lan) &&
(pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
flash_start = pci_resource_start(pdev, 1);
flash_len = pci_resource_len(pdev, 1);
adapter->hw.flash_address = ioremap(flash_start, flash_len);
if (!adapter->hw.flash_address) {
err = -EIO;
goto err_flashmap;
}
}
if ((err = e1000_check_phy_reset_block(&adapter->hw)))
DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
......@@ -700,6 +805,8 @@ e1000_probe(struct pci_dev *pdev,
NETIF_F_HW_VLAN_TX |
NETIF_F_HW_VLAN_RX |
NETIF_F_HW_VLAN_FILTER;
if (adapter->hw.mac_type == e1000_ich8lan)
netdev->features &= ~NETIF_F_HW_VLAN_FILTER;
}
#ifdef NETIF_F_TSO
......@@ -715,11 +822,17 @@ e1000_probe(struct pci_dev *pdev,
if (pci_using_dac)
netdev->features |= NETIF_F_HIGHDMA;
/* hard_start_xmit is safe against parallel locking */
netdev->features |= NETIF_F_LLTX;
adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
/* initialize eeprom parameters */
if (e1000_init_eeprom_params(&adapter->hw)) {
E1000_ERR("EEPROM initialization failed\n");
return -EIO;
}
/* before reading the EEPROM, reset the controller to
* put the device in a known good starting state */
......@@ -758,9 +871,6 @@ e1000_probe(struct pci_dev *pdev,
adapter->watchdog_timer.function = &e1000_watchdog;
adapter->watchdog_timer.data = (unsigned long) adapter;
INIT_WORK(&adapter->watchdog_task,
(void (*)(void *))e1000_watchdog_task, adapter);
init_timer(&adapter->phy_info_timer);
adapter->phy_info_timer.function = &e1000_update_phy_info;
adapter->phy_info_timer.data = (unsigned long) adapter;
......@@ -790,6 +900,11 @@ e1000_probe(struct pci_dev *pdev,
EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
eeprom_apme_mask = E1000_EEPROM_82544_APM;
break;
case e1000_ich8lan:
e1000_read_eeprom(&adapter->hw,
EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data);
eeprom_apme_mask = E1000_EEPROM_ICH8_APME;
break;
case e1000_82546:
case e1000_82546_rev_3:
case e1000_82571:
......@@ -849,6 +964,9 @@ e1000_probe(struct pci_dev *pdev,
return 0;
err_register:
if (adapter->hw.flash_address)
iounmap(adapter->hw.flash_address);
err_flashmap:
err_sw_init:
err_eeprom:
iounmap(adapter->hw.hw_addr);
......@@ -882,6 +1000,7 @@ e1000_remove(struct pci_dev *pdev)
flush_scheduled_work();
if (adapter->hw.mac_type >= e1000_82540 &&
adapter->hw.mac_type != e1000_ich8lan &&
adapter->hw.media_type == e1000_media_type_copper) {
manc = E1000_READ_REG(&adapter->hw, MANC);
if (manc & E1000_MANC_SMBUS_EN) {
......@@ -910,6 +1029,8 @@ e1000_remove(struct pci_dev *pdev)
#endif
iounmap(adapter->hw.hw_addr);
if (adapter->hw.flash_address)
iounmap(adapter->hw.flash_address);
pci_release_regions(pdev);
free_netdev(netdev);
......@@ -960,13 +1081,6 @@ e1000_sw_init(struct e1000_adapter *adapter)
return -EIO;
}
/* initialize eeprom parameters */
if (e1000_init_eeprom_params(hw)) {
E1000_ERR("EEPROM initialization failed\n");
return -EIO;
}
switch (hw->mac_type) {
default:
break;
......@@ -1078,6 +1192,10 @@ e1000_open(struct net_device *netdev)
struct e1000_adapter *adapter = netdev_priv(netdev);
int err;
/* disallow open during test */
if (test_bit(__E1000_DRIVER_TESTING, &adapter->flags))
return -EBUSY;
/* allocate transmit descriptors */
if ((err = e1000_setup_all_tx_resources(adapter)))
......@@ -1088,6 +1206,12 @@ e1000_open(struct net_device *netdev)
if ((err = e1000_setup_all_rx_resources(adapter)))
goto err_setup_rx;
err = e1000_request_irq(adapter);
if (err)
goto err_up;
e1000_power_up_phy(adapter);
if ((err = e1000_up(adapter)))
goto err_up;
adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
......@@ -1131,7 +1255,10 @@ e1000_close(struct net_device *netdev)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
e1000_down(adapter);
e1000_power_down_phy(adapter);
e1000_free_irq(adapter);
e1000_free_all_tx_resources(adapter);
e1000_free_all_rx_resources(adapter);
......@@ -1189,8 +1316,7 @@ e1000_setup_tx_resources(struct e1000_adapter *adapter,
int size;
size = sizeof(struct e1000_buffer) * txdr->count;
txdr->buffer_info = vmalloc_node(size, pcibus_to_node(pdev->bus));
txdr->buffer_info = vmalloc(size);
if (!txdr->buffer_info) {
DPRINTK(PROBE, ERR,
"Unable to allocate memory for the transmit descriptor ring\n");
......@@ -1302,11 +1428,11 @@ e1000_configure_tx(struct e1000_adapter *adapter)
tdba = adapter->tx_ring[0].dma;
tdlen = adapter->tx_ring[0].count *
sizeof(struct e1000_tx_desc);
E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL));
E1000_WRITE_REG(hw, TDBAH, (tdba >> 32));
E1000_WRITE_REG(hw, TDLEN, tdlen);
E1000_WRITE_REG(hw, TDH, 0);
E1000_WRITE_REG(hw, TDBAH, (tdba >> 32));
E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL));
E1000_WRITE_REG(hw, TDT, 0);
E1000_WRITE_REG(hw, TDH, 0);
adapter->tx_ring[0].tdh = E1000_TDH;
adapter->tx_ring[0].tdt = E1000_TDT;
break;
......@@ -1418,7 +1544,7 @@ e1000_setup_rx_resources(struct e1000_adapter *adapter,
int size, desc_len;
size = sizeof(struct e1000_buffer) * rxdr->count;
rxdr->buffer_info = vmalloc_node(size, pcibus_to_node(pdev->bus));
rxdr->buffer_info = vmalloc(size);
if (!rxdr->buffer_info) {
DPRINTK(PROBE, ERR,
"Unable to allocate memory for the receive descriptor ring\n");
......@@ -1560,9 +1686,6 @@ e1000_setup_rctl(struct e1000_adapter *adapter)
E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
(adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
if (adapter->hw.mac_type > e1000_82543)
rctl |= E1000_RCTL_SECRC;
if (adapter->hw.tbi_compatibility_on == 1)
rctl |= E1000_RCTL_SBP;
else
......@@ -1628,7 +1751,7 @@ e1000_setup_rctl(struct e1000_adapter *adapter)
rfctl |= E1000_RFCTL_IPV6_DIS;
E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
rctl |= E1000_RCTL_DTYP_PS | E1000_RCTL_SECRC;
rctl |= E1000_RCTL_DTYP_PS;
psrctl |= adapter->rx_ps_bsize0 >>
E1000_PSRCTL_BSIZE0_SHIFT;
......@@ -1712,11 +1835,11 @@ e1000_configure_rx(struct e1000_adapter *adapter)
case 1:
default:
rdba = adapter->rx_ring[0].dma;
E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL));
E1000_WRITE_REG(hw, RDBAH, (rdba >> 32));
E1000_WRITE_REG(hw, RDLEN, rdlen);
E1000_WRITE_REG(hw, RDH, 0);
E1000_WRITE_REG(hw, RDBAH, (rdba >> 32));
E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL));
E1000_WRITE_REG(hw, RDT, 0);
E1000_WRITE_REG(hw, RDH, 0);
adapter->rx_ring[0].rdh = E1000_RDH;
adapter->rx_ring[0].rdt = E1000_RDT;
break;
......@@ -1741,9 +1864,6 @@ e1000_configure_rx(struct e1000_adapter *adapter)
E1000_WRITE_REG(hw, RXCSUM, rxcsum);
}
if (hw->mac_type == e1000_82573)
E1000_WRITE_REG(hw, ERT, 0x0100);
/* Enable Receives */
E1000_WRITE_REG(hw, RCTL, rctl);
}
......@@ -2083,6 +2203,12 @@ e1000_set_multi(struct net_device *netdev)
uint32_t rctl;
uint32_t hash_value;
int i, rar_entries = E1000_RAR_ENTRIES;
int mta_reg_count = (hw->mac_type == e1000_ich8lan) ?
E1000_NUM_MTA_REGISTERS_ICH8LAN :
E1000_NUM_MTA_REGISTERS;
if (adapter->hw.mac_type == e1000_ich8lan)
rar_entries = E1000_RAR_ENTRIES_ICH8LAN;
/* reserve RAR[14] for LAA over-write work-around */
if (adapter->hw.mac_type == e1000_82571)
......@@ -2121,14 +2247,18 @@ e1000_set_multi(struct net_device *netdev)
mc_ptr = mc_ptr->next;
} else {
E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
E1000_WRITE_FLUSH(hw);
E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
E1000_WRITE_FLUSH(hw);
}
}
/* clear the old settings from the multicast hash table */
for (i = 0; i < E1000_NUM_MTA_REGISTERS; i++)
for (i = 0; i < mta_reg_count; i++) {
E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
E1000_WRITE_FLUSH(hw);
}
/* load any remaining addresses into the hash table */
......@@ -2201,19 +2331,19 @@ static void
e1000_watchdog(unsigned long data)
{
struct e1000_adapter *adapter = (struct e1000_adapter *) data;
/* Do the rest outside of interrupt context */
schedule_work(&adapter->watchdog_task);
}
static void
e1000_watchdog_task(struct e1000_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
struct e1000_tx_ring *txdr = adapter->tx_ring;
uint32_t link, tctl;
e1000_check_for_link(&adapter->hw);
int32_t ret_val;
ret_val = e1000_check_for_link(&adapter->hw);
if ((ret_val == E1000_ERR_PHY) &&
(adapter->hw.phy_type == e1000_phy_igp_3) &&
(E1000_READ_REG(&adapter->hw, CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
/* See e1000_kumeran_lock_loss_workaround() */
DPRINTK(LINK, INFO,
"Gigabit has been disabled, downgrading speed\n");
}
if (adapter->hw.mac_type == e1000_82573) {
e1000_enable_tx_pkt_filtering(&adapter->hw);
if (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
......@@ -2779,9 +2909,10 @@ e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
case e1000_82571:
case e1000_82572:
case e1000_82573:
case e1000_ich8lan:
pull_size = min((unsigned int)4, skb->data_len);
if (!__pskb_pull_tail(skb, pull_size)) {
printk(KERN_ERR
DPRINTK(DRV, ERR,
"__pskb_pull_tail failed.\n");
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
......@@ -2919,8 +3050,7 @@ e1000_reset_task(struct net_device *netdev)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
e1000_down(adapter);
e1000_up(adapter);
e1000_reinit_locked(adapter);
}
/**
......@@ -2964,6 +3094,7 @@ e1000_change_mtu(struct net_device *netdev, int new_mtu)
/* Adapter-specific max frame size limits. */
switch (adapter->hw.mac_type) {
case e1000_undefined ... e1000_82542_rev2_1:
case e1000_ich8lan:
if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
return -EINVAL;
......@@ -3026,10 +3157,8 @@ e1000_change_mtu(struct net_device *netdev, int new_mtu)
netdev->mtu = new_mtu;
if (netif_running(netdev)) {
e1000_down(adapter);
e1000_up(adapter);
}
if (netif_running(netdev))
e1000_reinit_locked(adapter);
adapter->hw.max_frame_size = max_frame;
......@@ -3074,12 +3203,15 @@ e1000_update_stats(struct e1000_adapter *adapter)
adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
adapter->stats.roc += E1000_READ_REG(hw, ROC);
if (adapter->hw.mac_type != e1000_ich8lan) {
adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
}
adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
adapter->stats.mpc += E1000_READ_REG(hw, MPC);
......@@ -3107,12 +3239,16 @@ e1000_update_stats(struct e1000_adapter *adapter)
adapter->stats.totl += E1000_READ_REG(hw, TOTL);
adapter->stats.toth += E1000_READ_REG(hw, TOTH);
adapter->stats.tpr += E1000_READ_REG(hw, TPR);
if (adapter->hw.mac_type != e1000_ich8lan) {
adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
}
adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
......@@ -3134,6 +3270,8 @@ e1000_update_stats(struct e1000_adapter *adapter)
if (hw->mac_type > e1000_82547_rev_2) {
adapter->stats.iac += E1000_READ_REG(hw, IAC);
adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
if (adapter->hw.mac_type != e1000_ich8lan) {
adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
......@@ -3141,6 +3279,7 @@ e1000_update_stats(struct e1000_adapter *adapter)
adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
}
}
/* Fill out the OS statistics structure */
......@@ -3547,7 +3686,8 @@ e1000_clean_rx_irq(struct e1000_adapter *adapter,
/* All receives must fit into a single buffer */
E1000_DBG("%s: Receive packet consumed multiple"
" buffers\n", netdev->name);
dev_kfree_skb_irq(skb);
/* recycle */
buffer_info-> skb = skb;
goto next_desc;
}
......@@ -3675,7 +3815,6 @@ e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
buffer_info = &rx_ring->buffer_info[i];
while (staterr & E1000_RXD_STAT_DD) {
buffer_info = &rx_ring->buffer_info[i];
ps_page = &rx_ring->ps_page[i];
ps_page_dma = &rx_ring->ps_page_dma[i];
#ifdef CONFIG_E1000_NAPI
......@@ -4180,10 +4319,9 @@ e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
return retval;
}
}
if (netif_running(adapter->netdev)) {
e1000_down(adapter);
e1000_up(adapter);
} else
if (netif_running(adapter->netdev))
e1000_reinit_locked(adapter);
else
e1000_reset(adapter);
break;
case M88E1000_PHY_SPEC_CTRL:
......@@ -4200,10 +4338,9 @@ e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
case PHY_CTRL:
if (mii_reg & MII_CR_POWER_DOWN)
break;
if (netif_running(adapter->netdev)) {
e1000_down(adapter);
e1000_up(adapter);
} else
if (netif_running(adapter->netdev))
e1000_reinit_locked(adapter);
else
e1000_reset(adapter);
break;
}
......@@ -4277,18 +4414,21 @@ e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
ctrl |= E1000_CTRL_VME;
E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
if (adapter->hw.mac_type != e1000_ich8lan) {
/* enable VLAN receive filtering */
rctl = E1000_READ_REG(&adapter->hw, RCTL);
rctl |= E1000_RCTL_VFE;
rctl &= ~E1000_RCTL_CFIEN;
E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
e1000_update_mng_vlan(adapter);
}
} else {
/* disable VLAN tag insert/strip */
ctrl = E1000_READ_REG(&adapter->hw, CTRL);
ctrl &= ~E1000_CTRL_VME;
E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
if (adapter->hw.mac_type != e1000_ich8lan) {
/* disable VLAN filtering */
rctl = E1000_READ_REG(&adapter->hw, RCTL);
rctl &= ~E1000_RCTL_VFE;
......@@ -4297,6 +4437,7 @@ e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
}
}
}
e1000_irq_enable(adapter);
......@@ -4458,12 +4599,16 @@ e1000_suspend(struct pci_dev *pdev, pm_message_t state)
struct e1000_adapter *adapter = netdev_priv(netdev);
uint32_t ctrl, ctrl_ext, rctl, manc, status;
uint32_t wufc = adapter->wol;
#ifdef CONFIG_PM
int retval = 0;
#endif
netif_device_detach(netdev);
if (netif_running(netdev))
if (netif_running(netdev)) {
WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
e1000_down(adapter);
}
#ifdef CONFIG_PM
/* Implement our own version of pci_save_state(pdev) because pci-
......@@ -4521,7 +4666,9 @@ e1000_suspend(struct pci_dev *pdev, pm_message_t state)
pci_enable_wake(pdev, PCI_D3cold, 0);
}
/* FIXME: this code is incorrect for PCI Express */
if (adapter->hw.mac_type >= e1000_82540 &&
adapter->hw.mac_type != e1000_ich8lan &&
adapter->hw.media_type == e1000_media_type_copper) {
manc = E1000_READ_REG(&adapter->hw, MANC);
if (manc & E1000_MANC_SMBUS_EN) {
......@@ -4532,6 +4679,9 @@ e1000_suspend(struct pci_dev *pdev, pm_message_t state)
}
}
if (adapter->hw.phy_type == e1000_phy_igp_3)
e1000_phy_powerdown_workaround(&adapter->hw);
/* Release control of h/w to f/w. If f/w is AMT enabled, this
* would have already happened in close and is redundant. */
e1000_release_hw_control(adapter);
......@@ -4567,7 +4717,9 @@ e1000_resume(struct pci_dev *pdev)
netif_device_attach(netdev);
/* FIXME: this code is incorrect for PCI Express */
if (adapter->hw.mac_type >= e1000_82540 &&
adapter->hw.mac_type != e1000_ich8lan &&
adapter->hw.media_type == e1000_media_type_copper) {
manc = E1000_READ_REG(&adapter->hw, MANC);
manc &= ~(E1000_MANC_ARP_EN);
......
......@@ -127,4 +127,17 @@ typedef enum {
#define E1000_WRITE_FLUSH(a) E1000_READ_REG(a, STATUS)
#define E1000_WRITE_ICH8_REG(a, reg, value) ( \
writel((value), ((a)->flash_address + reg)))
#define E1000_READ_ICH8_REG(a, reg) ( \
readl((a)->flash_address + reg))
#define E1000_WRITE_ICH8_REG16(a, reg, value) ( \
writew((value), ((a)->flash_address + reg)))
#define E1000_READ_ICH8_REG16(a, reg) ( \
readw((a)->flash_address + reg))
#endif /* _E1000_OSDEP_H_ */
......@@ -45,6 +45,16 @@
*/
#define E1000_PARAM_INIT { [0 ... E1000_MAX_NIC] = OPTION_UNSET }
/* Module Parameters are always initialized to -1, so that the driver
* can tell the difference between no user specified value or the
* user asking for the default value.
* The true default values are loaded in when e1000_check_options is called.
*
* This is a GCC extension to ANSI C.
* See the item "Labeled Elements in Initializers" in the section
* "Extensions to the C Language Family" of the GCC documentation.
*/
#define E1000_PARAM(X, desc) \
static int __devinitdata X[E1000_MAX_NIC+1] = E1000_PARAM_INIT; \
static int num_##X = 0; \
......@@ -183,6 +193,24 @@ E1000_PARAM(RxAbsIntDelay, "Receive Absolute Interrupt Delay");
E1000_PARAM(InterruptThrottleRate, "Interrupt Throttling Rate");
/* Enable Smart Power Down of the PHY
*
* Valid Range: 0, 1
*
* Default Value: 0 (disabled)
*/
E1000_PARAM(SmartPowerDownEnable, "Enable PHY smart power down");
/* Enable Kumeran Lock Loss workaround
*
* Valid Range: 0, 1
*
* Default Value: 1 (enabled)
*/
E1000_PARAM(KumeranLockLoss, "Enable Kumeran lock loss workaround");
#define AUTONEG_ADV_DEFAULT 0x2F
#define AUTONEG_ADV_MASK 0x2F
#define FLOW_CONTROL_DEFAULT FLOW_CONTROL_FULL
......@@ -296,6 +324,7 @@ e1000_check_options(struct e1000_adapter *adapter)
DPRINTK(PROBE, NOTICE,
"Warning: no configuration for board #%i\n", bd);
DPRINTK(PROBE, NOTICE, "Using defaults for all values\n");
bd = E1000_MAX_NIC;
}
{ /* Transmit Descriptor Count */
......@@ -313,14 +342,9 @@ e1000_check_options(struct e1000_adapter *adapter)
opt.arg.r.max = mac_type < e1000_82544 ?
E1000_MAX_TXD : E1000_MAX_82544_TXD;
if (num_TxDescriptors > bd) {
tx_ring->count = TxDescriptors[bd];
e1000_validate_option(&tx_ring->count, &opt, adapter);
E1000_ROUNDUP(tx_ring->count,
REQ_TX_DESCRIPTOR_MULTIPLE);
} else {
tx_ring->count = opt.def;
}
tx_ring->count = TxDescriptors[bd];
e1000_validate_option(&tx_ring->count, &opt, adapter);
E1000_ROUNDUP(tx_ring->count, REQ_TX_DESCRIPTOR_MULTIPLE);
for (i = 0; i < adapter->num_tx_queues; i++)
tx_ring[i].count = tx_ring->count;
}
......@@ -339,14 +363,9 @@ e1000_check_options(struct e1000_adapter *adapter)
opt.arg.r.max = mac_type < e1000_82544 ? E1000_MAX_RXD :
E1000_MAX_82544_RXD;
if (num_RxDescriptors > bd) {
rx_ring->count = RxDescriptors[bd];
e1000_validate_option(&rx_ring->count, &opt, adapter);
E1000_ROUNDUP(rx_ring->count,
REQ_RX_DESCRIPTOR_MULTIPLE);
} else {
rx_ring->count = opt.def;
}
rx_ring->count = RxDescriptors[bd];
e1000_validate_option(&rx_ring->count, &opt, adapter);
E1000_ROUNDUP(rx_ring->count, REQ_RX_DESCRIPTOR_MULTIPLE);
for (i = 0; i < adapter->num_rx_queues; i++)
rx_ring[i].count = rx_ring->count;
}
......@@ -358,13 +377,9 @@ e1000_check_options(struct e1000_adapter *adapter)
.def = OPTION_ENABLED
};
if (num_XsumRX > bd) {
int rx_csum = XsumRX[bd];
e1000_validate_option(&rx_csum, &opt, adapter);
adapter->rx_csum = rx_csum;
} else {
adapter->rx_csum = opt.def;
}
int rx_csum = XsumRX[bd];
e1000_validate_option(&rx_csum, &opt, adapter);
adapter->rx_csum = rx_csum;
}
{ /* Flow Control */
......@@ -384,13 +399,9 @@ e1000_check_options(struct e1000_adapter *adapter)
.p = fc_list }}
};
if (num_FlowControl > bd) {
int fc = FlowControl[bd];
e1000_validate_option(&fc, &opt, adapter);
adapter->hw.fc = adapter->hw.original_fc = fc;
} else {
adapter->hw.fc = adapter->hw.original_fc = opt.def;
}
int fc = FlowControl[bd];
e1000_validate_option(&fc, &opt, adapter);
adapter->hw.fc = adapter->hw.original_fc = fc;
}
{ /* Transmit Interrupt Delay */
struct e1000_option opt = {
......@@ -402,13 +413,8 @@ e1000_check_options(struct e1000_adapter *adapter)
.max = MAX_TXDELAY }}
};
if (num_TxIntDelay > bd) {
adapter->tx_int_delay = TxIntDelay[bd];
e1000_validate_option(&adapter->tx_int_delay, &opt,
adapter);
} else {
adapter->tx_int_delay = opt.def;
}
adapter->tx_int_delay = TxIntDelay[bd];
e1000_validate_option(&adapter->tx_int_delay, &opt, adapter);
}
{ /* Transmit Absolute Interrupt Delay */
struct e1000_option opt = {
......@@ -420,13 +426,9 @@ e1000_check_options(struct e1000_adapter *adapter)
.max = MAX_TXABSDELAY }}
};
if (num_TxAbsIntDelay > bd) {
adapter->tx_abs_int_delay = TxAbsIntDelay[bd];
e1000_validate_option(&adapter->tx_abs_int_delay, &opt,
adapter);
} else {
adapter->tx_abs_int_delay = opt.def;
}
adapter->tx_abs_int_delay = TxAbsIntDelay[bd];
e1000_validate_option(&adapter->tx_abs_int_delay, &opt,
adapter);
}
{ /* Receive Interrupt Delay */
struct e1000_option opt = {
......@@ -438,13 +440,8 @@ e1000_check_options(struct e1000_adapter *adapter)
.max = MAX_RXDELAY }}
};
if (num_RxIntDelay > bd) {
adapter->rx_int_delay = RxIntDelay[bd];
e1000_validate_option(&adapter->rx_int_delay, &opt,
adapter);
} else {
adapter->rx_int_delay = opt.def;
}
adapter->rx_int_delay = RxIntDelay[bd];
e1000_validate_option(&adapter->rx_int_delay, &opt, adapter);
}
{ /* Receive Absolute Interrupt Delay */
struct e1000_option opt = {
......@@ -456,13 +453,9 @@ e1000_check_options(struct e1000_adapter *adapter)
.max = MAX_RXABSDELAY }}
};
if (num_RxAbsIntDelay > bd) {
adapter->rx_abs_int_delay = RxAbsIntDelay[bd];
e1000_validate_option(&adapter->rx_abs_int_delay, &opt,
adapter);
} else {
adapter->rx_abs_int_delay = opt.def;
}
adapter->rx_abs_int_delay = RxAbsIntDelay[bd];
e1000_validate_option(&adapter->rx_abs_int_delay, &opt,
adapter);
}
{ /* Interrupt Throttling Rate */
struct e1000_option opt = {
......@@ -474,26 +467,44 @@ e1000_check_options(struct e1000_adapter *adapter)
.max = MAX_ITR }}
};
if (num_InterruptThrottleRate > bd) {
adapter->itr = InterruptThrottleRate[bd];
switch (adapter->itr) {
case 0:
DPRINTK(PROBE, INFO, "%s turned off\n",
opt.name);
break;
case 1:
DPRINTK(PROBE, INFO, "%s set to dynamic mode\n",
opt.name);
break;
default:
e1000_validate_option(&adapter->itr, &opt,
adapter);
break;
}
} else {
adapter->itr = opt.def;
adapter->itr = InterruptThrottleRate[bd];
switch (adapter->itr) {
case 0:
DPRINTK(PROBE, INFO, "%s turned off\n", opt.name);
break;
case 1:
DPRINTK(PROBE, INFO, "%s set to dynamic mode\n",
opt.name);
break;
default:
e1000_validate_option(&adapter->itr, &opt, adapter);
break;
}
}
{ /* Smart Power Down */
struct e1000_option opt = {
.type = enable_option,
.name = "PHY Smart Power Down",
.err = "defaulting to Disabled",
.def = OPTION_DISABLED
};
int spd = SmartPowerDownEnable[bd];
e1000_validate_option(&spd, &opt, adapter);
adapter->smart_power_down = spd;
}
{ /* Kumeran Lock Loss Workaround */
struct e1000_option opt = {
.type = enable_option,
.name = "Kumeran Lock Loss Workaround",
.err = "defaulting to Enabled",
.def = OPTION_ENABLED
};
int kmrn_lock_loss = KumeranLockLoss[bd];
e1000_validate_option(&kmrn_lock_loss, &opt, adapter);
adapter->hw.kmrn_lock_loss_workaround_disabled = !kmrn_lock_loss;
}
switch (adapter->hw.media_type) {
case e1000_media_type_fiber:
......@@ -519,17 +530,18 @@ static void __devinit
e1000_check_fiber_options(struct e1000_adapter *adapter)
{
int bd = adapter->bd_number;
if (num_Speed > bd) {
bd = bd > E1000_MAX_NIC ? E1000_MAX_NIC : bd;
if ((Speed[bd] != OPTION_UNSET)) {
DPRINTK(PROBE, INFO, "Speed not valid for fiber adapters, "
"parameter ignored\n");
}
if (num_Duplex > bd) {
if ((Duplex[bd] != OPTION_UNSET)) {
DPRINTK(PROBE, INFO, "Duplex not valid for fiber adapters, "
"parameter ignored\n");
}
if ((num_AutoNeg > bd) && (AutoNeg[bd] != 0x20)) {
if ((AutoNeg[bd] != OPTION_UNSET) && (AutoNeg[bd] != 0x20)) {
DPRINTK(PROBE, INFO, "AutoNeg other than 1000/Full is "
"not valid for fiber adapters, "
"parameter ignored\n");
......@@ -548,6 +560,7 @@ e1000_check_copper_options(struct e1000_adapter *adapter)
{
int speed, dplx, an;
int bd = adapter->bd_number;
bd = bd > E1000_MAX_NIC ? E1000_MAX_NIC : bd;
{ /* Speed */
struct e1000_opt_list speed_list[] = {{ 0, "" },
......@@ -564,12 +577,8 @@ e1000_check_copper_options(struct e1000_adapter *adapter)
.p = speed_list }}
};
if (num_Speed > bd) {
speed = Speed[bd];
e1000_validate_option(&speed, &opt, adapter);
} else {
speed = opt.def;
}
speed = Speed[bd];
e1000_validate_option(&speed, &opt, adapter);
}
{ /* Duplex */
struct e1000_opt_list dplx_list[] = {{ 0, "" },
......@@ -591,15 +600,11 @@ e1000_check_copper_options(struct e1000_adapter *adapter)
"Speed/Duplex/AutoNeg parameter ignored.\n");
return;
}
if (num_Duplex > bd) {
dplx = Duplex[bd];
e1000_validate_option(&dplx, &opt, adapter);
} else {
dplx = opt.def;
}
dplx = Duplex[bd];
e1000_validate_option(&dplx, &opt, adapter);
}
if ((num_AutoNeg > bd) && (speed != 0 || dplx != 0)) {
if (AutoNeg[bd] != OPTION_UNSET && (speed != 0 || dplx != 0)) {
DPRINTK(PROBE, INFO,
"AutoNeg specified along with Speed or Duplex, "
"parameter ignored\n");
......@@ -648,19 +653,15 @@ e1000_check_copper_options(struct e1000_adapter *adapter)
.p = an_list }}
};
if (num_AutoNeg > bd) {
an = AutoNeg[bd];
e1000_validate_option(&an, &opt, adapter);
} else {
an = opt.def;
}
an = AutoNeg[bd];
e1000_validate_option(&an, &opt, adapter);
adapter->hw.autoneg_advertised = an;
}
switch (speed + dplx) {
case 0:
adapter->hw.autoneg = adapter->fc_autoneg = 1;
if ((num_Speed > bd) && (speed != 0 || dplx != 0))
if (Speed[bd] != OPTION_UNSET || Duplex[bd] != OPTION_UNSET)
DPRINTK(PROBE, INFO,
"Speed and duplex autonegotiation enabled\n");
break;
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment