Commit a6a53252 authored by Jie Yang's avatar Jie Yang Committed by Jeff Garzik

atl1e: Atheros L1E Gigabit Ethernet driver

Full patch for the Atheros L1E Gigabit Ethernet driver.
Supportring AR8121, AR8113 and AR8114

Signed-off-by: Jie Yang <jie.yang @atheros.com>
Signed-off-by: default avatarJeff Garzik <jgarzik@redhat.com>
parent bb5d10ac
...@@ -2304,6 +2304,17 @@ config ATL1 ...@@ -2304,6 +2304,17 @@ config ATL1
To compile this driver as a module, choose M here. The module To compile this driver as a module, choose M here. The module
will be called atl1. will be called atl1.
config ATL1E
tristate "Atheros L1E Gigabit Ethernet support (EXPERIMENTAL)"
depends on PCI && EXPERIMENTAL
select CRC32
select MII
help
This driver supports the Atheros L1E gigabit ethernet adapter.
To compile this driver as a module, choose M here. The module
will be called atl1e.
endif # NETDEV_1000 endif # NETDEV_1000
# #
......
...@@ -15,6 +15,7 @@ obj-$(CONFIG_EHEA) += ehea/ ...@@ -15,6 +15,7 @@ obj-$(CONFIG_EHEA) += ehea/
obj-$(CONFIG_CAN) += can/ obj-$(CONFIG_CAN) += can/
obj-$(CONFIG_BONDING) += bonding/ obj-$(CONFIG_BONDING) += bonding/
obj-$(CONFIG_ATL1) += atlx/ obj-$(CONFIG_ATL1) += atlx/
obj-$(CONFIG_ATL1E) += atl1e/
obj-$(CONFIG_GIANFAR) += gianfar_driver.o obj-$(CONFIG_GIANFAR) += gianfar_driver.o
obj-$(CONFIG_TEHUTI) += tehuti.o obj-$(CONFIG_TEHUTI) += tehuti.o
......
obj-$(CONFIG_ATL1E) += atl1e.o
atl1e-objs += atl1e_main.o atl1e_hw.o atl1e_ethtool.o atl1e_param.o
/*
* Copyright(c) 2007 Atheros Corporation. All rights reserved.
* Copyright(c) 2007 xiong huang <xiong.huang@atheros.com>
*
* Derived from Intel e1000 driver
* Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc., 59
* Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#ifndef _ATL1E_H_
#define _ATL1E_H_
#include <linux/version.h>
#include <linux/init.h>
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/ioport.h>
#include <linux/slab.h>
#include <linux/list.h>
#include <linux/delay.h>
#include <linux/sched.h>
#include <linux/in.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <linux/udp.h>
#include <linux/mii.h>
#include <linux/io.h>
#include <linux/vmalloc.h>
#include <linux/pagemap.h>
#include <linux/tcp.h>
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/if_vlan.h>
#include <linux/workqueue.h>
#include <net/checksum.h>
#include <net/ip6_checksum.h>
#include "atl1e_hw.h"
#define PCI_REG_COMMAND 0x04 /* PCI Command Register */
#define CMD_IO_SPACE 0x0001
#define CMD_MEMORY_SPACE 0x0002
#define CMD_BUS_MASTER 0x0004
#define BAR_0 0
#define BAR_1 1
#define BAR_5 5
/* Wake Up Filter Control */
#define AT_WUFC_LNKC 0x00000001 /* Link Status Change Wakeup Enable */
#define AT_WUFC_MAG 0x00000002 /* Magic Packet Wakeup Enable */
#define AT_WUFC_EX 0x00000004 /* Directed Exact Wakeup Enable */
#define AT_WUFC_MC 0x00000008 /* Multicast Wakeup Enable */
#define AT_WUFC_BC 0x00000010 /* Broadcast Wakeup Enable */
#define SPEED_0 0xffff
#define HALF_DUPLEX 1
#define FULL_DUPLEX 2
/* Error Codes */
#define AT_ERR_EEPROM 1
#define AT_ERR_PHY 2
#define AT_ERR_CONFIG 3
#define AT_ERR_PARAM 4
#define AT_ERR_MAC_TYPE 5
#define AT_ERR_PHY_TYPE 6
#define AT_ERR_PHY_SPEED 7
#define AT_ERR_PHY_RES 8
#define AT_ERR_TIMEOUT 9
#define MAX_JUMBO_FRAME_SIZE 0x2000
#define AT_VLAN_TAG_TO_TPD_TAG(_vlan, _tpd) \
_tpd = (((_vlan) << (4)) | (((_vlan) >> 13) & 7) |\
(((_vlan) >> 9) & 8))
#define AT_TPD_TAG_TO_VLAN_TAG(_tpd, _vlan) \
_vlan = (((_tpd) >> 8) | (((_tpd) & 0x77) << 9) |\
(((_tdp) & 0x88) << 5))
#define AT_MAX_RECEIVE_QUEUE 4
#define AT_PAGE_NUM_PER_QUEUE 2
#define AT_DMA_HI_ADDR_MASK 0xffffffff00000000ULL
#define AT_DMA_LO_ADDR_MASK 0x00000000ffffffffULL
#define AT_TX_WATCHDOG (5 * HZ)
#define AT_MAX_INT_WORK 10
#define AT_TWSI_EEPROM_TIMEOUT 100
#define AT_HW_MAX_IDLE_DELAY 10
#define AT_SUSPEND_LINK_TIMEOUT 28
#define AT_REGS_LEN 75
#define AT_EEPROM_LEN 512
#define AT_ADV_MASK (ADVERTISE_10_HALF |\
ADVERTISE_10_FULL |\
ADVERTISE_100_HALF |\
ADVERTISE_100_FULL |\
ADVERTISE_1000_FULL)
/* tpd word 2 */
#define TPD_BUFLEN_MASK 0x3FFF
#define TPD_BUFLEN_SHIFT 0
#define TPD_DMAINT_MASK 0x0001
#define TPD_DMAINT_SHIFT 14
#define TPD_PKTNT_MASK 0x0001
#define TPD_PKTINT_SHIFT 15
#define TPD_VLANTAG_MASK 0xFFFF
#define TPD_VLAN_SHIFT 16
/* tpd word 3 bits 0:4 */
#define TPD_EOP_MASK 0x0001
#define TPD_EOP_SHIFT 0
#define TPD_IP_VERSION_MASK 0x0001
#define TPD_IP_VERSION_SHIFT 1 /* 0 : IPV4, 1 : IPV6 */
#define TPD_INS_VL_TAG_MASK 0x0001
#define TPD_INS_VL_TAG_SHIFT 2
#define TPD_CC_SEGMENT_EN_MASK 0x0001
#define TPD_CC_SEGMENT_EN_SHIFT 3
#define TPD_SEGMENT_EN_MASK 0x0001
#define TPD_SEGMENT_EN_SHIFT 4
/* tdp word 3 bits 5:7 if ip version is 0 */
#define TPD_IP_CSUM_MASK 0x0001
#define TPD_IP_CSUM_SHIFT 5
#define TPD_TCP_CSUM_MASK 0x0001
#define TPD_TCP_CSUM_SHIFT 6
#define TPD_UDP_CSUM_MASK 0x0001
#define TPD_UDP_CSUM_SHIFT 7
/* tdp word 3 bits 5:7 if ip version is 1 */
#define TPD_V6_IPHLLO_MASK 0x0007
#define TPD_V6_IPHLLO_SHIFT 7
/* tpd word 3 bits 8:9 bit */
#define TPD_VL_TAGGED_MASK 0x0001
#define TPD_VL_TAGGED_SHIFT 8
#define TPD_ETHTYPE_MASK 0x0001
#define TPD_ETHTYPE_SHIFT 9
/* tdp word 3 bits 10:13 if ip version is 0 */
#define TDP_V4_IPHL_MASK 0x000F
#define TPD_V4_IPHL_SHIFT 10
/* tdp word 3 bits 10:13 if ip version is 1 */
#define TPD_V6_IPHLHI_MASK 0x000F
#define TPD_V6_IPHLHI_SHIFT 10
/* tpd word 3 bit 14:31 if segment enabled */
#define TPD_TCPHDRLEN_MASK 0x000F
#define TPD_TCPHDRLEN_SHIFT 14
#define TPD_HDRFLAG_MASK 0x0001
#define TPD_HDRFLAG_SHIFT 18
#define TPD_MSS_MASK 0x1FFF
#define TPD_MSS_SHIFT 19
/* tdp word 3 bit 16:31 if custom csum enabled */
#define TPD_PLOADOFFSET_MASK 0x00FF
#define TPD_PLOADOFFSET_SHIFT 16
#define TPD_CCSUMOFFSET_MASK 0x00FF
#define TPD_CCSUMOFFSET_SHIFT 24
struct atl1e_tpd_desc {
__le64 buffer_addr;
__le32 word2;
__le32 word3;
};
/* how about 0x2000 */
#define MAX_TX_BUF_LEN 0x2000
#define MAX_TX_BUF_SHIFT 13
/*#define MAX_TX_BUF_LEN 0x3000 */
/* rrs word 1 bit 0:31 */
#define RRS_RX_CSUM_MASK 0xFFFF
#define RRS_RX_CSUM_SHIFT 0
#define RRS_PKT_SIZE_MASK 0x3FFF
#define RRS_PKT_SIZE_SHIFT 16
#define RRS_CPU_NUM_MASK 0x0003
#define RRS_CPU_NUM_SHIFT 30
#define RRS_IS_RSS_IPV4 0x0001
#define RRS_IS_RSS_IPV4_TCP 0x0002
#define RRS_IS_RSS_IPV6 0x0004
#define RRS_IS_RSS_IPV6_TCP 0x0008
#define RRS_IS_IPV6 0x0010
#define RRS_IS_IP_FRAG 0x0020
#define RRS_IS_IP_DF 0x0040
#define RRS_IS_802_3 0x0080
#define RRS_IS_VLAN_TAG 0x0100
#define RRS_IS_ERR_FRAME 0x0200
#define RRS_IS_IPV4 0x0400
#define RRS_IS_UDP 0x0800
#define RRS_IS_TCP 0x1000
#define RRS_IS_BCAST 0x2000
#define RRS_IS_MCAST 0x4000
#define RRS_IS_PAUSE 0x8000
#define RRS_ERR_BAD_CRC 0x0001
#define RRS_ERR_CODE 0x0002
#define RRS_ERR_DRIBBLE 0x0004
#define RRS_ERR_RUNT 0x0008
#define RRS_ERR_RX_OVERFLOW 0x0010
#define RRS_ERR_TRUNC 0x0020
#define RRS_ERR_IP_CSUM 0x0040
#define RRS_ERR_L4_CSUM 0x0080
#define RRS_ERR_LENGTH 0x0100
#define RRS_ERR_DES_ADDR 0x0200
struct atl1e_recv_ret_status {
u16 seq_num;
u16 hash_lo;
__le32 word1;
u16 pkt_flag;
u16 err_flag;
u16 hash_hi;
u16 vtag;
};
enum atl1e_dma_req_block {
atl1e_dma_req_128 = 0,
atl1e_dma_req_256 = 1,
atl1e_dma_req_512 = 2,
atl1e_dma_req_1024 = 3,
atl1e_dma_req_2048 = 4,
atl1e_dma_req_4096 = 5
};
enum atl1e_rrs_type {
atl1e_rrs_disable = 0,
atl1e_rrs_ipv4 = 1,
atl1e_rrs_ipv4_tcp = 2,
atl1e_rrs_ipv6 = 4,
atl1e_rrs_ipv6_tcp = 8
};
enum atl1e_nic_type {
athr_l1e = 0,
athr_l2e_revA = 1,
athr_l2e_revB = 2
};
struct atl1e_hw_stats {
/* rx */
unsigned long rx_ok; /* The number of good packet received. */
unsigned long rx_bcast; /* The number of good broadcast packet received. */
unsigned long rx_mcast; /* The number of good multicast packet received. */
unsigned long rx_pause; /* The number of Pause packet received. */
unsigned long rx_ctrl; /* The number of Control packet received other than Pause frame. */
unsigned long rx_fcs_err; /* The number of packets with bad FCS. */
unsigned long rx_len_err; /* The number of packets with mismatch of length field and actual size. */
unsigned long rx_byte_cnt; /* The number of bytes of good packet received. FCS is NOT included. */
unsigned long rx_runt; /* The number of packets received that are less than 64 byte long and with good FCS. */
unsigned long rx_frag; /* The number of packets received that are less than 64 byte long and with bad FCS. */
unsigned long rx_sz_64; /* The number of good and bad packets received that are 64 byte long. */
unsigned long rx_sz_65_127; /* The number of good and bad packets received that are between 65 and 127-byte long. */
unsigned long rx_sz_128_255; /* The number of good and bad packets received that are between 128 and 255-byte long. */
unsigned long rx_sz_256_511; /* The number of good and bad packets received that are between 256 and 511-byte long. */
unsigned long rx_sz_512_1023; /* The number of good and bad packets received that are between 512 and 1023-byte long. */
unsigned long rx_sz_1024_1518; /* The number of good and bad packets received that are between 1024 and 1518-byte long. */
unsigned long rx_sz_1519_max; /* The number of good and bad packets received that are between 1519-byte and MTU. */
unsigned long rx_sz_ov; /* The number of good and bad packets received that are more than MTU size truncated by Selene. */
unsigned long rx_rxf_ov; /* The number of frame dropped due to occurrence of RX FIFO overflow. */
unsigned long rx_rrd_ov; /* The number of frame dropped due to occurrence of RRD overflow. */
unsigned long rx_align_err; /* Alignment Error */
unsigned long rx_bcast_byte_cnt; /* The byte count of broadcast packet received, excluding FCS. */
unsigned long rx_mcast_byte_cnt; /* The byte count of multicast packet received, excluding FCS. */
unsigned long rx_err_addr; /* The number of packets dropped due to address filtering. */
/* tx */
unsigned long tx_ok; /* The number of good packet transmitted. */
unsigned long tx_bcast; /* The number of good broadcast packet transmitted. */
unsigned long tx_mcast; /* The number of good multicast packet transmitted. */
unsigned long tx_pause; /* The number of Pause packet transmitted. */
unsigned long tx_exc_defer; /* The number of packets transmitted with excessive deferral. */
unsigned long tx_ctrl; /* The number of packets transmitted is a control frame, excluding Pause frame. */
unsigned long tx_defer; /* The number of packets transmitted that is deferred. */
unsigned long tx_byte_cnt; /* The number of bytes of data transmitted. FCS is NOT included. */
unsigned long tx_sz_64; /* The number of good and bad packets transmitted that are 64 byte long. */
unsigned long tx_sz_65_127; /* The number of good and bad packets transmitted that are between 65 and 127-byte long. */
unsigned long tx_sz_128_255; /* The number of good and bad packets transmitted that are between 128 and 255-byte long. */
unsigned long tx_sz_256_511; /* The number of good and bad packets transmitted that are between 256 and 511-byte long. */
unsigned long tx_sz_512_1023; /* The number of good and bad packets transmitted that are between 512 and 1023-byte long. */
unsigned long tx_sz_1024_1518; /* The number of good and bad packets transmitted that are between 1024 and 1518-byte long. */
unsigned long tx_sz_1519_max; /* The number of good and bad packets transmitted that are between 1519-byte and MTU. */
unsigned long tx_1_col; /* The number of packets subsequently transmitted successfully with a single prior collision. */
unsigned long tx_2_col; /* The number of packets subsequently transmitted successfully with multiple prior collisions. */
unsigned long tx_late_col; /* The number of packets transmitted with late collisions. */
unsigned long tx_abort_col; /* The number of transmit packets aborted due to excessive collisions. */
unsigned long tx_underrun; /* The number of transmit packets aborted due to transmit FIFO underrun, or TRD FIFO underrun */
unsigned long tx_rd_eop; /* The number of times that read beyond the EOP into the next frame area when TRD was not written timely */
unsigned long tx_len_err; /* The number of transmit packets with length field does NOT match the actual frame size. */
unsigned long tx_trunc; /* The number of transmit packets truncated due to size exceeding MTU. */
unsigned long tx_bcast_byte; /* The byte count of broadcast packet transmitted, excluding FCS. */
unsigned long tx_mcast_byte; /* The byte count of multicast packet transmitted, excluding FCS. */
};
struct atl1e_hw {
u8 __iomem *hw_addr; /* inner register address */
resource_size_t mem_rang;
struct atl1e_adapter *adapter;
enum atl1e_nic_type nic_type;
u16 device_id;
u16 vendor_id;
u16 subsystem_id;
u16 subsystem_vendor_id;
u8 revision_id;
u16 pci_cmd_word;
u8 mac_addr[ETH_ALEN];
u8 perm_mac_addr[ETH_ALEN];
u8 preamble_len;
u16 max_frame_size;
u16 rx_jumbo_th;
u16 tx_jumbo_th;
u16 media_type;
#define MEDIA_TYPE_AUTO_SENSOR 0
#define MEDIA_TYPE_100M_FULL 1
#define MEDIA_TYPE_100M_HALF 2
#define MEDIA_TYPE_10M_FULL 3
#define MEDIA_TYPE_10M_HALF 4
u16 autoneg_advertised;
#define ADVERTISE_10_HALF 0x0001
#define ADVERTISE_10_FULL 0x0002
#define ADVERTISE_100_HALF 0x0004
#define ADVERTISE_100_FULL 0x0008
#define ADVERTISE_1000_HALF 0x0010 /* Not used, just FYI */
#define ADVERTISE_1000_FULL 0x0020
u16 mii_autoneg_adv_reg;
u16 mii_1000t_ctrl_reg;
u16 imt; /* Interrupt Moderator timer ( 2us resolution) */
u16 ict; /* Interrupt Clear timer (2us resolution) */
u32 smb_timer;
u16 rrd_thresh; /* Threshold of number of RRD produced to trigger
interrupt request */
u16 tpd_thresh;
u16 rx_count_down; /* 2us resolution */
u16 tx_count_down;
u8 tpd_burst; /* Number of TPD to prefetch in cache-aligned burst. */
enum atl1e_rrs_type rrs_type;
u32 base_cpu;
u32 indirect_tab;
enum atl1e_dma_req_block dmar_block;
enum atl1e_dma_req_block dmaw_block;
u8 dmaw_dly_cnt;
u8 dmar_dly_cnt;
bool phy_configured;
bool re_autoneg;
bool emi_ca;
};
/*
* wrapper around a pointer to a socket buffer,
* so a DMA handle can be stored along with the buffer
*/
struct atl1e_tx_buffer {
struct sk_buff *skb;
u16 length;
dma_addr_t dma;
};
struct atl1e_rx_page {
dma_addr_t dma; /* receive rage DMA address */
u8 *addr; /* receive rage virtual address */
dma_addr_t write_offset_dma; /* the DMA address which contain the
receive data offset in the page */
u32 *write_offset_addr; /* the virtaul address which contain
the receive data offset in the page */
u32 read_offset; /* the offset where we have read */
};
struct atl1e_rx_page_desc {
struct atl1e_rx_page rx_page[AT_PAGE_NUM_PER_QUEUE];
u8 rx_using;
u16 rx_nxseq;
};
/* transmit packet descriptor (tpd) ring */
struct atl1e_tx_ring {
struct atl1e_tpd_desc *desc; /* descriptor ring virtual address */
dma_addr_t dma; /* descriptor ring physical address */
u16 count; /* the count of transmit rings */
rwlock_t tx_lock;
u16 next_to_use;
atomic_t next_to_clean;
struct atl1e_tx_buffer *tx_buffer;
dma_addr_t cmb_dma;
u32 *cmb;
};
/* receive packet descriptor ring */
struct atl1e_rx_ring {
void *desc;
dma_addr_t dma;
int size;
u32 page_size; /* bytes length of rxf page */
u32 real_page_size; /* real_page_size = page_size + jumbo + aliagn */
struct atl1e_rx_page_desc rx_page_desc[AT_MAX_RECEIVE_QUEUE];
};
/* board specific private data structure */
struct atl1e_adapter {
struct net_device *netdev;
struct pci_dev *pdev;
struct vlan_group *vlgrp;
struct napi_struct napi;
struct mii_if_info mii; /* MII interface info */
struct atl1e_hw hw;
struct atl1e_hw_stats hw_stats;
struct net_device_stats net_stats;
bool have_msi;
u32 wol;
u16 link_speed;
u16 link_duplex;
spinlock_t mdio_lock;
spinlock_t tx_lock;
atomic_t irq_sem;
struct work_struct reset_task;
struct work_struct link_chg_task;
struct timer_list watchdog_timer;
struct timer_list phy_config_timer;
/* All Descriptor memory */
dma_addr_t ring_dma;
void *ring_vir_addr;
int ring_size;
struct atl1e_tx_ring tx_ring;
struct atl1e_rx_ring rx_ring;
int num_rx_queues;
unsigned long flags;
#define __AT_TESTING 0x0001
#define __AT_RESETTING 0x0002
#define __AT_DOWN 0x0003
u32 bd_number; /* board number;*/
u32 pci_state[16];
u32 *config_space;
};
#define AT_WRITE_REG(a, reg, value) ( \
writel((value), ((a)->hw_addr + reg)))
#define AT_WRITE_FLUSH(a) (\
readl((a)->hw_addr))
#define AT_READ_REG(a, reg) ( \
readl((a)->hw_addr + reg))
#define AT_WRITE_REGB(a, reg, value) (\
writeb((value), ((a)->hw_addr + reg)))
#define AT_READ_REGB(a, reg) (\
readb((a)->hw_addr + reg))
#define AT_WRITE_REGW(a, reg, value) (\
writew((value), ((a)->hw_addr + reg)))
#define AT_READ_REGW(a, reg) (\
readw((a)->hw_addr + reg))
#define AT_WRITE_REG_ARRAY(a, reg, offset, value) ( \
writel((value), (((a)->hw_addr + reg) + ((offset) << 2))))
#define AT_READ_REG_ARRAY(a, reg, offset) ( \
readl(((a)->hw_addr + reg) + ((offset) << 2)))
extern char atl1e_driver_name[];
extern char atl1e_driver_version[];
extern void atl1e_check_options(struct atl1e_adapter *adapter);
extern int atl1e_up(struct atl1e_adapter *adapter);
extern void atl1e_down(struct atl1e_adapter *adapter);
extern void atl1e_reinit_locked(struct atl1e_adapter *adapter);
extern s32 atl1e_reset_hw(struct atl1e_hw *hw);
extern void atl1e_set_ethtool_ops(struct net_device *netdev);
#endif /* _ATL1_E_H_ */
/*
* Copyright(c) 2007 Atheros Corporation. All rights reserved.
*
* Derived from Intel e1000 driver
* Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc., 59
* Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
*/
#include <linux/netdevice.h>
#include <linux/ethtool.h>
#include "atl1e.h"
static int atl1e_get_settings(struct net_device *netdev,
struct ethtool_cmd *ecmd)
{
struct atl1e_adapter *adapter = netdev_priv(netdev);
struct atl1e_hw *hw = &adapter->hw;
ecmd->supported = (SUPPORTED_10baseT_Half |
SUPPORTED_10baseT_Full |
SUPPORTED_100baseT_Half |
SUPPORTED_100baseT_Full |
SUPPORTED_Autoneg |
SUPPORTED_TP);
if (hw->nic_type == athr_l1e)
ecmd->supported |= SUPPORTED_1000baseT_Full;
ecmd->advertising = ADVERTISED_TP;
ecmd->advertising |= ADVERTISED_Autoneg;
ecmd->advertising |= hw->autoneg_advertised;
ecmd->port = PORT_TP;
ecmd->phy_address = 0;
ecmd->transceiver = XCVR_INTERNAL;
if (adapter->link_speed != SPEED_0) {
ecmd->speed = adapter->link_speed;
if (adapter->link_duplex == FULL_DUPLEX)
ecmd->duplex = DUPLEX_FULL;
else
ecmd->duplex = DUPLEX_HALF;
} else {
ecmd->speed = -1;
ecmd->duplex = -1;
}
ecmd->autoneg = AUTONEG_ENABLE;
return 0;
}
static int atl1e_set_settings(struct net_device *netdev,
struct ethtool_cmd *ecmd)
{
struct atl1e_adapter *adapter = netdev_priv(netdev);
struct atl1e_hw *hw = &adapter->hw;
while (test_and_set_bit(__AT_RESETTING, &adapter->flags))
msleep(1);
if (ecmd->autoneg == AUTONEG_ENABLE) {
u16 adv4, adv9;
if ((ecmd->advertising&ADVERTISE_1000_FULL)) {
if (hw->nic_type == athr_l1e) {
hw->autoneg_advertised =
ecmd->advertising & AT_ADV_MASK;
} else {
clear_bit(__AT_RESETTING, &adapter->flags);
return -EINVAL;
}
} else if (ecmd->advertising&ADVERTISE_1000_HALF) {
clear_bit(__AT_RESETTING, &adapter->flags);
return -EINVAL;
} else {
hw->autoneg_advertised =
ecmd->advertising & AT_ADV_MASK;
}
ecmd->advertising = hw->autoneg_advertised |
ADVERTISED_TP | ADVERTISED_Autoneg;
adv4 = hw->mii_autoneg_adv_reg & ~MII_AR_SPEED_MASK;
adv9 = hw->mii_1000t_ctrl_reg & ~MII_AT001_CR_1000T_SPEED_MASK;
if (hw->autoneg_advertised & ADVERTISE_10_HALF)
adv4 |= MII_AR_10T_HD_CAPS;
if (hw->autoneg_advertised & ADVERTISE_10_FULL)
adv4 |= MII_AR_10T_FD_CAPS;
if (hw->autoneg_advertised & ADVERTISE_100_HALF)
adv4 |= MII_AR_100TX_HD_CAPS;
if (hw->autoneg_advertised & ADVERTISE_100_FULL)
adv4 |= MII_AR_100TX_FD_CAPS;
if (hw->autoneg_advertised & ADVERTISE_1000_FULL)
adv9 |= MII_AT001_CR_1000T_FD_CAPS;
if (adv4 != hw->mii_autoneg_adv_reg ||
adv9 != hw->mii_1000t_ctrl_reg) {
hw->mii_autoneg_adv_reg = adv4;
hw->mii_1000t_ctrl_reg = adv9;
hw->re_autoneg = true;
}
} else {
clear_bit(__AT_RESETTING, &adapter->flags);
return -EINVAL;
}
/* reset the link */
if (netif_running(adapter->netdev)) {
atl1e_down(adapter);
atl1e_up(adapter);
} else
atl1e_reset_hw(&adapter->hw);
clear_bit(__AT_RESETTING, &adapter->flags);
return 0;
}
static u32 atl1e_get_tx_csum(struct net_device *netdev)
{
return (netdev->features & NETIF_F_HW_CSUM) != 0;
}
static u32 atl1e_get_msglevel(struct net_device *netdev)
{
#ifdef DBG
return 1;
#else
return 0;
#endif
}
static void atl1e_set_msglevel(struct net_device *netdev, u32 data)
{
}
static int atl1e_get_regs_len(struct net_device *netdev)
{
return AT_REGS_LEN * sizeof(u32);
}
static void atl1e_get_regs(struct net_device *netdev,
struct ethtool_regs *regs, void *p)
{
struct atl1e_adapter *adapter = netdev_priv(netdev);
struct atl1e_hw *hw = &adapter->hw;
u32 *regs_buff = p;
u16 phy_data;
memset(p, 0, AT_REGS_LEN * sizeof(u32));
regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
regs_buff[0] = AT_READ_REG(hw, REG_VPD_CAP);
regs_buff[1] = AT_READ_REG(hw, REG_SPI_FLASH_CTRL);
regs_buff[2] = AT_READ_REG(hw, REG_SPI_FLASH_CONFIG);
regs_buff[3] = AT_READ_REG(hw, REG_TWSI_CTRL);
regs_buff[4] = AT_READ_REG(hw, REG_PCIE_DEV_MISC_CTRL);
regs_buff[5] = AT_READ_REG(hw, REG_MASTER_CTRL);
regs_buff[6] = AT_READ_REG(hw, REG_MANUAL_TIMER_INIT);
regs_buff[7] = AT_READ_REG(hw, REG_IRQ_MODU_TIMER_INIT);
regs_buff[8] = AT_READ_REG(hw, REG_GPHY_CTRL);
regs_buff[9] = AT_READ_REG(hw, REG_CMBDISDMA_TIMER);
regs_buff[10] = AT_READ_REG(hw, REG_IDLE_STATUS);
regs_buff[11] = AT_READ_REG(hw, REG_MDIO_CTRL);
regs_buff[12] = AT_READ_REG(hw, REG_SERDES_LOCK);
regs_buff[13] = AT_READ_REG(hw, REG_MAC_CTRL);
regs_buff[14] = AT_READ_REG(hw, REG_MAC_IPG_IFG);
regs_buff[15] = AT_READ_REG(hw, REG_MAC_STA_ADDR);
regs_buff[16] = AT_READ_REG(hw, REG_MAC_STA_ADDR+4);
regs_buff[17] = AT_READ_REG(hw, REG_RX_HASH_TABLE);
regs_buff[18] = AT_READ_REG(hw, REG_RX_HASH_TABLE+4);
regs_buff[19] = AT_READ_REG(hw, REG_MAC_HALF_DUPLX_CTRL);
regs_buff[20] = AT_READ_REG(hw, REG_MTU);
regs_buff[21] = AT_READ_REG(hw, REG_WOL_CTRL);
regs_buff[22] = AT_READ_REG(hw, REG_SRAM_TRD_ADDR);
regs_buff[23] = AT_READ_REG(hw, REG_SRAM_TRD_LEN);
regs_buff[24] = AT_READ_REG(hw, REG_SRAM_RXF_ADDR);
regs_buff[25] = AT_READ_REG(hw, REG_SRAM_RXF_LEN);
regs_buff[26] = AT_READ_REG(hw, REG_SRAM_TXF_ADDR);
regs_buff[27] = AT_READ_REG(hw, REG_SRAM_TXF_LEN);
regs_buff[28] = AT_READ_REG(hw, REG_SRAM_TCPH_ADDR);
regs_buff[29] = AT_READ_REG(hw, REG_SRAM_PKTH_ADDR);
atl1e_read_phy_reg(hw, MII_BMCR, &phy_data);
regs_buff[73] = (u32)phy_data;
atl1e_read_phy_reg(hw, MII_BMSR, &phy_data);
regs_buff[74] = (u32)phy_data;
}
static int atl1e_get_eeprom_len(struct net_device *netdev)
{
struct atl1e_adapter *adapter = netdev_priv(netdev);
if (!atl1e_check_eeprom_exist(&adapter->hw))
return AT_EEPROM_LEN;
else
return 0;
}
static int atl1e_get_eeprom(struct net_device *netdev,
struct ethtool_eeprom *eeprom, u8 *bytes)
{
struct atl1e_adapter *adapter = netdev_priv(netdev);
struct atl1e_hw *hw = &adapter->hw;
u32 *eeprom_buff;
int first_dword, last_dword;
int ret_val = 0;
int i;
if (eeprom->len == 0)
return -EINVAL;
if (atl1e_check_eeprom_exist(hw)) /* not exist */
return -EINVAL;
eeprom->magic = hw->vendor_id | (hw->device_id << 16);
first_dword = eeprom->offset >> 2;
last_dword = (eeprom->offset + eeprom->len - 1) >> 2;
eeprom_buff = kmalloc(sizeof(u32) *
(last_dword - first_dword + 1), GFP_KERNEL);
if (eeprom_buff == NULL)
return -ENOMEM;
for (i = first_dword; i < last_dword; i++) {
if (!atl1e_read_eeprom(hw, i * 4, &(eeprom_buff[i-first_dword]))) {
kfree(eeprom_buff);
return -EIO;
}
}
memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 3),
eeprom->len);
kfree(eeprom_buff);
return ret_val;
}
static int atl1e_set_eeprom(struct net_device *netdev,
struct ethtool_eeprom *eeprom, u8 *bytes)
{
struct atl1e_adapter *adapter = netdev_priv(netdev);
struct atl1e_hw *hw = &adapter->hw;
u32 *eeprom_buff;
u32 *ptr;
int first_dword, last_dword;
int ret_val = 0;
int i;
if (eeprom->len == 0)
return -EOPNOTSUPP;
if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
return -EINVAL;
first_dword = eeprom->offset >> 2;
last_dword = (eeprom->offset + eeprom->len - 1) >> 2;
eeprom_buff = kmalloc(AT_EEPROM_LEN, GFP_KERNEL);
if (eeprom_buff == NULL)
return -ENOMEM;
ptr = (u32 *)eeprom_buff;
if (eeprom->offset & 3) {
/* need read/modify/write of first changed EEPROM word */
/* only the second byte of the word is being modified */
if (!atl1e_read_eeprom(hw, first_dword * 4, &(eeprom_buff[0]))) {
ret_val = -EIO;
goto out;
}
ptr++;
}
if (((eeprom->offset + eeprom->len) & 3)) {
/* need read/modify/write of last changed EEPROM word */
/* only the first byte of the word is being modified */
if (!atl1e_read_eeprom(hw, last_dword * 4,
&(eeprom_buff[last_dword - first_dword]))) {
ret_val = -EIO;
goto out;
}
}
/* Device's eeprom is always little-endian, word addressable */
memcpy(ptr, bytes, eeprom->len);
for (i = 0; i < last_dword - first_dword + 1; i++) {
if (!atl1e_write_eeprom(hw, ((first_dword + i) * 4),
eeprom_buff[i])) {
ret_val = -EIO;
goto out;
}
}
out:
kfree(eeprom_buff);
return ret_val;
}
static void atl1e_get_drvinfo(struct net_device *netdev,
struct ethtool_drvinfo *drvinfo)
{
struct atl1e_adapter *adapter = netdev_priv(netdev);
strncpy(drvinfo->driver, atl1e_driver_name, 32);
strncpy(drvinfo->version, atl1e_driver_version, 32);
strncpy(drvinfo->fw_version, "L1e", 32);
strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
drvinfo->n_stats = 0;
drvinfo->testinfo_len = 0;
drvinfo->regdump_len = atl1e_get_regs_len(netdev);
drvinfo->eedump_len = atl1e_get_eeprom_len(netdev);
}
static void atl1e_get_wol(struct net_device *netdev,
struct ethtool_wolinfo *wol)
{
struct atl1e_adapter *adapter = netdev_priv(netdev);
wol->supported = WAKE_MAGIC | WAKE_PHY;
wol->wolopts = 0;
if (adapter->wol & AT_WUFC_EX)
wol->wolopts |= WAKE_UCAST;
if (adapter->wol & AT_WUFC_MC)
wol->wolopts |= WAKE_MCAST;
if (adapter->wol & AT_WUFC_BC)
wol->wolopts |= WAKE_BCAST;
if (adapter->wol & AT_WUFC_MAG)
wol->wolopts |= WAKE_MAGIC;
if (adapter->wol & AT_WUFC_LNKC)
wol->wolopts |= WAKE_PHY;
return;
}
static int atl1e_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
{
struct atl1e_adapter *adapter = netdev_priv(netdev);
if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE |
WAKE_MCAST | WAKE_BCAST | WAKE_MCAST))
return -EOPNOTSUPP;
/* these settings will always override what we currently have */
adapter->wol = 0;
if (wol->wolopts & WAKE_MAGIC)
adapter->wol |= AT_WUFC_MAG;
if (wol->wolopts & WAKE_PHY)
adapter->wol |= AT_WUFC_LNKC;
return 0;
}
static int atl1e_nway_reset(struct net_device *netdev)
{
struct atl1e_adapter *adapter = netdev_priv(netdev);
if (netif_running(netdev))
atl1e_reinit_locked(adapter);
return 0;
}
static struct ethtool_ops atl1e_ethtool_ops = {
.get_settings = atl1e_get_settings,
.set_settings = atl1e_set_settings,
.get_drvinfo = atl1e_get_drvinfo,
.get_regs_len = atl1e_get_regs_len,
.get_regs = atl1e_get_regs,
.get_wol = atl1e_get_wol,
.set_wol = atl1e_set_wol,
.get_msglevel = atl1e_get_msglevel,
.set_msglevel = atl1e_set_msglevel,
.nway_reset = atl1e_nway_reset,
.get_link = ethtool_op_get_link,
.get_eeprom_len = atl1e_get_eeprom_len,
.get_eeprom = atl1e_get_eeprom,
.set_eeprom = atl1e_set_eeprom,
.get_tx_csum = atl1e_get_tx_csum,
.get_sg = ethtool_op_get_sg,
.set_sg = ethtool_op_set_sg,
#ifdef NETIF_F_TSO
.get_tso = ethtool_op_get_tso,
#endif
};
void atl1e_set_ethtool_ops(struct net_device *netdev)
{
SET_ETHTOOL_OPS(netdev, &atl1e_ethtool_ops);
}
/*
* Copyright(c) 2007 Atheros Corporation. All rights reserved.
*
* Derived from Intel e1000 driver
* Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc., 59
* Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/mii.h>
#include <linux/crc32.h>
#include "atl1e.h"
/*
* check_eeprom_exist
* return 0 if eeprom exist
*/
int atl1e_check_eeprom_exist(struct atl1e_hw *hw)
{
u32 value;
value = AT_READ_REG(hw, REG_SPI_FLASH_CTRL);
if (value & SPI_FLASH_CTRL_EN_VPD) {
value &= ~SPI_FLASH_CTRL_EN_VPD;
AT_WRITE_REG(hw, REG_SPI_FLASH_CTRL, value);
}
value = AT_READ_REGW(hw, REG_PCIE_CAP_LIST);
return ((value & 0xFF00) == 0x6C00) ? 0 : 1;
}
void atl1e_hw_set_mac_addr(struct atl1e_hw *hw)
{
u32 value;
/*
* 00-0B-6A-F6-00-DC
* 0: 6AF600DC 1: 000B
* low dword
*/
value = (((u32)hw->mac_addr[2]) << 24) |
(((u32)hw->mac_addr[3]) << 16) |
(((u32)hw->mac_addr[4]) << 8) |
(((u32)hw->mac_addr[5])) ;
AT_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 0, value);
/* hight dword */
value = (((u32)hw->mac_addr[0]) << 8) |
(((u32)hw->mac_addr[1])) ;
AT_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 1, value);
}
/*
* atl1e_get_permanent_address
* return 0 if get valid mac address,
*/
static int atl1e_get_permanent_address(struct atl1e_hw *hw)
{
u32 addr[2];
u32 i;
u32 twsi_ctrl_data;
u8 eth_addr[ETH_ALEN];
if (is_valid_ether_addr(hw->perm_mac_addr))
return 0;
/* init */
addr[0] = addr[1] = 0;
if (!atl1e_check_eeprom_exist(hw)) {
/* eeprom exist */
twsi_ctrl_data = AT_READ_REG(hw, REG_TWSI_CTRL);
twsi_ctrl_data |= TWSI_CTRL_SW_LDSTART;
AT_WRITE_REG(hw, REG_TWSI_CTRL, twsi_ctrl_data);
for (i = 0; i < AT_TWSI_EEPROM_TIMEOUT; i++) {
msleep(10);
twsi_ctrl_data = AT_READ_REG(hw, REG_TWSI_CTRL);
if ((twsi_ctrl_data & TWSI_CTRL_SW_LDSTART) == 0)
break;
}
if (i >= AT_TWSI_EEPROM_TIMEOUT)
return AT_ERR_TIMEOUT;
}
/* maybe MAC-address is from BIOS */
addr[0] = AT_READ_REG(hw, REG_MAC_STA_ADDR);
addr[1] = AT_READ_REG(hw, REG_MAC_STA_ADDR + 4);
*(u32 *) &eth_addr[2] = swab32(addr[0]);
*(u16 *) &eth_addr[0] = swab16(*(u16 *)&addr[1]);
if (is_valid_ether_addr(eth_addr)) {
memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
return 0;
}
return AT_ERR_EEPROM;
}
bool atl1e_write_eeprom(struct atl1e_hw *hw, u32 offset, u32 value)
{
return true;
}
bool atl1e_read_eeprom(struct atl1e_hw *hw, u32 offset, u32 *p_value)
{
int i;
u32 control;
if (offset & 3)
return false; /* address do not align */
AT_WRITE_REG(hw, REG_VPD_DATA, 0);
control = (offset & VPD_CAP_VPD_ADDR_MASK) << VPD_CAP_VPD_ADDR_SHIFT;
AT_WRITE_REG(hw, REG_VPD_CAP, control);
for (i = 0; i < 10; i++) {
msleep(2);
control = AT_READ_REG(hw, REG_VPD_CAP);
if (control & VPD_CAP_VPD_FLAG)
break;
}
if (control & VPD_CAP_VPD_FLAG) {
*p_value = AT_READ_REG(hw, REG_VPD_DATA);
return true;
}
return false; /* timeout */
}
void atl1e_force_ps(struct atl1e_hw *hw)
{
AT_WRITE_REGW(hw, REG_GPHY_CTRL,
GPHY_CTRL_PW_WOL_DIS | GPHY_CTRL_EXT_RESET);
}
/*
* Reads the adapter's MAC address from the EEPROM
*
* hw - Struct containing variables accessed by shared code
*/
int atl1e_read_mac_addr(struct atl1e_hw *hw)
{
int err = 0;
err = atl1e_get_permanent_address(hw);
if (err)
return AT_ERR_EEPROM;
memcpy(hw->mac_addr, hw->perm_mac_addr, sizeof(hw->perm_mac_addr));
return 0;
}
/*
* atl1e_hash_mc_addr
* purpose
* set hash value for a multicast address
* hash calcu processing :
* 1. calcu 32bit CRC for multicast address
* 2. reverse crc with MSB to LSB
*/
u32 atl1e_hash_mc_addr(struct atl1e_hw *hw, u8 *mc_addr)
{
u32 crc32;
u32 value = 0;
int i;
crc32 = ether_crc_le(6, mc_addr);
crc32 = ~crc32;
for (i = 0; i < 32; i++)
value |= (((crc32 >> i) & 1) << (31 - i));
return value;
}
/*
* Sets the bit in the multicast table corresponding to the hash value.
* hw - Struct containing variables accessed by shared code
* hash_value - Multicast address hash value
*/
void atl1e_hash_set(struct atl1e_hw *hw, u32 hash_value)
{
u32 hash_bit, hash_reg;
u32 mta;
/*
* The HASH Table is a register array of 2 32-bit registers.
* It is treated like an array of 64 bits. We want to set
* bit BitArray[hash_value]. So we figure out what register
* the bit is in, read it, OR in the new bit, then write
* back the new value. The register is determined by the
* upper 7 bits of the hash value and the bit within that
* register are determined by the lower 5 bits of the value.
*/
hash_reg = (hash_value >> 31) & 0x1;
hash_bit = (hash_value >> 26) & 0x1F;
mta = AT_READ_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg);
mta |= (1 << hash_bit);
AT_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg, mta);
}
/*
* Reads the value from a PHY register
* hw - Struct containing variables accessed by shared code
* reg_addr - address of the PHY register to read
*/
int atl1e_read_phy_reg(struct atl1e_hw *hw, u16 reg_addr, u16 *phy_data)
{
u32 val;
int i;
val = ((u32)(reg_addr & MDIO_REG_ADDR_MASK)) << MDIO_REG_ADDR_SHIFT |
MDIO_START | MDIO_SUP_PREAMBLE | MDIO_RW |
MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
AT_WRITE_REG(hw, REG_MDIO_CTRL, val);
wmb();
for (i = 0; i < MDIO_WAIT_TIMES; i++) {
udelay(2);
val = AT_READ_REG(hw, REG_MDIO_CTRL);
if (!(val & (MDIO_START | MDIO_BUSY)))
break;
wmb();
}
if (!(val & (MDIO_START | MDIO_BUSY))) {
*phy_data = (u16)val;
return 0;
}
return AT_ERR_PHY;
}
/*
* Writes a value to a PHY register
* hw - Struct containing variables accessed by shared code
* reg_addr - address of the PHY register to write
* data - data to write to the PHY
*/
int atl1e_write_phy_reg(struct atl1e_hw *hw, u32 reg_addr, u16 phy_data)
{
int i;
u32 val;
val = ((u32)(phy_data & MDIO_DATA_MASK)) << MDIO_DATA_SHIFT |
(reg_addr&MDIO_REG_ADDR_MASK) << MDIO_REG_ADDR_SHIFT |
MDIO_SUP_PREAMBLE |
MDIO_START |
MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
AT_WRITE_REG(hw, REG_MDIO_CTRL, val);
wmb();
for (i = 0; i < MDIO_WAIT_TIMES; i++) {
udelay(2);
val = AT_READ_REG(hw, REG_MDIO_CTRL);
if (!(val & (MDIO_START | MDIO_BUSY)))
break;
wmb();
}
if (!(val & (MDIO_START | MDIO_BUSY)))
return 0;
return AT_ERR_PHY;
}
/*
* atl1e_init_pcie - init PCIE module
*/
static void atl1e_init_pcie(struct atl1e_hw *hw)
{
u32 value;
/* comment 2lines below to save more power when sususpend
value = LTSSM_TEST_MODE_DEF;
AT_WRITE_REG(hw, REG_LTSSM_TEST_MODE, value);
*/
/* pcie flow control mode change */
value = AT_READ_REG(hw, 0x1008);
value |= 0x8000;
AT_WRITE_REG(hw, 0x1008, value);
}
/*
* Configures PHY autoneg and flow control advertisement settings
*
* hw - Struct containing variables accessed by shared code
*/
static int atl1e_phy_setup_autoneg_adv(struct atl1e_hw *hw)
{
s32 ret_val;
u16 mii_autoneg_adv_reg;
u16 mii_1000t_ctrl_reg;
if (0 != hw->mii_autoneg_adv_reg)
return 0;
/* Read the MII Auto-Neg Advertisement Register (Address 4/9). */
mii_autoneg_adv_reg = MII_AR_DEFAULT_CAP_MASK;
mii_1000t_ctrl_reg = MII_AT001_CR_1000T_DEFAULT_CAP_MASK;
/*
* Need to parse autoneg_advertised and set up
* the appropriate PHY registers. First we will parse for
* autoneg_advertised software override. Since we can advertise
* a plethora of combinations, we need to check each bit
* individually.
*/
/*
* First we clear all the 10/100 mb speed bits in the Auto-Neg
* Advertisement Register (Address 4) and the 1000 mb speed bits in
* the 1000Base-T control Register (Address 9).
*/
mii_autoneg_adv_reg &= ~MII_AR_SPEED_MASK;
mii_1000t_ctrl_reg &= ~MII_AT001_CR_1000T_SPEED_MASK;
/*
* Need to parse MediaType and setup the
* appropriate PHY registers.
*/
switch (hw->media_type) {
case MEDIA_TYPE_AUTO_SENSOR:
mii_autoneg_adv_reg |= (MII_AR_10T_HD_CAPS |
MII_AR_10T_FD_CAPS |
MII_AR_100TX_HD_CAPS |
MII_AR_100TX_FD_CAPS);
hw->autoneg_advertised = ADVERTISE_10_HALF |
ADVERTISE_10_FULL |
ADVERTISE_100_HALF |
ADVERTISE_100_FULL;
if (hw->nic_type == athr_l1e) {
mii_1000t_ctrl_reg |=
MII_AT001_CR_1000T_FD_CAPS;
hw->autoneg_advertised |= ADVERTISE_1000_FULL;
}
break;
case MEDIA_TYPE_100M_FULL:
mii_autoneg_adv_reg |= MII_AR_100TX_FD_CAPS;
hw->autoneg_advertised = ADVERTISE_100_FULL;
break;
case MEDIA_TYPE_100M_HALF:
mii_autoneg_adv_reg |= MII_AR_100TX_HD_CAPS;
hw->autoneg_advertised = ADVERTISE_100_HALF;
break;
case MEDIA_TYPE_10M_FULL:
mii_autoneg_adv_reg |= MII_AR_10T_FD_CAPS;
hw->autoneg_advertised = ADVERTISE_10_FULL;
break;
default:
mii_autoneg_adv_reg |= MII_AR_10T_HD_CAPS;
hw->autoneg_advertised = ADVERTISE_10_HALF;
break;
}
/* flow control fixed to enable all */
mii_autoneg_adv_reg |= (MII_AR_ASM_DIR | MII_AR_PAUSE);
hw->mii_autoneg_adv_reg = mii_autoneg_adv_reg;
hw->mii_1000t_ctrl_reg = mii_1000t_ctrl_reg;
ret_val = atl1e_write_phy_reg(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
if (ret_val)
return ret_val;
if (hw->nic_type == athr_l1e || hw->nic_type == athr_l2e_revA) {
ret_val = atl1e_write_phy_reg(hw, MII_AT001_CR,
mii_1000t_ctrl_reg);
if (ret_val)
return ret_val;
}
return 0;
}
/*
* Resets the PHY and make all config validate
*
* hw - Struct containing variables accessed by shared code
*
* Sets bit 15 and 12 of the MII control regiser (for F001 bug)
*/
int atl1e_phy_commit(struct atl1e_hw *hw)
{
struct atl1e_adapter *adapter = (struct atl1e_adapter *)hw->adapter;
struct pci_dev *pdev = adapter->pdev;
int ret_val;
u16 phy_data;
phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG;
ret_val = atl1e_write_phy_reg(hw, MII_BMCR, phy_data);
if (ret_val) {
u32 val;
int i;
/**************************************
* pcie serdes link may be down !
**************************************/
for (i = 0; i < 25; i++) {
msleep(1);
val = AT_READ_REG(hw, REG_MDIO_CTRL);
if (!(val & (MDIO_START | MDIO_BUSY)))
break;
}
if (0 != (val & (MDIO_START | MDIO_BUSY))) {
dev_err(&pdev->dev,
"pcie linkdown at least for 25ms\n");
return ret_val;
}
dev_err(&pdev->dev, "pcie linkup after %d ms\n", i);
}
return 0;
}
int atl1e_phy_init(struct atl1e_hw *hw)
{
struct atl1e_adapter *adapter = (struct atl1e_adapter *)hw->adapter;
struct pci_dev *pdev = adapter->pdev;
s32 ret_val;
u16 phy_val;
if (hw->phy_configured) {
if (hw->re_autoneg) {
hw->re_autoneg = false;
return atl1e_restart_autoneg(hw);
}
return 0;
}
/* RESET GPHY Core */
AT_WRITE_REGW(hw, REG_GPHY_CTRL, GPHY_CTRL_DEFAULT);
msleep(2);
AT_WRITE_REGW(hw, REG_GPHY_CTRL, GPHY_CTRL_DEFAULT |
GPHY_CTRL_EXT_RESET);
msleep(2);
/* patches */
/* p1. eable hibernation mode */
ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0xB);
if (ret_val)
return ret_val;
ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, 0xBC00);
if (ret_val)
return ret_val;
/* p2. set Class A/B for all modes */
ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0);
if (ret_val)
return ret_val;
phy_val = 0x02ef;
/* remove Class AB */
/* phy_val = hw->emi_ca ? 0x02ef : 0x02df; */
ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, phy_val);
if (ret_val)
return ret_val;
/* p3. 10B ??? */
ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0x12);
if (ret_val)
return ret_val;
ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, 0x4C04);
if (ret_val)
return ret_val;
/* p4. 1000T power */
ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0x4);
if (ret_val)
return ret_val;
ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, 0x8BBB);
if (ret_val)
return ret_val;
ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0x5);
if (ret_val)
return ret_val;
ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, 0x2C46);
if (ret_val)
return ret_val;
msleep(1);
/*Enable PHY LinkChange Interrupt */
ret_val = atl1e_write_phy_reg(hw, MII_INT_CTRL, 0xC00);
if (ret_val) {
dev_err(&pdev->dev, "Error enable PHY linkChange Interrupt\n");
return ret_val;
}
/* setup AutoNeg parameters */
ret_val = atl1e_phy_setup_autoneg_adv(hw);
if (ret_val) {
dev_err(&pdev->dev, "Error Setting up Auto-Negotiation\n");
return ret_val;
}
/* SW.Reset & En-Auto-Neg to restart Auto-Neg*/
dev_dbg(&pdev->dev, "Restarting Auto-Neg");
ret_val = atl1e_phy_commit(hw);
if (ret_val) {
dev_err(&pdev->dev, "Error Resetting the phy");
return ret_val;
}
hw->phy_configured = true;
return 0;
}
/*
* Reset the transmit and receive units; mask and clear all interrupts.
* hw - Struct containing variables accessed by shared code
* return : 0 or idle status (if error)
*/
int atl1e_reset_hw(struct atl1e_hw *hw)
{
struct atl1e_adapter *adapter = (struct atl1e_adapter *)hw->adapter;
struct pci_dev *pdev = adapter->pdev;
u32 idle_status_data = 0;
u16 pci_cfg_cmd_word = 0;
int timeout = 0;
/* Workaround for PCI problem when BIOS sets MMRBC incorrectly. */
pci_read_config_word(pdev, PCI_REG_COMMAND, &pci_cfg_cmd_word);
if ((pci_cfg_cmd_word & (CMD_IO_SPACE |
CMD_MEMORY_SPACE | CMD_BUS_MASTER))
!= (CMD_IO_SPACE | CMD_MEMORY_SPACE | CMD_BUS_MASTER)) {
pci_cfg_cmd_word |= (CMD_IO_SPACE |
CMD_MEMORY_SPACE | CMD_BUS_MASTER);
pci_write_config_word(pdev, PCI_REG_COMMAND, pci_cfg_cmd_word);
}
/*
* Issue Soft Reset to the MAC. This will reset the chip's
* transmit, receive, DMA. It will not effect
* the current PCI configuration. The global reset bit is self-
* clearing, and should clear within a microsecond.
*/
AT_WRITE_REG(hw, REG_MASTER_CTRL,
MASTER_CTRL_LED_MODE | MASTER_CTRL_SOFT_RST);
wmb();
msleep(1);
/* Wait at least 10ms for All module to be Idle */
for (timeout = 0; timeout < AT_HW_MAX_IDLE_DELAY; timeout++) {
idle_status_data = AT_READ_REG(hw, REG_IDLE_STATUS);
if (idle_status_data == 0)
break;
msleep(1);
cpu_relax();
}
if (timeout >= AT_HW_MAX_IDLE_DELAY) {
dev_err(&pdev->dev,
"MAC state machine cann't be idle since"
" disabled for 10ms second\n");
return AT_ERR_TIMEOUT;
}
return 0;
}
/*
* Performs basic configuration of the adapter.
*
* hw - Struct containing variables accessed by shared code
* Assumes that the controller has previously been reset and is in a
* post-reset uninitialized state. Initializes multicast table,
* and Calls routines to setup link
* Leaves the transmit and receive units disabled and uninitialized.
*/
int atl1e_init_hw(struct atl1e_hw *hw)
{
s32 ret_val = 0;
atl1e_init_pcie(hw);
/* Zero out the Multicast HASH table */
/* clear the old settings from the multicast hash table */
AT_WRITE_REG(hw, REG_RX_HASH_TABLE, 0);
AT_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, 1, 0);
ret_val = atl1e_phy_init(hw);
return ret_val;
}
/*
* Detects the current speed and duplex settings of the hardware.
*
* hw - Struct containing variables accessed by shared code
* speed - Speed of the connection
* duplex - Duplex setting of the connection
*/
int atl1e_get_speed_and_duplex(struct atl1e_hw *hw, u16 *speed, u16 *duplex)
{
int err;
u16 phy_data;
/* Read PHY Specific Status Register (17) */
err = atl1e_read_phy_reg(hw, MII_AT001_PSSR, &phy_data);
if (err)
return err;
if (!(phy_data & MII_AT001_PSSR_SPD_DPLX_RESOLVED))
return AT_ERR_PHY_RES;
switch (phy_data & MII_AT001_PSSR_SPEED) {
case MII_AT001_PSSR_1000MBS:
*speed = SPEED_1000;
break;
case MII_AT001_PSSR_100MBS:
*speed = SPEED_100;
break;
case MII_AT001_PSSR_10MBS:
*speed = SPEED_10;
break;
default:
return AT_ERR_PHY_SPEED;
break;
}
if (phy_data & MII_AT001_PSSR_DPLX)
*duplex = FULL_DUPLEX;
else
*duplex = HALF_DUPLEX;
return 0;
}
int atl1e_restart_autoneg(struct atl1e_hw *hw)
{
int err = 0;
err = atl1e_write_phy_reg(hw, MII_ADVERTISE, hw->mii_autoneg_adv_reg);
if (err)
return err;
if (hw->nic_type == athr_l1e || hw->nic_type == athr_l2e_revA) {
err = atl1e_write_phy_reg(hw, MII_AT001_CR,
hw->mii_1000t_ctrl_reg);
if (err)
return err;
}
err = atl1e_write_phy_reg(hw, MII_BMCR,
MII_CR_RESET | MII_CR_AUTO_NEG_EN |
MII_CR_RESTART_AUTO_NEG);
return err;
}
/*
* Copyright(c) 2007 Atheros Corporation. All rights reserved.
*
* Derived from Intel e1000 driver
* Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc., 59
* Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#ifndef _ATHL1E_HW_H_
#define _ATHL1E_HW_H_
#include <linux/types.h>
#include <linux/mii.h>
struct atl1e_adapter;
struct atl1e_hw;
/* function prototype */
s32 atl1e_reset_hw(struct atl1e_hw *hw);
s32 atl1e_read_mac_addr(struct atl1e_hw *hw);
s32 atl1e_init_hw(struct atl1e_hw *hw);
s32 atl1e_phy_commit(struct atl1e_hw *hw);
s32 atl1e_get_speed_and_duplex(struct atl1e_hw *hw, u16 *speed, u16 *duplex);
u32 atl1e_auto_get_fc(struct atl1e_adapter *adapter, u16 duplex);
u32 atl1e_hash_mc_addr(struct atl1e_hw *hw, u8 *mc_addr);
void atl1e_hash_set(struct atl1e_hw *hw, u32 hash_value);
s32 atl1e_read_phy_reg(struct atl1e_hw *hw, u16 reg_addr, u16 *phy_data);
s32 atl1e_write_phy_reg(struct atl1e_hw *hw, u32 reg_addr, u16 phy_data);
s32 atl1e_validate_mdi_setting(struct atl1e_hw *hw);
void atl1e_hw_set_mac_addr(struct atl1e_hw *hw);
bool atl1e_read_eeprom(struct atl1e_hw *hw, u32 offset, u32 *p_value);
bool atl1e_write_eeprom(struct atl1e_hw *hw, u32 offset, u32 value);
s32 atl1e_phy_enter_power_saving(struct atl1e_hw *hw);
s32 atl1e_phy_leave_power_saving(struct atl1e_hw *hw);
s32 atl1e_phy_init(struct atl1e_hw *hw);
int atl1e_check_eeprom_exist(struct atl1e_hw *hw);
void atl1e_force_ps(struct atl1e_hw *hw);
s32 atl1e_restart_autoneg(struct atl1e_hw *hw);
/* register definition */
#define REG_PM_CTRLSTAT 0x44
#define REG_PCIE_CAP_LIST 0x58
#define REG_DEVICE_CAP 0x5C
#define DEVICE_CAP_MAX_PAYLOAD_MASK 0x7
#define DEVICE_CAP_MAX_PAYLOAD_SHIFT 0
#define REG_DEVICE_CTRL 0x60
#define DEVICE_CTRL_MAX_PAYLOAD_MASK 0x7
#define DEVICE_CTRL_MAX_PAYLOAD_SHIFT 5
#define DEVICE_CTRL_MAX_RREQ_SZ_MASK 0x7
#define DEVICE_CTRL_MAX_RREQ_SZ_SHIFT 12
#define REG_VPD_CAP 0x6C
#define VPD_CAP_ID_MASK 0xff
#define VPD_CAP_ID_SHIFT 0
#define VPD_CAP_NEXT_PTR_MASK 0xFF
#define VPD_CAP_NEXT_PTR_SHIFT 8
#define VPD_CAP_VPD_ADDR_MASK 0x7FFF
#define VPD_CAP_VPD_ADDR_SHIFT 16
#define VPD_CAP_VPD_FLAG 0x80000000
#define REG_VPD_DATA 0x70
#define REG_SPI_FLASH_CTRL 0x200
#define SPI_FLASH_CTRL_STS_NON_RDY 0x1
#define SPI_FLASH_CTRL_STS_WEN 0x2
#define SPI_FLASH_CTRL_STS_WPEN 0x80
#define SPI_FLASH_CTRL_DEV_STS_MASK 0xFF
#define SPI_FLASH_CTRL_DEV_STS_SHIFT 0
#define SPI_FLASH_CTRL_INS_MASK 0x7
#define SPI_FLASH_CTRL_INS_SHIFT 8
#define SPI_FLASH_CTRL_START 0x800
#define SPI_FLASH_CTRL_EN_VPD 0x2000
#define SPI_FLASH_CTRL_LDSTART 0x8000
#define SPI_FLASH_CTRL_CS_HI_MASK 0x3
#define SPI_FLASH_CTRL_CS_HI_SHIFT 16
#define SPI_FLASH_CTRL_CS_HOLD_MASK 0x3
#define SPI_FLASH_CTRL_CS_HOLD_SHIFT 18
#define SPI_FLASH_CTRL_CLK_LO_MASK 0x3
#define SPI_FLASH_CTRL_CLK_LO_SHIFT 20
#define SPI_FLASH_CTRL_CLK_HI_MASK 0x3
#define SPI_FLASH_CTRL_CLK_HI_SHIFT 22
#define SPI_FLASH_CTRL_CS_SETUP_MASK 0x3
#define SPI_FLASH_CTRL_CS_SETUP_SHIFT 24
#define SPI_FLASH_CTRL_EROM_PGSZ_MASK 0x3
#define SPI_FLASH_CTRL_EROM_PGSZ_SHIFT 26
#define SPI_FLASH_CTRL_WAIT_READY 0x10000000
#define REG_SPI_ADDR 0x204
#define REG_SPI_DATA 0x208
#define REG_SPI_FLASH_CONFIG 0x20C
#define SPI_FLASH_CONFIG_LD_ADDR_MASK 0xFFFFFF
#define SPI_FLASH_CONFIG_LD_ADDR_SHIFT 0
#define SPI_FLASH_CONFIG_VPD_ADDR_MASK 0x3
#define SPI_FLASH_CONFIG_VPD_ADDR_SHIFT 24
#define SPI_FLASH_CONFIG_LD_EXIST 0x4000000
#define REG_SPI_FLASH_OP_PROGRAM 0x210
#define REG_SPI_FLASH_OP_SC_ERASE 0x211
#define REG_SPI_FLASH_OP_CHIP_ERASE 0x212
#define REG_SPI_FLASH_OP_RDID 0x213
#define REG_SPI_FLASH_OP_WREN 0x214
#define REG_SPI_FLASH_OP_RDSR 0x215
#define REG_SPI_FLASH_OP_WRSR 0x216
#define REG_SPI_FLASH_OP_READ 0x217
#define REG_TWSI_CTRL 0x218
#define TWSI_CTRL_LD_OFFSET_MASK 0xFF
#define TWSI_CTRL_LD_OFFSET_SHIFT 0
#define TWSI_CTRL_LD_SLV_ADDR_MASK 0x7
#define TWSI_CTRL_LD_SLV_ADDR_SHIFT 8
#define TWSI_CTRL_SW_LDSTART 0x800
#define TWSI_CTRL_HW_LDSTART 0x1000
#define TWSI_CTRL_SMB_SLV_ADDR_MASK 0x0x7F
#define TWSI_CTRL_SMB_SLV_ADDR_SHIFT 15
#define TWSI_CTRL_LD_EXIST 0x400000
#define TWSI_CTRL_READ_FREQ_SEL_MASK 0x3
#define TWSI_CTRL_READ_FREQ_SEL_SHIFT 23
#define TWSI_CTRL_FREQ_SEL_100K 0
#define TWSI_CTRL_FREQ_SEL_200K 1
#define TWSI_CTRL_FREQ_SEL_300K 2
#define TWSI_CTRL_FREQ_SEL_400K 3
#define TWSI_CTRL_SMB_SLV_ADDR
#define TWSI_CTRL_WRITE_FREQ_SEL_MASK 0x3
#define TWSI_CTRL_WRITE_FREQ_SEL_SHIFT 24
#define REG_PCIE_DEV_MISC_CTRL 0x21C
#define PCIE_DEV_MISC_CTRL_EXT_PIPE 0x2
#define PCIE_DEV_MISC_CTRL_RETRY_BUFDIS 0x1
#define PCIE_DEV_MISC_CTRL_SPIROM_EXIST 0x4
#define PCIE_DEV_MISC_CTRL_SERDES_ENDIAN 0x8
#define PCIE_DEV_MISC_CTRL_SERDES_SEL_DIN 0x10
#define REG_PCIE_PHYMISC 0x1000
#define PCIE_PHYMISC_FORCE_RCV_DET 0x4
#define REG_LTSSM_TEST_MODE 0x12FC
#define LTSSM_TEST_MODE_DEF 0xE000
/* Selene Master Control Register */
#define REG_MASTER_CTRL 0x1400
#define MASTER_CTRL_SOFT_RST 0x1
#define MASTER_CTRL_MTIMER_EN 0x2
#define MASTER_CTRL_ITIMER_EN 0x4
#define MASTER_CTRL_MANUAL_INT 0x8
#define MASTER_CTRL_ITIMER2_EN 0x20
#define MASTER_CTRL_INT_RDCLR 0x40
#define MASTER_CTRL_LED_MODE 0x200
#define MASTER_CTRL_REV_NUM_SHIFT 16
#define MASTER_CTRL_REV_NUM_MASK 0xff
#define MASTER_CTRL_DEV_ID_SHIFT 24
#define MASTER_CTRL_DEV_ID_MASK 0xff
/* Timer Initial Value Register */
#define REG_MANUAL_TIMER_INIT 0x1404
/* IRQ ModeratorTimer Initial Value Register */
#define REG_IRQ_MODU_TIMER_INIT 0x1408 /* w */
#define REG_IRQ_MODU_TIMER2_INIT 0x140A /* w */
#define REG_GPHY_CTRL 0x140C
#define GPHY_CTRL_EXT_RESET 1
#define GPHY_CTRL_PIPE_MOD 2
#define GPHY_CTRL_TEST_MODE_MASK 3
#define GPHY_CTRL_TEST_MODE_SHIFT 2
#define GPHY_CTRL_BERT_START 0x10
#define GPHY_CTRL_GATE_25M_EN 0x20
#define GPHY_CTRL_LPW_EXIT 0x40
#define GPHY_CTRL_PHY_IDDQ 0x80
#define GPHY_CTRL_PHY_IDDQ_DIS 0x100
#define GPHY_CTRL_PCLK_SEL_DIS 0x200
#define GPHY_CTRL_HIB_EN 0x400
#define GPHY_CTRL_HIB_PULSE 0x800
#define GPHY_CTRL_SEL_ANA_RST 0x1000
#define GPHY_CTRL_PHY_PLL_ON 0x2000
#define GPHY_CTRL_PWDOWN_HW 0x4000
#define GPHY_CTRL_DEFAULT (\
GPHY_CTRL_PHY_PLL_ON |\
GPHY_CTRL_SEL_ANA_RST |\
GPHY_CTRL_HIB_PULSE |\
GPHY_CTRL_HIB_EN)
#define GPHY_CTRL_PW_WOL_DIS (\
GPHY_CTRL_PHY_PLL_ON |\
GPHY_CTRL_SEL_ANA_RST |\
GPHY_CTRL_HIB_PULSE |\
GPHY_CTRL_HIB_EN |\
GPHY_CTRL_PWDOWN_HW |\
GPHY_CTRL_PCLK_SEL_DIS |\
GPHY_CTRL_PHY_IDDQ)
/* IRQ Anti-Lost Timer Initial Value Register */
#define REG_CMBDISDMA_TIMER 0x140E
/* Block IDLE Status Register */
#define REG_IDLE_STATUS 0x1410
#define IDLE_STATUS_RXMAC 1 /* 1: RXMAC state machine is in non-IDLE state. 0: RXMAC is idling */
#define IDLE_STATUS_TXMAC 2 /* 1: TXMAC state machine is in non-IDLE state. 0: TXMAC is idling */
#define IDLE_STATUS_RXQ 4 /* 1: RXQ state machine is in non-IDLE state. 0: RXQ is idling */
#define IDLE_STATUS_TXQ 8 /* 1: TXQ state machine is in non-IDLE state. 0: TXQ is idling */
#define IDLE_STATUS_DMAR 0x10 /* 1: DMAR state machine is in non-IDLE state. 0: DMAR is idling */
#define IDLE_STATUS_DMAW 0x20 /* 1: DMAW state machine is in non-IDLE state. 0: DMAW is idling */
#define IDLE_STATUS_SMB 0x40 /* 1: SMB state machine is in non-IDLE state. 0: SMB is idling */
#define IDLE_STATUS_CMB 0x80 /* 1: CMB state machine is in non-IDLE state. 0: CMB is idling */
/* MDIO Control Register */
#define REG_MDIO_CTRL 0x1414
#define MDIO_DATA_MASK 0xffff /* On MDIO write, the 16-bit control data to write to PHY MII management register */
#define MDIO_DATA_SHIFT 0 /* On MDIO read, the 16-bit status data that was read from the PHY MII management register*/
#define MDIO_REG_ADDR_MASK 0x1f /* MDIO register address */
#define MDIO_REG_ADDR_SHIFT 16
#define MDIO_RW 0x200000 /* 1: read, 0: write */
#define MDIO_SUP_PREAMBLE 0x400000 /* Suppress preamble */
#define MDIO_START 0x800000 /* Write 1 to initiate the MDIO master. And this bit is self cleared after one cycle*/
#define MDIO_CLK_SEL_SHIFT 24
#define MDIO_CLK_25_4 0
#define MDIO_CLK_25_6 2
#define MDIO_CLK_25_8 3
#define MDIO_CLK_25_10 4
#define MDIO_CLK_25_14 5
#define MDIO_CLK_25_20 6
#define MDIO_CLK_25_28 7
#define MDIO_BUSY 0x8000000
#define MDIO_AP_EN 0x10000000
#define MDIO_WAIT_TIMES 10
/* MII PHY Status Register */
#define REG_PHY_STATUS 0x1418
#define PHY_STATUS_100M 0x20000
#define PHY_STATUS_EMI_CA 0x40000
/* BIST Control and Status Register0 (for the Packet Memory) */
#define REG_BIST0_CTRL 0x141c
#define BIST0_NOW 0x1 /* 1: To trigger BIST0 logic. This bit stays high during the */
/* BIST process and reset to zero when BIST is done */
#define BIST0_SRAM_FAIL 0x2 /* 1: The SRAM failure is un-repairable because it has address */
/* decoder failure or more than 1 cell stuck-to-x failure */
#define BIST0_FUSE_FLAG 0x4 /* 1: Indicating one cell has been fixed */
/* BIST Control and Status Register1(for the retry buffer of PCI Express) */
#define REG_BIST1_CTRL 0x1420
#define BIST1_NOW 0x1 /* 1: To trigger BIST0 logic. This bit stays high during the */
/* BIST process and reset to zero when BIST is done */
#define BIST1_SRAM_FAIL 0x2 /* 1: The SRAM failure is un-repairable because it has address */
/* decoder failure or more than 1 cell stuck-to-x failure.*/
#define BIST1_FUSE_FLAG 0x4
/* SerDes Lock Detect Control and Status Register */
#define REG_SERDES_LOCK 0x1424
#define SERDES_LOCK_DETECT 1 /* 1: SerDes lock detected . This signal comes from Analog SerDes */
#define SERDES_LOCK_DETECT_EN 2 /* 1: Enable SerDes Lock detect function */
/* MAC Control Register */
#define REG_MAC_CTRL 0x1480
#define MAC_CTRL_TX_EN 1 /* 1: Transmit Enable */
#define MAC_CTRL_RX_EN 2 /* 1: Receive Enable */
#define MAC_CTRL_TX_FLOW 4 /* 1: Transmit Flow Control Enable */
#define MAC_CTRL_RX_FLOW 8 /* 1: Receive Flow Control Enable */
#define MAC_CTRL_LOOPBACK 0x10 /* 1: Loop back at G/MII Interface */
#define MAC_CTRL_DUPLX 0x20 /* 1: Full-duplex mode 0: Half-duplex mode */
#define MAC_CTRL_ADD_CRC 0x40 /* 1: Instruct MAC to attach CRC on all egress Ethernet frames */
#define MAC_CTRL_PAD 0x80 /* 1: Instruct MAC to pad short frames to 60-bytes, and then attach CRC. This bit has higher priority over CRC_EN */
#define MAC_CTRL_LENCHK 0x100 /* 1: Instruct MAC to check if length field matches the real packet length */
#define MAC_CTRL_HUGE_EN 0x200 /* 1: receive Jumbo frame enable */
#define MAC_CTRL_PRMLEN_SHIFT 10 /* Preamble length */
#define MAC_CTRL_PRMLEN_MASK 0xf
#define MAC_CTRL_RMV_VLAN 0x4000 /* 1: to remove VLAN Tag automatically from all receive packets */
#define MAC_CTRL_PROMIS_EN 0x8000 /* 1: Promiscuous Mode Enable */
#define MAC_CTRL_TX_PAUSE 0x10000 /* 1: transmit test pause */
#define MAC_CTRL_SCNT 0x20000 /* 1: shortcut slot time counter */
#define MAC_CTRL_SRST_TX 0x40000 /* 1: synchronized reset Transmit MAC module */
#define MAC_CTRL_TX_SIMURST 0x80000 /* 1: transmit simulation reset */
#define MAC_CTRL_SPEED_SHIFT 20 /* 10: gigabit 01:10M/100M */
#define MAC_CTRL_SPEED_MASK 0x300000
#define MAC_CTRL_SPEED_1000 2
#define MAC_CTRL_SPEED_10_100 1
#define MAC_CTRL_DBG_TX_BKPRESURE 0x400000 /* 1: transmit maximum backoff (half-duplex test bit) */
#define MAC_CTRL_TX_HUGE 0x800000 /* 1: transmit huge enable */
#define MAC_CTRL_RX_CHKSUM_EN 0x1000000 /* 1: RX checksum enable */
#define MAC_CTRL_MC_ALL_EN 0x2000000 /* 1: upload all multicast frame without error to system */
#define MAC_CTRL_BC_EN 0x4000000 /* 1: upload all broadcast frame without error to system */
#define MAC_CTRL_DBG 0x8000000 /* 1: upload all received frame to system (Debug Mode) */
/* MAC IPG/IFG Control Register */
#define REG_MAC_IPG_IFG 0x1484
#define MAC_IPG_IFG_IPGT_SHIFT 0 /* Desired back to back inter-packet gap. The default is 96-bit time */
#define MAC_IPG_IFG_IPGT_MASK 0x7f
#define MAC_IPG_IFG_MIFG_SHIFT 8 /* Minimum number of IFG to enforce in between RX frames */
#define MAC_IPG_IFG_MIFG_MASK 0xff /* Frame gap below such IFP is dropped */
#define MAC_IPG_IFG_IPGR1_SHIFT 16 /* 64bit Carrier-Sense window */
#define MAC_IPG_IFG_IPGR1_MASK 0x7f
#define MAC_IPG_IFG_IPGR2_SHIFT 24 /* 96-bit IPG window */
#define MAC_IPG_IFG_IPGR2_MASK 0x7f
/* MAC STATION ADDRESS */
#define REG_MAC_STA_ADDR 0x1488
/* Hash table for multicast address */
#define REG_RX_HASH_TABLE 0x1490
/* MAC Half-Duplex Control Register */
#define REG_MAC_HALF_DUPLX_CTRL 0x1498
#define MAC_HALF_DUPLX_CTRL_LCOL_SHIFT 0 /* Collision Window */
#define MAC_HALF_DUPLX_CTRL_LCOL_MASK 0x3ff
#define MAC_HALF_DUPLX_CTRL_RETRY_SHIFT 12 /* Retransmission maximum, afterwards the packet will be discarded */
#define MAC_HALF_DUPLX_CTRL_RETRY_MASK 0xf
#define MAC_HALF_DUPLX_CTRL_EXC_DEF_EN 0x10000 /* 1: Allow the transmission of a packet which has been excessively deferred */
#define MAC_HALF_DUPLX_CTRL_NO_BACK_C 0x20000 /* 1: No back-off on collision, immediately start the retransmission */
#define MAC_HALF_DUPLX_CTRL_NO_BACK_P 0x40000 /* 1: No back-off on backpressure, immediately start the transmission after back pressure */
#define MAC_HALF_DUPLX_CTRL_ABEBE 0x80000 /* 1: Alternative Binary Exponential Back-off Enabled */
#define MAC_HALF_DUPLX_CTRL_ABEBT_SHIFT 20 /* Maximum binary exponential number */
#define MAC_HALF_DUPLX_CTRL_ABEBT_MASK 0xf
#define MAC_HALF_DUPLX_CTRL_JAMIPG_SHIFT 24 /* IPG to start JAM for collision based flow control in half-duplex */
#define MAC_HALF_DUPLX_CTRL_JAMIPG_MASK 0xf /* mode. In unit of 8-bit time */
/* Maximum Frame Length Control Register */
#define REG_MTU 0x149c
/* Wake-On-Lan control register */
#define REG_WOL_CTRL 0x14a0
#define WOL_PATTERN_EN 0x00000001
#define WOL_PATTERN_PME_EN 0x00000002
#define WOL_MAGIC_EN 0x00000004
#define WOL_MAGIC_PME_EN 0x00000008
#define WOL_LINK_CHG_EN 0x00000010
#define WOL_LINK_CHG_PME_EN 0x00000020
#define WOL_PATTERN_ST 0x00000100
#define WOL_MAGIC_ST 0x00000200
#define WOL_LINKCHG_ST 0x00000400
#define WOL_CLK_SWITCH_EN 0x00008000
#define WOL_PT0_EN 0x00010000
#define WOL_PT1_EN 0x00020000
#define WOL_PT2_EN 0x00040000
#define WOL_PT3_EN 0x00080000
#define WOL_PT4_EN 0x00100000
#define WOL_PT5_EN 0x00200000
#define WOL_PT6_EN 0x00400000
/* WOL Length ( 2 DWORD ) */
#define REG_WOL_PATTERN_LEN 0x14a4
#define WOL_PT_LEN_MASK 0x7f
#define WOL_PT0_LEN_SHIFT 0
#define WOL_PT1_LEN_SHIFT 8
#define WOL_PT2_LEN_SHIFT 16
#define WOL_PT3_LEN_SHIFT 24
#define WOL_PT4_LEN_SHIFT 0
#define WOL_PT5_LEN_SHIFT 8
#define WOL_PT6_LEN_SHIFT 16
/* Internal SRAM Partition Register */
#define REG_SRAM_TRD_ADDR 0x1518
#define REG_SRAM_TRD_LEN 0x151C
#define REG_SRAM_RXF_ADDR 0x1520
#define REG_SRAM_RXF_LEN 0x1524
#define REG_SRAM_TXF_ADDR 0x1528
#define REG_SRAM_TXF_LEN 0x152C
#define REG_SRAM_TCPH_ADDR 0x1530
#define REG_SRAM_PKTH_ADDR 0x1532
/* Load Ptr Register */
#define REG_LOAD_PTR 0x1534 /* Software sets this bit after the initialization of the head and tail */
/*
* addresses of all descriptors, as well as the following descriptor
* control register, which triggers each function block to load the head
* pointer to prepare for the operation. This bit is then self-cleared
* after one cycle.
*/
/* Descriptor Control register */
#define REG_RXF3_BASE_ADDR_HI 0x153C
#define REG_DESC_BASE_ADDR_HI 0x1540
#define REG_RXF0_BASE_ADDR_HI 0x1540 /* share with DESC BASE ADDR HI */
#define REG_HOST_RXF0_PAGE0_LO 0x1544
#define REG_HOST_RXF0_PAGE1_LO 0x1548
#define REG_TPD_BASE_ADDR_LO 0x154C
#define REG_RXF1_BASE_ADDR_HI 0x1550
#define REG_RXF2_BASE_ADDR_HI 0x1554
#define REG_HOST_RXFPAGE_SIZE 0x1558
#define REG_TPD_RING_SIZE 0x155C
/* RSS about */
#define REG_RSS_KEY0 0x14B0
#define REG_RSS_KEY1 0x14B4
#define REG_RSS_KEY2 0x14B8
#define REG_RSS_KEY3 0x14BC
#define REG_RSS_KEY4 0x14C0
#define REG_RSS_KEY5 0x14C4
#define REG_RSS_KEY6 0x14C8
#define REG_RSS_KEY7 0x14CC
#define REG_RSS_KEY8 0x14D0
#define REG_RSS_KEY9 0x14D4
#define REG_IDT_TABLE4 0x14E0
#define REG_IDT_TABLE5 0x14E4
#define REG_IDT_TABLE6 0x14E8
#define REG_IDT_TABLE7 0x14EC
#define REG_IDT_TABLE0 0x1560
#define REG_IDT_TABLE1 0x1564
#define REG_IDT_TABLE2 0x1568
#define REG_IDT_TABLE3 0x156C
#define REG_IDT_TABLE REG_IDT_TABLE0
#define REG_RSS_HASH_VALUE 0x1570
#define REG_RSS_HASH_FLAG 0x1574
#define REG_BASE_CPU_NUMBER 0x157C
/* TXQ Control Register */
#define REG_TXQ_CTRL 0x1580
#define TXQ_CTRL_NUM_TPD_BURST_MASK 0xF
#define TXQ_CTRL_NUM_TPD_BURST_SHIFT 0
#define TXQ_CTRL_EN 0x20 /* 1: Enable TXQ */
#define TXQ_CTRL_ENH_MODE 0x40 /* Performance enhancement mode, in which up to two back-to-back DMA read commands might be dispatched. */
#define TXQ_CTRL_TXF_BURST_NUM_SHIFT 16 /* Number of data byte to read in a cache-aligned burst. Each SRAM entry is 8-byte in length. */
#define TXQ_CTRL_TXF_BURST_NUM_MASK 0xffff
/* Jumbo packet Threshold for task offload */
#define REG_TX_EARLY_TH 0x1584 /* Jumbo frame threshold in QWORD unit. Packet greater than */
/* JUMBO_TASK_OFFLOAD_THRESHOLD will not be task offloaded. */
#define TX_TX_EARLY_TH_MASK 0x7ff
#define TX_TX_EARLY_TH_SHIFT 0
/* RXQ Control Register */
#define REG_RXQ_CTRL 0x15A0
#define RXQ_CTRL_PBA_ALIGN_32 0 /* rx-packet alignment */
#define RXQ_CTRL_PBA_ALIGN_64 1
#define RXQ_CTRL_PBA_ALIGN_128 2
#define RXQ_CTRL_PBA_ALIGN_256 3
#define RXQ_CTRL_Q1_EN 0x10
#define RXQ_CTRL_Q2_EN 0x20
#define RXQ_CTRL_Q3_EN 0x40
#define RXQ_CTRL_IPV6_XSUM_VERIFY_EN 0x80
#define RXQ_CTRL_HASH_TLEN_SHIFT 8
#define RXQ_CTRL_HASH_TLEN_MASK 0xFF
#define RXQ_CTRL_HASH_TYPE_IPV4 0x10000
#define RXQ_CTRL_HASH_TYPE_IPV4_TCP 0x20000
#define RXQ_CTRL_HASH_TYPE_IPV6 0x40000
#define RXQ_CTRL_HASH_TYPE_IPV6_TCP 0x80000
#define RXQ_CTRL_RSS_MODE_DISABLE 0
#define RXQ_CTRL_RSS_MODE_SQSINT 0x4000000
#define RXQ_CTRL_RSS_MODE_MQUESINT 0x8000000
#define RXQ_CTRL_RSS_MODE_MQUEMINT 0xC000000
#define RXQ_CTRL_NIP_QUEUE_SEL_TBL 0x10000000
#define RXQ_CTRL_HASH_ENABLE 0x20000000
#define RXQ_CTRL_CUT_THRU_EN 0x40000000
#define RXQ_CTRL_EN 0x80000000
/* Rx jumbo packet threshold and rrd retirement timer */
#define REG_RXQ_JMBOSZ_RRDTIM 0x15A4
/*
* Jumbo packet threshold for non-VLAN packet, in QWORD (64-bit) unit.
* When the packet length greater than or equal to this value, RXQ
* shall start cut-through forwarding of the received packet.
*/
#define RXQ_JMBOSZ_TH_MASK 0x7ff
#define RXQ_JMBOSZ_TH_SHIFT 0 /* RRD retirement timer. Decrement by 1 after every 512ns passes*/
#define RXQ_JMBO_LKAH_MASK 0xf
#define RXQ_JMBO_LKAH_SHIFT 11
/* RXF flow control register */
#define REG_RXQ_RXF_PAUSE_THRESH 0x15A8
#define RXQ_RXF_PAUSE_TH_HI_SHIFT 0
#define RXQ_RXF_PAUSE_TH_HI_MASK 0xfff
#define RXQ_RXF_PAUSE_TH_LO_SHIFT 16
#define RXQ_RXF_PAUSE_TH_LO_MASK 0xfff
/* DMA Engine Control Register */
#define REG_DMA_CTRL 0x15C0
#define DMA_CTRL_DMAR_IN_ORDER 0x1
#define DMA_CTRL_DMAR_ENH_ORDER 0x2
#define DMA_CTRL_DMAR_OUT_ORDER 0x4
#define DMA_CTRL_RCB_VALUE 0x8
#define DMA_CTRL_DMAR_BURST_LEN_SHIFT 4
#define DMA_CTRL_DMAR_BURST_LEN_MASK 7
#define DMA_CTRL_DMAW_BURST_LEN_SHIFT 7
#define DMA_CTRL_DMAW_BURST_LEN_MASK 7
#define DMA_CTRL_DMAR_REQ_PRI 0x400
#define DMA_CTRL_DMAR_DLY_CNT_MASK 0x1F
#define DMA_CTRL_DMAR_DLY_CNT_SHIFT 11
#define DMA_CTRL_DMAW_DLY_CNT_MASK 0xF
#define DMA_CTRL_DMAW_DLY_CNT_SHIFT 16
#define DMA_CTRL_TXCMB_EN 0x100000
#define DMA_CTRL_RXCMB_EN 0x200000
/* CMB/SMB Control Register */
#define REG_SMB_STAT_TIMER 0x15C4
#define REG_TRIG_RRD_THRESH 0x15CA
#define REG_TRIG_TPD_THRESH 0x15C8
#define REG_TRIG_TXTIMER 0x15CC
#define REG_TRIG_RXTIMER 0x15CE
/* HOST RXF Page 1,2,3 address */
#define REG_HOST_RXF1_PAGE0_LO 0x15D0
#define REG_HOST_RXF1_PAGE1_LO 0x15D4
#define REG_HOST_RXF2_PAGE0_LO 0x15D8
#define REG_HOST_RXF2_PAGE1_LO 0x15DC
#define REG_HOST_RXF3_PAGE0_LO 0x15E0
#define REG_HOST_RXF3_PAGE1_LO 0x15E4
/* Mail box */
#define REG_MB_RXF1_RADDR 0x15B4
#define REG_MB_RXF2_RADDR 0x15B8
#define REG_MB_RXF3_RADDR 0x15BC
#define REG_MB_TPD_PROD_IDX 0x15F0
/* RXF-Page 0-3 PageNo & Valid bit */
#define REG_HOST_RXF0_PAGE0_VLD 0x15F4
#define HOST_RXF_VALID 1
#define HOST_RXF_PAGENO_SHIFT 1
#define HOST_RXF_PAGENO_MASK 0x7F
#define REG_HOST_RXF0_PAGE1_VLD 0x15F5
#define REG_HOST_RXF1_PAGE0_VLD 0x15F6
#define REG_HOST_RXF1_PAGE1_VLD 0x15F7
#define REG_HOST_RXF2_PAGE0_VLD 0x15F8
#define REG_HOST_RXF2_PAGE1_VLD 0x15F9
#define REG_HOST_RXF3_PAGE0_VLD 0x15FA
#define REG_HOST_RXF3_PAGE1_VLD 0x15FB
/* Interrupt Status Register */
#define REG_ISR 0x1600
#define ISR_SMB 1
#define ISR_TIMER 2 /* Interrupt when Timer is counted down to zero */
/*
* Software manual interrupt, for debug. Set when SW_MAN_INT_EN is set
* in Table 51 Selene Master Control Register (Offset 0x1400).
*/
#define ISR_MANUAL 4
#define ISR_HW_RXF_OV 8 /* RXF overflow interrupt */
#define ISR_HOST_RXF0_OV 0x10
#define ISR_HOST_RXF1_OV 0x20
#define ISR_HOST_RXF2_OV 0x40
#define ISR_HOST_RXF3_OV 0x80
#define ISR_TXF_UN 0x100
#define ISR_RX0_PAGE_FULL 0x200
#define ISR_DMAR_TO_RST 0x400
#define ISR_DMAW_TO_RST 0x800
#define ISR_GPHY 0x1000
#define ISR_TX_CREDIT 0x2000
#define ISR_GPHY_LPW 0x4000 /* GPHY low power state interrupt */
#define ISR_RX_PKT 0x10000 /* One packet received, triggered by RFD */
#define ISR_TX_PKT 0x20000 /* One packet transmitted, triggered by TPD */
#define ISR_TX_DMA 0x40000
#define ISR_RX_PKT_1 0x80000
#define ISR_RX_PKT_2 0x100000
#define ISR_RX_PKT_3 0x200000
#define ISR_MAC_RX 0x400000
#define ISR_MAC_TX 0x800000
#define ISR_UR_DETECTED 0x1000000
#define ISR_FERR_DETECTED 0x2000000
#define ISR_NFERR_DETECTED 0x4000000
#define ISR_CERR_DETECTED 0x8000000
#define ISR_PHY_LINKDOWN 0x10000000
#define ISR_DIS_INT 0x80000000
/* Interrupt Mask Register */
#define REG_IMR 0x1604
#define IMR_NORMAL_MASK (\
ISR_SMB |\
ISR_TXF_UN |\
ISR_HW_RXF_OV |\
ISR_HOST_RXF0_OV|\
ISR_MANUAL |\
ISR_GPHY |\
ISR_GPHY_LPW |\
ISR_DMAR_TO_RST |\
ISR_DMAW_TO_RST |\
ISR_PHY_LINKDOWN|\
ISR_RX_PKT |\
ISR_TX_PKT)
#define ISR_TX_EVENT (ISR_TXF_UN | ISR_TX_PKT)
#define ISR_RX_EVENT (ISR_HOST_RXF0_OV | ISR_HW_RXF_OV | ISR_RX_PKT)
#define REG_MAC_RX_STATUS_BIN 0x1700
#define REG_MAC_RX_STATUS_END 0x175c
#define REG_MAC_TX_STATUS_BIN 0x1760
#define REG_MAC_TX_STATUS_END 0x17c0
/* Hardware Offset Register */
#define REG_HOST_RXF0_PAGEOFF 0x1800
#define REG_TPD_CONS_IDX 0x1804
#define REG_HOST_RXF1_PAGEOFF 0x1808
#define REG_HOST_RXF2_PAGEOFF 0x180C
#define REG_HOST_RXF3_PAGEOFF 0x1810
/* RXF-Page 0-3 Offset DMA Address */
#define REG_HOST_RXF0_MB0_LO 0x1820
#define REG_HOST_RXF0_MB1_LO 0x1824
#define REG_HOST_RXF1_MB0_LO 0x1828
#define REG_HOST_RXF1_MB1_LO 0x182C
#define REG_HOST_RXF2_MB0_LO 0x1830
#define REG_HOST_RXF2_MB1_LO 0x1834
#define REG_HOST_RXF3_MB0_LO 0x1838
#define REG_HOST_RXF3_MB1_LO 0x183C
/* Tpd CMB DMA Address */
#define REG_HOST_TX_CMB_LO 0x1840
#define REG_HOST_SMB_ADDR_LO 0x1844
/* DEBUG ADDR */
#define REG_DEBUG_DATA0 0x1900
#define REG_DEBUG_DATA1 0x1904
/***************************** MII definition ***************************************/
/* PHY Common Register */
#define MII_BMCR 0x00
#define MII_BMSR 0x01
#define MII_PHYSID1 0x02
#define MII_PHYSID2 0x03
#define MII_ADVERTISE 0x04
#define MII_LPA 0x05
#define MII_EXPANSION 0x06
#define MII_AT001_CR 0x09
#define MII_AT001_SR 0x0A
#define MII_AT001_ESR 0x0F
#define MII_AT001_PSCR 0x10
#define MII_AT001_PSSR 0x11
#define MII_INT_CTRL 0x12
#define MII_INT_STATUS 0x13
#define MII_SMARTSPEED 0x14
#define MII_RERRCOUNTER 0x15
#define MII_SREVISION 0x16
#define MII_RESV1 0x17
#define MII_LBRERROR 0x18
#define MII_PHYADDR 0x19
#define MII_RESV2 0x1a
#define MII_TPISTATUS 0x1b
#define MII_NCONFIG 0x1c
#define MII_DBG_ADDR 0x1D
#define MII_DBG_DATA 0x1E
/* PHY Control Register */
#define MII_CR_SPEED_SELECT_MSB 0x0040 /* bits 6,13: 10=1000, 01=100, 00=10 */
#define MII_CR_COLL_TEST_ENABLE 0x0080 /* Collision test enable */
#define MII_CR_FULL_DUPLEX 0x0100 /* FDX =1, half duplex =0 */
#define MII_CR_RESTART_AUTO_NEG 0x0200 /* Restart auto negotiation */
#define MII_CR_ISOLATE 0x0400 /* Isolate PHY from MII */
#define MII_CR_POWER_DOWN 0x0800 /* Power down */
#define MII_CR_AUTO_NEG_EN 0x1000 /* Auto Neg Enable */
#define MII_CR_SPEED_SELECT_LSB 0x2000 /* bits 6,13: 10=1000, 01=100, 00=10 */
#define MII_CR_LOOPBACK 0x4000 /* 0 = normal, 1 = loopback */
#define MII_CR_RESET 0x8000 /* 0 = normal, 1 = PHY reset */
#define MII_CR_SPEED_MASK 0x2040
#define MII_CR_SPEED_1000 0x0040
#define MII_CR_SPEED_100 0x2000
#define MII_CR_SPEED_10 0x0000
/* PHY Status Register */
#define MII_SR_EXTENDED_CAPS 0x0001 /* Extended register capabilities */
#define MII_SR_JABBER_DETECT 0x0002 /* Jabber Detected */
#define MII_SR_LINK_STATUS 0x0004 /* Link Status 1 = link */
#define MII_SR_AUTONEG_CAPS 0x0008 /* Auto Neg Capable */
#define MII_SR_REMOTE_FAULT 0x0010 /* Remote Fault Detect */
#define MII_SR_AUTONEG_COMPLETE 0x0020 /* Auto Neg Complete */
#define MII_SR_PREAMBLE_SUPPRESS 0x0040 /* Preamble may be suppressed */
#define MII_SR_EXTENDED_STATUS 0x0100 /* Ext. status info in Reg 0x0F */
#define MII_SR_100T2_HD_CAPS 0x0200 /* 100T2 Half Duplex Capable */
#define MII_SR_100T2_FD_CAPS 0x0400 /* 100T2 Full Duplex Capable */
#define MII_SR_10T_HD_CAPS 0x0800 /* 10T Half Duplex Capable */
#define MII_SR_10T_FD_CAPS 0x1000 /* 10T Full Duplex Capable */
#define MII_SR_100X_HD_CAPS 0x2000 /* 100X Half Duplex Capable */
#define MII_SR_100X_FD_CAPS 0x4000 /* 100X Full Duplex Capable */
#define MII_SR_100T4_CAPS 0x8000 /* 100T4 Capable */
/* Link partner ability register. */
#define MII_LPA_SLCT 0x001f /* Same as advertise selector */
#define MII_LPA_10HALF 0x0020 /* Can do 10mbps half-duplex */
#define MII_LPA_10FULL 0x0040 /* Can do 10mbps full-duplex */
#define MII_LPA_100HALF 0x0080 /* Can do 100mbps half-duplex */
#define MII_LPA_100FULL 0x0100 /* Can do 100mbps full-duplex */
#define MII_LPA_100BASE4 0x0200 /* 100BASE-T4 */
#define MII_LPA_PAUSE 0x0400 /* PAUSE */
#define MII_LPA_ASYPAUSE 0x0800 /* Asymmetrical PAUSE */
#define MII_LPA_RFAULT 0x2000 /* Link partner faulted */
#define MII_LPA_LPACK 0x4000 /* Link partner acked us */
#define MII_LPA_NPAGE 0x8000 /* Next page bit */
/* Autoneg Advertisement Register */
#define MII_AR_SELECTOR_FIELD 0x0001 /* indicates IEEE 802.3 CSMA/CD */
#define MII_AR_10T_HD_CAPS 0x0020 /* 10T Half Duplex Capable */
#define MII_AR_10T_FD_CAPS 0x0040 /* 10T Full Duplex Capable */
#define MII_AR_100TX_HD_CAPS 0x0080 /* 100TX Half Duplex Capable */
#define MII_AR_100TX_FD_CAPS 0x0100 /* 100TX Full Duplex Capable */
#define MII_AR_100T4_CAPS 0x0200 /* 100T4 Capable */
#define MII_AR_PAUSE 0x0400 /* Pause operation desired */
#define MII_AR_ASM_DIR 0x0800 /* Asymmetric Pause Direction bit */
#define MII_AR_REMOTE_FAULT 0x2000 /* Remote Fault detected */
#define MII_AR_NEXT_PAGE 0x8000 /* Next Page ability supported */
#define MII_AR_SPEED_MASK 0x01E0
#define MII_AR_DEFAULT_CAP_MASK 0x0DE0
/* 1000BASE-T Control Register */
#define MII_AT001_CR_1000T_HD_CAPS 0x0100 /* Advertise 1000T HD capability */
#define MII_AT001_CR_1000T_FD_CAPS 0x0200 /* Advertise 1000T FD capability */
#define MII_AT001_CR_1000T_REPEATER_DTE 0x0400 /* 1=Repeater/switch device port */
/* 0=DTE device */
#define MII_AT001_CR_1000T_MS_VALUE 0x0800 /* 1=Configure PHY as Master */
/* 0=Configure PHY as Slave */
#define MII_AT001_CR_1000T_MS_ENABLE 0x1000 /* 1=Master/Slave manual config value */
/* 0=Automatic Master/Slave config */
#define MII_AT001_CR_1000T_TEST_MODE_NORMAL 0x0000 /* Normal Operation */
#define MII_AT001_CR_1000T_TEST_MODE_1 0x2000 /* Transmit Waveform test */
#define MII_AT001_CR_1000T_TEST_MODE_2 0x4000 /* Master Transmit Jitter test */
#define MII_AT001_CR_1000T_TEST_MODE_3 0x6000 /* Slave Transmit Jitter test */
#define MII_AT001_CR_1000T_TEST_MODE_4 0x8000 /* Transmitter Distortion test */
#define MII_AT001_CR_1000T_SPEED_MASK 0x0300
#define MII_AT001_CR_1000T_DEFAULT_CAP_MASK 0x0300
/* 1000BASE-T Status Register */
#define MII_AT001_SR_1000T_LP_HD_CAPS 0x0400 /* LP is 1000T HD capable */
#define MII_AT001_SR_1000T_LP_FD_CAPS 0x0800 /* LP is 1000T FD capable */
#define MII_AT001_SR_1000T_REMOTE_RX_STATUS 0x1000 /* Remote receiver OK */
#define MII_AT001_SR_1000T_LOCAL_RX_STATUS 0x2000 /* Local receiver OK */
#define MII_AT001_SR_1000T_MS_CONFIG_RES 0x4000 /* 1=Local TX is Master, 0=Slave */
#define MII_AT001_SR_1000T_MS_CONFIG_FAULT 0x8000 /* Master/Slave config fault */
#define MII_AT001_SR_1000T_REMOTE_RX_STATUS_SHIFT 12
#define MII_AT001_SR_1000T_LOCAL_RX_STATUS_SHIFT 13
/* Extended Status Register */
#define MII_AT001_ESR_1000T_HD_CAPS 0x1000 /* 1000T HD capable */
#define MII_AT001_ESR_1000T_FD_CAPS 0x2000 /* 1000T FD capable */
#define MII_AT001_ESR_1000X_HD_CAPS 0x4000 /* 1000X HD capable */
#define MII_AT001_ESR_1000X_FD_CAPS 0x8000 /* 1000X FD capable */
/* AT001 PHY Specific Control Register */
#define MII_AT001_PSCR_JABBER_DISABLE 0x0001 /* 1=Jabber Function disabled */
#define MII_AT001_PSCR_POLARITY_REVERSAL 0x0002 /* 1=Polarity Reversal enabled */
#define MII_AT001_PSCR_SQE_TEST 0x0004 /* 1=SQE Test enabled */
#define MII_AT001_PSCR_MAC_POWERDOWN 0x0008
#define MII_AT001_PSCR_CLK125_DISABLE 0x0010 /* 1=CLK125 low,
* 0=CLK125 toggling
*/
#define MII_AT001_PSCR_MDI_MANUAL_MODE 0x0000 /* MDI Crossover Mode bits 6:5 */
/* Manual MDI configuration */
#define MII_AT001_PSCR_MDIX_MANUAL_MODE 0x0020 /* Manual MDIX configuration */
#define MII_AT001_PSCR_AUTO_X_1000T 0x0040 /* 1000BASE-T: Auto crossover,
* 100BASE-TX/10BASE-T:
* MDI Mode
*/
#define MII_AT001_PSCR_AUTO_X_MODE 0x0060 /* Auto crossover enabled
* all speeds.
*/
#define MII_AT001_PSCR_10BT_EXT_DIST_ENABLE 0x0080
/* 1=Enable Extended 10BASE-T distance
* (Lower 10BASE-T RX Threshold)
* 0=Normal 10BASE-T RX Threshold */
#define MII_AT001_PSCR_MII_5BIT_ENABLE 0x0100
/* 1=5-Bit interface in 100BASE-TX
* 0=MII interface in 100BASE-TX */
#define MII_AT001_PSCR_SCRAMBLER_DISABLE 0x0200 /* 1=Scrambler disable */
#define MII_AT001_PSCR_FORCE_LINK_GOOD 0x0400 /* 1=Force link good */
#define MII_AT001_PSCR_ASSERT_CRS_ON_TX 0x0800 /* 1=Assert CRS on Transmit */
#define MII_AT001_PSCR_POLARITY_REVERSAL_SHIFT 1
#define MII_AT001_PSCR_AUTO_X_MODE_SHIFT 5
#define MII_AT001_PSCR_10BT_EXT_DIST_ENABLE_SHIFT 7
/* AT001 PHY Specific Status Register */
#define MII_AT001_PSSR_SPD_DPLX_RESOLVED 0x0800 /* 1=Speed & Duplex resolved */
#define MII_AT001_PSSR_DPLX 0x2000 /* 1=Duplex 0=Half Duplex */
#define MII_AT001_PSSR_SPEED 0xC000 /* Speed, bits 14:15 */
#define MII_AT001_PSSR_10MBS 0x0000 /* 00=10Mbs */
#define MII_AT001_PSSR_100MBS 0x4000 /* 01=100Mbs */
#define MII_AT001_PSSR_1000MBS 0x8000 /* 10=1000Mbs */
#endif /*_ATHL1E_HW_H_*/
/*
* Copyright(c) 2007 Atheros Corporation. All rights reserved.
*
* Derived from Intel e1000 driver
* Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc., 59
* Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include "atl1e.h"
#define DRV_VERSION "1.0.0.7-NAPI"
char atl1e_driver_name[] = "ATL1E";
char atl1e_driver_version[] = DRV_VERSION;
#define PCI_DEVICE_ID_ATTANSIC_L1E 0x1026
/*
* atl1e_pci_tbl - PCI Device ID Table
*
* Wildcard entries (PCI_ANY_ID) should come last
* Last entry must be all 0s
*
* { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
* Class, Class Mask, private data (not used) }
*/
static struct pci_device_id atl1e_pci_tbl[] = {
{PCI_DEVICE(PCI_VENDOR_ID_ATTANSIC, PCI_DEVICE_ID_ATTANSIC_L1E)},
/* required last entry */
{ 0 }
};
MODULE_DEVICE_TABLE(pci, atl1e_pci_tbl);
MODULE_AUTHOR("Atheros Corporation, <xiong.huang@atheros.com>, Jie Yang <jie.yang@atheros.com>");
MODULE_DESCRIPTION("Atheros 1000M Ethernet Network Driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);
static inline void atl1e_setup_mac_ctrl(struct atl1e_adapter *adapter);
static const u16
atl1e_rx_page_vld_regs[AT_MAX_RECEIVE_QUEUE][AT_PAGE_NUM_PER_QUEUE] =
{
{REG_HOST_RXF0_PAGE0_VLD, REG_HOST_RXF0_PAGE1_VLD},
{REG_HOST_RXF1_PAGE0_VLD, REG_HOST_RXF1_PAGE1_VLD},
{REG_HOST_RXF2_PAGE0_VLD, REG_HOST_RXF2_PAGE1_VLD},
{REG_HOST_RXF3_PAGE0_VLD, REG_HOST_RXF3_PAGE1_VLD}
};
static const u16 atl1e_rx_page_hi_addr_regs[AT_MAX_RECEIVE_QUEUE] =
{
REG_RXF0_BASE_ADDR_HI,
REG_RXF1_BASE_ADDR_HI,
REG_RXF2_BASE_ADDR_HI,
REG_RXF3_BASE_ADDR_HI
};
static const u16
atl1e_rx_page_lo_addr_regs[AT_MAX_RECEIVE_QUEUE][AT_PAGE_NUM_PER_QUEUE] =
{
{REG_HOST_RXF0_PAGE0_LO, REG_HOST_RXF0_PAGE1_LO},
{REG_HOST_RXF1_PAGE0_LO, REG_HOST_RXF1_PAGE1_LO},
{REG_HOST_RXF2_PAGE0_LO, REG_HOST_RXF2_PAGE1_LO},
{REG_HOST_RXF3_PAGE0_LO, REG_HOST_RXF3_PAGE1_LO}
};
static const u16
atl1e_rx_page_write_offset_regs[AT_MAX_RECEIVE_QUEUE][AT_PAGE_NUM_PER_QUEUE] =
{
{REG_HOST_RXF0_MB0_LO, REG_HOST_RXF0_MB1_LO},
{REG_HOST_RXF1_MB0_LO, REG_HOST_RXF1_MB1_LO},
{REG_HOST_RXF2_MB0_LO, REG_HOST_RXF2_MB1_LO},
{REG_HOST_RXF3_MB0_LO, REG_HOST_RXF3_MB1_LO}
};
static const u16 atl1e_pay_load_size[] = {
128, 256, 512, 1024, 2048, 4096,
};
/*
* atl1e_irq_enable - Enable default interrupt generation settings
* @adapter: board private structure
*/
static inline void atl1e_irq_enable(struct atl1e_adapter *adapter)
{
if (likely(atomic_dec_and_test(&adapter->irq_sem))) {
AT_WRITE_REG(&adapter->hw, REG_ISR, 0);
AT_WRITE_REG(&adapter->hw, REG_IMR, IMR_NORMAL_MASK);
AT_WRITE_FLUSH(&adapter->hw);
}
}
/*
* atl1e_irq_disable - Mask off interrupt generation on the NIC
* @adapter: board private structure
*/
static inline void atl1e_irq_disable(struct atl1e_adapter *adapter)
{
atomic_inc(&adapter->irq_sem);
AT_WRITE_REG(&adapter->hw, REG_IMR, 0);
AT_WRITE_FLUSH(&adapter->hw);
synchronize_irq(adapter->pdev->irq);
}
/*
* atl1e_irq_reset - reset interrupt confiure on the NIC
* @adapter: board private structure
*/
static inline void atl1e_irq_reset(struct atl1e_adapter *adapter)
{
atomic_set(&adapter->irq_sem, 0);
AT_WRITE_REG(&adapter->hw, REG_ISR, 0);
AT_WRITE_REG(&adapter->hw, REG_IMR, 0);
AT_WRITE_FLUSH(&adapter->hw);
}
/*
* atl1e_phy_config - Timer Call-back
* @data: pointer to netdev cast into an unsigned long
*/
static void atl1e_phy_config(unsigned long data)
{
struct atl1e_adapter *adapter = (struct atl1e_adapter *) data;
struct atl1e_hw *hw = &adapter->hw;
unsigned long flags;
spin_lock_irqsave(&adapter->mdio_lock, flags);
atl1e_restart_autoneg(hw);
spin_unlock_irqrestore(&adapter->mdio_lock, flags);
}
void atl1e_reinit_locked(struct atl1e_adapter *adapter)
{
WARN_ON(in_interrupt());
while (test_and_set_bit(__AT_RESETTING, &adapter->flags))
msleep(1);
atl1e_down(adapter);
atl1e_up(adapter);
clear_bit(__AT_RESETTING, &adapter->flags);
}
static void atl1e_reset_task(struct work_struct *work)
{
struct atl1e_adapter *adapter;
adapter = container_of(work, struct atl1e_adapter, reset_task);
atl1e_reinit_locked(adapter);
}
static int atl1e_check_link(struct atl1e_adapter *adapter)
{
struct atl1e_hw *hw = &adapter->hw;
struct net_device *netdev = adapter->netdev;
struct pci_dev *pdev = adapter->pdev;
int err = 0;
u16 speed, duplex, phy_data;
/* MII_BMSR must read twise */
atl1e_read_phy_reg(hw, MII_BMSR, &phy_data);
atl1e_read_phy_reg(hw, MII_BMSR, &phy_data);
if ((phy_data & BMSR_LSTATUS) == 0) {
/* link down */
if (netif_carrier_ok(netdev)) { /* old link state: Up */
u32 value;
/* disable rx */
value = AT_READ_REG(hw, REG_MAC_CTRL);
value &= ~MAC_CTRL_RX_EN;
AT_WRITE_REG(hw, REG_MAC_CTRL, value);
adapter->link_speed = SPEED_0;
netif_carrier_off(netdev);
netif_stop_queue(netdev);
}
} else {
/* Link Up */
err = atl1e_get_speed_and_duplex(hw, &speed, &duplex);
if (unlikely(err))
return err;
/* link result is our setting */
if (adapter->link_speed != speed ||
adapter->link_duplex != duplex) {
adapter->link_speed = speed;
adapter->link_duplex = duplex;
atl1e_setup_mac_ctrl(adapter);
dev_info(&pdev->dev,
"%s: %s NIC Link is Up<%d Mbps %s>\n",
atl1e_driver_name, netdev->name,
adapter->link_speed,
adapter->link_duplex == FULL_DUPLEX ?
"Full Duplex" : "Half Duplex");
}
if (!netif_carrier_ok(netdev)) {
/* Link down -> Up */
netif_carrier_on(netdev);
netif_wake_queue(netdev);
}
}
return 0;
}
/*
* atl1e_link_chg_task - deal with link change event Out of interrupt context
* @netdev: network interface device structure
*/
static void atl1e_link_chg_task(struct work_struct *work)
{
struct atl1e_adapter *adapter;
unsigned long flags;
adapter = container_of(work, struct atl1e_adapter, link_chg_task);
spin_lock_irqsave(&adapter->mdio_lock, flags);
atl1e_check_link(adapter);
spin_unlock_irqrestore(&adapter->mdio_lock, flags);
}
static void atl1e_link_chg_event(struct atl1e_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
struct pci_dev *pdev = adapter->pdev;
u16 phy_data = 0;
u16 link_up = 0;
spin_lock(&adapter->mdio_lock);
atl1e_read_phy_reg(&adapter->hw, MII_BMSR, &phy_data);
atl1e_read_phy_reg(&adapter->hw, MII_BMSR, &phy_data);
spin_unlock(&adapter->mdio_lock);
link_up = phy_data & BMSR_LSTATUS;
/* notify upper layer link down ASAP */
if (!link_up) {
if (netif_carrier_ok(netdev)) {
/* old link state: Up */
dev_info(&pdev->dev, "%s: %s NIC Link is Down\n",
atl1e_driver_name, netdev->name);
adapter->link_speed = SPEED_0;
netif_stop_queue(netdev);
}
}
schedule_work(&adapter->link_chg_task);
}
static void atl1e_del_timer(struct atl1e_adapter *adapter)
{
del_timer_sync(&adapter->phy_config_timer);
}
static void atl1e_cancel_work(struct atl1e_adapter *adapter)
{
cancel_work_sync(&adapter->reset_task);
cancel_work_sync(&adapter->link_chg_task);
}
/*
* atl1e_tx_timeout - Respond to a Tx Hang
* @netdev: network interface device structure
*/
static void atl1e_tx_timeout(struct net_device *netdev)
{
struct atl1e_adapter *adapter = netdev_priv(netdev);
/* Do the reset outside of interrupt context */
schedule_work(&adapter->reset_task);
}
/*
* atl1e_set_multi - Multicast and Promiscuous mode set
* @netdev: network interface device structure
*
* The set_multi entry point is called whenever the multicast address
* list or the network interface flags are updated. This routine is
* responsible for configuring the hardware for proper multicast,
* promiscuous mode, and all-multi behavior.
*/
static void atl1e_set_multi(struct net_device *netdev)
{
struct atl1e_adapter *adapter = netdev_priv(netdev);
struct atl1e_hw *hw = &adapter->hw;
struct dev_mc_list *mc_ptr;
u32 mac_ctrl_data = 0;
u32 hash_value;
/* Check for Promiscuous and All Multicast modes */
mac_ctrl_data = AT_READ_REG(hw, REG_MAC_CTRL);
if (netdev->flags & IFF_PROMISC) {
mac_ctrl_data |= MAC_CTRL_PROMIS_EN;
} else if (netdev->flags & IFF_ALLMULTI) {
mac_ctrl_data |= MAC_CTRL_MC_ALL_EN;
mac_ctrl_data &= ~MAC_CTRL_PROMIS_EN;
} else {
mac_ctrl_data &= ~(MAC_CTRL_PROMIS_EN | MAC_CTRL_MC_ALL_EN);
}
AT_WRITE_REG(hw, REG_MAC_CTRL, mac_ctrl_data);
/* clear the old settings from the multicast hash table */
AT_WRITE_REG(hw, REG_RX_HASH_TABLE, 0);
AT_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, 1, 0);
/* comoute mc addresses' hash value ,and put it into hash table */
for (mc_ptr = netdev->mc_list; mc_ptr; mc_ptr = mc_ptr->next) {
hash_value = atl1e_hash_mc_addr(hw, mc_ptr->dmi_addr);
atl1e_hash_set(hw, hash_value);
}
}
static void atl1e_vlan_rx_register(struct net_device *netdev,
struct vlan_group *grp)
{
struct atl1e_adapter *adapter = netdev_priv(netdev);
struct pci_dev *pdev = adapter->pdev;
u32 mac_ctrl_data = 0;
dev_dbg(&pdev->dev, "atl1e_vlan_rx_register\n");
atl1e_irq_disable(adapter);
adapter->vlgrp = grp;
mac_ctrl_data = AT_READ_REG(&adapter->hw, REG_MAC_CTRL);
if (grp) {
/* enable VLAN tag insert/strip */
mac_ctrl_data |= MAC_CTRL_RMV_VLAN;
} else {
/* disable VLAN tag insert/strip */
mac_ctrl_data &= ~MAC_CTRL_RMV_VLAN;
}
AT_WRITE_REG(&adapter->hw, REG_MAC_CTRL, mac_ctrl_data);
atl1e_irq_enable(adapter);
}
static void atl1e_restore_vlan(struct atl1e_adapter *adapter)
{
struct pci_dev *pdev = adapter->pdev;
dev_dbg(&pdev->dev, "atl1e_restore_vlan !");
atl1e_vlan_rx_register(adapter->netdev, adapter->vlgrp);
}
/*
* atl1e_set_mac - Change the Ethernet Address of the NIC
* @netdev: network interface device structure
* @p: pointer to an address structure
*
* Returns 0 on success, negative on failure
*/
static int atl1e_set_mac_addr(struct net_device *netdev, void *p)
{
struct atl1e_adapter *adapter = netdev_priv(netdev);
struct sockaddr *addr = p;
if (!is_valid_ether_addr(addr->sa_data))
return -EADDRNOTAVAIL;
if (netif_running(netdev))
return -EBUSY;
memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
atl1e_hw_set_mac_addr(&adapter->hw);
return 0;
}
/*
* atl1e_change_mtu - Change the Maximum Transfer Unit
* @netdev: network interface device structure
* @new_mtu: new value for maximum frame size
*
* Returns 0 on success, negative on failure
*/
static int atl1e_change_mtu(struct net_device *netdev, int new_mtu)
{
struct atl1e_adapter *adapter = netdev_priv(netdev);
int old_mtu = netdev->mtu;
int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
(max_frame > MAX_JUMBO_FRAME_SIZE)) {
dev_warn(&adapter->pdev->dev, "invalid MTU setting\n");
return -EINVAL;
}
/* set MTU */
if (old_mtu != new_mtu && netif_running(netdev)) {
while (test_and_set_bit(__AT_RESETTING, &adapter->flags))
msleep(1);
netdev->mtu = new_mtu;
adapter->hw.max_frame_size = new_mtu;
adapter->hw.rx_jumbo_th = (max_frame + 7) >> 3;
atl1e_down(adapter);
atl1e_up(adapter);
clear_bit(__AT_RESETTING, &adapter->flags);
}
return 0;
}
/*
* caller should hold mdio_lock
*/
static int atl1e_mdio_read(struct net_device *netdev, int phy_id, int reg_num)
{
struct atl1e_adapter *adapter = netdev_priv(netdev);
u16 result;
atl1e_read_phy_reg(&adapter->hw, reg_num & MDIO_REG_ADDR_MASK, &result);
return result;
}
static void atl1e_mdio_write(struct net_device *netdev, int phy_id,
int reg_num, int val)
{
struct atl1e_adapter *adapter = netdev_priv(netdev);
atl1e_write_phy_reg(&adapter->hw, reg_num & MDIO_REG_ADDR_MASK, val);
}
/*
* atl1e_mii_ioctl -
* @netdev:
* @ifreq:
* @cmd:
*/
static int atl1e_mii_ioctl(struct net_device *netdev,
struct ifreq *ifr, int cmd)
{
struct atl1e_adapter *adapter = netdev_priv(netdev);
struct pci_dev *pdev = adapter->pdev;
struct mii_ioctl_data *data = if_mii(ifr);
unsigned long flags;
int retval = 0;
if (!netif_running(netdev))
return -EINVAL;
spin_lock_irqsave(&adapter->mdio_lock, flags);
switch (cmd) {
case SIOCGMIIPHY:
data->phy_id = 0;
break;
case SIOCGMIIREG:
if (!capable(CAP_NET_ADMIN)) {
retval = -EPERM;
goto out;
}
if (atl1e_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
&data->val_out)) {
retval = -EIO;
goto out;
}
break;
case SIOCSMIIREG:
if (!capable(CAP_NET_ADMIN)) {
retval = -EPERM;
goto out;
}
if (data->reg_num & ~(0x1F)) {
retval = -EFAULT;
goto out;
}
dev_dbg(&pdev->dev, "<atl1e_mii_ioctl> write %x %x",
data->reg_num, data->val_in);
if (atl1e_write_phy_reg(&adapter->hw,
data->reg_num, data->val_in)) {
retval = -EIO;
goto out;
}
break;
default:
retval = -EOPNOTSUPP;
break;
}
out:
spin_unlock_irqrestore(&adapter->mdio_lock, flags);
return retval;
}
/*
* atl1e_ioctl -
* @netdev:
* @ifreq:
* @cmd:
*/
static int atl1e_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
switch (cmd) {
case SIOCGMIIPHY:
case SIOCGMIIREG:
case SIOCSMIIREG:
return atl1e_mii_ioctl(netdev, ifr, cmd);
default:
return -EOPNOTSUPP;
}
}
static void atl1e_setup_pcicmd(struct pci_dev *pdev)
{
u16 cmd;
pci_read_config_word(pdev, PCI_COMMAND, &cmd);
cmd &= ~(PCI_COMMAND_INTX_DISABLE | PCI_COMMAND_IO);
cmd |= (PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
pci_write_config_word(pdev, PCI_COMMAND, cmd);
/*
* some motherboards BIOS(PXE/EFI) driver may set PME
* while they transfer control to OS (Windows/Linux)
* so we should clear this bit before NIC work normally
*/
pci_write_config_dword(pdev, REG_PM_CTRLSTAT, 0);
msleep(1);
}
/*
* atl1e_alloc_queues - Allocate memory for all rings
* @adapter: board private structure to initialize
*
*/
static int __devinit atl1e_alloc_queues(struct atl1e_adapter *adapter)
{
return 0;
}
/*
* atl1e_sw_init - Initialize general software structures (struct atl1e_adapter)
* @adapter: board private structure to initialize
*
* atl1e_sw_init initializes the Adapter private data structure.
* Fields are initialized based on PCI device information and
* OS network device settings (MTU size).
*/
static int __devinit atl1e_sw_init(struct atl1e_adapter *adapter)
{
struct atl1e_hw *hw = &adapter->hw;
struct pci_dev *pdev = adapter->pdev;
u32 phy_status_data = 0;
adapter->wol = 0;
adapter->link_speed = SPEED_0; /* hardware init */
adapter->link_duplex = FULL_DUPLEX;
adapter->num_rx_queues = 1;
/* PCI config space info */
hw->vendor_id = pdev->vendor;
hw->device_id = pdev->device;
hw->subsystem_vendor_id = pdev->subsystem_vendor;
hw->subsystem_id = pdev->subsystem_device;
pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
phy_status_data = AT_READ_REG(hw, REG_PHY_STATUS);
/* nic type */
if (hw->revision_id >= 0xF0) {
hw->nic_type = athr_l2e_revB;
} else {
if (phy_status_data & PHY_STATUS_100M)
hw->nic_type = athr_l1e;
else
hw->nic_type = athr_l2e_revA;
}
phy_status_data = AT_READ_REG(hw, REG_PHY_STATUS);
if (phy_status_data & PHY_STATUS_EMI_CA)
hw->emi_ca = true;
else
hw->emi_ca = false;
hw->phy_configured = false;
hw->preamble_len = 7;
hw->max_frame_size = adapter->netdev->mtu;
hw->rx_jumbo_th = (hw->max_frame_size + ETH_HLEN +
VLAN_HLEN + ETH_FCS_LEN + 7) >> 3;
hw->rrs_type = atl1e_rrs_disable;
hw->indirect_tab = 0;
hw->base_cpu = 0;
/* need confirm */
hw->ict = 50000; /* 100ms */
hw->smb_timer = 200000; /* 200ms */
hw->tpd_burst = 5;
hw->rrd_thresh = 1;
hw->tpd_thresh = adapter->tx_ring.count / 2;
hw->rx_count_down = 4; /* 2us resolution */
hw->tx_count_down = hw->imt * 4 / 3;
hw->dmar_block = atl1e_dma_req_1024;
hw->dmaw_block = atl1e_dma_req_1024;
hw->dmar_dly_cnt = 15;
hw->dmaw_dly_cnt = 4;
if (atl1e_alloc_queues(adapter)) {
dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
return -ENOMEM;
}
atomic_set(&adapter->irq_sem, 1);
spin_lock_init(&adapter->mdio_lock);
spin_lock_init(&adapter->tx_lock);
set_bit(__AT_DOWN, &adapter->flags);
return 0;
}
/*
* atl1e_clean_tx_ring - Free Tx-skb
* @adapter: board private structure
*/
static void atl1e_clean_tx_ring(struct atl1e_adapter *adapter)
{
struct atl1e_tx_ring *tx_ring = (struct atl1e_tx_ring *)
&adapter->tx_ring;
struct atl1e_tx_buffer *tx_buffer = NULL;
struct pci_dev *pdev = adapter->pdev;
u16 index, ring_count;
if (tx_ring->desc == NULL || tx_ring->tx_buffer == NULL)
return;
ring_count = tx_ring->count;
/* first unmmap dma */
for (index = 0; index < ring_count; index++) {
tx_buffer = &tx_ring->tx_buffer[index];
if (tx_buffer->dma) {
pci_unmap_page(pdev, tx_buffer->dma,
tx_buffer->length, PCI_DMA_TODEVICE);
tx_buffer->dma = 0;
}
}
/* second free skb */
for (index = 0; index < ring_count; index++) {
tx_buffer = &tx_ring->tx_buffer[index];
if (tx_buffer->skb) {
dev_kfree_skb_any(tx_buffer->skb);
tx_buffer->skb = NULL;
}
}
/* Zero out Tx-buffers */
memset(tx_ring->desc, 0, sizeof(struct atl1e_tpd_desc) *
ring_count);
memset(tx_ring->tx_buffer, 0, sizeof(struct atl1e_tx_buffer) *
ring_count);
}
/*
* atl1e_clean_rx_ring - Free rx-reservation skbs
* @adapter: board private structure
*/
static void atl1e_clean_rx_ring(struct atl1e_adapter *adapter)
{
struct atl1e_rx_ring *rx_ring =
(struct atl1e_rx_ring *)&adapter->rx_ring;
struct atl1e_rx_page_desc *rx_page_desc = rx_ring->rx_page_desc;
u16 i, j;
if (adapter->ring_vir_addr == NULL)
return;
/* Zero out the descriptor ring */
for (i = 0; i < adapter->num_rx_queues; i++) {
for (j = 0; j < AT_PAGE_NUM_PER_QUEUE; j++) {
if (rx_page_desc[i].rx_page[j].addr != NULL) {
memset(rx_page_desc[i].rx_page[j].addr, 0,
rx_ring->real_page_size);
}
}
}
}
static void atl1e_cal_ring_size(struct atl1e_adapter *adapter, u32 *ring_size)
{
*ring_size = ((u32)(adapter->tx_ring.count *
sizeof(struct atl1e_tpd_desc) + 7
/* tx ring, qword align */
+ adapter->rx_ring.real_page_size * AT_PAGE_NUM_PER_QUEUE *
adapter->num_rx_queues + 31
/* rx ring, 32 bytes align */
+ (1 + AT_PAGE_NUM_PER_QUEUE * adapter->num_rx_queues) *
sizeof(u32) + 3));
/* tx, rx cmd, dword align */
}
static void atl1e_init_ring_resources(struct atl1e_adapter *adapter)
{
struct atl1e_tx_ring *tx_ring = NULL;
struct atl1e_rx_ring *rx_ring = NULL;
tx_ring = &adapter->tx_ring;
rx_ring = &adapter->rx_ring;
rx_ring->real_page_size = adapter->rx_ring.page_size
+ adapter->hw.max_frame_size
+ ETH_HLEN + VLAN_HLEN
+ ETH_FCS_LEN;
rx_ring->real_page_size = roundup(rx_ring->real_page_size, 32);
atl1e_cal_ring_size(adapter, &adapter->ring_size);
adapter->ring_vir_addr = NULL;
adapter->rx_ring.desc = NULL;
rwlock_init(&adapter->tx_ring.tx_lock);
return;
}
/*
* Read / Write Ptr Initialize:
*/
static void atl1e_init_ring_ptrs(struct atl1e_adapter *adapter)
{
struct atl1e_tx_ring *tx_ring = NULL;
struct atl1e_rx_ring *rx_ring = NULL;
struct atl1e_rx_page_desc *rx_page_desc = NULL;
int i, j;
tx_ring = &adapter->tx_ring;
rx_ring = &adapter->rx_ring;
rx_page_desc = rx_ring->rx_page_desc;
tx_ring->next_to_use = 0;
atomic_set(&tx_ring->next_to_clean, 0);
for (i = 0; i < adapter->num_rx_queues; i++) {
rx_page_desc[i].rx_using = 0;
rx_page_desc[i].rx_nxseq = 0;
for (j = 0; j < AT_PAGE_NUM_PER_QUEUE; j++) {
*rx_page_desc[i].rx_page[j].write_offset_addr = 0;
rx_page_desc[i].rx_page[j].read_offset = 0;
}
}
}
/*
* atl1e_free_ring_resources - Free Tx / RX descriptor Resources
* @adapter: board private structure
*
* Free all transmit software resources
*/
static void atl1e_free_ring_resources(struct atl1e_adapter *adapter)
{
struct pci_dev *pdev = adapter->pdev;
atl1e_clean_tx_ring(adapter);
atl1e_clean_rx_ring(adapter);
if (adapter->ring_vir_addr) {
pci_free_consistent(pdev, adapter->ring_size,
adapter->ring_vir_addr, adapter->ring_dma);
adapter->ring_vir_addr = NULL;
}
if (adapter->tx_ring.tx_buffer) {
kfree(adapter->tx_ring.tx_buffer);
adapter->tx_ring.tx_buffer = NULL;
}
}
/*
* atl1e_setup_mem_resources - allocate Tx / RX descriptor resources
* @adapter: board private structure
*
* Return 0 on success, negative on failure
*/
static int atl1e_setup_ring_resources(struct atl1e_adapter *adapter)
{
struct pci_dev *pdev = adapter->pdev;
struct atl1e_tx_ring *tx_ring;
struct atl1e_rx_ring *rx_ring;
struct atl1e_rx_page_desc *rx_page_desc;
int size, i, j;
u32 offset = 0;
int err = 0;
if (adapter->ring_vir_addr != NULL)
return 0; /* alloced already */
tx_ring = &adapter->tx_ring;
rx_ring = &adapter->rx_ring;
/* real ring DMA buffer */
size = adapter->ring_size;
adapter->ring_vir_addr = pci_alloc_consistent(pdev,
adapter->ring_size, &adapter->ring_dma);
if (adapter->ring_vir_addr == NULL) {
dev_err(&pdev->dev, "pci_alloc_consistent failed, "
"size = D%d", size);
return -ENOMEM;
}
memset(adapter->ring_vir_addr, 0, adapter->ring_size);
rx_page_desc = rx_ring->rx_page_desc;
/* Init TPD Ring */
tx_ring->dma = roundup(adapter->ring_dma, 8);
offset = tx_ring->dma - adapter->ring_dma;
tx_ring->desc = (struct atl1e_tpd_desc *)
(adapter->ring_vir_addr + offset);
size = sizeof(struct atl1e_tx_buffer) * (tx_ring->count);
tx_ring->tx_buffer = kzalloc(size, GFP_KERNEL);
if (tx_ring->tx_buffer == NULL) {
dev_err(&pdev->dev, "kzalloc failed , size = D%d", size);
err = -ENOMEM;
goto failed;
}
/* Init RXF-Pages */
offset += (sizeof(struct atl1e_tpd_desc) * tx_ring->count);
offset = roundup(offset, 32);
for (i = 0; i < adapter->num_rx_queues; i++) {
for (j = 0; j < AT_PAGE_NUM_PER_QUEUE; j++) {
rx_page_desc[i].rx_page[j].dma =
adapter->ring_dma + offset;
rx_page_desc[i].rx_page[j].addr =
adapter->ring_vir_addr + offset;
offset += rx_ring->real_page_size;
}
}
/* Init CMB dma address */
tx_ring->cmb_dma = adapter->ring_dma + offset;
tx_ring->cmb = (u32 *)(adapter->ring_vir_addr + offset);
offset += sizeof(u32);
for (i = 0; i < adapter->num_rx_queues; i++) {
for (j = 0; j < AT_PAGE_NUM_PER_QUEUE; j++) {
rx_page_desc[i].rx_page[j].write_offset_dma =
adapter->ring_dma + offset;
rx_page_desc[i].rx_page[j].write_offset_addr =
adapter->ring_vir_addr + offset;
offset += sizeof(u32);
}
}
if (unlikely(offset > adapter->ring_size)) {
dev_err(&pdev->dev, "offset(%d) > ring size(%d) !!\n",
offset, adapter->ring_size);
err = -1;
goto failed;
}
return 0;
failed:
if (adapter->ring_vir_addr != NULL) {
pci_free_consistent(pdev, adapter->ring_size,
adapter->ring_vir_addr, adapter->ring_dma);
adapter->ring_vir_addr = NULL;
}
return err;
}
static inline void atl1e_configure_des_ring(const struct atl1e_adapter *adapter)
{
struct atl1e_hw *hw = (struct atl1e_hw *)&adapter->hw;
struct atl1e_rx_ring *rx_ring =
(struct atl1e_rx_ring *)&adapter->rx_ring;
struct atl1e_tx_ring *tx_ring =
(struct atl1e_tx_ring *)&adapter->tx_ring;
struct atl1e_rx_page_desc *rx_page_desc = NULL;
int i, j;
AT_WRITE_REG(hw, REG_DESC_BASE_ADDR_HI,
(u32)((adapter->ring_dma & AT_DMA_HI_ADDR_MASK) >> 32));
AT_WRITE_REG(hw, REG_TPD_BASE_ADDR_LO,
(u32)((tx_ring->dma) & AT_DMA_LO_ADDR_MASK));
AT_WRITE_REG(hw, REG_TPD_RING_SIZE, (u16)(tx_ring->count));
AT_WRITE_REG(hw, REG_HOST_TX_CMB_LO,
(u32)((tx_ring->cmb_dma) & AT_DMA_LO_ADDR_MASK));
rx_page_desc = rx_ring->rx_page_desc;
/* RXF Page Physical address / Page Length */
for (i = 0; i < AT_MAX_RECEIVE_QUEUE; i++) {
AT_WRITE_REG(hw, atl1e_rx_page_hi_addr_regs[i],
(u32)((adapter->ring_dma &
AT_DMA_HI_ADDR_MASK) >> 32));
for (j = 0; j < AT_PAGE_NUM_PER_QUEUE; j++) {
u32 page_phy_addr;
u32 offset_phy_addr;
page_phy_addr = rx_page_desc[i].rx_page[j].dma;
offset_phy_addr =
rx_page_desc[i].rx_page[j].write_offset_dma;
AT_WRITE_REG(hw, atl1e_rx_page_lo_addr_regs[i][j],
page_phy_addr & AT_DMA_LO_ADDR_MASK);
AT_WRITE_REG(hw, atl1e_rx_page_write_offset_regs[i][j],
offset_phy_addr & AT_DMA_LO_ADDR_MASK);
AT_WRITE_REGB(hw, atl1e_rx_page_vld_regs[i][j], 1);
}
}
/* Page Length */
AT_WRITE_REG(hw, REG_HOST_RXFPAGE_SIZE, rx_ring->page_size);
/* Load all of base address above */
AT_WRITE_REG(hw, REG_LOAD_PTR, 1);
return;
}
static inline void atl1e_configure_tx(struct atl1e_adapter *adapter)
{
struct atl1e_hw *hw = (struct atl1e_hw *)&adapter->hw;
u32 dev_ctrl_data = 0;
u32 max_pay_load = 0;
u32 jumbo_thresh = 0;
u32 extra_size = 0; /* Jumbo frame threshold in QWORD unit */
/* configure TXQ param */
if (hw->nic_type != athr_l2e_revB) {
extra_size = ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN;
if (hw->max_frame_size <= 1500) {
jumbo_thresh = hw->max_frame_size + extra_size;
} else if (hw->max_frame_size < 6*1024) {
jumbo_thresh =
(hw->max_frame_size + extra_size) * 2 / 3;
} else {
jumbo_thresh = (hw->max_frame_size + extra_size) / 2;
}
AT_WRITE_REG(hw, REG_TX_EARLY_TH, (jumbo_thresh + 7) >> 3);
}
dev_ctrl_data = AT_READ_REG(hw, REG_DEVICE_CTRL);
max_pay_load = ((dev_ctrl_data >> DEVICE_CTRL_MAX_PAYLOAD_SHIFT)) &
DEVICE_CTRL_MAX_PAYLOAD_MASK;
hw->dmaw_block = min(max_pay_load, hw->dmaw_block);
max_pay_load = ((dev_ctrl_data >> DEVICE_CTRL_MAX_RREQ_SZ_SHIFT)) &
DEVICE_CTRL_MAX_RREQ_SZ_MASK;
hw->dmar_block = min(max_pay_load, hw->dmar_block);
if (hw->nic_type != athr_l2e_revB)
AT_WRITE_REGW(hw, REG_TXQ_CTRL + 2,
atl1e_pay_load_size[hw->dmar_block]);
/* enable TXQ */
AT_WRITE_REGW(hw, REG_TXQ_CTRL,
(((u16)hw->tpd_burst & TXQ_CTRL_NUM_TPD_BURST_MASK)
<< TXQ_CTRL_NUM_TPD_BURST_SHIFT)
| TXQ_CTRL_ENH_MODE | TXQ_CTRL_EN);
return;
}
static inline void atl1e_configure_rx(struct atl1e_adapter *adapter)
{
struct atl1e_hw *hw = (struct atl1e_hw *)&adapter->hw;
u32 rxf_len = 0;
u32 rxf_low = 0;
u32 rxf_high = 0;
u32 rxf_thresh_data = 0;
u32 rxq_ctrl_data = 0;
if (hw->nic_type != athr_l2e_revB) {
AT_WRITE_REGW(hw, REG_RXQ_JMBOSZ_RRDTIM,
(u16)((hw->rx_jumbo_th & RXQ_JMBOSZ_TH_MASK) <<
RXQ_JMBOSZ_TH_SHIFT |
(1 & RXQ_JMBO_LKAH_MASK) <<
RXQ_JMBO_LKAH_SHIFT));
rxf_len = AT_READ_REG(hw, REG_SRAM_RXF_LEN);
rxf_high = rxf_len * 4 / 5;
rxf_low = rxf_len / 5;
rxf_thresh_data = ((rxf_high & RXQ_RXF_PAUSE_TH_HI_MASK)
<< RXQ_RXF_PAUSE_TH_HI_SHIFT) |
((rxf_low & RXQ_RXF_PAUSE_TH_LO_MASK)
<< RXQ_RXF_PAUSE_TH_LO_SHIFT);
AT_WRITE_REG(hw, REG_RXQ_RXF_PAUSE_THRESH, rxf_thresh_data);
}
/* RRS */
AT_WRITE_REG(hw, REG_IDT_TABLE, hw->indirect_tab);
AT_WRITE_REG(hw, REG_BASE_CPU_NUMBER, hw->base_cpu);
if (hw->rrs_type & atl1e_rrs_ipv4)
rxq_ctrl_data |= RXQ_CTRL_HASH_TYPE_IPV4;
if (hw->rrs_type & atl1e_rrs_ipv4_tcp)
rxq_ctrl_data |= RXQ_CTRL_HASH_TYPE_IPV4_TCP;
if (hw->rrs_type & atl1e_rrs_ipv6)
rxq_ctrl_data |= RXQ_CTRL_HASH_TYPE_IPV6;
if (hw->rrs_type & atl1e_rrs_ipv6_tcp)
rxq_ctrl_data |= RXQ_CTRL_HASH_TYPE_IPV6_TCP;
if (hw->rrs_type != atl1e_rrs_disable)
rxq_ctrl_data |=
(RXQ_CTRL_HASH_ENABLE | RXQ_CTRL_RSS_MODE_MQUESINT);
rxq_ctrl_data |= RXQ_CTRL_IPV6_XSUM_VERIFY_EN | RXQ_CTRL_PBA_ALIGN_32 |
RXQ_CTRL_CUT_THRU_EN | RXQ_CTRL_EN;
AT_WRITE_REG(hw, REG_RXQ_CTRL, rxq_ctrl_data);
return;
}
static inline void atl1e_configure_dma(struct atl1e_adapter *adapter)
{
struct atl1e_hw *hw = &adapter->hw;
u32 dma_ctrl_data = 0;
dma_ctrl_data = DMA_CTRL_RXCMB_EN;
dma_ctrl_data |= (((u32)hw->dmar_block) & DMA_CTRL_DMAR_BURST_LEN_MASK)
<< DMA_CTRL_DMAR_BURST_LEN_SHIFT;
dma_ctrl_data |= (((u32)hw->dmaw_block) & DMA_CTRL_DMAW_BURST_LEN_MASK)
<< DMA_CTRL_DMAW_BURST_LEN_SHIFT;
dma_ctrl_data |= DMA_CTRL_DMAR_REQ_PRI | DMA_CTRL_DMAR_OUT_ORDER;
dma_ctrl_data |= (((u32)hw->dmar_dly_cnt) & DMA_CTRL_DMAR_DLY_CNT_MASK)
<< DMA_CTRL_DMAR_DLY_CNT_SHIFT;
dma_ctrl_data |= (((u32)hw->dmaw_dly_cnt) & DMA_CTRL_DMAW_DLY_CNT_MASK)
<< DMA_CTRL_DMAW_DLY_CNT_SHIFT;
AT_WRITE_REG(hw, REG_DMA_CTRL, dma_ctrl_data);
return;
}
static inline void atl1e_setup_mac_ctrl(struct atl1e_adapter *adapter)
{
u32 value;
struct atl1e_hw *hw = &adapter->hw;
struct net_device *netdev = adapter->netdev;
/* Config MAC CTRL Register */
value = MAC_CTRL_TX_EN |
MAC_CTRL_RX_EN ;
if (FULL_DUPLEX == adapter->link_duplex)
value |= MAC_CTRL_DUPLX;
value |= ((u32)((SPEED_1000 == adapter->link_speed) ?
MAC_CTRL_SPEED_1000 : MAC_CTRL_SPEED_10_100) <<
MAC_CTRL_SPEED_SHIFT);
value |= (MAC_CTRL_TX_FLOW | MAC_CTRL_RX_FLOW);
value |= (MAC_CTRL_ADD_CRC | MAC_CTRL_PAD);
value |= (((u32)adapter->hw.preamble_len &
MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT);
if (adapter->vlgrp)
value |= MAC_CTRL_RMV_VLAN;
value |= MAC_CTRL_BC_EN;
if (netdev->flags & IFF_PROMISC)
value |= MAC_CTRL_PROMIS_EN;
if (netdev->flags & IFF_ALLMULTI)
value |= MAC_CTRL_MC_ALL_EN;
AT_WRITE_REG(hw, REG_MAC_CTRL, value);
}
/*
* atl1e_configure - Configure Transmit&Receive Unit after Reset
* @adapter: board private structure
*
* Configure the Tx /Rx unit of the MAC after a reset.
*/
static int atl1e_configure(struct atl1e_adapter *adapter)
{
struct atl1e_hw *hw = &adapter->hw;
struct pci_dev *pdev = adapter->pdev;
u32 intr_status_data = 0;
/* clear interrupt status */
AT_WRITE_REG(hw, REG_ISR, ~0);
/* 1. set MAC Address */
atl1e_hw_set_mac_addr(hw);
/* 2. Init the Multicast HASH table done by set_muti */
/* 3. Clear any WOL status */
AT_WRITE_REG(hw, REG_WOL_CTRL, 0);
/* 4. Descripter Ring BaseMem/Length/Read ptr/Write ptr
* TPD Ring/SMB/RXF0 Page CMBs, they use the same
* High 32bits memory */
atl1e_configure_des_ring(adapter);
/* 5. set Interrupt Moderator Timer */
AT_WRITE_REGW(hw, REG_IRQ_MODU_TIMER_INIT, hw->imt);
AT_WRITE_REGW(hw, REG_IRQ_MODU_TIMER2_INIT, hw->imt);
AT_WRITE_REG(hw, REG_MASTER_CTRL, MASTER_CTRL_LED_MODE |
MASTER_CTRL_ITIMER_EN | MASTER_CTRL_ITIMER2_EN);
/* 6. rx/tx threshold to trig interrupt */
AT_WRITE_REGW(hw, REG_TRIG_RRD_THRESH, hw->rrd_thresh);
AT_WRITE_REGW(hw, REG_TRIG_TPD_THRESH, hw->tpd_thresh);
AT_WRITE_REGW(hw, REG_TRIG_RXTIMER, hw->rx_count_down);
AT_WRITE_REGW(hw, REG_TRIG_TXTIMER, hw->tx_count_down);
/* 7. set Interrupt Clear Timer */
AT_WRITE_REGW(hw, REG_CMBDISDMA_TIMER, hw->ict);
/* 8. set MTU */
AT_WRITE_REG(hw, REG_MTU, hw->max_frame_size + ETH_HLEN +
VLAN_HLEN + ETH_FCS_LEN);
/* 9. config TXQ early tx threshold */
atl1e_configure_tx(adapter);
/* 10. config RXQ */
atl1e_configure_rx(adapter);
/* 11. config DMA Engine */
atl1e_configure_dma(adapter);
/* 12. smb timer to trig interrupt */
AT_WRITE_REG(hw, REG_SMB_STAT_TIMER, hw->smb_timer);
intr_status_data = AT_READ_REG(hw, REG_ISR);
if (unlikely((intr_status_data & ISR_PHY_LINKDOWN) != 0)) {
dev_err(&pdev->dev, "atl1e_configure failed,"
"PCIE phy link down\n");
return -1;
}
AT_WRITE_REG(hw, REG_ISR, 0x7fffffff);
return 0;
}
/*
* atl1e_get_stats - Get System Network Statistics
* @netdev: network interface device structure
*
* Returns the address of the device statistics structure.
* The statistics are actually updated from the timer callback.
*/
static struct net_device_stats *atl1e_get_stats(struct net_device *netdev)
{
struct atl1e_adapter *adapter = netdev_priv(netdev);
struct atl1e_hw_stats *hw_stats = &adapter->hw_stats;
struct net_device_stats *net_stats = &adapter->net_stats;
net_stats->rx_packets = hw_stats->rx_ok;
net_stats->tx_packets = hw_stats->tx_ok;
net_stats->rx_bytes = hw_stats->rx_byte_cnt;
net_stats->tx_bytes = hw_stats->tx_byte_cnt;
net_stats->multicast = hw_stats->rx_mcast;
net_stats->collisions = hw_stats->tx_1_col +
hw_stats->tx_2_col * 2 +
hw_stats->tx_late_col + hw_stats->tx_abort_col;
net_stats->rx_errors = hw_stats->rx_frag + hw_stats->rx_fcs_err +
hw_stats->rx_len_err + hw_stats->rx_sz_ov +
hw_stats->rx_rrd_ov + hw_stats->rx_align_err;
net_stats->rx_fifo_errors = hw_stats->rx_rxf_ov;
net_stats->rx_length_errors = hw_stats->rx_len_err;
net_stats->rx_crc_errors = hw_stats->rx_fcs_err;
net_stats->rx_frame_errors = hw_stats->rx_align_err;
net_stats->rx_over_errors = hw_stats->rx_rrd_ov + hw_stats->rx_rxf_ov;
net_stats->rx_missed_errors = hw_stats->rx_rrd_ov + hw_stats->rx_rxf_ov;
net_stats->tx_errors = hw_stats->tx_late_col + hw_stats->tx_abort_col +
hw_stats->tx_underrun + hw_stats->tx_trunc;
net_stats->tx_fifo_errors = hw_stats->tx_underrun;
net_stats->tx_aborted_errors = hw_stats->tx_abort_col;
net_stats->tx_window_errors = hw_stats->tx_late_col;
return &adapter->net_stats;
}
static void atl1e_update_hw_stats(struct atl1e_adapter *adapter)
{
u16 hw_reg_addr = 0;
unsigned long *stats_item = NULL;
/* update rx status */
hw_reg_addr = REG_MAC_RX_STATUS_BIN;
stats_item = &adapter->hw_stats.rx_ok;
while (hw_reg_addr <= REG_MAC_RX_STATUS_END) {
*stats_item += AT_READ_REG(&adapter->hw, hw_reg_addr);
stats_item++;
hw_reg_addr += 4;
}
/* update tx status */
hw_reg_addr = REG_MAC_TX_STATUS_BIN;
stats_item = &adapter->hw_stats.tx_ok;
while (hw_reg_addr <= REG_MAC_TX_STATUS_END) {
*stats_item += AT_READ_REG(&adapter->hw, hw_reg_addr);
stats_item++;
hw_reg_addr += 4;
}
}
static inline void atl1e_clear_phy_int(struct atl1e_adapter *adapter)
{
u16 phy_data;
spin_lock(&adapter->mdio_lock);
atl1e_read_phy_reg(&adapter->hw, MII_INT_STATUS, &phy_data);
spin_unlock(&adapter->mdio_lock);
}
static bool atl1e_clean_tx_irq(struct atl1e_adapter *adapter)
{
struct atl1e_tx_ring *tx_ring = (struct atl1e_tx_ring *)
&adapter->tx_ring;
struct atl1e_tx_buffer *tx_buffer = NULL;
u16 hw_next_to_clean = AT_READ_REGW(&adapter->hw, REG_TPD_CONS_IDX);
u16 next_to_clean = atomic_read(&tx_ring->next_to_clean);
while (next_to_clean != hw_next_to_clean) {
tx_buffer = &tx_ring->tx_buffer[next_to_clean];
if (tx_buffer->dma) {
pci_unmap_page(adapter->pdev, tx_buffer->dma,
tx_buffer->length, PCI_DMA_TODEVICE);
tx_buffer->dma = 0;
}
if (tx_buffer->skb) {
dev_kfree_skb_irq(tx_buffer->skb);
tx_buffer->skb = NULL;
}
if (++next_to_clean == tx_ring->count)
next_to_clean = 0;
}
atomic_set(&tx_ring->next_to_clean, next_to_clean);
if (netif_queue_stopped(adapter->netdev) &&
netif_carrier_ok(adapter->netdev)) {
netif_wake_queue(adapter->netdev);
}
return true;
}
/*
* atl1e_intr - Interrupt Handler
* @irq: interrupt number
* @data: pointer to a network interface device structure
* @pt_regs: CPU registers structure
*/
static irqreturn_t atl1e_intr(int irq, void *data)
{
struct net_device *netdev = data;
struct atl1e_adapter *adapter = netdev_priv(netdev);
struct pci_dev *pdev = adapter->pdev;
struct atl1e_hw *hw = &adapter->hw;
int max_ints = AT_MAX_INT_WORK;
int handled = IRQ_NONE;
u32 status;
do {
status = AT_READ_REG(hw, REG_ISR);
if ((status & IMR_NORMAL_MASK) == 0 ||
(status & ISR_DIS_INT) != 0) {
if (max_ints != AT_MAX_INT_WORK)
handled = IRQ_HANDLED;
break;
}
/* link event */
if (status & ISR_GPHY)
atl1e_clear_phy_int(adapter);
/* Ack ISR */
AT_WRITE_REG(hw, REG_ISR, status | ISR_DIS_INT);
handled = IRQ_HANDLED;
/* check if PCIE PHY Link down */
if (status & ISR_PHY_LINKDOWN) {
dev_err(&pdev->dev,
"pcie phy linkdown %x\n", status);
if (netif_running(adapter->netdev)) {
/* reset MAC */
atl1e_irq_reset(adapter);
schedule_work(&adapter->reset_task);
break;
}
}
/* check if DMA read/write error */
if (status & (ISR_DMAR_TO_RST | ISR_DMAW_TO_RST)) {
dev_err(&pdev->dev,
"PCIE DMA RW error (status = 0x%x)\n",
status);
atl1e_irq_reset(adapter);
schedule_work(&adapter->reset_task);
break;
}
if (status & ISR_SMB)
atl1e_update_hw_stats(adapter);
/* link event */
if (status & (ISR_GPHY | ISR_MANUAL)) {
adapter->net_stats.tx_carrier_errors++;
atl1e_link_chg_event(adapter);
break;
}
/* transmit event */
if (status & ISR_TX_EVENT)
atl1e_clean_tx_irq(adapter);
if (status & ISR_RX_EVENT) {
/*
* disable rx interrupts, without
* the synchronize_irq bit
*/
AT_WRITE_REG(hw, REG_IMR,
IMR_NORMAL_MASK & ~ISR_RX_EVENT);
AT_WRITE_FLUSH(hw);
if (likely(netif_rx_schedule_prep(netdev,
&adapter->napi)))
__netif_rx_schedule(netdev, &adapter->napi);
}
} while (--max_ints > 0);
/* re-enable Interrupt*/
AT_WRITE_REG(&adapter->hw, REG_ISR, 0);
return handled;
}
static inline void atl1e_rx_checksum(struct atl1e_adapter *adapter,
struct sk_buff *skb, struct atl1e_recv_ret_status *prrs)
{
u8 *packet = (u8 *)(prrs + 1);
struct iphdr *iph;
u16 head_len = ETH_HLEN;
u16 pkt_flags;
u16 err_flags;
skb->ip_summed = CHECKSUM_NONE;
pkt_flags = prrs->pkt_flag;
err_flags = prrs->err_flag;
if (((pkt_flags & RRS_IS_IPV4) || (pkt_flags & RRS_IS_IPV6)) &&
((pkt_flags & RRS_IS_TCP) || (pkt_flags & RRS_IS_UDP))) {
if (pkt_flags & RRS_IS_IPV4) {
if (pkt_flags & RRS_IS_802_3)
head_len += 8;
iph = (struct iphdr *) (packet + head_len);
if (iph->frag_off != 0 && !(pkt_flags & RRS_IS_IP_DF))
goto hw_xsum;
}
if (!(err_flags & (RRS_ERR_IP_CSUM | RRS_ERR_L4_CSUM))) {
skb->ip_summed = CHECKSUM_UNNECESSARY;
return;
}
}
hw_xsum :
return;
}
static struct atl1e_rx_page *atl1e_get_rx_page(struct atl1e_adapter *adapter,
u8 que)
{
struct atl1e_rx_page_desc *rx_page_desc =
(struct atl1e_rx_page_desc *) adapter->rx_ring.rx_page_desc;
u8 rx_using = rx_page_desc[que].rx_using;
return (struct atl1e_rx_page *)&(rx_page_desc[que].rx_page[rx_using]);
}
static void atl1e_clean_rx_irq(struct atl1e_adapter *adapter, u8 que,
int *work_done, int work_to_do)
{
struct pci_dev *pdev = adapter->pdev;
struct net_device *netdev = adapter->netdev;
struct atl1e_rx_ring *rx_ring = (struct atl1e_rx_ring *)
&adapter->rx_ring;
struct atl1e_rx_page_desc *rx_page_desc =
(struct atl1e_rx_page_desc *) rx_ring->rx_page_desc;
struct sk_buff *skb = NULL;
struct atl1e_rx_page *rx_page = atl1e_get_rx_page(adapter, que);
u32 packet_size, write_offset;
struct atl1e_recv_ret_status *prrs;
write_offset = *(rx_page->write_offset_addr);
if (likely(rx_page->read_offset < write_offset)) {
do {
if (*work_done >= work_to_do)
break;
(*work_done)++;
/* get new packet's rrs */
prrs = (struct atl1e_recv_ret_status *) (rx_page->addr +
rx_page->read_offset);
/* check sequence number */
if (prrs->seq_num != rx_page_desc[que].rx_nxseq) {
dev_err(&pdev->dev,
"rx sequence number"
" error (rx=%d) (expect=%d)\n",
prrs->seq_num,
rx_page_desc[que].rx_nxseq);
rx_page_desc[que].rx_nxseq++;
/* just for debug use */
AT_WRITE_REG(&adapter->hw, REG_DEBUG_DATA0,
(((u32)prrs->seq_num) << 16) |
rx_page_desc[que].rx_nxseq);
goto fatal_err;
}
rx_page_desc[que].rx_nxseq++;
/* error packet */
if (prrs->pkt_flag & RRS_IS_ERR_FRAME) {
if (prrs->err_flag & (RRS_ERR_BAD_CRC |
RRS_ERR_DRIBBLE | RRS_ERR_CODE |
RRS_ERR_TRUNC)) {
/* hardware error, discard this packet*/
dev_err(&pdev->dev,
"rx packet desc error %x\n",
*((u32 *)prrs + 1));
goto skip_pkt;
}
}
packet_size = ((prrs->word1 >> RRS_PKT_SIZE_SHIFT) &
RRS_PKT_SIZE_MASK) - 4; /* CRC */
skb = netdev_alloc_skb(netdev,
packet_size + NET_IP_ALIGN);
if (skb == NULL) {
dev_warn(&pdev->dev, "%s: Memory squeeze,"
"deferring packet.\n", netdev->name);
goto skip_pkt;
}
skb_reserve(skb, NET_IP_ALIGN);
skb->dev = netdev;
memcpy(skb->data, (u8 *)(prrs + 1), packet_size);
skb_put(skb, packet_size);
skb->protocol = eth_type_trans(skb, netdev);
atl1e_rx_checksum(adapter, skb, prrs);
if (unlikely(adapter->vlgrp &&
(prrs->pkt_flag & RRS_IS_VLAN_TAG))) {
u16 vlan_tag = (prrs->vtag >> 4) |
((prrs->vtag & 7) << 13) |
((prrs->vtag & 8) << 9);
dev_dbg(&pdev->dev,
"RXD VLAN TAG<RRD>=0x%04x\n",
prrs->vtag);
vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
vlan_tag);
} else {
netif_receive_skb(skb);
}
netdev->last_rx = jiffies;
skip_pkt:
/* skip current packet whether it's ok or not. */
rx_page->read_offset +=
(((u32)((prrs->word1 >> RRS_PKT_SIZE_SHIFT) &
RRS_PKT_SIZE_MASK) +
sizeof(struct atl1e_recv_ret_status) + 31) &
0xFFFFFFE0);
if (rx_page->read_offset >= rx_ring->page_size) {
/* mark this page clean */
u16 reg_addr;
u8 rx_using;
rx_page->read_offset =
*(rx_page->write_offset_addr) = 0;
rx_using = rx_page_desc[que].rx_using;
reg_addr =
atl1e_rx_page_vld_regs[que][rx_using];
AT_WRITE_REGB(&adapter->hw, reg_addr, 1);
rx_page_desc[que].rx_using ^= 1;
rx_page = atl1e_get_rx_page(adapter, que);
}
write_offset = *(rx_page->write_offset_addr);
} while (rx_page->read_offset < write_offset);
}
return;
fatal_err:
if (!test_bit(__AT_DOWN, &adapter->flags))
schedule_work(&adapter->reset_task);
}
/*
* atl1e_clean - NAPI Rx polling callback
* @adapter: board private structure
*/
static int atl1e_clean(struct napi_struct *napi, int budget)
{
struct atl1e_adapter *adapter =
container_of(napi, struct atl1e_adapter, napi);
struct net_device *netdev = adapter->netdev;
struct pci_dev *pdev = adapter->pdev;
u32 imr_data;
int work_done = 0;
/* Keep link state information with original netdev */
if (!netif_carrier_ok(adapter->netdev))
goto quit_polling;
atl1e_clean_rx_irq(adapter, 0, &work_done, budget);
/* If no Tx and not enough Rx work done, exit the polling mode */
if (work_done < budget) {
quit_polling:
netif_rx_complete(netdev, napi);
imr_data = AT_READ_REG(&adapter->hw, REG_IMR);
AT_WRITE_REG(&adapter->hw, REG_IMR, imr_data | ISR_RX_EVENT);
/* test debug */
if (test_bit(__AT_DOWN, &adapter->flags)) {
atomic_dec(&adapter->irq_sem);
dev_err(&pdev->dev,
"atl1e_clean is called when AT_DOWN\n");
}
/* reenable RX intr */
/*atl1e_irq_enable(adapter); */
}
return work_done;
}
#ifdef CONFIG_NET_POLL_CONTROLLER
/*
* Polling 'interrupt' - used by things like netconsole to send skbs
* without having to re-enable interrupts. It's not called while
* the interrupt routine is executing.
*/
static void atl1e_netpoll(struct net_device *netdev)
{
struct atl1e_adapter *adapter = netdev_priv(netdev);
disable_irq(adapter->pdev->irq);
atl1e_intr(adapter->pdev->irq, netdev);
enable_irq(adapter->pdev->irq);
}
#endif
static inline u16 atl1e_tpd_avail(struct atl1e_adapter *adapter)
{
struct atl1e_tx_ring *tx_ring = &adapter->tx_ring;
u16 next_to_use = 0;
u16 next_to_clean = 0;
next_to_clean = atomic_read(&tx_ring->next_to_clean);
next_to_use = tx_ring->next_to_use;
return (u16)(next_to_clean > next_to_use) ?
(next_to_clean - next_to_use - 1) :
(tx_ring->count + next_to_clean - next_to_use - 1);
}
/*
* get next usable tpd
* Note: should call atl1e_tdp_avail to make sure
* there is enough tpd to use
*/
static struct atl1e_tpd_desc *atl1e_get_tpd(struct atl1e_adapter *adapter)
{
struct atl1e_tx_ring *tx_ring = &adapter->tx_ring;
u16 next_to_use = 0;
next_to_use = tx_ring->next_to_use;
if (++tx_ring->next_to_use == tx_ring->count)
tx_ring->next_to_use = 0;
memset(&tx_ring->desc[next_to_use], 0, sizeof(struct atl1e_tpd_desc));
return (struct atl1e_tpd_desc *)&tx_ring->desc[next_to_use];
}
static struct atl1e_tx_buffer *
atl1e_get_tx_buffer(struct atl1e_adapter *adapter, struct atl1e_tpd_desc *tpd)
{
struct atl1e_tx_ring *tx_ring = &adapter->tx_ring;
return &tx_ring->tx_buffer[tpd - tx_ring->desc];
}
/* Calculate the transmit packet descript needed*/
static u16 atl1e_cal_tdp_req(const struct sk_buff *skb)
{
int i = 0;
u16 tpd_req = 1;
u16 fg_size = 0;
u16 proto_hdr_len = 0;
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
fg_size = skb_shinfo(skb)->frags[i].size;
tpd_req += ((fg_size + MAX_TX_BUF_LEN - 1) >> MAX_TX_BUF_SHIFT);
}
if (skb_is_gso(skb)) {
if (skb->protocol == ntohs(ETH_P_IP) ||
(skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6)) {
proto_hdr_len = skb_transport_offset(skb) +
tcp_hdrlen(skb);
if (proto_hdr_len < skb_headlen(skb)) {
tpd_req += ((skb_headlen(skb) - proto_hdr_len +
MAX_TX_BUF_LEN - 1) >>
MAX_TX_BUF_SHIFT);
}
}
}
return tpd_req;
}
static int atl1e_tso_csum(struct atl1e_adapter *adapter,
struct sk_buff *skb, struct atl1e_tpd_desc *tpd)
{
struct pci_dev *pdev = adapter->pdev;
u8 hdr_len;
u32 real_len;
unsigned short offload_type;
int err;
if (skb_is_gso(skb)) {
if (skb_header_cloned(skb)) {
err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
if (unlikely(err))
return -1;
}
offload_type = skb_shinfo(skb)->gso_type;
if (offload_type & SKB_GSO_TCPV4) {
real_len = (((unsigned char *)ip_hdr(skb) - skb->data)
+ ntohs(ip_hdr(skb)->tot_len));
if (real_len < skb->len)
pskb_trim(skb, real_len);
hdr_len = (skb_transport_offset(skb) + tcp_hdrlen(skb));
if (unlikely(skb->len == hdr_len)) {
/* only xsum need */
dev_warn(&pdev->dev,
"IPV4 tso with zero data??\n");
goto check_sum;
} else {
ip_hdr(skb)->check = 0;
ip_hdr(skb)->tot_len = 0;
tcp_hdr(skb)->check = ~csum_tcpudp_magic(
ip_hdr(skb)->saddr,
ip_hdr(skb)->daddr,
0, IPPROTO_TCP, 0);
tpd->word3 |= (ip_hdr(skb)->ihl &
TDP_V4_IPHL_MASK) <<
TPD_V4_IPHL_SHIFT;
tpd->word3 |= ((tcp_hdrlen(skb) >> 2) &
TPD_TCPHDRLEN_MASK) <<
TPD_TCPHDRLEN_SHIFT;
tpd->word3 |= ((skb_shinfo(skb)->gso_size) &
TPD_MSS_MASK) << TPD_MSS_SHIFT;
tpd->word3 |= 1 << TPD_SEGMENT_EN_SHIFT;
}
return 0;
}
if (offload_type & SKB_GSO_TCPV6) {
real_len = (((unsigned char *)ipv6_hdr(skb) - skb->data)
+ ntohs(ipv6_hdr(skb)->payload_len));
if (real_len < skb->len)
pskb_trim(skb, real_len);
/* check payload == 0 byte ? */
hdr_len = (skb_transport_offset(skb) + tcp_hdrlen(skb));
if (unlikely(skb->len == hdr_len)) {
/* only xsum need */
dev_warn(&pdev->dev,
"IPV6 tso with zero data??\n");
goto check_sum;
} else {
tcp_hdr(skb)->check = ~csum_ipv6_magic(
&ipv6_hdr(skb)->saddr,
&ipv6_hdr(skb)->daddr,
0, IPPROTO_TCP, 0);
tpd->word3 |= 1 << TPD_IP_VERSION_SHIFT;
hdr_len >>= 1;
tpd->word3 |= (hdr_len & TPD_V6_IPHLLO_MASK) <<
TPD_V6_IPHLLO_SHIFT;
tpd->word3 |= ((hdr_len >> 3) &
TPD_V6_IPHLHI_MASK) <<
TPD_V6_IPHLHI_SHIFT;
tpd->word3 |= (tcp_hdrlen(skb) >> 2 &
TPD_TCPHDRLEN_MASK) <<
TPD_TCPHDRLEN_SHIFT;
tpd->word3 |= ((skb_shinfo(skb)->gso_size) &
TPD_MSS_MASK) << TPD_MSS_SHIFT;
tpd->word3 |= 1 << TPD_SEGMENT_EN_SHIFT;
}
}
return 0;
}
check_sum:
if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
u8 css, cso;
cso = skb_transport_offset(skb);
if (unlikely(cso & 0x1)) {
dev_err(&adapter->pdev->dev,
"pay load offset should not ant event number\n");
return -1;
} else {
css = cso + skb->csum_offset;
tpd->word3 |= (cso & TPD_PLOADOFFSET_MASK) <<
TPD_PLOADOFFSET_SHIFT;
tpd->word3 |= (css & TPD_CCSUMOFFSET_MASK) <<
TPD_CCSUMOFFSET_SHIFT;
tpd->word3 |= 1 << TPD_CC_SEGMENT_EN_SHIFT;
}
}
return 0;
}
static void atl1e_tx_map(struct atl1e_adapter *adapter,
struct sk_buff *skb, struct atl1e_tpd_desc *tpd)
{
struct atl1e_tpd_desc *use_tpd = NULL;
struct atl1e_tx_buffer *tx_buffer = NULL;
u16 buf_len = skb->len - skb->data_len;
u16 map_len = 0;
u16 mapped_len = 0;
u16 hdr_len = 0;
u16 nr_frags;
u16 f;
int segment;
nr_frags = skb_shinfo(skb)->nr_frags;
segment = (tpd->word3 >> TPD_SEGMENT_EN_SHIFT) & TPD_SEGMENT_EN_MASK;
if (segment) {
/* TSO */
map_len = hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
use_tpd = tpd;
tx_buffer = atl1e_get_tx_buffer(adapter, use_tpd);
tx_buffer->length = map_len;
tx_buffer->dma = pci_map_single(adapter->pdev,
skb->data, hdr_len, PCI_DMA_TODEVICE);
mapped_len += map_len;
use_tpd->buffer_addr = cpu_to_le64(tx_buffer->dma);
use_tpd->word2 = (use_tpd->word2 & (~TPD_BUFLEN_MASK)) |
((cpu_to_le32(tx_buffer->length) &
TPD_BUFLEN_MASK) << TPD_BUFLEN_SHIFT);
}
while (mapped_len < buf_len) {
/* mapped_len == 0, means we should use the first tpd,
which is given by caller */
if (mapped_len == 0) {
use_tpd = tpd;
} else {
use_tpd = atl1e_get_tpd(adapter);
memcpy(use_tpd, tpd, sizeof(struct atl1e_tpd_desc));
}
tx_buffer = atl1e_get_tx_buffer(adapter, use_tpd);
tx_buffer->skb = NULL;
tx_buffer->length = map_len =
((buf_len - mapped_len) >= MAX_TX_BUF_LEN) ?
MAX_TX_BUF_LEN : (buf_len - mapped_len);
tx_buffer->dma =
pci_map_single(adapter->pdev, skb->data + mapped_len,
map_len, PCI_DMA_TODEVICE);
mapped_len += map_len;
use_tpd->buffer_addr = cpu_to_le64(tx_buffer->dma);
use_tpd->word2 = (use_tpd->word2 & (~TPD_BUFLEN_MASK)) |
((cpu_to_le32(tx_buffer->length) &
TPD_BUFLEN_MASK) << TPD_BUFLEN_SHIFT);
}
for (f = 0; f < nr_frags; f++) {
struct skb_frag_struct *frag;
u16 i;
u16 seg_num;
frag = &skb_shinfo(skb)->frags[f];
buf_len = frag->size;
seg_num = (buf_len + MAX_TX_BUF_LEN - 1) / MAX_TX_BUF_LEN;
for (i = 0; i < seg_num; i++) {
use_tpd = atl1e_get_tpd(adapter);
memcpy(use_tpd, tpd, sizeof(struct atl1e_tpd_desc));
tx_buffer = atl1e_get_tx_buffer(adapter, use_tpd);
if (tx_buffer->skb)
BUG();
tx_buffer->skb = NULL;
tx_buffer->length =
(buf_len > MAX_TX_BUF_LEN) ?
MAX_TX_BUF_LEN : buf_len;
buf_len -= tx_buffer->length;
tx_buffer->dma =
pci_map_page(adapter->pdev, frag->page,
frag->page_offset +
(i * MAX_TX_BUF_LEN),
tx_buffer->length,
PCI_DMA_TODEVICE);
use_tpd->buffer_addr = cpu_to_le64(tx_buffer->dma);
use_tpd->word2 = (use_tpd->word2 & (~TPD_BUFLEN_MASK)) |
((cpu_to_le32(tx_buffer->length) &
TPD_BUFLEN_MASK) << TPD_BUFLEN_SHIFT);
}
}
if ((tpd->word3 >> TPD_SEGMENT_EN_SHIFT) & TPD_SEGMENT_EN_MASK)
/* note this one is a tcp header */
tpd->word3 |= 1 << TPD_HDRFLAG_SHIFT;
/* The last tpd */
use_tpd->word3 |= 1 << TPD_EOP_SHIFT;
/* The last buffer info contain the skb address,
so it will be free after unmap */
tx_buffer->skb = skb;
}
static void atl1e_tx_queue(struct atl1e_adapter *adapter, u16 count,
struct atl1e_tpd_desc *tpd)
{
struct atl1e_tx_ring *tx_ring = &adapter->tx_ring;
/* Force memory writes to complete before letting h/w
* know there are new descriptors to fetch. (Only
* applicable for weak-ordered memory model archs,
* such as IA-64). */
wmb();
AT_WRITE_REG(&adapter->hw, REG_MB_TPD_PROD_IDX, tx_ring->next_to_use);
}
static int atl1e_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
{
struct atl1e_adapter *adapter = netdev_priv(netdev);
unsigned long flags;
u16 tpd_req = 1;
struct atl1e_tpd_desc *tpd;
if (test_bit(__AT_DOWN, &adapter->flags)) {
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
if (unlikely(skb->len <= 0)) {
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
tpd_req = atl1e_cal_tdp_req(skb);
if (!spin_trylock_irqsave(&adapter->tx_lock, flags))
return NETDEV_TX_LOCKED;
if (atl1e_tpd_avail(adapter) < tpd_req) {
/* no enough descriptor, just stop queue */
netif_stop_queue(netdev);
spin_unlock_irqrestore(&adapter->tx_lock, flags);
return NETDEV_TX_BUSY;
}
tpd = atl1e_get_tpd(adapter);
if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
u16 vlan_tag = vlan_tx_tag_get(skb);
u16 atl1e_vlan_tag;
tpd->word3 |= 1 << TPD_INS_VL_TAG_SHIFT;
AT_VLAN_TAG_TO_TPD_TAG(vlan_tag, atl1e_vlan_tag);
tpd->word2 |= (atl1e_vlan_tag & TPD_VLANTAG_MASK) <<
TPD_VLAN_SHIFT;
}
if (skb->protocol == ntohs(ETH_P_8021Q))
tpd->word3 |= 1 << TPD_VL_TAGGED_SHIFT;
if (skb_network_offset(skb) != ETH_HLEN)
tpd->word3 |= 1 << TPD_ETHTYPE_SHIFT; /* 802.3 frame */
/* do TSO and check sum */
if (atl1e_tso_csum(adapter, skb, tpd) != 0) {
spin_unlock_irqrestore(&adapter->tx_lock, flags);
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
atl1e_tx_map(adapter, skb, tpd);
atl1e_tx_queue(adapter, tpd_req, tpd);
netdev->trans_start = jiffies;
spin_unlock_irqrestore(&adapter->tx_lock, flags);
return NETDEV_TX_OK;
}
static void atl1e_free_irq(struct atl1e_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
free_irq(adapter->pdev->irq, netdev);
if (adapter->have_msi)
pci_disable_msi(adapter->pdev);
}
static int atl1e_request_irq(struct atl1e_adapter *adapter)
{
struct pci_dev *pdev = adapter->pdev;
struct net_device *netdev = adapter->netdev;
int flags = 0;
int err = 0;
adapter->have_msi = true;
err = pci_enable_msi(adapter->pdev);
if (err) {
dev_dbg(&pdev->dev,
"Unable to allocate MSI interrupt Error: %d\n", err);
adapter->have_msi = false;
} else
netdev->irq = pdev->irq;
if (!adapter->have_msi)
flags |= IRQF_SHARED;
err = request_irq(adapter->pdev->irq, &atl1e_intr, flags,
netdev->name, netdev);
if (err) {
dev_dbg(&pdev->dev,
"Unable to allocate interrupt Error: %d\n", err);
if (adapter->have_msi)
pci_disable_msi(adapter->pdev);
return err;
}
dev_dbg(&pdev->dev, "atl1e_request_irq OK\n");
return err;
}
int atl1e_up(struct atl1e_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
int err = 0;
u32 val;
/* hardware has been reset, we need to reload some things */
err = atl1e_init_hw(&adapter->hw);
if (err) {
err = -EIO;
return err;
}
atl1e_init_ring_ptrs(adapter);
atl1e_set_multi(netdev);
atl1e_restore_vlan(adapter);
if (atl1e_configure(adapter)) {
err = -EIO;
goto err_up;
}
clear_bit(__AT_DOWN, &adapter->flags);
napi_enable(&adapter->napi);
atl1e_irq_enable(adapter);
val = AT_READ_REG(&adapter->hw, REG_MASTER_CTRL);
AT_WRITE_REG(&adapter->hw, REG_MASTER_CTRL,
val | MASTER_CTRL_MANUAL_INT);
err_up:
return err;
}
void atl1e_down(struct atl1e_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
/* signal that we're down so the interrupt handler does not
* reschedule our watchdog timer */
set_bit(__AT_DOWN, &adapter->flags);
#ifdef NETIF_F_LLTX
netif_stop_queue(netdev);
#else
netif_tx_disable(netdev);
#endif
/* reset MAC to disable all RX/TX */
atl1e_reset_hw(&adapter->hw);
msleep(1);
napi_disable(&adapter->napi);
atl1e_del_timer(adapter);
atl1e_irq_disable(adapter);
netif_carrier_off(netdev);
adapter->link_speed = SPEED_0;
adapter->link_duplex = -1;
atl1e_clean_tx_ring(adapter);
atl1e_clean_rx_ring(adapter);
}
/*
* atl1e_open - Called when a network interface is made active
* @netdev: network interface device structure
*
* Returns 0 on success, negative value on failure
*
* The open entry point is called when a network interface is made
* active by the system (IFF_UP). At this point all resources needed
* for transmit and receive operations are allocated, the interrupt
* handler is registered with the OS, the watchdog timer is started,
* and the stack is notified that the interface is ready.
*/
static int atl1e_open(struct net_device *netdev)
{
struct atl1e_adapter *adapter = netdev_priv(netdev);
int err;
/* disallow open during test */
if (test_bit(__AT_TESTING, &adapter->flags))
return -EBUSY;
/* allocate rx/tx dma buffer & descriptors */
atl1e_init_ring_resources(adapter);
err = atl1e_setup_ring_resources(adapter);
if (unlikely(err))
return err;
err = atl1e_request_irq(adapter);
if (unlikely(err))
goto err_req_irq;
err = atl1e_up(adapter);
if (unlikely(err))
goto err_up;
return 0;
err_up:
atl1e_free_irq(adapter);
err_req_irq:
atl1e_free_ring_resources(adapter);
atl1e_reset_hw(&adapter->hw);
return err;
}
/*
* atl1e_close - Disables a network interface
* @netdev: network interface device structure
*
* Returns 0, this is not allowed to fail
*
* The close entry point is called when an interface is de-activated
* by the OS. The hardware is still under the drivers control, but
* needs to be disabled. A global MAC reset is issued to stop the
* hardware, and all transmit and receive resources are freed.
*/
static int atl1e_close(struct net_device *netdev)
{
struct atl1e_adapter *adapter = netdev_priv(netdev);
WARN_ON(test_bit(__AT_RESETTING, &adapter->flags));
atl1e_down(adapter);
atl1e_free_irq(adapter);
atl1e_free_ring_resources(adapter);
return 0;
}
#ifdef CONFIG_PM
static int atl1e_suspend(struct pci_dev *pdev, pm_message_t state)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct atl1e_adapter *adapter = netdev_priv(netdev);
struct atl1e_hw *hw = &adapter->hw;
u32 ctrl = 0;
u32 mac_ctrl_data = 0;
u32 wol_ctrl_data = 0;
u16 mii_advertise_data = 0;
u16 mii_bmsr_data = 0;
u16 mii_intr_status_data = 0;
u32 wufc = adapter->wol;
u32 i;
#ifdef CONFIG_PM
int retval = 0;
#endif
if (netif_running(netdev)) {
WARN_ON(test_bit(__AT_RESETTING, &adapter->flags));
atl1e_down(adapter);
}
netif_device_detach(netdev);
#ifdef CONFIG_PM
retval = pci_save_state(pdev);
if (retval)
return retval;
#endif
if (wufc) {
/* get link status */
atl1e_read_phy_reg(hw, MII_BMSR, (u16 *)&mii_bmsr_data);
atl1e_read_phy_reg(hw, MII_BMSR, (u16 *)&mii_bmsr_data);
mii_advertise_data = MII_AR_10T_HD_CAPS;
if ((atl1e_write_phy_reg(hw, MII_AT001_CR, 0) != 0) ||
(atl1e_write_phy_reg(hw,
MII_ADVERTISE, mii_advertise_data) != 0) ||
(atl1e_phy_commit(hw)) != 0) {
dev_dbg(&pdev->dev, "set phy register failed\n");
goto wol_dis;
}
hw->phy_configured = false; /* re-init PHY when resume */
/* turn on magic packet wol */
if (wufc & AT_WUFC_MAG)
wol_ctrl_data |= WOL_MAGIC_EN | WOL_MAGIC_PME_EN;
if (wufc & AT_WUFC_LNKC) {
/* if orignal link status is link, just wait for retrive link */
if (mii_bmsr_data & BMSR_LSTATUS) {
for (i = 0; i < AT_SUSPEND_LINK_TIMEOUT; i++) {
msleep(100);
atl1e_read_phy_reg(hw, MII_BMSR,
(u16 *)&mii_bmsr_data);
if (mii_bmsr_data & BMSR_LSTATUS)
break;
}
if ((mii_bmsr_data & BMSR_LSTATUS) == 0)
dev_dbg(&pdev->dev,
"%s: Link may change"
"when suspend\n",
atl1e_driver_name);
}
wol_ctrl_data |= WOL_LINK_CHG_EN | WOL_LINK_CHG_PME_EN;
/* only link up can wake up */
if (atl1e_write_phy_reg(hw, MII_INT_CTRL, 0x400) != 0) {
dev_dbg(&pdev->dev, "%s: read write phy "
"register failed.\n",
atl1e_driver_name);
goto wol_dis;
}
}
/* clear phy interrupt */
atl1e_read_phy_reg(hw, MII_INT_STATUS, &mii_intr_status_data);
/* Config MAC Ctrl register */
mac_ctrl_data = MAC_CTRL_RX_EN;
/* set to 10/100M halt duplex */
mac_ctrl_data |= MAC_CTRL_SPEED_10_100 << MAC_CTRL_SPEED_SHIFT;
mac_ctrl_data |= (((u32)adapter->hw.preamble_len &
MAC_CTRL_PRMLEN_MASK) <<
MAC_CTRL_PRMLEN_SHIFT);
if (adapter->vlgrp)
mac_ctrl_data |= MAC_CTRL_RMV_VLAN;
/* magic packet maybe Broadcast&multicast&Unicast frame */
if (wufc & AT_WUFC_MAG)
mac_ctrl_data |= MAC_CTRL_BC_EN;
dev_dbg(&pdev->dev,
"%s: suspend MAC=0x%x\n",
atl1e_driver_name, mac_ctrl_data);
AT_WRITE_REG(hw, REG_WOL_CTRL, wol_ctrl_data);
AT_WRITE_REG(hw, REG_MAC_CTRL, mac_ctrl_data);
/* pcie patch */
ctrl = AT_READ_REG(hw, REG_PCIE_PHYMISC);
ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
AT_WRITE_REG(hw, REG_PCIE_PHYMISC, ctrl);
pci_enable_wake(pdev, pci_choose_state(pdev, state), 1);
goto suspend_exit;
}
wol_dis:
/* WOL disabled */
AT_WRITE_REG(hw, REG_WOL_CTRL, 0);
/* pcie patch */
ctrl = AT_READ_REG(hw, REG_PCIE_PHYMISC);
ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
AT_WRITE_REG(hw, REG_PCIE_PHYMISC, ctrl);
atl1e_force_ps(hw);
hw->phy_configured = false; /* re-init PHY when resume */
pci_enable_wake(pdev, pci_choose_state(pdev, state), 0);
suspend_exit:
if (netif_running(netdev))
atl1e_free_irq(adapter);
pci_disable_device(pdev);
pci_set_power_state(pdev, pci_choose_state(pdev, state));
return 0;
}
static int atl1e_resume(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct atl1e_adapter *adapter = netdev_priv(netdev);
u32 err;
pci_set_power_state(pdev, PCI_D0);
pci_restore_state(pdev);
err = pci_enable_device(pdev);
if (err) {
dev_err(&pdev->dev, "ATL1e: Cannot enable PCI"
" device from suspend\n");
return err;
}
pci_set_master(pdev);
AT_READ_REG(&adapter->hw, REG_WOL_CTRL); /* clear WOL status */
pci_enable_wake(pdev, PCI_D3hot, 0);
pci_enable_wake(pdev, PCI_D3cold, 0);
AT_WRITE_REG(&adapter->hw, REG_WOL_CTRL, 0);
if (netif_running(netdev))
err = atl1e_request_irq(adapter);
if (err)
return err;
atl1e_reset_hw(&adapter->hw);
if (netif_running(netdev))
atl1e_up(adapter);
netif_device_attach(netdev);
return 0;
}
#endif
static void atl1e_shutdown(struct pci_dev *pdev)
{
atl1e_suspend(pdev, PMSG_SUSPEND);
}
static int atl1e_init_netdev(struct net_device *netdev, struct pci_dev *pdev)
{
SET_NETDEV_DEV(netdev, &pdev->dev);
pci_set_drvdata(pdev, netdev);
netdev->irq = pdev->irq;
netdev->open = &atl1e_open;
netdev->stop = &atl1e_close;
netdev->hard_start_xmit = &atl1e_xmit_frame;
netdev->get_stats = &atl1e_get_stats;
netdev->set_multicast_list = &atl1e_set_multi;
netdev->set_mac_address = &atl1e_set_mac_addr;
netdev->change_mtu = &atl1e_change_mtu;
netdev->do_ioctl = &atl1e_ioctl;
netdev->tx_timeout = &atl1e_tx_timeout;
netdev->watchdog_timeo = AT_TX_WATCHDOG;
netdev->vlan_rx_register = atl1e_vlan_rx_register;
#ifdef CONFIG_NET_POLL_CONTROLLER
netdev->poll_controller = atl1e_netpoll;
#endif
atl1e_set_ethtool_ops(netdev);
netdev->features = NETIF_F_SG | NETIF_F_HW_CSUM |
NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
netdev->features |= NETIF_F_LLTX;
netdev->features |= NETIF_F_TSO;
netdev->features |= NETIF_F_TSO6;
return 0;
}
/*
* atl1e_probe - Device Initialization Routine
* @pdev: PCI device information struct
* @ent: entry in atl1e_pci_tbl
*
* Returns 0 on success, negative on failure
*
* atl1e_probe initializes an adapter identified by a pci_dev structure.
* The OS initialization, configuring of the adapter private structure,
* and a hardware reset occur.
*/
static int __devinit atl1e_probe(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
struct net_device *netdev;
struct atl1e_adapter *adapter = NULL;
static int cards_found;
int err = 0;
err = pci_enable_device(pdev);
if (err) {
dev_err(&pdev->dev, "cannot enable PCI device\n");
return err;
}
/*
* The atl1e chip can DMA to 64-bit addresses, but it uses a single
* shared register for the high 32 bits, so only a single, aligned,
* 4 GB physical address range can be used at a time.
*
* Supporting 64-bit DMA on this hardware is more trouble than it's
* worth. It is far easier to limit to 32-bit DMA than update
* various kernel subsystems to support the mechanics required by a
* fixed-high-32-bit system.
*/
if ((pci_set_dma_mask(pdev, DMA_32BIT_MASK) != 0) ||
(pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK) != 0)) {
dev_err(&pdev->dev, "No usable DMA configuration,aborting\n");
goto err_dma;
}
err = pci_request_regions(pdev, atl1e_driver_name);
if (err) {
dev_err(&pdev->dev, "cannot obtain PCI resources\n");
goto err_pci_reg;
}
pci_set_master(pdev);
netdev = alloc_etherdev(sizeof(struct atl1e_adapter));
if (netdev == NULL) {
err = -ENOMEM;
dev_err(&pdev->dev, "etherdev alloc failed\n");
goto err_alloc_etherdev;
}
err = atl1e_init_netdev(netdev, pdev);
if (err) {
dev_err(&pdev->dev, "init netdevice failed\n");
goto err_init_netdev;
}
adapter = netdev_priv(netdev);
adapter->bd_number = cards_found;
adapter->netdev = netdev;
adapter->pdev = pdev;
adapter->hw.adapter = adapter;
adapter->hw.hw_addr = pci_iomap(pdev, BAR_0, 0);
if (!adapter->hw.hw_addr) {
err = -EIO;
dev_err(&pdev->dev, "cannot map device registers\n");
goto err_ioremap;
}
netdev->base_addr = (unsigned long)adapter->hw.hw_addr;
/* init mii data */
adapter->mii.dev = netdev;
adapter->mii.mdio_read = atl1e_mdio_read;
adapter->mii.mdio_write = atl1e_mdio_write;
adapter->mii.phy_id_mask = 0x1f;
adapter->mii.reg_num_mask = MDIO_REG_ADDR_MASK;
netif_napi_add(netdev, &adapter->napi, atl1e_clean, 64);
init_timer(&adapter->phy_config_timer);
adapter->phy_config_timer.function = &atl1e_phy_config;
adapter->phy_config_timer.data = (unsigned long) adapter;
/* get user settings */
atl1e_check_options(adapter);
/*
* Mark all PCI regions associated with PCI device
* pdev as being reserved by owner atl1e_driver_name
* Enables bus-mastering on the device and calls
* pcibios_set_master to do the needed arch specific settings
*/
atl1e_setup_pcicmd(pdev);
/* setup the private structure */
err = atl1e_sw_init(adapter);
if (err) {
dev_err(&pdev->dev, "net device private data init failed\n");
goto err_sw_init;
}
/* Init GPHY as early as possible due to power saving issue */
spin_lock(&adapter->mdio_lock);
atl1e_phy_init(&adapter->hw);
spin_unlock(&adapter->mdio_lock);
/* reset the controller to
* put the device in a known good starting state */
err = atl1e_reset_hw(&adapter->hw);
if (err) {
err = -EIO;
goto err_reset;
}
if (atl1e_read_mac_addr(&adapter->hw) != 0) {
err = -EIO;
dev_err(&pdev->dev, "get mac address failed\n");
goto err_eeprom;
}
memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
dev_dbg(&pdev->dev, "mac address : %02x-%02x-%02x-%02x-%02x-%02x\n",
adapter->hw.mac_addr[0], adapter->hw.mac_addr[1],
adapter->hw.mac_addr[2], adapter->hw.mac_addr[3],
adapter->hw.mac_addr[4], adapter->hw.mac_addr[5]);
INIT_WORK(&adapter->reset_task, atl1e_reset_task);
INIT_WORK(&adapter->link_chg_task, atl1e_link_chg_task);
err = register_netdev(netdev);
if (err) {
dev_err(&pdev->dev, "register netdevice failed\n");
goto err_register;
}
/* assume we have no link for now */
netif_stop_queue(netdev);
netif_carrier_off(netdev);
cards_found++;
return 0;
err_reset:
err_register:
err_sw_init:
err_eeprom:
iounmap(adapter->hw.hw_addr);
err_init_netdev:
err_ioremap:
free_netdev(netdev);
err_alloc_etherdev:
pci_release_regions(pdev);
err_pci_reg:
err_dma:
pci_disable_device(pdev);
return err;
}
/*
* atl1e_remove - Device Removal Routine
* @pdev: PCI device information struct
*
* atl1e_remove is called by the PCI subsystem to alert the driver
* that it should release a PCI device. The could be caused by a
* Hot-Plug event, or because the driver is going to be removed from
* memory.
*/
static void __devexit atl1e_remove(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct atl1e_adapter *adapter = netdev_priv(netdev);
/*
* flush_scheduled work may reschedule our watchdog task, so
* explicitly disable watchdog tasks from being rescheduled
*/
set_bit(__AT_DOWN, &adapter->flags);
atl1e_del_timer(adapter);
atl1e_cancel_work(adapter);
unregister_netdev(netdev);
atl1e_free_ring_resources(adapter);
atl1e_force_ps(&adapter->hw);
iounmap(adapter->hw.hw_addr);
pci_release_regions(pdev);
free_netdev(netdev);
pci_disable_device(pdev);
}
/*
* atl1e_io_error_detected - called when PCI error is detected
* @pdev: Pointer to PCI device
* @state: The current pci connection state
*
* This function is called after a PCI bus error affecting
* this device has been detected.
*/
static pci_ers_result_t
atl1e_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct atl1e_adapter *adapter = netdev->priv;
netif_device_detach(netdev);
if (netif_running(netdev))
atl1e_down(adapter);
pci_disable_device(pdev);
/* Request a slot slot reset. */
return PCI_ERS_RESULT_NEED_RESET;
}
/*
* atl1e_io_slot_reset - called after the pci bus has been reset.
* @pdev: Pointer to PCI device
*
* Restart the card from scratch, as if from a cold-boot. Implementation
* resembles the first-half of the e1000_resume routine.
*/
static pci_ers_result_t atl1e_io_slot_reset(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct atl1e_adapter *adapter = netdev->priv;
if (pci_enable_device(pdev)) {
dev_err(&pdev->dev,
"ATL1e: Cannot re-enable PCI device after reset.\n");
return PCI_ERS_RESULT_DISCONNECT;
}
pci_set_master(pdev);
pci_enable_wake(pdev, PCI_D3hot, 0);
pci_enable_wake(pdev, PCI_D3cold, 0);
atl1e_reset_hw(&adapter->hw);
return PCI_ERS_RESULT_RECOVERED;
}
/*
* atl1e_io_resume - called when traffic can start flowing again.
* @pdev: Pointer to PCI device
*
* This callback is called when the error recovery driver tells us that
* its OK to resume normal operation. Implementation resembles the
* second-half of the atl1e_resume routine.
*/
static void atl1e_io_resume(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct atl1e_adapter *adapter = netdev->priv;
if (netif_running(netdev)) {
if (atl1e_up(adapter)) {
dev_err(&pdev->dev,
"ATL1e: can't bring device back up after reset\n");
return;
}
}
netif_device_attach(netdev);
}
static struct pci_error_handlers atl1e_err_handler = {
.error_detected = atl1e_io_error_detected,
.slot_reset = atl1e_io_slot_reset,
.resume = atl1e_io_resume,
};
static struct pci_driver atl1e_driver = {
.name = atl1e_driver_name,
.id_table = atl1e_pci_tbl,
.probe = atl1e_probe,
.remove = __devexit_p(atl1e_remove),
/* Power Managment Hooks */
#ifdef CONFIG_PM
.suspend = atl1e_suspend,
.resume = atl1e_resume,
#endif
.shutdown = atl1e_shutdown,
.err_handler = &atl1e_err_handler
};
/*
* atl1e_init_module - Driver Registration Routine
*
* atl1e_init_module is the first routine called when the driver is
* loaded. All it does is register with the PCI subsystem.
*/
static int __init atl1e_init_module(void)
{
return pci_register_driver(&atl1e_driver);
}
/*
* atl1e_exit_module - Driver Exit Cleanup Routine
*
* atl1e_exit_module is called just before the driver is removed
* from memory.
*/
static void __exit atl1e_exit_module(void)
{
pci_unregister_driver(&atl1e_driver);
}
module_init(atl1e_init_module);
module_exit(atl1e_exit_module);
/*
* Copyright(c) 2007 Atheros Corporation. All rights reserved.
*
* Derived from Intel e1000 driver
* Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc., 59
* Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include <linux/netdevice.h>
#include "atl1e.h"
/* This is the only thing that needs to be changed to adjust the
* maximum number of ports that the driver can manage.
*/
#define ATL1E_MAX_NIC 32
#define OPTION_UNSET -1
#define OPTION_DISABLED 0
#define OPTION_ENABLED 1
/* All parameters are treated the same, as an integer array of values.
* This macro just reduces the need to repeat the same declaration code
* over and over (plus this helps to avoid typo bugs).
*/
#define ATL1E_PARAM_INIT { [0 ... ATL1E_MAX_NIC] = OPTION_UNSET }
#define ATL1E_PARAM(x, desc) \
static int __devinitdata x[ATL1E_MAX_NIC + 1] = ATL1E_PARAM_INIT; \
static int num_##x; \
module_param_array_named(x, x, int, &num_##x, 0); \
MODULE_PARM_DESC(x, desc);
/* Transmit Memory count
*
* Valid Range: 64-2048
*
* Default Value: 128
*/
#define ATL1E_MIN_TX_DESC_CNT 32
#define ATL1E_MAX_TX_DESC_CNT 1020
#define ATL1E_DEFAULT_TX_DESC_CNT 128
ATL1E_PARAM(tx_desc_cnt, "Transmit description count");
/* Receive Memory Block Count
*
* Valid Range: 16-512
*
* Default Value: 128
*/
#define ATL1E_MIN_RX_MEM_SIZE 8 /* 8KB */
#define ATL1E_MAX_RX_MEM_SIZE 1024 /* 1MB */
#define ATL1E_DEFAULT_RX_MEM_SIZE 256 /* 128KB */
ATL1E_PARAM(rx_mem_size, "memory size of rx buffer(KB)");
/* User Specified MediaType Override
*
* Valid Range: 0-5
* - 0 - auto-negotiate at all supported speeds
* - 1 - only link at 100Mbps Full Duplex
* - 2 - only link at 100Mbps Half Duplex
* - 3 - only link at 10Mbps Full Duplex
* - 4 - only link at 10Mbps Half Duplex
* Default Value: 0
*/
ATL1E_PARAM(media_type, "MediaType Select");
/* Interrupt Moderate Timer in units of 2 us
*
* Valid Range: 10-65535
*
* Default Value: 45000(90ms)
*/
#define INT_MOD_DEFAULT_CNT 100 /* 200us */
#define INT_MOD_MAX_CNT 65000
#define INT_MOD_MIN_CNT 50
ATL1E_PARAM(int_mod_timer, "Interrupt Moderator Timer");
#define AUTONEG_ADV_DEFAULT 0x2F
#define AUTONEG_ADV_MASK 0x2F
#define FLOW_CONTROL_DEFAULT FLOW_CONTROL_FULL
#define FLASH_VENDOR_DEFAULT 0
#define FLASH_VENDOR_MIN 0
#define FLASH_VENDOR_MAX 2
struct atl1e_option {
enum { enable_option, range_option, list_option } type;
char *name;
char *err;
int def;
union {
struct { /* range_option info */
int min;
int max;
} r;
struct { /* list_option info */
int nr;
struct atl1e_opt_list { int i; char *str; } *p;
} l;
} arg;
};
static int __devinit atl1e_validate_option(int *value, struct atl1e_option *opt, struct pci_dev *pdev)
{
if (*value == OPTION_UNSET) {
*value = opt->def;
return 0;
}
switch (opt->type) {
case enable_option:
switch (*value) {
case OPTION_ENABLED:
dev_info(&pdev->dev, "%s Enabled\n", opt->name);
return 0;
case OPTION_DISABLED:
dev_info(&pdev->dev, "%s Disabled\n", opt->name);
return 0;
}
break;
case range_option:
if (*value >= opt->arg.r.min && *value <= opt->arg.r.max) {
dev_info(&pdev->dev, "%s set to %i\n", opt->name, *value);
return 0;
}
break;
case list_option:{
int i;
struct atl1e_opt_list *ent;
for (i = 0; i < opt->arg.l.nr; i++) {
ent = &opt->arg.l.p[i];
if (*value == ent->i) {
if (ent->str[0] != '\0')
dev_info(&pdev->dev, "%s\n",
ent->str);
return 0;
}
}
break;
}
default:
BUG();
}
dev_info(&pdev->dev, "Invalid %s specified (%i) %s\n",
opt->name, *value, opt->err);
*value = opt->def;
return -1;
}
/*
* atl1e_check_options - Range Checking for Command Line Parameters
* @adapter: board private structure
*
* This routine checks all command line parameters for valid user
* input. If an invalid value is given, or if no user specified
* value exists, a default value is used. The final value is stored
* in a variable in the adapter structure.
*/
void __devinit atl1e_check_options(struct atl1e_adapter *adapter)
{
struct pci_dev *pdev = adapter->pdev;
int bd = adapter->bd_number;
if (bd >= ATL1E_MAX_NIC) {
dev_notice(&pdev->dev, "no configuration for board #%i\n", bd);
dev_notice(&pdev->dev, "Using defaults for all values\n");
}
{ /* Transmit Ring Size */
struct atl1e_option opt = {
.type = range_option,
.name = "Transmit Ddescription Count",
.err = "using default of "
__MODULE_STRING(ATL1E_DEFAULT_TX_DESC_CNT),
.def = ATL1E_DEFAULT_TX_DESC_CNT,
.arg = { .r = { .min = ATL1E_MIN_TX_DESC_CNT,
.max = ATL1E_MAX_TX_DESC_CNT} }
};
int val;
if (num_tx_desc_cnt > bd) {
val = tx_desc_cnt[bd];
atl1e_validate_option(&val, &opt, pdev);
adapter->tx_ring.count = (u16) val & 0xFFFC;
} else
adapter->tx_ring.count = (u16)opt.def;
}
{ /* Receive Memory Block Count */
struct atl1e_option opt = {
.type = range_option,
.name = "Memory size of rx buffer(KB)",
.err = "using default of "
__MODULE_STRING(ATL1E_DEFAULT_RX_MEM_SIZE),
.def = ATL1E_DEFAULT_RX_MEM_SIZE,
.arg = { .r = { .min = ATL1E_MIN_RX_MEM_SIZE,
.max = ATL1E_MAX_RX_MEM_SIZE} }
};
int val;
if (num_rx_mem_size > bd) {
val = rx_mem_size[bd];
atl1e_validate_option(&val, &opt, pdev);
adapter->rx_ring.page_size = (u32)val * 1024;
} else {
adapter->rx_ring.page_size = (u32)opt.def * 1024;
}
}
{ /* Interrupt Moderate Timer */
struct atl1e_option opt = {
.type = range_option,
.name = "Interrupt Moderate Timer",
.err = "using default of "
__MODULE_STRING(INT_MOD_DEFAULT_CNT),
.def = INT_MOD_DEFAULT_CNT,
.arg = { .r = { .min = INT_MOD_MIN_CNT,
.max = INT_MOD_MAX_CNT} }
} ;
int val;
if (num_int_mod_timer > bd) {
val = int_mod_timer[bd];
atl1e_validate_option(&val, &opt, pdev);
adapter->hw.imt = (u16) val;
} else
adapter->hw.imt = (u16)(opt.def);
}
{ /* MediaType */
struct atl1e_option opt = {
.type = range_option,
.name = "Speed/Duplex Selection",
.err = "using default of "
__MODULE_STRING(MEDIA_TYPE_AUTO_SENSOR),
.def = MEDIA_TYPE_AUTO_SENSOR,
.arg = { .r = { .min = MEDIA_TYPE_AUTO_SENSOR,
.max = MEDIA_TYPE_10M_HALF} }
} ;
int val;
if (num_media_type > bd) {
val = media_type[bd];
atl1e_validate_option(&val, &opt, pdev);
adapter->hw.media_type = (u16) val;
} else
adapter->hw.media_type = (u16)(opt.def);
}
}
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment