Commit b194b120 authored by Cliff Wickman's avatar Cliff Wickman Committed by Ingo Molnar

SGI UV: TLB shootdown using broadcast assist unit, cleanups

TLB shootdown for SGI UV.

v1: 6/2 original
v2: 6/3 corrections/improvements per Ingo's review
v3: 6/4 split atomic operations off to a separate patch (Jeremy's review)
v4: 6/12 include <mach_apic.h> rather than <asm/mach-bigsmp/mach_apic.h>
         (fixes a !SMP build problem that Ingo found)
         fix the index on uv_table_bases[blade]
Signed-off-by: default avatarCliff Wickman <cpw@sgi.com>
Signed-off-by: default avatarIngo Molnar <mingo@elte.hu>
parent 73e991f4
...@@ -165,7 +165,7 @@ void native_flush_tlb_others(const cpumask_t *cpumaskp, struct mm_struct *mm, ...@@ -165,7 +165,7 @@ void native_flush_tlb_others(const cpumask_t *cpumaskp, struct mm_struct *mm,
cpumask_t cpumask = *cpumaskp; cpumask_t cpumask = *cpumaskp;
if (is_uv_system() && uv_flush_tlb_others(&cpumask, mm, va)) if (is_uv_system() && uv_flush_tlb_others(&cpumask, mm, va))
return; return;
/* Caller has disabled preemption */ /* Caller has disabled preemption */
sender = smp_processor_id() % NUM_INVALIDATE_TLB_VECTORS; sender = smp_processor_id() % NUM_INVALIDATE_TLB_VECTORS;
......
...@@ -10,18 +10,20 @@ ...@@ -10,18 +10,20 @@
#include <linux/proc_fs.h> #include <linux/proc_fs.h>
#include <linux/kernel.h> #include <linux/kernel.h>
#include <asm/mach-bigsmp/mach_apic.h>
#include <asm/mmu_context.h> #include <asm/mmu_context.h>
#include <asm/idle.h> #include <asm/idle.h>
#include <asm/genapic.h> #include <asm/genapic.h>
#include <asm/uv/uv_hub.h> #include <asm/uv/uv_hub.h>
#include <asm/uv/uv_mmrs.h> #include <asm/uv/uv_mmrs.h>
#include <asm/uv/uv_bau.h> #include <asm/uv/uv_bau.h>
#include <asm/tsc.h>
struct bau_control **uv_bau_table_bases; #include <mach_apic.h>
static int uv_bau_retry_limit;
static int uv_nshift; /* position of pnode (which is nasid>>1) */ static struct bau_control **uv_bau_table_bases __read_mostly;
static unsigned long uv_mmask; static int uv_bau_retry_limit __read_mostly;
static int uv_nshift __read_mostly; /* position of pnode (which is nasid>>1) */
static unsigned long uv_mmask __read_mostly;
char *status_table[] = { char *status_table[] = {
"IDLE", "IDLE",
...@@ -41,19 +43,18 @@ DEFINE_PER_CPU(struct bau_control, bau_control); ...@@ -41,19 +43,18 @@ DEFINE_PER_CPU(struct bau_control, bau_control);
* clear of the Timeout bit (as well) will free the resource. No reply will * clear of the Timeout bit (as well) will free the resource. No reply will
* be sent (the hardware will only do one reply per message). * be sent (the hardware will only do one reply per message).
*/ */
static void static void uv_reply_to_message(int resource,
uv_reply_to_message(int resource,
struct bau_payload_queue_entry *msg, struct bau_payload_queue_entry *msg,
struct bau_msg_status *msp) struct bau_msg_status *msp)
{ {
int fw; unsigned long dw;
fw = (1 << (resource + UV_SW_ACK_NPENDING)) | (1 << resource); dw = (1 << (resource + UV_SW_ACK_NPENDING)) | (1 << resource);
msg->replied_to = 1; msg->replied_to = 1;
msg->sw_ack_vector = 0; msg->sw_ack_vector = 0;
if (msp) if (msp)
msp->seen_by.bits = 0; msp->seen_by.bits = 0;
uv_write_local_mmr(UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE_ALIAS, fw); uv_write_local_mmr(UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE_ALIAS, dw);
return; return;
} }
...@@ -61,8 +62,7 @@ uv_reply_to_message(int resource, ...@@ -61,8 +62,7 @@ uv_reply_to_message(int resource,
* Do all the things a cpu should do for a TLB shootdown message. * Do all the things a cpu should do for a TLB shootdown message.
* Other cpu's may come here at the same time for this message. * Other cpu's may come here at the same time for this message.
*/ */
static void static void uv_bau_process_message(struct bau_payload_queue_entry *msg,
uv_bau_process_message(struct bau_payload_queue_entry *msg,
int msg_slot, int sw_ack_slot) int msg_slot, int sw_ack_slot)
{ {
int cpu; int cpu;
...@@ -103,8 +103,7 @@ uv_bau_process_message(struct bau_payload_queue_entry *msg, ...@@ -103,8 +103,7 @@ uv_bau_process_message(struct bau_payload_queue_entry *msg,
* *
* Returns the number of cpu's that have not responded. * Returns the number of cpu's that have not responded.
*/ */
static int static int uv_examine_destinations(struct bau_target_nodemask *distribution)
uv_examine_destinations(struct bau_target_nodemask *distribution)
{ {
int sender; int sender;
int i; int i;
...@@ -118,34 +117,161 @@ uv_examine_destinations(struct bau_target_nodemask *distribution) ...@@ -118,34 +117,161 @@ uv_examine_destinations(struct bau_target_nodemask *distribution)
sender = smp_processor_id(); sender = smp_processor_id();
for (i = 0; i < (sizeof(struct bau_target_nodemask) * BITSPERBYTE); for (i = 0; i < (sizeof(struct bau_target_nodemask) * BITSPERBYTE);
i++) { i++) {
if (bau_node_isset(i, distribution)) { if (!bau_node_isset(i, distribution))
bau_tablesp = uv_bau_table_bases[i]; continue;
for (msg = bau_tablesp->va_queue_first, j = 0; bau_tablesp = uv_bau_table_bases[i];
j < DESTINATION_PAYLOAD_QUEUE_SIZE; msg++, j++) { for (msg = bau_tablesp->va_queue_first, j = 0;
if ((msg->sending_cpu == sender) && j < DESTINATION_PAYLOAD_QUEUE_SIZE; msg++, j++) {
(!msg->replied_to)) { if ((msg->sending_cpu == sender) &&
msp = bau_tablesp->msg_statuses + j; (!msg->replied_to)) {
printk(KERN_DEBUG msp = bau_tablesp->msg_statuses + j;
printk(KERN_DEBUG
"blade %d: address:%#lx %d of %d, not cpu(s): ", "blade %d: address:%#lx %d of %d, not cpu(s): ",
i, msg->address, i, msg->address,
msg->acknowledge_count, msg->acknowledge_count,
msg->number_of_cpus); msg->number_of_cpus);
for (k = 0; k < msg->number_of_cpus; for (k = 0; k < msg->number_of_cpus;
k++) { k++) {
if (!((long)1 << k & msp-> if (!((long)1 << k & msp->
seen_by.bits)) { seen_by.bits)) {
count++; count++;
printk("%d ", k); printk("%d ", k);
}
} }
printk("\n");
} }
printk("\n");
} }
} }
} }
return count; return count;
} }
/*
* wait for completion of a broadcast message
*
* return COMPLETE, RETRY or GIVEUP
*/
static int uv_wait_completion(struct bau_activation_descriptor *bau_desc,
unsigned long mmr_offset, int right_shift)
{
int exams = 0;
long destination_timeouts = 0;
long source_timeouts = 0;
unsigned long descriptor_status;
while ((descriptor_status = (((unsigned long)
uv_read_local_mmr(mmr_offset) >>
right_shift) & UV_ACT_STATUS_MASK)) !=
DESC_STATUS_IDLE) {
if (descriptor_status == DESC_STATUS_SOURCE_TIMEOUT) {
source_timeouts++;
if (source_timeouts > SOURCE_TIMEOUT_LIMIT)
source_timeouts = 0;
__get_cpu_var(ptcstats).s_retry++;
return FLUSH_RETRY;
}
/*
* spin here looking for progress at the destinations
*/
if (descriptor_status == DESC_STATUS_DESTINATION_TIMEOUT) {
destination_timeouts++;
if (destination_timeouts > DESTINATION_TIMEOUT_LIMIT) {
/*
* returns number of cpus not responding
*/
if (uv_examine_destinations
(&bau_desc->distribution) == 0) {
__get_cpu_var(ptcstats).d_retry++;
return FLUSH_RETRY;
}
exams++;
if (exams >= uv_bau_retry_limit) {
printk(KERN_DEBUG
"uv_flush_tlb_others");
printk("giving up on cpu %d\n",
smp_processor_id());
return FLUSH_GIVEUP;
}
/*
* delays can hang the simulator
udelay(1000);
*/
destination_timeouts = 0;
}
}
}
return FLUSH_COMPLETE;
}
/**
* uv_flush_send_and_wait
*
* Send a broadcast and wait for a broadcast message to complete.
*
* The cpumaskp mask contains the cpus the broadcast was sent to.
*
* Returns 1 if all remote flushing was done. The mask is zeroed.
* Returns 0 if some remote flushing remains to be done. The mask is left
* unchanged.
*/
int uv_flush_send_and_wait(int cpu, int this_blade,
struct bau_activation_descriptor *bau_desc, cpumask_t *cpumaskp)
{
int completion_status = 0;
int right_shift;
int bit;
int blade;
int tries = 0;
unsigned long index;
unsigned long mmr_offset;
cycles_t time1;
cycles_t time2;
if (cpu < UV_CPUS_PER_ACT_STATUS) {
mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_0;
right_shift = cpu * UV_ACT_STATUS_SIZE;
} else {
mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_1;
right_shift =
((cpu - UV_CPUS_PER_ACT_STATUS) * UV_ACT_STATUS_SIZE);
}
time1 = get_cycles();
do {
tries++;
index = ((unsigned long)
1 << UVH_LB_BAU_SB_ACTIVATION_CONTROL_PUSH_SHFT) | cpu;
uv_write_local_mmr(UVH_LB_BAU_SB_ACTIVATION_CONTROL, index);
completion_status = uv_wait_completion(bau_desc, mmr_offset,
right_shift);
} while (completion_status == FLUSH_RETRY);
time2 = get_cycles();
__get_cpu_var(ptcstats).sflush += (time2 - time1);
if (tries > 1)
__get_cpu_var(ptcstats).retriesok++;
if (completion_status == FLUSH_GIVEUP) {
/*
* Cause the caller to do an IPI-style TLB shootdown on
* the cpu's, all of which are still in the mask.
*/
__get_cpu_var(ptcstats).ptc_i++;
return 0;
}
/*
* Success, so clear the remote cpu's from the mask so we don't
* use the IPI method of shootdown on them.
*/
for_each_cpu_mask(bit, *cpumaskp) {
blade = uv_cpu_to_blade_id(bit);
if (blade == this_blade)
continue;
cpu_clear(bit, *cpumaskp);
}
if (!cpus_empty(*cpumaskp))
return 0;
return 1;
}
/** /**
* uv_flush_tlb_others - globally purge translation cache of a virtual * uv_flush_tlb_others - globally purge translation cache of a virtual
* address or all TLB's * address or all TLB's
...@@ -164,30 +290,25 @@ uv_examine_destinations(struct bau_target_nodemask *distribution) ...@@ -164,30 +290,25 @@ uv_examine_destinations(struct bau_target_nodemask *distribution)
* *
* The cpumaskp is converted into a nodemask of the nodes containing * The cpumaskp is converted into a nodemask of the nodes containing
* the cpus. * the cpus.
*
* Returns 1 if all remote flushing was done.
* Returns 0 if some remote flushing remains to be done.
*/ */
int int uv_flush_tlb_others(cpumask_t *cpumaskp, struct mm_struct *mm,
uv_flush_tlb_others(cpumask_t *cpumaskp, struct mm_struct *mm, unsigned long va) unsigned long va)
{ {
int i; int i;
int bit;
int blade; int blade;
int cpu; int cpu;
int bit;
int right_shift;
int this_blade; int this_blade;
int exams = 0; int locals = 0;
int tries = 0;
long source_timeouts = 0;
long destination_timeouts = 0;
unsigned long index;
unsigned long mmr_offset;
unsigned long descriptor_status;
struct bau_activation_descriptor *bau_desc; struct bau_activation_descriptor *bau_desc;
ktime_t time1, time2;
cpu = uv_blade_processor_id(); cpu = uv_blade_processor_id();
this_blade = uv_numa_blade_id(); this_blade = uv_numa_blade_id();
bau_desc = __get_cpu_var(bau_control).descriptor_base; bau_desc = __get_cpu_var(bau_control).descriptor_base;
bau_desc += (UV_ITEMS_PER_DESCRIPTOR * cpu); bau_desc += UV_ITEMS_PER_DESCRIPTOR * cpu;
bau_nodes_clear(&bau_desc->distribution, UV_DISTRIBUTION_SIZE); bau_nodes_clear(&bau_desc->distribution, UV_DISTRIBUTION_SIZE);
...@@ -196,96 +317,29 @@ uv_flush_tlb_others(cpumask_t *cpumaskp, struct mm_struct *mm, unsigned long va) ...@@ -196,96 +317,29 @@ uv_flush_tlb_others(cpumask_t *cpumaskp, struct mm_struct *mm, unsigned long va)
blade = uv_cpu_to_blade_id(bit); blade = uv_cpu_to_blade_id(bit);
if (blade > (UV_DISTRIBUTION_SIZE - 1)) if (blade > (UV_DISTRIBUTION_SIZE - 1))
BUG(); BUG();
if (blade == this_blade) if (blade == this_blade) {
locals++;
continue; continue;
}
bau_node_set(blade, &bau_desc->distribution); bau_node_set(blade, &bau_desc->distribution);
/* leave the bits for the remote cpu's in the mask until
success; on failure we fall back to the IPI method */
i++; i++;
} }
if (i == 0) if (i == 0) {
goto none_to_flush; /*
* no off_node flushing; return status for local node
*/
if (locals)
return 0;
else
return 1;
}
__get_cpu_var(ptcstats).requestor++; __get_cpu_var(ptcstats).requestor++;
__get_cpu_var(ptcstats).ntargeted += i; __get_cpu_var(ptcstats).ntargeted += i;
bau_desc->payload.address = va; bau_desc->payload.address = va;
bau_desc->payload.sending_cpu = smp_processor_id(); bau_desc->payload.sending_cpu = smp_processor_id();
if (cpu < UV_CPUS_PER_ACT_STATUS) { return uv_flush_send_and_wait(cpu, this_blade, bau_desc, cpumaskp);
mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_0;
right_shift = cpu * UV_ACT_STATUS_SIZE;
} else {
mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_1;
right_shift =
((cpu - UV_CPUS_PER_ACT_STATUS) * UV_ACT_STATUS_SIZE);
}
time1 = ktime_get();
retry:
tries++;
index = ((unsigned long)
1 << UVH_LB_BAU_SB_ACTIVATION_CONTROL_PUSH_SHFT) | cpu;
uv_write_local_mmr(UVH_LB_BAU_SB_ACTIVATION_CONTROL, index);
while ((descriptor_status = (((unsigned long)
uv_read_local_mmr(mmr_offset) >>
right_shift) & UV_ACT_STATUS_MASK)) !=
DESC_STATUS_IDLE) {
if (descriptor_status == DESC_STATUS_SOURCE_TIMEOUT) {
source_timeouts++;
if (source_timeouts > SOURCE_TIMEOUT_LIMIT)
source_timeouts = 0;
__get_cpu_var(ptcstats).s_retry++;
goto retry;
}
/* spin here looking for progress at the destinations */
if (descriptor_status == DESC_STATUS_DESTINATION_TIMEOUT) {
destination_timeouts++;
if (destination_timeouts > DESTINATION_TIMEOUT_LIMIT) {
/* returns # of cpus not responding */
if (uv_examine_destinations
(&bau_desc->distribution) == 0) {
__get_cpu_var(ptcstats).d_retry++;
goto retry;
}
exams++;
if (exams >= uv_bau_retry_limit) {
printk(KERN_DEBUG
"uv_flush_tlb_others");
printk("giving up on cpu %d\n",
smp_processor_id());
goto unsuccessful;
}
/* delays can hang up the simulator
udelay(1000);
*/
destination_timeouts = 0;
}
}
}
if (tries > 1)
__get_cpu_var(ptcstats).retriesok++;
/* on success, clear the remote cpu's from the mask so we don't
use the IPI method of shootdown on them */
for_each_cpu_mask(bit, *cpumaskp) {
blade = uv_cpu_to_blade_id(bit);
if (blade == this_blade)
continue;
cpu_clear(bit, *cpumaskp);
}
unsuccessful:
time2 = ktime_get();
__get_cpu_var(ptcstats).sflush_ns += (time2.tv64 - time1.tv64);
none_to_flush:
if (cpus_empty(*cpumaskp))
return 1;
/* Cause the caller to do an IPI-style TLB shootdown on
the cpu's still in the mask */
__get_cpu_var(ptcstats).ptc_i++;
return 0;
} }
/* /*
...@@ -302,13 +356,12 @@ none_to_flush: ...@@ -302,13 +356,12 @@ none_to_flush:
* (the resource will not be freed until noninterruptable cpus see this * (the resource will not be freed until noninterruptable cpus see this
* interrupt; hardware will timeout the s/w ack and reply ERROR) * interrupt; hardware will timeout the s/w ack and reply ERROR)
*/ */
void void uv_bau_message_interrupt(struct pt_regs *regs)
uv_bau_message_interrupt(struct pt_regs *regs)
{ {
struct bau_payload_queue_entry *pqp; struct bau_payload_queue_entry *pqp;
struct bau_payload_queue_entry *msg; struct bau_payload_queue_entry *msg;
struct pt_regs *old_regs = set_irq_regs(regs); struct pt_regs *old_regs = set_irq_regs(regs);
ktime_t time1, time2; cycles_t time1, time2;
int msg_slot; int msg_slot;
int sw_ack_slot; int sw_ack_slot;
int fw; int fw;
...@@ -319,7 +372,7 @@ uv_bau_message_interrupt(struct pt_regs *regs) ...@@ -319,7 +372,7 @@ uv_bau_message_interrupt(struct pt_regs *regs)
exit_idle(); exit_idle();
irq_enter(); irq_enter();
time1 = ktime_get(); time1 = get_cycles();
local_pnode = uv_blade_to_pnode(uv_numa_blade_id()); local_pnode = uv_blade_to_pnode(uv_numa_blade_id());
...@@ -343,16 +396,15 @@ uv_bau_message_interrupt(struct pt_regs *regs) ...@@ -343,16 +396,15 @@ uv_bau_message_interrupt(struct pt_regs *regs)
else if (count > 1) else if (count > 1)
__get_cpu_var(ptcstats).multmsg++; __get_cpu_var(ptcstats).multmsg++;
time2 = ktime_get(); time2 = get_cycles();
__get_cpu_var(ptcstats).dflush_ns += (time2.tv64 - time1.tv64); __get_cpu_var(ptcstats).dflush += (time2 - time1);
irq_exit(); irq_exit();
set_irq_regs(old_regs); set_irq_regs(old_regs);
return; return;
} }
static void static void uv_enable_timeouts(void)
uv_enable_timeouts(void)
{ {
int i; int i;
int blade; int blade;
...@@ -361,7 +413,6 @@ uv_enable_timeouts(void) ...@@ -361,7 +413,6 @@ uv_enable_timeouts(void)
int cur_cpu = 0; int cur_cpu = 0;
unsigned long apicid; unsigned long apicid;
/* better if we had each_online_blade */
last_blade = -1; last_blade = -1;
for_each_online_node(i) { for_each_online_node(i) {
blade = uv_node_to_blade_id(i); blade = uv_node_to_blade_id(i);
...@@ -375,16 +426,14 @@ uv_enable_timeouts(void) ...@@ -375,16 +426,14 @@ uv_enable_timeouts(void)
return; return;
} }
static void * static void *uv_ptc_seq_start(struct seq_file *file, loff_t *offset)
uv_ptc_seq_start(struct seq_file *file, loff_t *offset)
{ {
if (*offset < num_possible_cpus()) if (*offset < num_possible_cpus())
return offset; return offset;
return NULL; return NULL;
} }
static void * static void *uv_ptc_seq_next(struct seq_file *file, void *data, loff_t *offset)
uv_ptc_seq_next(struct seq_file *file, void *data, loff_t *offset)
{ {
(*offset)++; (*offset)++;
if (*offset < num_possible_cpus()) if (*offset < num_possible_cpus())
...@@ -392,8 +441,7 @@ uv_ptc_seq_next(struct seq_file *file, void *data, loff_t *offset) ...@@ -392,8 +441,7 @@ uv_ptc_seq_next(struct seq_file *file, void *data, loff_t *offset)
return NULL; return NULL;
} }
static void static void uv_ptc_seq_stop(struct seq_file *file, void *data)
uv_ptc_seq_stop(struct seq_file *file, void *data)
{ {
} }
...@@ -401,8 +449,7 @@ uv_ptc_seq_stop(struct seq_file *file, void *data) ...@@ -401,8 +449,7 @@ uv_ptc_seq_stop(struct seq_file *file, void *data)
* Display the statistics thru /proc * Display the statistics thru /proc
* data points to the cpu number * data points to the cpu number
*/ */
static int static int uv_ptc_seq_show(struct seq_file *file, void *data)
uv_ptc_seq_show(struct seq_file *file, void *data)
{ {
struct ptc_stats *stat; struct ptc_stats *stat;
int cpu; int cpu;
...@@ -413,7 +460,7 @@ uv_ptc_seq_show(struct seq_file *file, void *data) ...@@ -413,7 +460,7 @@ uv_ptc_seq_show(struct seq_file *file, void *data)
seq_printf(file, seq_printf(file,
"# cpu requestor requestee one all sretry dretry ptc_i "); "# cpu requestor requestee one all sretry dretry ptc_i ");
seq_printf(file, seq_printf(file,
"sw_ack sflush_us dflush_us sok dnomsg dmult starget\n"); "sw_ack sflush dflush sok dnomsg dmult starget\n");
} }
if (cpu < num_possible_cpus() && cpu_online(cpu)) { if (cpu < num_possible_cpus() && cpu_online(cpu)) {
stat = &per_cpu(ptcstats, cpu); stat = &per_cpu(ptcstats, cpu);
...@@ -425,7 +472,7 @@ uv_ptc_seq_show(struct seq_file *file, void *data) ...@@ -425,7 +472,7 @@ uv_ptc_seq_show(struct seq_file *file, void *data)
uv_read_global_mmr64(uv_blade_to_pnode uv_read_global_mmr64(uv_blade_to_pnode
(uv_cpu_to_blade_id(cpu)), (uv_cpu_to_blade_id(cpu)),
UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE), UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE),
stat->sflush_ns / 1000, stat->dflush_ns / 1000, stat->sflush, stat->dflush,
stat->retriesok, stat->nomsg, stat->retriesok, stat->nomsg,
stat->multmsg, stat->ntargeted); stat->multmsg, stat->ntargeted);
} }
...@@ -437,8 +484,7 @@ uv_ptc_seq_show(struct seq_file *file, void *data) ...@@ -437,8 +484,7 @@ uv_ptc_seq_show(struct seq_file *file, void *data)
* 0: display meaning of the statistics * 0: display meaning of the statistics
* >0: retry limit * >0: retry limit
*/ */
static ssize_t static ssize_t uv_ptc_proc_write(struct file *file, const char __user *user,
uv_ptc_proc_write(struct file *file, const char __user *user,
size_t count, loff_t *data) size_t count, loff_t *data)
{ {
long newmode; long newmode;
...@@ -471,9 +517,9 @@ uv_ptc_proc_write(struct file *file, const char __user *user, ...@@ -471,9 +517,9 @@ uv_ptc_proc_write(struct file *file, const char __user *user,
printk(KERN_DEBUG printk(KERN_DEBUG
"sw_ack: image of UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE\n"); "sw_ack: image of UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE\n");
printk(KERN_DEBUG printk(KERN_DEBUG
"sflush_us: microseconds spent in uv_flush_tlb_others()\n"); "sflush_us: cycles spent in uv_flush_tlb_others()\n");
printk(KERN_DEBUG printk(KERN_DEBUG
"dflush_us: microseconds spent in handling flush requests\n"); "dflush_us: cycles spent in handling flush requests\n");
printk(KERN_DEBUG "sok: successes on retry\n"); printk(KERN_DEBUG "sok: successes on retry\n");
printk(KERN_DEBUG "dnomsg: interrupts with no message\n"); printk(KERN_DEBUG "dnomsg: interrupts with no message\n");
printk(KERN_DEBUG printk(KERN_DEBUG
...@@ -489,40 +535,33 @@ uv_ptc_proc_write(struct file *file, const char __user *user, ...@@ -489,40 +535,33 @@ uv_ptc_proc_write(struct file *file, const char __user *user,
} }
static const struct seq_operations uv_ptc_seq_ops = { static const struct seq_operations uv_ptc_seq_ops = {
.start = uv_ptc_seq_start, .start = uv_ptc_seq_start,
.next = uv_ptc_seq_next, .next = uv_ptc_seq_next,
.stop = uv_ptc_seq_stop, .stop = uv_ptc_seq_stop,
.show = uv_ptc_seq_show .show = uv_ptc_seq_show
}; };
static int static int uv_ptc_proc_open(struct inode *inode, struct file *file)
uv_ptc_proc_open(struct inode *inode, struct file *file)
{ {
return seq_open(file, &uv_ptc_seq_ops); return seq_open(file, &uv_ptc_seq_ops);
} }
static const struct file_operations proc_uv_ptc_operations = { static const struct file_operations proc_uv_ptc_operations = {
.open = uv_ptc_proc_open, .open = uv_ptc_proc_open,
.read = seq_read, .read = seq_read,
.write = uv_ptc_proc_write, .write = uv_ptc_proc_write,
.llseek = seq_lseek, .llseek = seq_lseek,
.release = seq_release, .release = seq_release,
}; };
static struct proc_dir_entry *proc_uv_ptc; static int __init uv_ptc_init(void)
static int __init
uv_ptc_init(void)
{ {
static struct proc_dir_entry *sgi_proc_dir; struct proc_dir_entry *proc_uv_ptc;
sgi_proc_dir = NULL;
if (!is_uv_system()) if (!is_uv_system())
return 0; return 0;
sgi_proc_dir = proc_mkdir("sgi_uv", NULL); if (!proc_mkdir("sgi_uv", NULL))
if (!sgi_proc_dir)
return -EINVAL; return -EINVAL;
proc_uv_ptc = create_proc_entry(UV_PTC_BASENAME, 0444, NULL); proc_uv_ptc = create_proc_entry(UV_PTC_BASENAME, 0444, NULL);
...@@ -535,202 +574,213 @@ uv_ptc_init(void) ...@@ -535,202 +574,213 @@ uv_ptc_init(void)
return 0; return 0;
} }
static void __exit /*
uv_ptc_exit(void) * begin the initialization of the per-blade control structures
*/
static struct bau_control * __init uv_table_bases_init(int blade, int node)
{ {
remove_proc_entry(UV_PTC_BASENAME, NULL); int i;
int *ip;
struct bau_msg_status *msp;
struct bau_control *bau_tablesp;
bau_tablesp =
kmalloc_node(sizeof(struct bau_control), GFP_KERNEL, node);
if (!bau_tablesp)
BUG();
bau_tablesp->msg_statuses =
kmalloc_node(sizeof(struct bau_msg_status) *
DESTINATION_PAYLOAD_QUEUE_SIZE, GFP_KERNEL, node);
if (!bau_tablesp->msg_statuses)
BUG();
for (i = 0, msp = bau_tablesp->msg_statuses;
i < DESTINATION_PAYLOAD_QUEUE_SIZE; i++, msp++) {
bau_cpubits_clear(&msp->seen_by, (int)
uv_blade_nr_possible_cpus(blade));
}
bau_tablesp->watching =
kmalloc_node(sizeof(int) * DESTINATION_NUM_RESOURCES,
GFP_KERNEL, node);
if (!bau_tablesp->watching)
BUG();
for (i = 0, ip = bau_tablesp->watching;
i < DESTINATION_PAYLOAD_QUEUE_SIZE; i++, ip++) {
*ip = 0;
}
uv_bau_table_bases[blade] = bau_tablesp;
return bau_tablesp;
} }
module_init(uv_ptc_init); /*
module_exit(uv_ptc_exit); * finish the initialization of the per-blade control structures
*/
static void __init uv_table_bases_finish(int blade, int node, int cur_cpu,
struct bau_control *bau_tablesp,
struct bau_activation_descriptor *adp)
{
int i;
struct bau_control *bcp;
for (i = cur_cpu; i < (cur_cpu + uv_blade_nr_possible_cpus(blade));
i++) {
bcp = (struct bau_control *)&per_cpu(bau_control, i);
bcp->bau_msg_head = bau_tablesp->va_queue_first;
bcp->va_queue_first = bau_tablesp->va_queue_first;
bcp->va_queue_last = bau_tablesp->va_queue_last;
bcp->watching = bau_tablesp->watching;
bcp->msg_statuses = bau_tablesp->msg_statuses;
bcp->descriptor_base = adp;
}
}
/* /*
* Initialization of BAU-related structures * initialize the sending side's sending buffers
*/ */
int __init static struct bau_activation_descriptor * __init
uv_bau_init(void) uv_activation_descriptor_init(int node, int pnode)
{ {
int i; int i;
int j;
int blade;
int nblades;
int *ip;
int pnode;
int last_blade;
int cur_cpu = 0;
unsigned long pa; unsigned long pa;
unsigned long n;
unsigned long m; unsigned long m;
unsigned long n;
unsigned long mmr_image; unsigned long mmr_image;
unsigned long apicid; struct bau_activation_descriptor *adp;
struct bau_activation_descriptor *ad2;
adp = (struct bau_activation_descriptor *)
kmalloc_node(16384, GFP_KERNEL, node);
if (!adp)
BUG();
pa = __pa((unsigned long)adp);
n = pa >> uv_nshift;
m = pa & uv_mmask;
mmr_image = uv_read_global_mmr64(pnode, UVH_LB_BAU_SB_DESCRIPTOR_BASE);
if (mmr_image)
uv_write_global_mmr64(pnode, (unsigned long)
UVH_LB_BAU_SB_DESCRIPTOR_BASE,
(n << UV_DESC_BASE_PNODE_SHIFT | m));
for (i = 0, ad2 = adp; i < UV_ACTIVATION_DESCRIPTOR_SIZE; i++, ad2++) {
memset(ad2, 0, sizeof(struct bau_activation_descriptor));
ad2->header.sw_ack_flag = 1;
ad2->header.base_dest_nodeid =
uv_blade_to_pnode(uv_cpu_to_blade_id(0));
ad2->header.command = UV_NET_ENDPOINT_INTD;
ad2->header.int_both = 1;
/*
* all others need to be set to zero:
* fairness chaining multilevel count replied_to
*/
}
return adp;
}
/*
* initialize the destination side's receiving buffers
*/
static struct bau_payload_queue_entry * __init uv_payload_queue_init(int node,
int pnode, struct bau_control *bau_tablesp)
{
char *cp; char *cp;
struct bau_control *bau_tablesp;
struct bau_activation_descriptor *adp, *ad2;
struct bau_payload_queue_entry *pqp; struct bau_payload_queue_entry *pqp;
struct bau_msg_status *msp;
struct bau_control *bcp;
if (!is_uv_system()) pqp = (struct bau_payload_queue_entry *)
return 0; kmalloc_node((DESTINATION_PAYLOAD_QUEUE_SIZE + 1) *
sizeof(struct bau_payload_queue_entry),
GFP_KERNEL, node);
if (!pqp)
BUG();
cp = (char *)pqp + 31;
pqp = (struct bau_payload_queue_entry *)(((unsigned long)cp >> 5) << 5);
bau_tablesp->va_queue_first = pqp;
uv_write_global_mmr64(pnode,
UVH_LB_BAU_INTD_PAYLOAD_QUEUE_FIRST,
((unsigned long)pnode <<
UV_PAYLOADQ_PNODE_SHIFT) |
uv_physnodeaddr(pqp));
uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_TAIL,
uv_physnodeaddr(pqp));
bau_tablesp->va_queue_last =
pqp + (DESTINATION_PAYLOAD_QUEUE_SIZE - 1);
uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_LAST,
(unsigned long)
uv_physnodeaddr(bau_tablesp->va_queue_last));
memset(pqp, 0, sizeof(struct bau_payload_queue_entry) *
DESTINATION_PAYLOAD_QUEUE_SIZE);
return pqp;
}
uv_bau_retry_limit = 1; /*
* Initialization of each UV blade's structures
*/
static int __init uv_init_blade(int blade, int node, int cur_cpu)
{
int pnode;
unsigned long pa;
unsigned long apicid;
struct bau_activation_descriptor *adp;
struct bau_payload_queue_entry *pqp;
struct bau_control *bau_tablesp;
if ((sizeof(struct bau_local_cpumask) * BITSPERBYTE) < bau_tablesp = uv_table_bases_init(blade, node);
MAX_CPUS_PER_NODE) { pnode = uv_blade_to_pnode(blade);
printk(KERN_ERR adp = uv_activation_descriptor_init(node, pnode);
"uv_bau_init: bau_local_cpumask.bits too small\n"); pqp = uv_payload_queue_init(node, pnode, bau_tablesp);
BUG(); uv_table_bases_finish(blade, node, cur_cpu, bau_tablesp, adp);
/*
* the below initialization can't be in firmware because the
* messaging IRQ will be determined by the OS
*/
apicid = per_cpu(x86_cpu_to_apicid, cur_cpu);
pa = uv_read_global_mmr64(pnode, UVH_BAU_DATA_CONFIG);
if ((pa & 0xff) != UV_BAU_MESSAGE) {
uv_write_global_mmr64(pnode, UVH_BAU_DATA_CONFIG,
((apicid << 32) | UV_BAU_MESSAGE));
} }
return 0;
}
/*
* Initialization of BAU-related structures
*/
static int __init uv_bau_init(void)
{
int blade;
int node;
int nblades;
int last_blade;
int cur_cpu = 0;
if (!is_uv_system())
return 0;
uv_bau_retry_limit = 1;
uv_nshift = uv_hub_info->n_val; uv_nshift = uv_hub_info->n_val;
uv_mmask = ((unsigned long)1 << uv_hub_info->n_val) - 1; uv_mmask = ((unsigned long)1 << uv_hub_info->n_val) - 1;
nblades = 0; nblades = 0;
last_blade = -1; last_blade = -1;
for_each_online_node(i) { for_each_online_node(node) {
blade = uv_node_to_blade_id(i); blade = uv_node_to_blade_id(node);
if (blade == last_blade) if (blade == last_blade)
continue; continue;
last_blade = blade; last_blade = blade;
nblades++; nblades++;
} }
uv_bau_table_bases = (struct bau_control **) uv_bau_table_bases = (struct bau_control **)
kmalloc(nblades * sizeof(struct bau_control *), GFP_KERNEL); kmalloc(nblades * sizeof(struct bau_control *), GFP_KERNEL);
if (!uv_bau_table_bases) if (!uv_bau_table_bases)
BUG(); BUG();
/* better if we had each_online_blade */
last_blade = -1; last_blade = -1;
for_each_online_node(i) { for_each_online_node(node) {
blade = uv_node_to_blade_id(i); blade = uv_node_to_blade_id(node);
if (blade == last_blade) if (blade == last_blade)
continue; continue;
last_blade = blade; last_blade = blade;
uv_init_blade(blade, node, cur_cpu);
bau_tablesp = cur_cpu += uv_blade_nr_possible_cpus(blade);
kmalloc_node(sizeof(struct bau_control), GFP_KERNEL, i);
if (!bau_tablesp)
BUG();
bau_tablesp->msg_statuses =
kmalloc_node(sizeof(struct bau_msg_status) *
DESTINATION_PAYLOAD_QUEUE_SIZE, GFP_KERNEL, i);
if (!bau_tablesp->msg_statuses)
BUG();
for (j = 0, msp = bau_tablesp->msg_statuses;
j < DESTINATION_PAYLOAD_QUEUE_SIZE; j++, msp++) {
bau_cpubits_clear(&msp->seen_by, (int)
uv_blade_nr_possible_cpus(blade));
}
bau_tablesp->watching =
kmalloc_node(sizeof(int) * DESTINATION_NUM_RESOURCES,
GFP_KERNEL, i);
if (!bau_tablesp->watching)
BUG();
for (j = 0, ip = bau_tablesp->watching;
j < DESTINATION_PAYLOAD_QUEUE_SIZE; j++, ip++) {
*ip = 0;
}
uv_bau_table_bases[i] = bau_tablesp;
pnode = uv_blade_to_pnode(blade);
if (sizeof(struct bau_activation_descriptor) != 64)
BUG();
adp = (struct bau_activation_descriptor *)
kmalloc_node(16384, GFP_KERNEL, i);
if (!adp)
BUG();
if ((unsigned long)adp & 0xfff)
BUG();
pa = __pa((unsigned long)adp);
n = pa >> uv_nshift;
m = pa & uv_mmask;
mmr_image = uv_read_global_mmr64(pnode,
UVH_LB_BAU_SB_DESCRIPTOR_BASE);
if (mmr_image)
uv_write_global_mmr64(pnode, (unsigned long)
UVH_LB_BAU_SB_DESCRIPTOR_BASE,
(n << UV_DESC_BASE_PNODE_SHIFT |
m));
for (j = 0, ad2 = adp; j < UV_ACTIVATION_DESCRIPTOR_SIZE;
j++, ad2++) {
memset(ad2, 0,
sizeof(struct bau_activation_descriptor));
ad2->header.sw_ack_flag = 1;
ad2->header.base_dest_nodeid =
uv_blade_to_pnode(uv_cpu_to_blade_id(0));
ad2->header.command = UV_NET_ENDPOINT_INTD;
ad2->header.int_both = 1;
/* all others need to be set to zero:
fairness chaining multilevel count replied_to */
}
pqp = (struct bau_payload_queue_entry *)
kmalloc_node((DESTINATION_PAYLOAD_QUEUE_SIZE + 1) *
sizeof(struct bau_payload_queue_entry),
GFP_KERNEL, i);
if (!pqp)
BUG();
if (sizeof(struct bau_payload_queue_entry) != 32)
BUG();
if ((unsigned long)(&((struct bau_payload_queue_entry *)0)->
sw_ack_vector) != 15)
BUG();
cp = (char *)pqp + 31;
pqp = (struct bau_payload_queue_entry *)
(((unsigned long)cp >> 5) << 5);
bau_tablesp->va_queue_first = pqp;
uv_write_global_mmr64(pnode,
UVH_LB_BAU_INTD_PAYLOAD_QUEUE_FIRST,
((unsigned long)pnode <<
UV_PAYLOADQ_PNODE_SHIFT) |
uv_physnodeaddr(pqp));
uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_TAIL,
uv_physnodeaddr(pqp));
bau_tablesp->va_queue_last =
pqp + (DESTINATION_PAYLOAD_QUEUE_SIZE - 1);
uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_LAST,
(unsigned long)
uv_physnodeaddr(bau_tablesp->
va_queue_last));
memset(pqp, 0, sizeof(struct bau_payload_queue_entry) *
DESTINATION_PAYLOAD_QUEUE_SIZE);
/* this initialization can't be in firmware because the
messaging IRQ will be determined by the OS */
apicid = per_cpu(x86_cpu_to_apicid, cur_cpu);
pa = uv_read_global_mmr64(pnode, UVH_BAU_DATA_CONFIG);
if ((pa & 0xff) != UV_BAU_MESSAGE) {
uv_write_global_mmr64(pnode, UVH_BAU_DATA_CONFIG,
((apicid << 32) |
UV_BAU_MESSAGE));
}
for (j = cur_cpu; j < (cur_cpu + uv_blade_nr_possible_cpus(i));
j++) {
bcp = (struct bau_control *)&per_cpu(bau_control, j);
bcp->bau_msg_head = bau_tablesp->va_queue_first;
bcp->va_queue_first = bau_tablesp->va_queue_first;
bcp->va_queue_last = bau_tablesp->va_queue_last;
bcp->watching = bau_tablesp->watching;
bcp->msg_statuses = bau_tablesp->msg_statuses;
bcp->descriptor_base = adp;
}
cur_cpu += uv_blade_nr_possible_cpus(i);
} }
set_intr_gate(UV_BAU_MESSAGE, uv_bau_message_intr1); set_intr_gate(UV_BAU_MESSAGE, uv_bau_message_intr1);
uv_enable_timeouts(); uv_enable_timeouts();
return 0; return 0;
} }
__initcall(uv_bau_init); __initcall(uv_bau_init);
__initcall(uv_ptc_init);
...@@ -14,9 +14,9 @@ ...@@ -14,9 +14,9 @@
#include <linux/bitmap.h> #include <linux/bitmap.h>
#define BITSPERBYTE 8 #define BITSPERBYTE 8
/* Broadcast Assist Unit messaging structures */
/* /*
* Broadcast Assist Unit messaging structures
*
* Selective Broadcast activations are induced by software action * Selective Broadcast activations are induced by software action
* specifying a particular 8-descriptor "set" via a 6-bit index written * specifying a particular 8-descriptor "set" via a 6-bit index written
* to an MMR. * to an MMR.
...@@ -33,54 +33,73 @@ ...@@ -33,54 +33,73 @@
* Each of the descriptors is 64 bytes in size (8*64 = 512 bytes in a set). * Each of the descriptors is 64 bytes in size (8*64 = 512 bytes in a set).
*/ */
#define UV_ITEMS_PER_DESCRIPTOR 8 #define UV_ITEMS_PER_DESCRIPTOR 8
#define UV_CPUS_PER_ACT_STATUS 32 #define UV_CPUS_PER_ACT_STATUS 32
#define UV_ACT_STATUS_MASK 0x3 #define UV_ACT_STATUS_MASK 0x3
#define UV_ACT_STATUS_SIZE 2 #define UV_ACT_STATUS_SIZE 2
#define UV_ACTIVATION_DESCRIPTOR_SIZE 32 #define UV_ACTIVATION_DESCRIPTOR_SIZE 32
#define UV_DISTRIBUTION_SIZE 256 #define UV_DISTRIBUTION_SIZE 256
#define UV_SW_ACK_NPENDING 8 #define UV_SW_ACK_NPENDING 8
#define UV_BAU_MESSAGE 200 /* Messaging irq; see irq_64.h */ #define UV_BAU_MESSAGE 200
/* and include/asm-x86/hw_irq_64.h */ /*
/* To be dynamically allocated in the future */ * Messaging irq; see irq_64.h and include/asm-x86/hw_irq_64.h
#define UV_NET_ENDPOINT_INTD 0x38 * To be dynamically allocated in the future
#define UV_DESC_BASE_PNODE_SHIFT 49 /* position of pnode (nasid>>1) in MMR */ */
#define UV_PAYLOADQ_PNODE_SHIFT 49 #define UV_NET_ENDPOINT_INTD 0x38
#define UV_DESC_BASE_PNODE_SHIFT 49
#define UV_PTC_BASENAME "sgi_uv/ptc_statistics" #define UV_PAYLOADQ_PNODE_SHIFT 49
#define uv_physnodeaddr(x) ((__pa((unsigned long)(x)) & uv_mmask)) #define UV_PTC_BASENAME "sgi_uv/ptc_statistics"
#define uv_physnodeaddr(x) ((__pa((unsigned long)(x)) & uv_mmask))
/* bits in UVH_LB_BAU_SB_ACTIVATION_STATUS_0/1 */
/*
* bits in UVH_LB_BAU_SB_ACTIVATION_STATUS_0/1
*/
#define DESC_STATUS_IDLE 0 #define DESC_STATUS_IDLE 0
#define DESC_STATUS_ACTIVE 1 #define DESC_STATUS_ACTIVE 1
#define DESC_STATUS_DESTINATION_TIMEOUT 2 #define DESC_STATUS_DESTINATION_TIMEOUT 2
#define DESC_STATUS_SOURCE_TIMEOUT 3 #define DESC_STATUS_SOURCE_TIMEOUT 3
/* source side threshholds at which message retries print a warning */ /*
* source side threshholds at which message retries print a warning
*/
#define SOURCE_TIMEOUT_LIMIT 20 #define SOURCE_TIMEOUT_LIMIT 20
#define DESTINATION_TIMEOUT_LIMIT 20 #define DESTINATION_TIMEOUT_LIMIT 20
/* number of entries in the destination side payload queue */ /*
* number of entries in the destination side payload queue
*/
#define DESTINATION_PAYLOAD_QUEUE_SIZE 17 #define DESTINATION_PAYLOAD_QUEUE_SIZE 17
/* number of destination side software ack resources */ /*
* number of destination side software ack resources
*/
#define DESTINATION_NUM_RESOURCES 8 #define DESTINATION_NUM_RESOURCES 8
#define MAX_CPUS_PER_NODE 32 #define MAX_CPUS_PER_NODE 32
/*
* completion statuses for sending a TLB flush message
*/
#define FLUSH_RETRY 1
#define FLUSH_GIVEUP 2
#define FLUSH_COMPLETE 3
/* Distribution: 32 bytes (256 bits) (bytes 0-0x1f of descriptor) */ /*
/* If the 'multilevel' flag in the header portion of the descriptor * Distribution: 32 bytes (256 bits) (bytes 0-0x1f of descriptor)
* If the 'multilevel' flag in the header portion of the descriptor
* has been set to 0, then endpoint multi-unicast mode is selected. * has been set to 0, then endpoint multi-unicast mode is selected.
* The distribution specification (32 bytes) is interpreted as a 256-bit * The distribution specification (32 bytes) is interpreted as a 256-bit
* distribution vector. Adjacent bits correspond to consecutive even numbered * distribution vector. Adjacent bits correspond to consecutive even numbered
* nodeIDs. The result of adding the index of a given bit to the 15-bit * nodeIDs. The result of adding the index of a given bit to the 15-bit
* 'base_dest_nodeid' field of the header corresponds to the * 'base_dest_nodeid' field of the header corresponds to the
* destination nodeID associated with that specified bit. */ * destination nodeID associated with that specified bit.
*/
struct bau_target_nodemask { struct bau_target_nodemask {
unsigned long bits[BITS_TO_LONGS(256)]; unsigned long bits[BITS_TO_LONGS(256)];
}; };
/* mask of cpu's on a node */ /*
/* (during initialization we need to check that unsigned long has * mask of cpu's on a node
enough bits for max. cpu's per node) */ * (during initialization we need to check that unsigned long has
* enough bits for max. cpu's per node)
*/
struct bau_local_cpumask { struct bau_local_cpumask {
unsigned long bits; unsigned long bits;
}; };
...@@ -99,7 +118,9 @@ struct bau_local_cpumask { ...@@ -99,7 +118,9 @@ struct bau_local_cpumask {
* the s/w ack bit vector ] * the s/w ack bit vector ]
*/ */
/* The payload is software-defined for INTD transactions */ /*
* The payload is software-defined for INTD transactions
*/
struct bau_msg_payload { struct bau_msg_payload {
unsigned long address; /* signifies a page or all TLB's unsigned long address; /* signifies a page or all TLB's
of the cpu */ of the cpu */
...@@ -112,8 +133,10 @@ struct bau_msg_payload { ...@@ -112,8 +133,10 @@ struct bau_msg_payload {
}; };
/* Message header: 16 bytes (128 bits) (bytes 0x30-0x3f of descriptor) */ /*
/* see table 4.2.3.0.1 in broacast_assist spec. */ * Message header: 16 bytes (128 bits) (bytes 0x30-0x3f of descriptor)
* see table 4.2.3.0.1 in broacast_assist spec.
*/
struct bau_msg_header { struct bau_msg_header {
int dest_subnodeid:6; /* must be zero */ int dest_subnodeid:6; /* must be zero */
/* bits 5:0 */ /* bits 5:0 */
...@@ -173,11 +196,15 @@ struct bau_msg_header { ...@@ -173,11 +196,15 @@ struct bau_msg_header {
/* bits 127:107 */ /* bits 127:107 */
}; };
/* The format of the message to send, plus all accompanying control */ /*
/* Should be 64 bytes */ * The format of the message to send, plus all accompanying control
* Should be 64 bytes
*/
struct bau_activation_descriptor { struct bau_activation_descriptor {
struct bau_target_nodemask distribution; struct bau_target_nodemask distribution;
/* message template, consisting of header and payload: */ /*
* message template, consisting of header and payload:
*/
struct bau_msg_header header; struct bau_msg_header header;
struct bau_msg_payload payload; struct bau_msg_payload payload;
}; };
...@@ -235,18 +262,24 @@ struct bau_payload_queue_entry { ...@@ -235,18 +262,24 @@ struct bau_payload_queue_entry {
/* bytes 24-31 */ /* bytes 24-31 */
}; };
/* one for every slot in the destination payload queue */ /*
* one for every slot in the destination payload queue
*/
struct bau_msg_status { struct bau_msg_status {
struct bau_local_cpumask seen_by; /* map of cpu's */ struct bau_local_cpumask seen_by; /* map of cpu's */
}; };
/* one for every slot in the destination software ack resources */ /*
* one for every slot in the destination software ack resources
*/
struct bau_sw_ack_status { struct bau_sw_ack_status {
struct bau_payload_queue_entry *msg; /* associated message */ struct bau_payload_queue_entry *msg; /* associated message */
int watcher; /* cpu monitoring, or -1 */ int watcher; /* cpu monitoring, or -1 */
}; };
/* one on every node and per-cpu; to locate the software tables */ /*
* one on every node and per-cpu; to locate the software tables
*/
struct bau_control { struct bau_control {
struct bau_activation_descriptor *descriptor_base; struct bau_activation_descriptor *descriptor_base;
struct bau_payload_queue_entry *bau_msg_head; struct bau_payload_queue_entry *bau_msg_head;
...@@ -267,8 +300,8 @@ struct ptc_stats { ...@@ -267,8 +300,8 @@ struct ptc_stats {
unsigned long onetlb; /* times just one tlb on this cpu was flushed */ unsigned long onetlb; /* times just one tlb on this cpu was flushed */
unsigned long s_retry; /* retries on source side timeouts */ unsigned long s_retry; /* retries on source side timeouts */
unsigned long d_retry; /* retries on destination side timeouts */ unsigned long d_retry; /* retries on destination side timeouts */
unsigned long sflush_ns;/* nanoseconds spent in uv_flush_tlb_others */ unsigned long sflush; /* cycles spent in uv_flush_tlb_others */
unsigned long dflush_ns;/* nanoseconds spent destination side */ unsigned long dflush; /* cycles spent on destination side */
unsigned long retriesok; /* successes on retries */ unsigned long retriesok; /* successes on retries */
unsigned long nomsg; /* interrupts with no message */ unsigned long nomsg; /* interrupts with no message */
unsigned long multmsg; /* interrupts with multiple messages */ unsigned long multmsg; /* interrupts with multiple messages */
...@@ -293,39 +326,11 @@ static inline void bau_cpubits_clear(struct bau_local_cpumask *dstp, int nbits) ...@@ -293,39 +326,11 @@ static inline void bau_cpubits_clear(struct bau_local_cpumask *dstp, int nbits)
bitmap_zero(&dstp->bits, nbits); bitmap_zero(&dstp->bits, nbits);
} }
/*
* atomic increment of a short integer
* (rather than using the __sync_add_and_fetch() intrinsic)
*
* returns the new value of the variable
*/
static inline short int atomic_inc_short(short int *v)
{
asm volatile("movw $1, %%cx\n"
"lock ; xaddw %%cx, %0\n"
: "+m" (*v) /* outputs */
: : "%cx", "memory"); /* inputs : clobbereds */
return *v;
}
/*
* atomic OR of two long integers
* (rather than using the __sync_or_and_fetch() intrinsic)
*/
static inline void atomic_or_long(unsigned long *v1, unsigned long v2)
{
asm volatile("movq %0, %%rax; lea %1, %%rdx\n"
"lock ; orq %%rax, %%rdx\n"
: "+m" (*v1) /* outputs */
: "m" (v1), "m" (v2) /* inputs */
: "memory"); /* clobbereds */
}
#define cpubit_isset(cpu, bau_local_cpumask) \ #define cpubit_isset(cpu, bau_local_cpumask) \
test_bit((cpu), (bau_local_cpumask).bits) test_bit((cpu), (bau_local_cpumask).bits)
int uv_flush_tlb_others(cpumask_t *, struct mm_struct *, unsigned long); extern int uv_flush_tlb_others(cpumask_t *, struct mm_struct *, unsigned long);
void uv_bau_message_intr1(void); extern void uv_bau_message_intr1(void);
void uv_bau_timeout_intr1(void); extern void uv_bau_timeout_intr1(void);
#endif /* __ASM_X86_UV_BAU__ */ #endif /* __ASM_X86_UV_BAU__ */
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment