Commit b1c3c3eb authored by Linus Torvalds's avatar Linus Torvalds

Merge branch 'fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/djbw/async_tx

* 'fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/djbw/async_tx:
  ioat: fix 'ack' handling, driver must ensure that 'ack' is zero
  dmaengine: fix sparse warning
  fsldma: do not cleanup descriptors in hardirq context
  dmaengine: add driver for Freescale MPC85xx DMA controller
parents 87baa2bb 6497dcff
...@@ -1589,6 +1589,13 @@ L: linux-fbdev-devel@lists.sourceforge.net (moderated for non-subscribers) ...@@ -1589,6 +1589,13 @@ L: linux-fbdev-devel@lists.sourceforge.net (moderated for non-subscribers)
W: http://linux-fbdev.sourceforge.net/ W: http://linux-fbdev.sourceforge.net/
S: Maintained S: Maintained
FREESCALE DMA DRIVER
P; Zhang Wei
M: wei.zhang@freescale.com
L: linuxppc-embedded@ozlabs.org
L: linux-kernel@vger.kernel.org
S: Maintained
FREESCALE SOC FS_ENET DRIVER FREESCALE SOC FS_ENET DRIVER
P: Pantelis Antoniou P: Pantelis Antoniou
M: pantelis.antoniou@gmail.com M: pantelis.antoniou@gmail.com
......
...@@ -4,7 +4,7 @@ ...@@ -4,7 +4,7 @@
menuconfig DMADEVICES menuconfig DMADEVICES
bool "DMA Engine support" bool "DMA Engine support"
depends on (PCI && X86) || ARCH_IOP32X || ARCH_IOP33X || ARCH_IOP13XX depends on (PCI && X86) || ARCH_IOP32X || ARCH_IOP33X || ARCH_IOP13XX || PPC
depends on !HIGHMEM64G depends on !HIGHMEM64G
help help
DMA engines can do asynchronous data transfers without DMA engines can do asynchronous data transfers without
...@@ -37,6 +37,23 @@ config INTEL_IOP_ADMA ...@@ -37,6 +37,23 @@ config INTEL_IOP_ADMA
help help
Enable support for the Intel(R) IOP Series RAID engines. Enable support for the Intel(R) IOP Series RAID engines.
config FSL_DMA
bool "Freescale MPC85xx/MPC83xx DMA support"
depends on PPC
select DMA_ENGINE
---help---
Enable support for the Freescale DMA engine. Now, it support
MPC8560/40, MPC8555, MPC8548 and MPC8641 processors.
The MPC8349, MPC8360 is also supported.
config FSL_DMA_SELFTEST
bool "Enable the self test for each DMA channel"
depends on FSL_DMA
default y
---help---
Enable the self test for each DMA channel. A self test will be
performed after the channel probed to ensure the DMA works well.
config DMA_ENGINE config DMA_ENGINE
bool bool
......
...@@ -3,3 +3,4 @@ obj-$(CONFIG_NET_DMA) += iovlock.o ...@@ -3,3 +3,4 @@ obj-$(CONFIG_NET_DMA) += iovlock.o
obj-$(CONFIG_INTEL_IOATDMA) += ioatdma.o obj-$(CONFIG_INTEL_IOATDMA) += ioatdma.o
ioatdma-objs := ioat.o ioat_dma.o ioat_dca.o ioatdma-objs := ioat.o ioat_dma.o ioat_dca.o
obj-$(CONFIG_INTEL_IOP_ADMA) += iop-adma.o obj-$(CONFIG_INTEL_IOP_ADMA) += iop-adma.o
obj-$(CONFIG_FSL_DMA) += fsldma.o
/*
* Freescale MPC85xx, MPC83xx DMA Engine support
*
* Copyright (C) 2007 Freescale Semiconductor, Inc. All rights reserved.
*
* Author:
* Zhang Wei <wei.zhang@freescale.com>, Jul 2007
* Ebony Zhu <ebony.zhu@freescale.com>, May 2007
*
* Description:
* DMA engine driver for Freescale MPC8540 DMA controller, which is
* also fit for MPC8560, MPC8555, MPC8548, MPC8641, and etc.
* The support for MPC8349 DMA contorller is also added.
*
* This is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/interrupt.h>
#include <linux/dmaengine.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/dmapool.h>
#include <linux/of_platform.h>
#include "fsldma.h"
static void dma_init(struct fsl_dma_chan *fsl_chan)
{
/* Reset the channel */
DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, 0, 32);
switch (fsl_chan->feature & FSL_DMA_IP_MASK) {
case FSL_DMA_IP_85XX:
/* Set the channel to below modes:
* EIE - Error interrupt enable
* EOSIE - End of segments interrupt enable (basic mode)
* EOLNIE - End of links interrupt enable
*/
DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, FSL_DMA_MR_EIE
| FSL_DMA_MR_EOLNIE | FSL_DMA_MR_EOSIE, 32);
break;
case FSL_DMA_IP_83XX:
/* Set the channel to below modes:
* EOTIE - End-of-transfer interrupt enable
*/
DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, FSL_DMA_MR_EOTIE,
32);
break;
}
}
static void set_sr(struct fsl_dma_chan *fsl_chan, dma_addr_t val)
{
DMA_OUT(fsl_chan, &fsl_chan->reg_base->sr, val, 32);
}
static dma_addr_t get_sr(struct fsl_dma_chan *fsl_chan)
{
return DMA_IN(fsl_chan, &fsl_chan->reg_base->sr, 32);
}
static void set_desc_cnt(struct fsl_dma_chan *fsl_chan,
struct fsl_dma_ld_hw *hw, u32 count)
{
hw->count = CPU_TO_DMA(fsl_chan, count, 32);
}
static void set_desc_src(struct fsl_dma_chan *fsl_chan,
struct fsl_dma_ld_hw *hw, dma_addr_t src)
{
u64 snoop_bits;
snoop_bits = ((fsl_chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0;
hw->src_addr = CPU_TO_DMA(fsl_chan, snoop_bits | src, 64);
}
static void set_desc_dest(struct fsl_dma_chan *fsl_chan,
struct fsl_dma_ld_hw *hw, dma_addr_t dest)
{
u64 snoop_bits;
snoop_bits = ((fsl_chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0;
hw->dst_addr = CPU_TO_DMA(fsl_chan, snoop_bits | dest, 64);
}
static void set_desc_next(struct fsl_dma_chan *fsl_chan,
struct fsl_dma_ld_hw *hw, dma_addr_t next)
{
u64 snoop_bits;
snoop_bits = ((fsl_chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
? FSL_DMA_SNEN : 0;
hw->next_ln_addr = CPU_TO_DMA(fsl_chan, snoop_bits | next, 64);
}
static void set_cdar(struct fsl_dma_chan *fsl_chan, dma_addr_t addr)
{
DMA_OUT(fsl_chan, &fsl_chan->reg_base->cdar, addr | FSL_DMA_SNEN, 64);
}
static dma_addr_t get_cdar(struct fsl_dma_chan *fsl_chan)
{
return DMA_IN(fsl_chan, &fsl_chan->reg_base->cdar, 64) & ~FSL_DMA_SNEN;
}
static void set_ndar(struct fsl_dma_chan *fsl_chan, dma_addr_t addr)
{
DMA_OUT(fsl_chan, &fsl_chan->reg_base->ndar, addr, 64);
}
static dma_addr_t get_ndar(struct fsl_dma_chan *fsl_chan)
{
return DMA_IN(fsl_chan, &fsl_chan->reg_base->ndar, 64);
}
static int dma_is_idle(struct fsl_dma_chan *fsl_chan)
{
u32 sr = get_sr(fsl_chan);
return (!(sr & FSL_DMA_SR_CB)) || (sr & FSL_DMA_SR_CH);
}
static void dma_start(struct fsl_dma_chan *fsl_chan)
{
u32 mr_set = 0;;
if (fsl_chan->feature & FSL_DMA_CHAN_PAUSE_EXT) {
DMA_OUT(fsl_chan, &fsl_chan->reg_base->bcr, 0, 32);
mr_set |= FSL_DMA_MR_EMP_EN;
} else
DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr,
DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32)
& ~FSL_DMA_MR_EMP_EN, 32);
if (fsl_chan->feature & FSL_DMA_CHAN_START_EXT)
mr_set |= FSL_DMA_MR_EMS_EN;
else
mr_set |= FSL_DMA_MR_CS;
DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr,
DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32)
| mr_set, 32);
}
static void dma_halt(struct fsl_dma_chan *fsl_chan)
{
int i = 0;
DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr,
DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) | FSL_DMA_MR_CA,
32);
DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr,
DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) & ~(FSL_DMA_MR_CS
| FSL_DMA_MR_EMS_EN | FSL_DMA_MR_CA), 32);
while (!dma_is_idle(fsl_chan) && (i++ < 100))
udelay(10);
if (i >= 100 && !dma_is_idle(fsl_chan))
dev_err(fsl_chan->dev, "DMA halt timeout!\n");
}
static void set_ld_eol(struct fsl_dma_chan *fsl_chan,
struct fsl_desc_sw *desc)
{
desc->hw.next_ln_addr = CPU_TO_DMA(fsl_chan,
DMA_TO_CPU(fsl_chan, desc->hw.next_ln_addr, 64) | FSL_DMA_EOL,
64);
}
static void append_ld_queue(struct fsl_dma_chan *fsl_chan,
struct fsl_desc_sw *new_desc)
{
struct fsl_desc_sw *queue_tail = to_fsl_desc(fsl_chan->ld_queue.prev);
if (list_empty(&fsl_chan->ld_queue))
return;
/* Link to the new descriptor physical address and
* Enable End-of-segment interrupt for
* the last link descriptor.
* (the previous node's next link descriptor)
*
* For FSL_DMA_IP_83xx, the snoop enable bit need be set.
*/
queue_tail->hw.next_ln_addr = CPU_TO_DMA(fsl_chan,
new_desc->async_tx.phys | FSL_DMA_EOSIE |
(((fsl_chan->feature & FSL_DMA_IP_MASK)
== FSL_DMA_IP_83XX) ? FSL_DMA_SNEN : 0), 64);
}
/**
* fsl_chan_set_src_loop_size - Set source address hold transfer size
* @fsl_chan : Freescale DMA channel
* @size : Address loop size, 0 for disable loop
*
* The set source address hold transfer size. The source
* address hold or loop transfer size is when the DMA transfer
* data from source address (SA), if the loop size is 4, the DMA will
* read data from SA, SA + 1, SA + 2, SA + 3, then loop back to SA,
* SA + 1 ... and so on.
*/
static void fsl_chan_set_src_loop_size(struct fsl_dma_chan *fsl_chan, int size)
{
switch (size) {
case 0:
DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr,
DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) &
(~FSL_DMA_MR_SAHE), 32);
break;
case 1:
case 2:
case 4:
case 8:
DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr,
DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) |
FSL_DMA_MR_SAHE | (__ilog2(size) << 14),
32);
break;
}
}
/**
* fsl_chan_set_dest_loop_size - Set destination address hold transfer size
* @fsl_chan : Freescale DMA channel
* @size : Address loop size, 0 for disable loop
*
* The set destination address hold transfer size. The destination
* address hold or loop transfer size is when the DMA transfer
* data to destination address (TA), if the loop size is 4, the DMA will
* write data to TA, TA + 1, TA + 2, TA + 3, then loop back to TA,
* TA + 1 ... and so on.
*/
static void fsl_chan_set_dest_loop_size(struct fsl_dma_chan *fsl_chan, int size)
{
switch (size) {
case 0:
DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr,
DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) &
(~FSL_DMA_MR_DAHE), 32);
break;
case 1:
case 2:
case 4:
case 8:
DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr,
DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) |
FSL_DMA_MR_DAHE | (__ilog2(size) << 16),
32);
break;
}
}
/**
* fsl_chan_toggle_ext_pause - Toggle channel external pause status
* @fsl_chan : Freescale DMA channel
* @size : Pause control size, 0 for disable external pause control.
* The maximum is 1024.
*
* The Freescale DMA channel can be controlled by the external
* signal DREQ#. The pause control size is how many bytes are allowed
* to transfer before pausing the channel, after which a new assertion
* of DREQ# resumes channel operation.
*/
static void fsl_chan_toggle_ext_pause(struct fsl_dma_chan *fsl_chan, int size)
{
if (size > 1024)
return;
if (size) {
DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr,
DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32)
| ((__ilog2(size) << 24) & 0x0f000000),
32);
fsl_chan->feature |= FSL_DMA_CHAN_PAUSE_EXT;
} else
fsl_chan->feature &= ~FSL_DMA_CHAN_PAUSE_EXT;
}
/**
* fsl_chan_toggle_ext_start - Toggle channel external start status
* @fsl_chan : Freescale DMA channel
* @enable : 0 is disabled, 1 is enabled.
*
* If enable the external start, the channel can be started by an
* external DMA start pin. So the dma_start() does not start the
* transfer immediately. The DMA channel will wait for the
* control pin asserted.
*/
static void fsl_chan_toggle_ext_start(struct fsl_dma_chan *fsl_chan, int enable)
{
if (enable)
fsl_chan->feature |= FSL_DMA_CHAN_START_EXT;
else
fsl_chan->feature &= ~FSL_DMA_CHAN_START_EXT;
}
static dma_cookie_t fsl_dma_tx_submit(struct dma_async_tx_descriptor *tx)
{
struct fsl_desc_sw *desc = tx_to_fsl_desc(tx);
struct fsl_dma_chan *fsl_chan = to_fsl_chan(tx->chan);
unsigned long flags;
dma_cookie_t cookie;
/* cookie increment and adding to ld_queue must be atomic */
spin_lock_irqsave(&fsl_chan->desc_lock, flags);
cookie = fsl_chan->common.cookie;
cookie++;
if (cookie < 0)
cookie = 1;
desc->async_tx.cookie = cookie;
fsl_chan->common.cookie = desc->async_tx.cookie;
append_ld_queue(fsl_chan, desc);
list_splice_init(&desc->async_tx.tx_list, fsl_chan->ld_queue.prev);
spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
return cookie;
}
/**
* fsl_dma_alloc_descriptor - Allocate descriptor from channel's DMA pool.
* @fsl_chan : Freescale DMA channel
*
* Return - The descriptor allocated. NULL for failed.
*/
static struct fsl_desc_sw *fsl_dma_alloc_descriptor(
struct fsl_dma_chan *fsl_chan)
{
dma_addr_t pdesc;
struct fsl_desc_sw *desc_sw;
desc_sw = dma_pool_alloc(fsl_chan->desc_pool, GFP_ATOMIC, &pdesc);
if (desc_sw) {
memset(desc_sw, 0, sizeof(struct fsl_desc_sw));
dma_async_tx_descriptor_init(&desc_sw->async_tx,
&fsl_chan->common);
desc_sw->async_tx.tx_submit = fsl_dma_tx_submit;
INIT_LIST_HEAD(&desc_sw->async_tx.tx_list);
desc_sw->async_tx.phys = pdesc;
}
return desc_sw;
}
/**
* fsl_dma_alloc_chan_resources - Allocate resources for DMA channel.
* @fsl_chan : Freescale DMA channel
*
* This function will create a dma pool for descriptor allocation.
*
* Return - The number of descriptors allocated.
*/
static int fsl_dma_alloc_chan_resources(struct dma_chan *chan)
{
struct fsl_dma_chan *fsl_chan = to_fsl_chan(chan);
LIST_HEAD(tmp_list);
/* We need the descriptor to be aligned to 32bytes
* for meeting FSL DMA specification requirement.
*/
fsl_chan->desc_pool = dma_pool_create("fsl_dma_engine_desc_pool",
fsl_chan->dev, sizeof(struct fsl_desc_sw),
32, 0);
if (!fsl_chan->desc_pool) {
dev_err(fsl_chan->dev, "No memory for channel %d "
"descriptor dma pool.\n", fsl_chan->id);
return 0;
}
return 1;
}
/**
* fsl_dma_free_chan_resources - Free all resources of the channel.
* @fsl_chan : Freescale DMA channel
*/
static void fsl_dma_free_chan_resources(struct dma_chan *chan)
{
struct fsl_dma_chan *fsl_chan = to_fsl_chan(chan);
struct fsl_desc_sw *desc, *_desc;
unsigned long flags;
dev_dbg(fsl_chan->dev, "Free all channel resources.\n");
spin_lock_irqsave(&fsl_chan->desc_lock, flags);
list_for_each_entry_safe(desc, _desc, &fsl_chan->ld_queue, node) {
#ifdef FSL_DMA_LD_DEBUG
dev_dbg(fsl_chan->dev,
"LD %p will be released.\n", desc);
#endif
list_del(&desc->node);
/* free link descriptor */
dma_pool_free(fsl_chan->desc_pool, desc, desc->async_tx.phys);
}
spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
dma_pool_destroy(fsl_chan->desc_pool);
}
static struct dma_async_tx_descriptor *fsl_dma_prep_memcpy(
struct dma_chan *chan, dma_addr_t dma_dest, dma_addr_t dma_src,
size_t len, unsigned long flags)
{
struct fsl_dma_chan *fsl_chan;
struct fsl_desc_sw *first = NULL, *prev = NULL, *new;
size_t copy;
LIST_HEAD(link_chain);
if (!chan)
return NULL;
if (!len)
return NULL;
fsl_chan = to_fsl_chan(chan);
do {
/* Allocate the link descriptor from DMA pool */
new = fsl_dma_alloc_descriptor(fsl_chan);
if (!new) {
dev_err(fsl_chan->dev,
"No free memory for link descriptor\n");
return NULL;
}
#ifdef FSL_DMA_LD_DEBUG
dev_dbg(fsl_chan->dev, "new link desc alloc %p\n", new);
#endif
copy = min(len, FSL_DMA_BCR_MAX_CNT);
set_desc_cnt(fsl_chan, &new->hw, copy);
set_desc_src(fsl_chan, &new->hw, dma_src);
set_desc_dest(fsl_chan, &new->hw, dma_dest);
if (!first)
first = new;
else
set_desc_next(fsl_chan, &prev->hw, new->async_tx.phys);
new->async_tx.cookie = 0;
new->async_tx.ack = 1;
prev = new;
len -= copy;
dma_src += copy;
dma_dest += copy;
/* Insert the link descriptor to the LD ring */
list_add_tail(&new->node, &first->async_tx.tx_list);
} while (len);
new->async_tx.ack = 0; /* client is in control of this ack */
new->async_tx.cookie = -EBUSY;
/* Set End-of-link to the last link descriptor of new list*/
set_ld_eol(fsl_chan, new);
return first ? &first->async_tx : NULL;
}
/**
* fsl_dma_update_completed_cookie - Update the completed cookie.
* @fsl_chan : Freescale DMA channel
*/
static void fsl_dma_update_completed_cookie(struct fsl_dma_chan *fsl_chan)
{
struct fsl_desc_sw *cur_desc, *desc;
dma_addr_t ld_phy;
ld_phy = get_cdar(fsl_chan) & FSL_DMA_NLDA_MASK;
if (ld_phy) {
cur_desc = NULL;
list_for_each_entry(desc, &fsl_chan->ld_queue, node)
if (desc->async_tx.phys == ld_phy) {
cur_desc = desc;
break;
}
if (cur_desc && cur_desc->async_tx.cookie) {
if (dma_is_idle(fsl_chan))
fsl_chan->completed_cookie =
cur_desc->async_tx.cookie;
else
fsl_chan->completed_cookie =
cur_desc->async_tx.cookie - 1;
}
}
}
/**
* fsl_chan_ld_cleanup - Clean up link descriptors
* @fsl_chan : Freescale DMA channel
*
* This function clean up the ld_queue of DMA channel.
* If 'in_intr' is set, the function will move the link descriptor to
* the recycle list. Otherwise, free it directly.
*/
static void fsl_chan_ld_cleanup(struct fsl_dma_chan *fsl_chan)
{
struct fsl_desc_sw *desc, *_desc;
unsigned long flags;
spin_lock_irqsave(&fsl_chan->desc_lock, flags);
fsl_dma_update_completed_cookie(fsl_chan);
dev_dbg(fsl_chan->dev, "chan completed_cookie = %d\n",
fsl_chan->completed_cookie);
list_for_each_entry_safe(desc, _desc, &fsl_chan->ld_queue, node) {
dma_async_tx_callback callback;
void *callback_param;
if (dma_async_is_complete(desc->async_tx.cookie,
fsl_chan->completed_cookie, fsl_chan->common.cookie)
== DMA_IN_PROGRESS)
break;
callback = desc->async_tx.callback;
callback_param = desc->async_tx.callback_param;
/* Remove from ld_queue list */
list_del(&desc->node);
dev_dbg(fsl_chan->dev, "link descriptor %p will be recycle.\n",
desc);
dma_pool_free(fsl_chan->desc_pool, desc, desc->async_tx.phys);
/* Run the link descriptor callback function */
if (callback) {
spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
dev_dbg(fsl_chan->dev, "link descriptor %p callback\n",
desc);
callback(callback_param);
spin_lock_irqsave(&fsl_chan->desc_lock, flags);
}
}
spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
}
/**
* fsl_chan_xfer_ld_queue - Transfer link descriptors in channel ld_queue.
* @fsl_chan : Freescale DMA channel
*/
static void fsl_chan_xfer_ld_queue(struct fsl_dma_chan *fsl_chan)
{
struct list_head *ld_node;
dma_addr_t next_dest_addr;
unsigned long flags;
if (!dma_is_idle(fsl_chan))
return;
dma_halt(fsl_chan);
/* If there are some link descriptors
* not transfered in queue. We need to start it.
*/
spin_lock_irqsave(&fsl_chan->desc_lock, flags);
/* Find the first un-transfer desciptor */
for (ld_node = fsl_chan->ld_queue.next;
(ld_node != &fsl_chan->ld_queue)
&& (dma_async_is_complete(
to_fsl_desc(ld_node)->async_tx.cookie,
fsl_chan->completed_cookie,
fsl_chan->common.cookie) == DMA_SUCCESS);
ld_node = ld_node->next);
spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
if (ld_node != &fsl_chan->ld_queue) {
/* Get the ld start address from ld_queue */
next_dest_addr = to_fsl_desc(ld_node)->async_tx.phys;
dev_dbg(fsl_chan->dev, "xfer LDs staring from 0x%016llx\n",
(u64)next_dest_addr);
set_cdar(fsl_chan, next_dest_addr);
dma_start(fsl_chan);
} else {
set_cdar(fsl_chan, 0);
set_ndar(fsl_chan, 0);
}
}
/**
* fsl_dma_memcpy_issue_pending - Issue the DMA start command
* @fsl_chan : Freescale DMA channel
*/
static void fsl_dma_memcpy_issue_pending(struct dma_chan *chan)
{
struct fsl_dma_chan *fsl_chan = to_fsl_chan(chan);
#ifdef FSL_DMA_LD_DEBUG
struct fsl_desc_sw *ld;
unsigned long flags;
spin_lock_irqsave(&fsl_chan->desc_lock, flags);
if (list_empty(&fsl_chan->ld_queue)) {
spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
return;
}
dev_dbg(fsl_chan->dev, "--memcpy issue--\n");
list_for_each_entry(ld, &fsl_chan->ld_queue, node) {
int i;
dev_dbg(fsl_chan->dev, "Ch %d, LD %08x\n",
fsl_chan->id, ld->async_tx.phys);
for (i = 0; i < 8; i++)
dev_dbg(fsl_chan->dev, "LD offset %d: %08x\n",
i, *(((u32 *)&ld->hw) + i));
}
dev_dbg(fsl_chan->dev, "----------------\n");
spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
#endif
fsl_chan_xfer_ld_queue(fsl_chan);
}
static void fsl_dma_dependency_added(struct dma_chan *chan)
{
struct fsl_dma_chan *fsl_chan = to_fsl_chan(chan);
fsl_chan_ld_cleanup(fsl_chan);
}
/**
* fsl_dma_is_complete - Determine the DMA status
* @fsl_chan : Freescale DMA channel
*/
static enum dma_status fsl_dma_is_complete(struct dma_chan *chan,
dma_cookie_t cookie,
dma_cookie_t *done,
dma_cookie_t *used)
{
struct fsl_dma_chan *fsl_chan = to_fsl_chan(chan);
dma_cookie_t last_used;
dma_cookie_t last_complete;
fsl_chan_ld_cleanup(fsl_chan);
last_used = chan->cookie;
last_complete = fsl_chan->completed_cookie;
if (done)
*done = last_complete;
if (used)
*used = last_used;
return dma_async_is_complete(cookie, last_complete, last_used);
}
static irqreturn_t fsl_dma_chan_do_interrupt(int irq, void *data)
{
struct fsl_dma_chan *fsl_chan = (struct fsl_dma_chan *)data;
dma_addr_t stat;
stat = get_sr(fsl_chan);
dev_dbg(fsl_chan->dev, "event: channel %d, stat = 0x%x\n",
fsl_chan->id, stat);
set_sr(fsl_chan, stat); /* Clear the event register */
stat &= ~(FSL_DMA_SR_CB | FSL_DMA_SR_CH);
if (!stat)
return IRQ_NONE;
if (stat & FSL_DMA_SR_TE)
dev_err(fsl_chan->dev, "Transfer Error!\n");
/* If the link descriptor segment transfer finishes,
* we will recycle the used descriptor.
*/
if (stat & FSL_DMA_SR_EOSI) {
dev_dbg(fsl_chan->dev, "event: End-of-segments INT\n");
dev_dbg(fsl_chan->dev, "event: clndar 0x%016llx, "
"nlndar 0x%016llx\n", (u64)get_cdar(fsl_chan),
(u64)get_ndar(fsl_chan));
stat &= ~FSL_DMA_SR_EOSI;
}
/* If it current transfer is the end-of-transfer,
* we should clear the Channel Start bit for
* prepare next transfer.
*/
if (stat & (FSL_DMA_SR_EOLNI | FSL_DMA_SR_EOCDI)) {
dev_dbg(fsl_chan->dev, "event: End-of-link INT\n");
stat &= ~FSL_DMA_SR_EOLNI;
fsl_chan_xfer_ld_queue(fsl_chan);
}
if (stat)
dev_dbg(fsl_chan->dev, "event: unhandled sr 0x%02x\n",
stat);
dev_dbg(fsl_chan->dev, "event: Exit\n");
tasklet_schedule(&fsl_chan->tasklet);
return IRQ_HANDLED;
}
static irqreturn_t fsl_dma_do_interrupt(int irq, void *data)
{
struct fsl_dma_device *fdev = (struct fsl_dma_device *)data;
u32 gsr;
int ch_nr;
gsr = (fdev->feature & FSL_DMA_BIG_ENDIAN) ? in_be32(fdev->reg_base)
: in_le32(fdev->reg_base);
ch_nr = (32 - ffs(gsr)) / 8;
return fdev->chan[ch_nr] ? fsl_dma_chan_do_interrupt(irq,
fdev->chan[ch_nr]) : IRQ_NONE;
}
static void dma_do_tasklet(unsigned long data)
{
struct fsl_dma_chan *fsl_chan = (struct fsl_dma_chan *)data;
fsl_chan_ld_cleanup(fsl_chan);
}
static void fsl_dma_callback_test(struct fsl_dma_chan *fsl_chan)
{
if (fsl_chan)
dev_info(fsl_chan->dev, "selftest: callback is ok!\n");
}
static int fsl_dma_self_test(struct fsl_dma_chan *fsl_chan)
{
struct dma_chan *chan;
int err = 0;
dma_addr_t dma_dest, dma_src;
dma_cookie_t cookie;
u8 *src, *dest;
int i;
size_t test_size;
struct dma_async_tx_descriptor *tx1, *tx2, *tx3;
test_size = 4096;
src = kmalloc(test_size * 2, GFP_KERNEL);
if (!src) {
dev_err(fsl_chan->dev,
"selftest: Cannot alloc memory for test!\n");
err = -ENOMEM;
goto out;
}
dest = src + test_size;
for (i = 0; i < test_size; i++)
src[i] = (u8) i;
chan = &fsl_chan->common;
if (fsl_dma_alloc_chan_resources(chan) < 1) {
dev_err(fsl_chan->dev,
"selftest: Cannot alloc resources for DMA\n");
err = -ENODEV;
goto out;
}
/* TX 1 */
dma_src = dma_map_single(fsl_chan->dev, src, test_size / 2,
DMA_TO_DEVICE);
dma_dest = dma_map_single(fsl_chan->dev, dest, test_size / 2,
DMA_FROM_DEVICE);
tx1 = fsl_dma_prep_memcpy(chan, dma_dest, dma_src, test_size / 2, 0);
async_tx_ack(tx1);
cookie = fsl_dma_tx_submit(tx1);
fsl_dma_memcpy_issue_pending(chan);
msleep(2);
if (fsl_dma_is_complete(chan, cookie, NULL, NULL) != DMA_SUCCESS) {
dev_err(fsl_chan->dev, "selftest: Time out!\n");
err = -ENODEV;
goto out;
}
/* Test free and re-alloc channel resources */
fsl_dma_free_chan_resources(chan);
if (fsl_dma_alloc_chan_resources(chan) < 1) {
dev_err(fsl_chan->dev,
"selftest: Cannot alloc resources for DMA\n");
err = -ENODEV;
goto free_resources;
}
/* Continue to test
* TX 2
*/
dma_src = dma_map_single(fsl_chan->dev, src + test_size / 2,
test_size / 4, DMA_TO_DEVICE);
dma_dest = dma_map_single(fsl_chan->dev, dest + test_size / 2,
test_size / 4, DMA_FROM_DEVICE);
tx2 = fsl_dma_prep_memcpy(chan, dma_dest, dma_src, test_size / 4, 0);
async_tx_ack(tx2);
/* TX 3 */
dma_src = dma_map_single(fsl_chan->dev, src + test_size * 3 / 4,
test_size / 4, DMA_TO_DEVICE);
dma_dest = dma_map_single(fsl_chan->dev, dest + test_size * 3 / 4,
test_size / 4, DMA_FROM_DEVICE);
tx3 = fsl_dma_prep_memcpy(chan, dma_dest, dma_src, test_size / 4, 0);
async_tx_ack(tx3);
/* Test exchanging the prepared tx sort */
cookie = fsl_dma_tx_submit(tx3);
cookie = fsl_dma_tx_submit(tx2);
#ifdef FSL_DMA_CALLBACKTEST
if (dma_has_cap(DMA_INTERRUPT, ((struct fsl_dma_device *)
dev_get_drvdata(fsl_chan->dev->parent))->common.cap_mask)) {
tx3->callback = fsl_dma_callback_test;
tx3->callback_param = fsl_chan;
}
#endif
fsl_dma_memcpy_issue_pending(chan);
msleep(2);
if (fsl_dma_is_complete(chan, cookie, NULL, NULL) != DMA_SUCCESS) {
dev_err(fsl_chan->dev, "selftest: Time out!\n");
err = -ENODEV;
goto free_resources;
}
err = memcmp(src, dest, test_size);
if (err) {
for (i = 0; (*(src + i) == *(dest + i)) && (i < test_size);
i++);
dev_err(fsl_chan->dev, "selftest: Test failed, data %d/%d is "
"error! src 0x%x, dest 0x%x\n",
i, test_size, *(src + i), *(dest + i));
}
free_resources:
fsl_dma_free_chan_resources(chan);
out:
kfree(src);
return err;
}
static int __devinit of_fsl_dma_chan_probe(struct of_device *dev,
const struct of_device_id *match)
{
struct fsl_dma_device *fdev;
struct fsl_dma_chan *new_fsl_chan;
int err;
fdev = dev_get_drvdata(dev->dev.parent);
BUG_ON(!fdev);
/* alloc channel */
new_fsl_chan = kzalloc(sizeof(struct fsl_dma_chan), GFP_KERNEL);
if (!new_fsl_chan) {
dev_err(&dev->dev, "No free memory for allocating "
"dma channels!\n");
err = -ENOMEM;
goto err;
}
/* get dma channel register base */
err = of_address_to_resource(dev->node, 0, &new_fsl_chan->reg);
if (err) {
dev_err(&dev->dev, "Can't get %s property 'reg'\n",
dev->node->full_name);
goto err;
}
new_fsl_chan->feature = *(u32 *)match->data;
if (!fdev->feature)
fdev->feature = new_fsl_chan->feature;
/* If the DMA device's feature is different than its channels',
* report the bug.
*/
WARN_ON(fdev->feature != new_fsl_chan->feature);
new_fsl_chan->dev = &dev->dev;
new_fsl_chan->reg_base = ioremap(new_fsl_chan->reg.start,
new_fsl_chan->reg.end - new_fsl_chan->reg.start + 1);
new_fsl_chan->id = ((new_fsl_chan->reg.start - 0x100) & 0xfff) >> 7;
if (new_fsl_chan->id > FSL_DMA_MAX_CHANS_PER_DEVICE) {
dev_err(&dev->dev, "There is no %d channel!\n",
new_fsl_chan->id);
err = -EINVAL;
goto err;
}
fdev->chan[new_fsl_chan->id] = new_fsl_chan;
tasklet_init(&new_fsl_chan->tasklet, dma_do_tasklet,
(unsigned long)new_fsl_chan);
/* Init the channel */
dma_init(new_fsl_chan);
/* Clear cdar registers */
set_cdar(new_fsl_chan, 0);
switch (new_fsl_chan->feature & FSL_DMA_IP_MASK) {
case FSL_DMA_IP_85XX:
new_fsl_chan->toggle_ext_start = fsl_chan_toggle_ext_start;
new_fsl_chan->toggle_ext_pause = fsl_chan_toggle_ext_pause;
case FSL_DMA_IP_83XX:
new_fsl_chan->set_src_loop_size = fsl_chan_set_src_loop_size;
new_fsl_chan->set_dest_loop_size = fsl_chan_set_dest_loop_size;
}
spin_lock_init(&new_fsl_chan->desc_lock);
INIT_LIST_HEAD(&new_fsl_chan->ld_queue);
new_fsl_chan->common.device = &fdev->common;
/* Add the channel to DMA device channel list */
list_add_tail(&new_fsl_chan->common.device_node,
&fdev->common.channels);
fdev->common.chancnt++;
new_fsl_chan->irq = irq_of_parse_and_map(dev->node, 0);
if (new_fsl_chan->irq != NO_IRQ) {
err = request_irq(new_fsl_chan->irq,
&fsl_dma_chan_do_interrupt, IRQF_SHARED,
"fsldma-channel", new_fsl_chan);
if (err) {
dev_err(&dev->dev, "DMA channel %s request_irq error "
"with return %d\n", dev->node->full_name, err);
goto err;
}
}
#ifdef CONFIG_FSL_DMA_SELFTEST
err = fsl_dma_self_test(new_fsl_chan);
if (err)
goto err;
#endif
dev_info(&dev->dev, "#%d (%s), irq %d\n", new_fsl_chan->id,
match->compatible, new_fsl_chan->irq);
return 0;
err:
dma_halt(new_fsl_chan);
iounmap(new_fsl_chan->reg_base);
free_irq(new_fsl_chan->irq, new_fsl_chan);
list_del(&new_fsl_chan->common.device_node);
kfree(new_fsl_chan);
return err;
}
const u32 mpc8540_dma_ip_feature = FSL_DMA_IP_85XX | FSL_DMA_BIG_ENDIAN;
const u32 mpc8349_dma_ip_feature = FSL_DMA_IP_83XX | FSL_DMA_LITTLE_ENDIAN;
static struct of_device_id of_fsl_dma_chan_ids[] = {
{
.compatible = "fsl,mpc8540-dma-channel",
.data = (void *)&mpc8540_dma_ip_feature,
},
{
.compatible = "fsl,mpc8349-dma-channel",
.data = (void *)&mpc8349_dma_ip_feature,
},
{}
};
static struct of_platform_driver of_fsl_dma_chan_driver = {
.name = "of-fsl-dma-channel",
.match_table = of_fsl_dma_chan_ids,
.probe = of_fsl_dma_chan_probe,
};
static __init int of_fsl_dma_chan_init(void)
{
return of_register_platform_driver(&of_fsl_dma_chan_driver);
}
static int __devinit of_fsl_dma_probe(struct of_device *dev,
const struct of_device_id *match)
{
int err;
unsigned int irq;
struct fsl_dma_device *fdev;
fdev = kzalloc(sizeof(struct fsl_dma_device), GFP_KERNEL);
if (!fdev) {
dev_err(&dev->dev, "No enough memory for 'priv'\n");
err = -ENOMEM;
goto err;
}
fdev->dev = &dev->dev;
INIT_LIST_HEAD(&fdev->common.channels);
/* get DMA controller register base */
err = of_address_to_resource(dev->node, 0, &fdev->reg);
if (err) {
dev_err(&dev->dev, "Can't get %s property 'reg'\n",
dev->node->full_name);
goto err;
}
dev_info(&dev->dev, "Probe the Freescale DMA driver for %s "
"controller at 0x%08x...\n",
match->compatible, fdev->reg.start);
fdev->reg_base = ioremap(fdev->reg.start, fdev->reg.end
- fdev->reg.start + 1);
dma_cap_set(DMA_MEMCPY, fdev->common.cap_mask);
dma_cap_set(DMA_INTERRUPT, fdev->common.cap_mask);
fdev->common.device_alloc_chan_resources = fsl_dma_alloc_chan_resources;
fdev->common.device_free_chan_resources = fsl_dma_free_chan_resources;
fdev->common.device_prep_dma_memcpy = fsl_dma_prep_memcpy;
fdev->common.device_is_tx_complete = fsl_dma_is_complete;
fdev->common.device_issue_pending = fsl_dma_memcpy_issue_pending;
fdev->common.device_dependency_added = fsl_dma_dependency_added;
fdev->common.dev = &dev->dev;
irq = irq_of_parse_and_map(dev->node, 0);
if (irq != NO_IRQ) {
err = request_irq(irq, &fsl_dma_do_interrupt, IRQF_SHARED,
"fsldma-device", fdev);
if (err) {
dev_err(&dev->dev, "DMA device request_irq error "
"with return %d\n", err);
goto err;
}
}
dev_set_drvdata(&(dev->dev), fdev);
of_platform_bus_probe(dev->node, of_fsl_dma_chan_ids, &dev->dev);
dma_async_device_register(&fdev->common);
return 0;
err:
iounmap(fdev->reg_base);
kfree(fdev);
return err;
}
static struct of_device_id of_fsl_dma_ids[] = {
{ .compatible = "fsl,mpc8540-dma", },
{ .compatible = "fsl,mpc8349-dma", },
{}
};
static struct of_platform_driver of_fsl_dma_driver = {
.name = "of-fsl-dma",
.match_table = of_fsl_dma_ids,
.probe = of_fsl_dma_probe,
};
static __init int of_fsl_dma_init(void)
{
return of_register_platform_driver(&of_fsl_dma_driver);
}
subsys_initcall(of_fsl_dma_chan_init);
subsys_initcall(of_fsl_dma_init);
/*
* Copyright (C) 2007 Freescale Semiconductor, Inc. All rights reserved.
*
* Author:
* Zhang Wei <wei.zhang@freescale.com>, Jul 2007
* Ebony Zhu <ebony.zhu@freescale.com>, May 2007
*
* This is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
*/
#ifndef __DMA_FSLDMA_H
#define __DMA_FSLDMA_H
#include <linux/device.h>
#include <linux/dmapool.h>
#include <linux/dmaengine.h>
/* Define data structures needed by Freescale
* MPC8540 and MPC8349 DMA controller.
*/
#define FSL_DMA_MR_CS 0x00000001
#define FSL_DMA_MR_CC 0x00000002
#define FSL_DMA_MR_CA 0x00000008
#define FSL_DMA_MR_EIE 0x00000040
#define FSL_DMA_MR_XFE 0x00000020
#define FSL_DMA_MR_EOLNIE 0x00000100
#define FSL_DMA_MR_EOLSIE 0x00000080
#define FSL_DMA_MR_EOSIE 0x00000200
#define FSL_DMA_MR_CDSM 0x00000010
#define FSL_DMA_MR_CTM 0x00000004
#define FSL_DMA_MR_EMP_EN 0x00200000
#define FSL_DMA_MR_EMS_EN 0x00040000
#define FSL_DMA_MR_DAHE 0x00002000
#define FSL_DMA_MR_SAHE 0x00001000
/* Special MR definition for MPC8349 */
#define FSL_DMA_MR_EOTIE 0x00000080
#define FSL_DMA_SR_CH 0x00000020
#define FSL_DMA_SR_CB 0x00000004
#define FSL_DMA_SR_TE 0x00000080
#define FSL_DMA_SR_EOSI 0x00000002
#define FSL_DMA_SR_EOLSI 0x00000001
#define FSL_DMA_SR_EOCDI 0x00000001
#define FSL_DMA_SR_EOLNI 0x00000008
#define FSL_DMA_SATR_SBPATMU 0x20000000
#define FSL_DMA_SATR_STRANSINT_RIO 0x00c00000
#define FSL_DMA_SATR_SREADTYPE_SNOOP_READ 0x00050000
#define FSL_DMA_SATR_SREADTYPE_BP_IORH 0x00020000
#define FSL_DMA_SATR_SREADTYPE_BP_NREAD 0x00040000
#define FSL_DMA_SATR_SREADTYPE_BP_MREAD 0x00070000
#define FSL_DMA_DATR_DBPATMU 0x20000000
#define FSL_DMA_DATR_DTRANSINT_RIO 0x00c00000
#define FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE 0x00050000
#define FSL_DMA_DATR_DWRITETYPE_BP_FLUSH 0x00010000
#define FSL_DMA_EOL ((u64)0x1)
#define FSL_DMA_SNEN ((u64)0x10)
#define FSL_DMA_EOSIE 0x8
#define FSL_DMA_NLDA_MASK (~(u64)0x1f)
#define FSL_DMA_BCR_MAX_CNT 0x03ffffffu
#define FSL_DMA_DGSR_TE 0x80
#define FSL_DMA_DGSR_CH 0x20
#define FSL_DMA_DGSR_PE 0x10
#define FSL_DMA_DGSR_EOLNI 0x08
#define FSL_DMA_DGSR_CB 0x04
#define FSL_DMA_DGSR_EOSI 0x02
#define FSL_DMA_DGSR_EOLSI 0x01
struct fsl_dma_ld_hw {
u64 __bitwise src_addr;
u64 __bitwise dst_addr;
u64 __bitwise next_ln_addr;
u32 __bitwise count;
u32 __bitwise reserve;
} __attribute__((aligned(32)));
struct fsl_desc_sw {
struct fsl_dma_ld_hw hw;
struct list_head node;
struct dma_async_tx_descriptor async_tx;
struct list_head *ld;
void *priv;
} __attribute__((aligned(32)));
struct fsl_dma_chan_regs {
u32 __bitwise mr; /* 0x00 - Mode Register */
u32 __bitwise sr; /* 0x04 - Status Register */
u64 __bitwise cdar; /* 0x08 - Current descriptor address register */
u64 __bitwise sar; /* 0x10 - Source Address Register */
u64 __bitwise dar; /* 0x18 - Destination Address Register */
u32 __bitwise bcr; /* 0x20 - Byte Count Register */
u64 __bitwise ndar; /* 0x24 - Next Descriptor Address Register */
};
struct fsl_dma_chan;
#define FSL_DMA_MAX_CHANS_PER_DEVICE 4
struct fsl_dma_device {
void __iomem *reg_base; /* DGSR register base */
struct resource reg; /* Resource for register */
struct device *dev;
struct dma_device common;
struct fsl_dma_chan *chan[FSL_DMA_MAX_CHANS_PER_DEVICE];
u32 feature; /* The same as DMA channels */
};
/* Define macros for fsl_dma_chan->feature property */
#define FSL_DMA_LITTLE_ENDIAN 0x00000000
#define FSL_DMA_BIG_ENDIAN 0x00000001
#define FSL_DMA_IP_MASK 0x00000ff0
#define FSL_DMA_IP_85XX 0x00000010
#define FSL_DMA_IP_83XX 0x00000020
#define FSL_DMA_CHAN_PAUSE_EXT 0x00001000
#define FSL_DMA_CHAN_START_EXT 0x00002000
struct fsl_dma_chan {
struct fsl_dma_chan_regs __iomem *reg_base;
dma_cookie_t completed_cookie; /* The maximum cookie completed */
spinlock_t desc_lock; /* Descriptor operation lock */
struct list_head ld_queue; /* Link descriptors queue */
struct dma_chan common; /* DMA common channel */
struct dma_pool *desc_pool; /* Descriptors pool */
struct device *dev; /* Channel device */
struct resource reg; /* Resource for register */
int irq; /* Channel IRQ */
int id; /* Raw id of this channel */
struct tasklet_struct tasklet;
u32 feature;
void (*toggle_ext_pause)(struct fsl_dma_chan *fsl_chan, int size);
void (*toggle_ext_start)(struct fsl_dma_chan *fsl_chan, int enable);
void (*set_src_loop_size)(struct fsl_dma_chan *fsl_chan, int size);
void (*set_dest_loop_size)(struct fsl_dma_chan *fsl_chan, int size);
};
#define to_fsl_chan(chan) container_of(chan, struct fsl_dma_chan, common)
#define to_fsl_desc(lh) container_of(lh, struct fsl_desc_sw, node)
#define tx_to_fsl_desc(tx) container_of(tx, struct fsl_desc_sw, async_tx)
#ifndef __powerpc64__
static u64 in_be64(const u64 __iomem *addr)
{
return ((u64)in_be32((u32 *)addr) << 32) | (in_be32((u32 *)addr + 1));
}
static void out_be64(u64 __iomem *addr, u64 val)
{
out_be32((u32 *)addr, val >> 32);
out_be32((u32 *)addr + 1, (u32)val);
}
/* There is no asm instructions for 64 bits reverse loads and stores */
static u64 in_le64(const u64 __iomem *addr)
{
return ((u64)in_le32((u32 *)addr + 1) << 32) | (in_le32((u32 *)addr));
}
static void out_le64(u64 __iomem *addr, u64 val)
{
out_le32((u32 *)addr + 1, val >> 32);
out_le32((u32 *)addr, (u32)val);
}
#endif
#define DMA_IN(fsl_chan, addr, width) \
(((fsl_chan)->feature & FSL_DMA_BIG_ENDIAN) ? \
in_be##width(addr) : in_le##width(addr))
#define DMA_OUT(fsl_chan, addr, val, width) \
(((fsl_chan)->feature & FSL_DMA_BIG_ENDIAN) ? \
out_be##width(addr, val) : out_le##width(addr, val))
#define DMA_TO_CPU(fsl_chan, d, width) \
(((fsl_chan)->feature & FSL_DMA_BIG_ENDIAN) ? \
be##width##_to_cpu(d) : le##width##_to_cpu(d))
#define CPU_TO_DMA(fsl_chan, c, width) \
(((fsl_chan)->feature & FSL_DMA_BIG_ENDIAN) ? \
cpu_to_be##width(c) : cpu_to_le##width(c))
#endif /* __DMA_FSLDMA_H */
...@@ -714,6 +714,7 @@ static struct dma_async_tx_descriptor *ioat1_dma_prep_memcpy( ...@@ -714,6 +714,7 @@ static struct dma_async_tx_descriptor *ioat1_dma_prep_memcpy(
new->len = len; new->len = len;
new->dst = dma_dest; new->dst = dma_dest;
new->src = dma_src; new->src = dma_src;
new->async_tx.ack = 0;
return &new->async_tx; return &new->async_tx;
} else } else
return NULL; return NULL;
...@@ -741,6 +742,7 @@ static struct dma_async_tx_descriptor *ioat2_dma_prep_memcpy( ...@@ -741,6 +742,7 @@ static struct dma_async_tx_descriptor *ioat2_dma_prep_memcpy(
new->len = len; new->len = len;
new->dst = dma_dest; new->dst = dma_dest;
new->src = dma_src; new->src = dma_src;
new->async_tx.ack = 0;
return &new->async_tx; return &new->async_tx;
} else } else
return NULL; return NULL;
......
...@@ -366,7 +366,7 @@ __dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp) ...@@ -366,7 +366,7 @@ __dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
*/ */
static inline void dma_async_issue_pending(struct dma_chan *chan) static inline void dma_async_issue_pending(struct dma_chan *chan)
{ {
return chan->device->device_issue_pending(chan); chan->device->device_issue_pending(chan);
} }
#define dma_async_memcpy_issue_pending(chan) dma_async_issue_pending(chan) #define dma_async_memcpy_issue_pending(chan) dma_async_issue_pending(chan)
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment