Commit bdd4ddde authored by Jeff Garzik's avatar Jeff Garzik

[libata] sata_mv: Convert to new exception handling (EH) infrastructure

This makes hotplug, NCQ, etc. possible, and removes one of the few
remaining old-EH drivers.
Signed-off-by: default avatarJeff Garzik <jeff@garzik.org>
parent 4537deb5
...@@ -29,11 +29,6 @@ ...@@ -29,11 +29,6 @@
I distinctly remember a couple workarounds (one related to PCI-X) I distinctly remember a couple workarounds (one related to PCI-X)
are still needed. are still needed.
2) Convert to LibATA new EH. Required for hotplug, NCQ, and sane
probing/error handling in general. MUST HAVE.
3) Add hotplug support (easy, once new-EH support appears)
4) Add NCQ support (easy to intermediate, once new-EH support appears) 4) Add NCQ support (easy to intermediate, once new-EH support appears)
5) Investigate problems with PCI Message Signalled Interrupts (MSI). 5) Investigate problems with PCI Message Signalled Interrupts (MSI).
...@@ -132,8 +127,8 @@ enum { ...@@ -132,8 +127,8 @@ enum {
MV_FLAG_DUAL_HC = (1 << 30), /* two SATA Host Controllers */ MV_FLAG_DUAL_HC = (1 << 30), /* two SATA Host Controllers */
MV_FLAG_IRQ_COALESCE = (1 << 29), /* IRQ coalescing capability */ MV_FLAG_IRQ_COALESCE = (1 << 29), /* IRQ coalescing capability */
MV_COMMON_FLAGS = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY | MV_COMMON_FLAGS = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY |
ATA_FLAG_SATA_RESET | ATA_FLAG_MMIO | ATA_FLAG_MMIO | ATA_FLAG_NO_ATAPI |
ATA_FLAG_NO_ATAPI | ATA_FLAG_PIO_POLLING, ATA_FLAG_PIO_POLLING,
MV_6XXX_FLAGS = MV_FLAG_IRQ_COALESCE, MV_6XXX_FLAGS = MV_FLAG_IRQ_COALESCE,
CRQB_FLAG_READ = (1 << 0), CRQB_FLAG_READ = (1 << 0),
...@@ -254,13 +249,31 @@ enum { ...@@ -254,13 +249,31 @@ enum {
EDMA_ERR_TRANS_PROTO = (1 << 31), EDMA_ERR_TRANS_PROTO = (1 << 31),
EDMA_ERR_OVERRUN_5 = (1 << 5), EDMA_ERR_OVERRUN_5 = (1 << 5),
EDMA_ERR_UNDERRUN_5 = (1 << 6), EDMA_ERR_UNDERRUN_5 = (1 << 6),
EDMA_ERR_FATAL = (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR | EDMA_EH_FREEZE = EDMA_ERR_D_PAR |
EDMA_ERR_DEV_DCON | EDMA_ERR_CRBQ_PAR | EDMA_ERR_PRD_PAR |
EDMA_ERR_CRPB_PAR | EDMA_ERR_INTRL_PAR | EDMA_ERR_DEV_DCON |
EDMA_ERR_IORDY | EDMA_ERR_LNK_CTRL_RX_2 | EDMA_ERR_DEV_CON |
EDMA_ERR_SERR |
EDMA_ERR_SELF_DIS |
EDMA_ERR_CRBQ_PAR |
EDMA_ERR_CRPB_PAR |
EDMA_ERR_INTRL_PAR |
EDMA_ERR_IORDY |
EDMA_ERR_LNK_CTRL_RX_2 |
EDMA_ERR_LNK_DATA_RX | EDMA_ERR_LNK_DATA_RX |
EDMA_ERR_LNK_DATA_TX | EDMA_ERR_LNK_DATA_TX |
EDMA_ERR_TRANS_PROTO), EDMA_ERR_TRANS_PROTO,
EDMA_EH_FREEZE_5 = EDMA_ERR_D_PAR |
EDMA_ERR_PRD_PAR |
EDMA_ERR_DEV_DCON |
EDMA_ERR_DEV_CON |
EDMA_ERR_OVERRUN_5 |
EDMA_ERR_UNDERRUN_5 |
EDMA_ERR_SELF_DIS_5 |
EDMA_ERR_CRBQ_PAR |
EDMA_ERR_CRPB_PAR |
EDMA_ERR_INTRL_PAR |
EDMA_ERR_IORDY,
EDMA_REQ_Q_BASE_HI_OFS = 0x10, EDMA_REQ_Q_BASE_HI_OFS = 0x10,
EDMA_REQ_Q_IN_PTR_OFS = 0x14, /* also contains BASE_LO */ EDMA_REQ_Q_IN_PTR_OFS = 0x14, /* also contains BASE_LO */
...@@ -359,6 +372,10 @@ struct mv_port_priv { ...@@ -359,6 +372,10 @@ struct mv_port_priv {
dma_addr_t crpb_dma; dma_addr_t crpb_dma;
struct mv_sg *sg_tbl; struct mv_sg *sg_tbl;
dma_addr_t sg_tbl_dma; dma_addr_t sg_tbl_dma;
unsigned int req_idx;
unsigned int resp_idx;
u32 pp_flags; u32 pp_flags;
}; };
...@@ -391,14 +408,15 @@ static u32 mv_scr_read(struct ata_port *ap, unsigned int sc_reg_in); ...@@ -391,14 +408,15 @@ static u32 mv_scr_read(struct ata_port *ap, unsigned int sc_reg_in);
static void mv_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val); static void mv_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val);
static u32 mv5_scr_read(struct ata_port *ap, unsigned int sc_reg_in); static u32 mv5_scr_read(struct ata_port *ap, unsigned int sc_reg_in);
static void mv5_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val); static void mv5_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val);
static void mv_phy_reset(struct ata_port *ap);
static void __mv_phy_reset(struct ata_port *ap, int can_sleep);
static int mv_port_start(struct ata_port *ap); static int mv_port_start(struct ata_port *ap);
static void mv_port_stop(struct ata_port *ap); static void mv_port_stop(struct ata_port *ap);
static void mv_qc_prep(struct ata_queued_cmd *qc); static void mv_qc_prep(struct ata_queued_cmd *qc);
static void mv_qc_prep_iie(struct ata_queued_cmd *qc); static void mv_qc_prep_iie(struct ata_queued_cmd *qc);
static unsigned int mv_qc_issue(struct ata_queued_cmd *qc); static unsigned int mv_qc_issue(struct ata_queued_cmd *qc);
static void mv_eng_timeout(struct ata_port *ap); static void mv_error_handler(struct ata_port *ap);
static void mv_post_int_cmd(struct ata_queued_cmd *qc);
static void mv_eh_freeze(struct ata_port *ap);
static void mv_eh_thaw(struct ata_port *ap);
static int mv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent); static int mv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent);
static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio, static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
...@@ -422,7 +440,6 @@ static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio); ...@@ -422,7 +440,6 @@ static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
static void mv_reset_pci_bus(struct pci_dev *pdev, void __iomem *mmio); static void mv_reset_pci_bus(struct pci_dev *pdev, void __iomem *mmio);
static void mv_channel_reset(struct mv_host_priv *hpriv, void __iomem *mmio, static void mv_channel_reset(struct mv_host_priv *hpriv, void __iomem *mmio,
unsigned int port_no); unsigned int port_no);
static void mv_stop_and_reset(struct ata_port *ap);
static struct scsi_host_template mv5_sht = { static struct scsi_host_template mv5_sht = {
.module = THIS_MODULE, .module = THIS_MODULE,
...@@ -469,19 +486,21 @@ static const struct ata_port_operations mv5_ops = { ...@@ -469,19 +486,21 @@ static const struct ata_port_operations mv5_ops = {
.exec_command = ata_exec_command, .exec_command = ata_exec_command,
.dev_select = ata_std_dev_select, .dev_select = ata_std_dev_select,
.phy_reset = mv_phy_reset,
.cable_detect = ata_cable_sata, .cable_detect = ata_cable_sata,
.qc_prep = mv_qc_prep, .qc_prep = mv_qc_prep,
.qc_issue = mv_qc_issue, .qc_issue = mv_qc_issue,
.data_xfer = ata_data_xfer, .data_xfer = ata_data_xfer,
.eng_timeout = mv_eng_timeout,
.irq_clear = mv_irq_clear, .irq_clear = mv_irq_clear,
.irq_on = ata_irq_on, .irq_on = ata_irq_on,
.irq_ack = ata_irq_ack, .irq_ack = ata_irq_ack,
.error_handler = mv_error_handler,
.post_internal_cmd = mv_post_int_cmd,
.freeze = mv_eh_freeze,
.thaw = mv_eh_thaw,
.scr_read = mv5_scr_read, .scr_read = mv5_scr_read,
.scr_write = mv5_scr_write, .scr_write = mv5_scr_write,
...@@ -498,19 +517,21 @@ static const struct ata_port_operations mv6_ops = { ...@@ -498,19 +517,21 @@ static const struct ata_port_operations mv6_ops = {
.exec_command = ata_exec_command, .exec_command = ata_exec_command,
.dev_select = ata_std_dev_select, .dev_select = ata_std_dev_select,
.phy_reset = mv_phy_reset,
.cable_detect = ata_cable_sata, .cable_detect = ata_cable_sata,
.qc_prep = mv_qc_prep, .qc_prep = mv_qc_prep,
.qc_issue = mv_qc_issue, .qc_issue = mv_qc_issue,
.data_xfer = ata_data_xfer, .data_xfer = ata_data_xfer,
.eng_timeout = mv_eng_timeout,
.irq_clear = mv_irq_clear, .irq_clear = mv_irq_clear,
.irq_on = ata_irq_on, .irq_on = ata_irq_on,
.irq_ack = ata_irq_ack, .irq_ack = ata_irq_ack,
.error_handler = mv_error_handler,
.post_internal_cmd = mv_post_int_cmd,
.freeze = mv_eh_freeze,
.thaw = mv_eh_thaw,
.scr_read = mv_scr_read, .scr_read = mv_scr_read,
.scr_write = mv_scr_write, .scr_write = mv_scr_write,
...@@ -527,19 +548,21 @@ static const struct ata_port_operations mv_iie_ops = { ...@@ -527,19 +548,21 @@ static const struct ata_port_operations mv_iie_ops = {
.exec_command = ata_exec_command, .exec_command = ata_exec_command,
.dev_select = ata_std_dev_select, .dev_select = ata_std_dev_select,
.phy_reset = mv_phy_reset,
.cable_detect = ata_cable_sata, .cable_detect = ata_cable_sata,
.qc_prep = mv_qc_prep_iie, .qc_prep = mv_qc_prep_iie,
.qc_issue = mv_qc_issue, .qc_issue = mv_qc_issue,
.data_xfer = ata_data_xfer, .data_xfer = ata_data_xfer,
.eng_timeout = mv_eng_timeout,
.irq_clear = mv_irq_clear, .irq_clear = mv_irq_clear,
.irq_on = ata_irq_on, .irq_on = ata_irq_on,
.irq_ack = ata_irq_ack, .irq_ack = ata_irq_ack,
.error_handler = mv_error_handler,
.post_internal_cmd = mv_post_int_cmd,
.freeze = mv_eh_freeze,
.thaw = mv_eh_thaw,
.scr_read = mv_scr_read, .scr_read = mv_scr_read,
.scr_write = mv_scr_write, .scr_write = mv_scr_write,
...@@ -738,35 +761,40 @@ static void mv_set_edma_ptrs(void __iomem *port_mmio, ...@@ -738,35 +761,40 @@ static void mv_set_edma_ptrs(void __iomem *port_mmio,
struct mv_host_priv *hpriv, struct mv_host_priv *hpriv,
struct mv_port_priv *pp) struct mv_port_priv *pp)
{ {
u32 index;
/* /*
* initialize request queue * initialize request queue
*/ */
index = (pp->req_idx & MV_MAX_Q_DEPTH_MASK) << EDMA_REQ_Q_PTR_SHIFT;
WARN_ON(pp->crqb_dma & 0x3ff); WARN_ON(pp->crqb_dma & 0x3ff);
writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI_OFS); writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI_OFS);
writelfl(pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK, writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | index,
port_mmio + EDMA_REQ_Q_IN_PTR_OFS); port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
if (hpriv->hp_flags & MV_HP_ERRATA_XX42A0) if (hpriv->hp_flags & MV_HP_ERRATA_XX42A0)
writelfl(pp->crqb_dma & 0xffffffff, writelfl((pp->crqb_dma & 0xffffffff) | index,
port_mmio + EDMA_REQ_Q_OUT_PTR_OFS); port_mmio + EDMA_REQ_Q_OUT_PTR_OFS);
else else
writelfl(0, port_mmio + EDMA_REQ_Q_OUT_PTR_OFS); writelfl(index, port_mmio + EDMA_REQ_Q_OUT_PTR_OFS);
/* /*
* initialize response queue * initialize response queue
*/ */
index = (pp->resp_idx & MV_MAX_Q_DEPTH_MASK) << EDMA_RSP_Q_PTR_SHIFT;
WARN_ON(pp->crpb_dma & 0xff); WARN_ON(pp->crpb_dma & 0xff);
writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI_OFS); writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI_OFS);
if (hpriv->hp_flags & MV_HP_ERRATA_XX42A0) if (hpriv->hp_flags & MV_HP_ERRATA_XX42A0)
writelfl(pp->crpb_dma & 0xffffffff, writelfl((pp->crpb_dma & 0xffffffff) | index,
port_mmio + EDMA_RSP_Q_IN_PTR_OFS); port_mmio + EDMA_RSP_Q_IN_PTR_OFS);
else else
writelfl(0, port_mmio + EDMA_RSP_Q_IN_PTR_OFS); writelfl(index, port_mmio + EDMA_RSP_Q_IN_PTR_OFS);
writelfl(pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK, writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | index,
port_mmio + EDMA_RSP_Q_OUT_PTR_OFS); port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
} }
/** /**
...@@ -784,6 +812,11 @@ static void mv_start_dma(void __iomem *base, struct mv_host_priv *hpriv, ...@@ -784,6 +812,11 @@ static void mv_start_dma(void __iomem *base, struct mv_host_priv *hpriv,
struct mv_port_priv *pp) struct mv_port_priv *pp)
{ {
if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) { if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) {
/* clear EDMA event indicators, if any */
writelfl(0, base + EDMA_ERR_IRQ_CAUSE_OFS);
mv_set_edma_ptrs(base, hpriv, pp);
writelfl(EDMA_EN, base + EDMA_CMD_OFS); writelfl(EDMA_EN, base + EDMA_CMD_OFS);
pp->pp_flags |= MV_PP_FLAG_EDMA_EN; pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
} }
...@@ -827,7 +860,6 @@ static int mv_stop_dma(struct ata_port *ap) ...@@ -827,7 +860,6 @@ static int mv_stop_dma(struct ata_port *ap)
if (reg & EDMA_EN) { if (reg & EDMA_EN) {
ata_port_printk(ap, KERN_ERR, "Unable to stop eDMA\n"); ata_port_printk(ap, KERN_ERR, "Unable to stop eDMA\n");
/* FIXME: Consider doing a reset here to recover */
err = -EIO; err = -EIO;
} }
...@@ -1101,11 +1133,6 @@ static unsigned int mv_fill_sg(struct ata_queued_cmd *qc) ...@@ -1101,11 +1133,6 @@ static unsigned int mv_fill_sg(struct ata_queued_cmd *qc)
return n_sg; return n_sg;
} }
static inline unsigned mv_inc_q_index(unsigned index)
{
return (index + 1) & MV_MAX_Q_DEPTH_MASK;
}
static inline void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last) static inline void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last)
{ {
u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS | u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
...@@ -1145,9 +1172,8 @@ static void mv_qc_prep(struct ata_queued_cmd *qc) ...@@ -1145,9 +1172,8 @@ static void mv_qc_prep(struct ata_queued_cmd *qc)
flags |= qc->tag << CRQB_TAG_SHIFT; flags |= qc->tag << CRQB_TAG_SHIFT;
flags |= qc->tag << CRQB_IOID_SHIFT; /* 50xx appears to ignore this*/ flags |= qc->tag << CRQB_IOID_SHIFT; /* 50xx appears to ignore this*/
/* get current queue index from hardware */ /* get current queue index from software */
in_index = (readl(mv_ap_base(ap) + EDMA_REQ_Q_IN_PTR_OFS) in_index = pp->req_idx & MV_MAX_Q_DEPTH_MASK;
>> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
pp->crqb[in_index].sg_addr = pp->crqb[in_index].sg_addr =
cpu_to_le32(pp->sg_tbl_dma & 0xffffffff); cpu_to_le32(pp->sg_tbl_dma & 0xffffffff);
...@@ -1240,9 +1266,8 @@ static void mv_qc_prep_iie(struct ata_queued_cmd *qc) ...@@ -1240,9 +1266,8 @@ static void mv_qc_prep_iie(struct ata_queued_cmd *qc)
flags |= qc->tag << CRQB_IOID_SHIFT; /* "I/O Id" is -really- flags |= qc->tag << CRQB_IOID_SHIFT; /* "I/O Id" is -really-
what we use as our tag */ what we use as our tag */
/* get current queue index from hardware */ /* get current queue index from software */
in_index = (readl(mv_ap_base(ap) + EDMA_REQ_Q_IN_PTR_OFS) in_index = pp->req_idx & MV_MAX_Q_DEPTH_MASK;
>> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
crqb = (struct mv_crqb_iie *) &pp->crqb[in_index]; crqb = (struct mv_crqb_iie *) &pp->crqb[in_index];
crqb->addr = cpu_to_le32(pp->sg_tbl_dma & 0xffffffff); crqb->addr = cpu_to_le32(pp->sg_tbl_dma & 0xffffffff);
...@@ -1294,8 +1319,7 @@ static unsigned int mv_qc_issue(struct ata_queued_cmd *qc) ...@@ -1294,8 +1319,7 @@ static unsigned int mv_qc_issue(struct ata_queued_cmd *qc)
void __iomem *port_mmio = mv_ap_base(ap); void __iomem *port_mmio = mv_ap_base(ap);
struct mv_port_priv *pp = ap->private_data; struct mv_port_priv *pp = ap->private_data;
struct mv_host_priv *hpriv = ap->host->private_data; struct mv_host_priv *hpriv = ap->host->private_data;
unsigned in_index; u32 in_index;
u32 in_ptr;
if (qc->tf.protocol != ATA_PROT_DMA) { if (qc->tf.protocol != ATA_PROT_DMA) {
/* We're about to send a non-EDMA capable command to the /* We're about to send a non-EDMA capable command to the
...@@ -1306,68 +1330,25 @@ static unsigned int mv_qc_issue(struct ata_queued_cmd *qc) ...@@ -1306,68 +1330,25 @@ static unsigned int mv_qc_issue(struct ata_queued_cmd *qc)
return ata_qc_issue_prot(qc); return ata_qc_issue_prot(qc);
} }
in_ptr = readl(port_mmio + EDMA_REQ_Q_IN_PTR_OFS); mv_start_dma(port_mmio, hpriv, pp);
in_index = (in_ptr >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
in_index = pp->req_idx & MV_MAX_Q_DEPTH_MASK;
/* until we do queuing, the queue should be empty at this point */ /* until we do queuing, the queue should be empty at this point */
WARN_ON(in_index != ((readl(port_mmio + EDMA_REQ_Q_OUT_PTR_OFS) WARN_ON(in_index != ((readl(port_mmio + EDMA_REQ_Q_OUT_PTR_OFS)
>> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK)); >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK));
in_index = mv_inc_q_index(in_index); /* now incr producer index */ pp->req_idx++;
mv_start_dma(port_mmio, hpriv, pp); in_index = (pp->req_idx & MV_MAX_Q_DEPTH_MASK) << EDMA_REQ_Q_PTR_SHIFT;
/* and write the request in pointer to kick the EDMA to life */ /* and write the request in pointer to kick the EDMA to life */
in_ptr &= EDMA_REQ_Q_BASE_LO_MASK; writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | in_index,
in_ptr |= in_index << EDMA_REQ_Q_PTR_SHIFT; port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
writelfl(in_ptr, port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
return 0; return 0;
} }
/**
* mv_get_crpb_status - get status from most recently completed cmd
* @ap: ATA channel to manipulate
*
* This routine is for use when the port is in DMA mode, when it
* will be using the CRPB (command response block) method of
* returning command completion information. We check indices
* are good, grab status, and bump the response consumer index to
* prove that we're up to date.
*
* LOCKING:
* Inherited from caller.
*/
static u8 mv_get_crpb_status(struct ata_port *ap)
{
void __iomem *port_mmio = mv_ap_base(ap);
struct mv_port_priv *pp = ap->private_data;
unsigned out_index;
u32 out_ptr;
u8 ata_status;
out_ptr = readl(port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
out_index = (out_ptr >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
ata_status = le16_to_cpu(pp->crpb[out_index].flags)
>> CRPB_FLAG_STATUS_SHIFT;
/* increment our consumer index... */
out_index = mv_inc_q_index(out_index);
/* and, until we do NCQ, there should only be 1 CRPB waiting */
WARN_ON(out_index != ((readl(port_mmio + EDMA_RSP_Q_IN_PTR_OFS)
>> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK));
/* write out our inc'd consumer index so EDMA knows we're caught up */
out_ptr &= EDMA_RSP_Q_BASE_LO_MASK;
out_ptr |= out_index << EDMA_RSP_Q_PTR_SHIFT;
writelfl(out_ptr, port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
/* Return ATA status register for completed CRPB */
return ata_status;
}
/** /**
* mv_err_intr - Handle error interrupts on the port * mv_err_intr - Handle error interrupts on the port
* @ap: ATA channel to manipulate * @ap: ATA channel to manipulate
...@@ -1382,30 +1363,191 @@ static u8 mv_get_crpb_status(struct ata_port *ap) ...@@ -1382,30 +1363,191 @@ static u8 mv_get_crpb_status(struct ata_port *ap)
* LOCKING: * LOCKING:
* Inherited from caller. * Inherited from caller.
*/ */
static void mv_err_intr(struct ata_port *ap, int reset_allowed) static void mv_err_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
{ {
void __iomem *port_mmio = mv_ap_base(ap); void __iomem *port_mmio = mv_ap_base(ap);
u32 edma_err_cause, serr = 0; u32 edma_err_cause, eh_freeze_mask, serr = 0;
struct mv_port_priv *pp = ap->private_data;
struct mv_host_priv *hpriv = ap->host->private_data;
unsigned int edma_enabled = (pp->pp_flags & MV_PP_FLAG_EDMA_EN);
unsigned int action = 0, err_mask = 0;
struct ata_eh_info *ehi = &ap->eh_info;
edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS); ata_ehi_clear_desc(ehi);
if (EDMA_ERR_SERR & edma_err_cause) { if (!edma_enabled) {
/* just a guess: do we need to do this? should we
* expand this, and do it in all cases?
*/
sata_scr_read(ap, SCR_ERROR, &serr); sata_scr_read(ap, SCR_ERROR, &serr);
sata_scr_write_flush(ap, SCR_ERROR, serr); sata_scr_write_flush(ap, SCR_ERROR, serr);
} }
if (EDMA_ERR_SELF_DIS & edma_err_cause) {
edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
ata_ehi_push_desc(ehi, "edma_err 0x%08x", edma_err_cause);
/*
* all generations share these EDMA error cause bits
*/
if (edma_err_cause & EDMA_ERR_DEV)
err_mask |= AC_ERR_DEV;
if (edma_err_cause & (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR |
EDMA_ERR_CRBQ_PAR | EDMA_ERR_CRPB_PAR |
EDMA_ERR_INTRL_PAR)) {
err_mask |= AC_ERR_ATA_BUS;
action |= ATA_EH_HARDRESET;
ata_ehi_push_desc(ehi, ", parity error");
}
if (edma_err_cause & (EDMA_ERR_DEV_DCON | EDMA_ERR_DEV_CON)) {
ata_ehi_hotplugged(ehi);
ata_ehi_push_desc(ehi, edma_err_cause & EDMA_ERR_DEV_DCON ?
", dev disconnect" : ", dev connect");
}
if (IS_50XX(hpriv)) {
eh_freeze_mask = EDMA_EH_FREEZE_5;
if (edma_err_cause & EDMA_ERR_SELF_DIS_5) {
struct mv_port_priv *pp = ap->private_data;
pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
ata_ehi_push_desc(ehi, ", EDMA self-disable");
}
} else {
eh_freeze_mask = EDMA_EH_FREEZE;
if (edma_err_cause & EDMA_ERR_SELF_DIS) {
struct mv_port_priv *pp = ap->private_data; struct mv_port_priv *pp = ap->private_data;
pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN; pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
ata_ehi_push_desc(ehi, ", EDMA self-disable");
}
if (edma_err_cause & EDMA_ERR_SERR) {
sata_scr_read(ap, SCR_ERROR, &serr);
sata_scr_write_flush(ap, SCR_ERROR, serr);
err_mask = AC_ERR_ATA_BUS;
action |= ATA_EH_HARDRESET;
}
} }
DPRINTK(KERN_ERR "ata%u: port error; EDMA err cause: 0x%08x "
"SERR: 0x%08x\n", ap->print_id, edma_err_cause, serr);
/* Clear EDMA now that SERR cleanup done */ /* Clear EDMA now that SERR cleanup done */
writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS); writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
/* check for fatal here and recover if needed */ if (!err_mask) {
if (reset_allowed && (EDMA_ERR_FATAL & edma_err_cause)) err_mask = AC_ERR_OTHER;
mv_stop_and_reset(ap); action |= ATA_EH_HARDRESET;
}
ehi->serror |= serr;
ehi->action |= action;
if (qc)
qc->err_mask |= err_mask;
else
ehi->err_mask |= err_mask;
if (edma_err_cause & eh_freeze_mask)
ata_port_freeze(ap);
else
ata_port_abort(ap);
}
static void mv_intr_pio(struct ata_port *ap)
{
struct ata_queued_cmd *qc;
u8 ata_status;
/* ignore spurious intr if drive still BUSY */
ata_status = readb(ap->ioaddr.status_addr);
if (unlikely(ata_status & ATA_BUSY))
return;
/* get active ATA command */
qc = ata_qc_from_tag(ap, ap->active_tag);
if (unlikely(!qc)) /* no active tag */
return;
if (qc->tf.flags & ATA_TFLAG_POLLING) /* polling; we don't own qc */
return;
/* and finally, complete the ATA command */
qc->err_mask |= ac_err_mask(ata_status);
ata_qc_complete(qc);
}
static void mv_intr_edma(struct ata_port *ap)
{
void __iomem *port_mmio = mv_ap_base(ap);
struct mv_host_priv *hpriv = ap->host->private_data;
struct mv_port_priv *pp = ap->private_data;
struct ata_queued_cmd *qc;
u32 out_index, in_index;
bool work_done = false;
/* get h/w response queue pointer */
in_index = (readl(port_mmio + EDMA_RSP_Q_IN_PTR_OFS)
>> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
while (1) {
u16 status;
/* get s/w response queue last-read pointer, and compare */
out_index = pp->resp_idx & MV_MAX_Q_DEPTH_MASK;
if (in_index == out_index)
break;
/* 50xx: get active ATA command */
if (IS_GEN_I(hpriv))
qc = ata_qc_from_tag(ap, ap->active_tag);
/* 60xx: get active ATA command via tag, to enable support
* for queueing. this works transparently for queued and
* non-queued modes.
*/
else {
unsigned int tag;
if (IS_GEN_II(hpriv))
tag = (le16_to_cpu(pp->crpb[out_index].id)
>> CRPB_IOID_SHIFT_6) & 0x3f;
else
tag = (le16_to_cpu(pp->crpb[out_index].id)
>> CRPB_IOID_SHIFT_7) & 0x3f;
qc = ata_qc_from_tag(ap, tag);
}
/* lower 8 bits of status are EDMA_ERR_IRQ_CAUSE_OFS
* bits (WARNING: might not necessarily be associated
* with this command), which -should- be clear
* if all is well
*/
status = le16_to_cpu(pp->crpb[out_index].flags);
if (unlikely(status & 0xff)) {
mv_err_intr(ap, qc);
return;
}
/* and finally, complete the ATA command */
if (qc) {
qc->err_mask |=
ac_err_mask(status >> CRPB_FLAG_STATUS_SHIFT);
ata_qc_complete(qc);
}
/* advance software response queue pointer, to
* indicate (after the loop completes) to hardware
* that we have consumed a response queue entry.
*/
work_done = true;
pp->resp_idx++;
}
if (work_done)
writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) |
(out_index << EDMA_RSP_Q_PTR_SHIFT),
port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
} }
/** /**
...@@ -1428,11 +1570,8 @@ static void mv_host_intr(struct ata_host *host, u32 relevant, unsigned int hc) ...@@ -1428,11 +1570,8 @@ static void mv_host_intr(struct ata_host *host, u32 relevant, unsigned int hc)
{ {
void __iomem *mmio = host->iomap[MV_PRIMARY_BAR]; void __iomem *mmio = host->iomap[MV_PRIMARY_BAR];
void __iomem *hc_mmio = mv_hc_base(mmio, hc); void __iomem *hc_mmio = mv_hc_base(mmio, hc);
struct ata_queued_cmd *qc;
u32 hc_irq_cause; u32 hc_irq_cause;
int port, port0; int port, port0;
int shift, hard_port, handled;
unsigned int err_mask;
if (hc == 0) if (hc == 0)
port0 = 0; port0 = 0;
...@@ -1441,72 +1580,89 @@ static void mv_host_intr(struct ata_host *host, u32 relevant, unsigned int hc) ...@@ -1441,72 +1580,89 @@ static void mv_host_intr(struct ata_host *host, u32 relevant, unsigned int hc)
/* we'll need the HC success int register in most cases */ /* we'll need the HC success int register in most cases */
hc_irq_cause = readl(hc_mmio + HC_IRQ_CAUSE_OFS); hc_irq_cause = readl(hc_mmio + HC_IRQ_CAUSE_OFS);
if (hc_irq_cause) if (!hc_irq_cause)
return;
writelfl(~hc_irq_cause, hc_mmio + HC_IRQ_CAUSE_OFS); writelfl(~hc_irq_cause, hc_mmio + HC_IRQ_CAUSE_OFS);
VPRINTK("ENTER, hc%u relevant=0x%08x HC IRQ cause=0x%08x\n", VPRINTK("ENTER, hc%u relevant=0x%08x HC IRQ cause=0x%08x\n",
hc,relevant,hc_irq_cause); hc,relevant,hc_irq_cause);
for (port = port0; port < port0 + MV_PORTS_PER_HC; port++) { for (port = port0; port < port0 + MV_PORTS_PER_HC; port++) {
u8 ata_status = 0;
struct ata_port *ap = host->ports[port]; struct ata_port *ap = host->ports[port];
struct mv_port_priv *pp = ap->private_data; struct mv_port_priv *pp = ap->private_data;
int have_err_bits, hard_port, shift;
if ((!ap) || (ap->flags & ATA_FLAG_DISABLED))
continue;
shift = port << 1; /* (port * 2) */
if (port >= MV_PORTS_PER_HC) {
shift++; /* skip bit 8 in the HC Main IRQ reg */
}
have_err_bits = ((PORT0_ERR << shift) & relevant);
if (unlikely(have_err_bits)) {
struct ata_queued_cmd *qc;
qc = ata_qc_from_tag(ap, ap->active_tag);
if (qc && (qc->tf.flags & ATA_TFLAG_POLLING))
continue;
mv_err_intr(ap, qc);
continue;
}
hard_port = mv_hardport_from_port(port); /* range 0..3 */ hard_port = mv_hardport_from_port(port); /* range 0..3 */
handled = 0; /* ensure ata_status is set if handled++ */
/* Note that DEV_IRQ might happen spuriously during EDMA,
* and should be ignored in such cases.
* The cause of this is still under investigation.
*/
if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) { if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
/* EDMA: check for response queue interrupt */ if ((CRPB_DMA_DONE << hard_port) & hc_irq_cause)
if ((CRPB_DMA_DONE << hard_port) & hc_irq_cause) { mv_intr_edma(ap);
ata_status = mv_get_crpb_status(ap);
handled = 1;
}
} else { } else {
/* PIO: check for device (drive) interrupt */ if ((DEV_IRQ << hard_port) & hc_irq_cause)
if ((DEV_IRQ << hard_port) & hc_irq_cause) { mv_intr_pio(ap);
ata_status = readb(ap->ioaddr.status_addr);
handled = 1;
/* ignore spurious intr if drive still BUSY */
if (ata_status & ATA_BUSY) {
ata_status = 0;
handled = 0;
}
} }
} }
VPRINTK("EXIT\n");
}
if (ap && (ap->flags & ATA_FLAG_DISABLED)) static void mv_pci_error(struct ata_host *host, void __iomem *mmio)
continue; {
struct ata_port *ap;
struct ata_queued_cmd *qc;
struct ata_eh_info *ehi;
unsigned int i, err_mask, printed = 0;
u32 err_cause;
err_mask = ac_err_mask(ata_status); err_cause = readl(mmio + PCI_IRQ_CAUSE_OFS);
shift = port << 1; /* (port * 2) */ dev_printk(KERN_ERR, host->dev, "PCI ERROR; PCI IRQ cause=0x%08x\n",
if (port >= MV_PORTS_PER_HC) { err_cause);
shift++; /* skip bit 8 in the HC Main IRQ reg */
} DPRINTK("All regs @ PCI error\n");
if ((PORT0_ERR << shift) & relevant) { mv_dump_all_regs(mmio, -1, to_pci_dev(host->dev));
mv_err_intr(ap, 1);
err_mask |= AC_ERR_OTHER;
handled = 1;
}
if (handled) { writelfl(0, mmio + PCI_IRQ_CAUSE_OFS);
for (i = 0; i < host->n_ports; i++) {
ap = host->ports[i];
if (!ata_port_offline(ap)) {
ehi = &ap->eh_info;
ata_ehi_clear_desc(ehi);
if (!printed++)
ata_ehi_push_desc(ehi,
"PCI err cause 0x%08x", err_cause);
err_mask = AC_ERR_HOST_BUS;
ehi->action = ATA_EH_HARDRESET;
qc = ata_qc_from_tag(ap, ap->active_tag); qc = ata_qc_from_tag(ap, ap->active_tag);
if (qc && (qc->flags & ATA_QCFLAG_ACTIVE)) { if (qc)
VPRINTK("port %u IRQ found for qc, "
"ata_status 0x%x\n", port,ata_status);
/* mark qc status appropriately */
if (!(qc->tf.flags & ATA_TFLAG_POLLING)) {
qc->err_mask |= err_mask; qc->err_mask |= err_mask;
ata_qc_complete(qc); else
} ehi->err_mask |= err_mask;
}
ata_port_freeze(ap);
} }
} }
VPRINTK("EXIT\n");
} }
/** /**
...@@ -1541,24 +1697,21 @@ static irqreturn_t mv_interrupt(int irq, void *dev_instance) ...@@ -1541,24 +1697,21 @@ static irqreturn_t mv_interrupt(int irq, void *dev_instance)
n_hcs = mv_get_hc_count(host->ports[0]->flags); n_hcs = mv_get_hc_count(host->ports[0]->flags);
spin_lock(&host->lock); spin_lock(&host->lock);
if (unlikely(irq_stat & PCI_ERR)) {
mv_pci_error(host, mmio);
handled = 1;
goto out_unlock; /* skip all other HC irq handling */
}
for (hc = 0; hc < n_hcs; hc++) { for (hc = 0; hc < n_hcs; hc++) {
u32 relevant = irq_stat & (HC0_IRQ_PEND << (hc * HC_SHIFT)); u32 relevant = irq_stat & (HC0_IRQ_PEND << (hc * HC_SHIFT));
if (relevant) { if (relevant) {
mv_host_intr(host, relevant, hc); mv_host_intr(host, relevant, hc);
handled++; handled = 1;
} }
} }
if (PCI_ERR & irq_stat) { out_unlock:
printk(KERN_ERR DRV_NAME ": PCI ERROR; PCI IRQ cause=0x%08x\n",
readl(mmio + PCI_IRQ_CAUSE_OFS));
DPRINTK("All regs @ PCI error\n");
mv_dump_all_regs(mmio, -1, to_pci_dev(host->dev));
writelfl(0, mmio + PCI_IRQ_CAUSE_OFS);
handled++;
}
spin_unlock(&host->lock); spin_unlock(&host->lock);
return IRQ_RETVAL(handled); return IRQ_RETVAL(handled);
...@@ -1967,28 +2120,8 @@ static void mv_channel_reset(struct mv_host_priv *hpriv, void __iomem *mmio, ...@@ -1967,28 +2120,8 @@ static void mv_channel_reset(struct mv_host_priv *hpriv, void __iomem *mmio,
mdelay(1); mdelay(1);
} }
static void mv_stop_and_reset(struct ata_port *ap)
{
struct mv_host_priv *hpriv = ap->host->private_data;
void __iomem *mmio = ap->host->iomap[MV_PRIMARY_BAR];
mv_stop_dma(ap);
mv_channel_reset(hpriv, mmio, ap->port_no);
__mv_phy_reset(ap, 0);
}
static inline void __msleep(unsigned int msec, int can_sleep)
{
if (can_sleep)
msleep(msec);
else
mdelay(msec);
}
/** /**
* __mv_phy_reset - Perform eDMA reset followed by COMRESET * mv_phy_reset - Perform eDMA reset followed by COMRESET
* @ap: ATA channel to manipulate * @ap: ATA channel to manipulate
* *
* Part of this is taken from __sata_phy_reset and modified to * Part of this is taken from __sata_phy_reset and modified to
...@@ -1998,14 +2131,12 @@ static inline void __msleep(unsigned int msec, int can_sleep) ...@@ -1998,14 +2131,12 @@ static inline void __msleep(unsigned int msec, int can_sleep)
* Inherited from caller. This is coded to safe to call at * Inherited from caller. This is coded to safe to call at
* interrupt level, i.e. it does not sleep. * interrupt level, i.e. it does not sleep.
*/ */
static void __mv_phy_reset(struct ata_port *ap, int can_sleep) static void mv_phy_reset(struct ata_port *ap, unsigned int *class,
unsigned long deadline)
{ {
struct mv_port_priv *pp = ap->private_data; struct mv_port_priv *pp = ap->private_data;
struct mv_host_priv *hpriv = ap->host->private_data; struct mv_host_priv *hpriv = ap->host->private_data;
void __iomem *port_mmio = mv_ap_base(ap); void __iomem *port_mmio = mv_ap_base(ap);
struct ata_taskfile tf;
struct ata_device *dev = &ap->device[0];
unsigned long deadline;
int retry = 5; int retry = 5;
u32 sstatus; u32 sstatus;
...@@ -2018,18 +2149,17 @@ static void __mv_phy_reset(struct ata_port *ap, int can_sleep) ...@@ -2018,18 +2149,17 @@ static void __mv_phy_reset(struct ata_port *ap, int can_sleep)
/* Issue COMRESET via SControl */ /* Issue COMRESET via SControl */
comreset_retry: comreset_retry:
sata_scr_write_flush(ap, SCR_CONTROL, 0x301); sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
__msleep(1, can_sleep); msleep(1);
sata_scr_write_flush(ap, SCR_CONTROL, 0x300); sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
__msleep(20, can_sleep); msleep(20);
deadline = jiffies + msecs_to_jiffies(200);
do { do {
sata_scr_read(ap, SCR_STATUS, &sstatus); sata_scr_read(ap, SCR_STATUS, &sstatus);
if (((sstatus & 0x3) == 3) || ((sstatus & 0x3) == 0)) if (((sstatus & 0x3) == 3) || ((sstatus & 0x3) == 0))
break; break;
__msleep(1, can_sleep); msleep(1);
} while (time_before(jiffies, deadline)); } while (time_before(jiffies, deadline));
/* work around errata */ /* work around errata */
...@@ -2042,13 +2172,8 @@ comreset_retry: ...@@ -2042,13 +2172,8 @@ comreset_retry:
"SCtrl 0x%08x\n", mv_scr_read(ap, SCR_STATUS), "SCtrl 0x%08x\n", mv_scr_read(ap, SCR_STATUS),
mv_scr_read(ap, SCR_ERROR), mv_scr_read(ap, SCR_CONTROL)); mv_scr_read(ap, SCR_ERROR), mv_scr_read(ap, SCR_CONTROL));
if (ata_port_online(ap)) { if (ata_port_offline(ap)) {
ata_port_probe(ap); *class = ATA_DEV_NONE;
} else {
sata_scr_read(ap, SCR_STATUS, &sstatus);
ata_port_printk(ap, KERN_INFO,
"no device found (phy stat %08x)\n", sstatus);
ata_port_disable(ap);
return; return;
} }
...@@ -2062,68 +2187,152 @@ comreset_retry: ...@@ -2062,68 +2187,152 @@ comreset_retry:
u8 drv_stat = ata_check_status(ap); u8 drv_stat = ata_check_status(ap);
if ((drv_stat != 0x80) && (drv_stat != 0x7f)) if ((drv_stat != 0x80) && (drv_stat != 0x7f))
break; break;
__msleep(500, can_sleep); msleep(500);
if (retry-- <= 0) if (retry-- <= 0)
break; break;
if (time_after(jiffies, deadline))
break;
} }
tf.lbah = readb(ap->ioaddr.lbah_addr); /* FIXME: if we passed the deadline, the following
tf.lbam = readb(ap->ioaddr.lbam_addr); * code probably produces an invalid result
tf.lbal = readb(ap->ioaddr.lbal_addr); */
tf.nsect = readb(ap->ioaddr.nsect_addr);
dev->class = ata_dev_classify(&tf); /* finally, read device signature from TF registers */
if (!ata_dev_enabled(dev)) { *class = ata_dev_try_classify(ap, 0, NULL);
VPRINTK("Port disabled post-sig: No device present.\n");
ata_port_disable(ap);
}
writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS); writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN; WARN_ON(pp->pp_flags & MV_PP_FLAG_EDMA_EN);
VPRINTK("EXIT\n"); VPRINTK("EXIT\n");
} }
static void mv_phy_reset(struct ata_port *ap) static int mv_prereset(struct ata_port *ap, unsigned long deadline)
{ {
__mv_phy_reset(ap, 1); struct mv_port_priv *pp = ap->private_data;
struct ata_eh_context *ehc = &ap->eh_context;
int rc;
rc = mv_stop_dma(ap);
if (rc)
ehc->i.action |= ATA_EH_HARDRESET;
if (!(pp->pp_flags & MV_PP_FLAG_HAD_A_RESET)) {
pp->pp_flags |= MV_PP_FLAG_HAD_A_RESET;
ehc->i.action |= ATA_EH_HARDRESET;
}
/* if we're about to do hardreset, nothing more to do */
if (ehc->i.action & ATA_EH_HARDRESET)
return 0;
if (ata_port_online(ap))
rc = ata_wait_ready(ap, deadline);
else
rc = -ENODEV;
return rc;
} }
/** static int mv_hardreset(struct ata_port *ap, unsigned int *class,
* mv_eng_timeout - Routine called by libata when SCSI times out I/O unsigned long deadline)
* @ap: ATA channel to manipulate
*
* Intent is to clear all pending error conditions, reset the
* chip/bus, fail the command, and move on.
*
* LOCKING:
* This routine holds the host lock while failing the command.
*/
static void mv_eng_timeout(struct ata_port *ap)
{ {
struct mv_host_priv *hpriv = ap->host->private_data;
void __iomem *mmio = ap->host->iomap[MV_PRIMARY_BAR]; void __iomem *mmio = ap->host->iomap[MV_PRIMARY_BAR];
struct ata_queued_cmd *qc;
unsigned long flags;
ata_port_printk(ap, KERN_ERR, "Entering mv_eng_timeout\n"); mv_stop_dma(ap);
DPRINTK("All regs @ start of eng_timeout\n");
mv_dump_all_regs(mmio, ap->port_no, to_pci_dev(ap->host->dev));
qc = ata_qc_from_tag(ap, ap->active_tag); mv_channel_reset(hpriv, mmio, ap->port_no);
printk(KERN_ERR "mmio_base %p ap %p qc %p scsi_cmnd %p &cmnd %p\n",
mmio, ap, qc, qc->scsicmd, &qc->scsicmd->cmnd);
spin_lock_irqsave(&ap->host->lock, flags); mv_phy_reset(ap, class, deadline);
mv_err_intr(ap, 0);
mv_stop_and_reset(ap); return 0;
spin_unlock_irqrestore(&ap->host->lock, flags); }
static void mv_postreset(struct ata_port *ap, unsigned int *classes)
{
u32 serr;
/* print link status */
sata_print_link_status(ap);
WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE)); /* clear SError */
if (qc->flags & ATA_QCFLAG_ACTIVE) { sata_scr_read(ap, SCR_ERROR, &serr);
qc->err_mask |= AC_ERR_TIMEOUT; sata_scr_write_flush(ap, SCR_ERROR, serr);
ata_eh_qc_complete(qc);
/* bail out if no device is present */
if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
DPRINTK("EXIT, no device\n");
return;
} }
/* set up device control */
iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
}
static void mv_error_handler(struct ata_port *ap)
{
ata_do_eh(ap, mv_prereset, ata_std_softreset,
mv_hardreset, mv_postreset);
}
static void mv_post_int_cmd(struct ata_queued_cmd *qc)
{
mv_stop_dma(qc->ap);
}
static void mv_eh_freeze(struct ata_port *ap)
{
void __iomem *mmio = ap->host->iomap[MV_PRIMARY_BAR];
unsigned int hc = (ap->port_no > 3) ? 1 : 0;
u32 tmp, mask;
unsigned int shift;
/* FIXME: handle coalescing completion events properly */
shift = ap->port_no * 2;
if (hc > 0)
shift++;
mask = 0x3 << shift;
/* disable assertion of portN err, done events */
tmp = readl(mmio + HC_MAIN_IRQ_MASK_OFS);
writelfl(tmp & ~mask, mmio + HC_MAIN_IRQ_MASK_OFS);
}
static void mv_eh_thaw(struct ata_port *ap)
{
void __iomem *mmio = ap->host->iomap[MV_PRIMARY_BAR];
unsigned int hc = (ap->port_no > 3) ? 1 : 0;
void __iomem *hc_mmio = mv_hc_base(mmio, hc);
void __iomem *port_mmio = mv_ap_base(ap);
u32 tmp, mask, hc_irq_cause;
unsigned int shift, hc_port_no = ap->port_no;
/* FIXME: handle coalescing completion events properly */
shift = ap->port_no * 2;
if (hc > 0) {
shift++;
hc_port_no -= 4;
}
mask = 0x3 << shift;
/* clear EDMA errors on this port */
writel(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
/* clear pending irq events */
hc_irq_cause = readl(hc_mmio + HC_IRQ_CAUSE_OFS);
hc_irq_cause &= ~(1 << hc_port_no); /* clear CRPB-done */
hc_irq_cause &= ~(1 << (hc_port_no + 8)); /* clear Device int */
writel(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE_OFS);
/* enable assertion of portN err, done events */
tmp = readl(mmio + HC_MAIN_IRQ_MASK_OFS);
writelfl(tmp | mask, mmio + HC_MAIN_IRQ_MASK_OFS);
} }
/** /**
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment