Commit a686cd89 authored by Martin J. Bligh's avatar Martin J. Bligh Committed by Linus Torvalds

ext2 reservations

Val's cross-port of the ext3 reservations code into ext2.

[mbligh@mbligh.org: Small type error for printk
[akpm@linux-foundation.org: fix types, sync with ext3]
[mbligh@mbligh.org: Bring ext2 reservations code in line with latest ext3]
[akpm@linux-foundation.org: kill noisy printk]
[akpm@linux-foundation.org: remember to dirty the gdp's block]
[akpm@linux-foundation.org: cross-port the missed 5dea5176]
[akpm@linux-foundation.org: cross-port e6022603]
[akpm@linux-foundation.org: Port the omitted 08fb306f]
[akpm@linux-foundation.org: Backport the missed 20acaa18]
[akpm@linux-foundation.org: fixes]
[cmm@us.ibm.com: fix reservation extension]
[bunk@stusta.de: make ext2_get_blocks() static]
[hugh@veritas.com: fix hang]
[hugh@veritas.com: ext2_new_blocks should reset the reservation window size]
[hugh@veritas.com: ext2 balloc: fix off-by-one against rsv_end]
[hugh@veritas.com: grp_goal 0 is a genuine goal (unlike -1), so ext2_try_to_allocate_with_rsv should treat it as such]
[hugh@veritas.com: rbtree usage cleanup]
[pbadari@us.ibm.com: Fix for ext2 reservation]
[bunk@kernel.org: remove fs/ext2/balloc.c:reserve_blocks()]
[hugh@veritas.com: ext2 balloc: use io_error label]
Cc: "Martin J. Bligh" <mbligh@mbligh.org>
Cc: Valerie Henson <val_henson@linux.intel.com>
Cc: Mingming Cao <cmm@us.ibm.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Hugh Dickins <hugh@veritas.com>
Signed-off-by: default avatarAdrian Bunk <bunk@stusta.de>
Signed-off-by: default avatarHugh Dickins <hugh@veritas.com>
Signed-off-by: default avatarBadari Pulavarty <pbadari@us.ibm.com>
Signed-off-by: default avatarAdrian Bunk <bunk@kernel.org>
Signed-off-by: default avatarAndrew Morton <akpm@linux-foundation.org>
Signed-off-by: default avatarLinus Torvalds <torvalds@linux-foundation.org>
parent 369f2389
......@@ -133,86 +133,332 @@ error_out:
return NULL;
}
/*
* Set sb->s_dirt here because the superblock was "logically" altered. We
* need to recalculate its free blocks count and flush it out.
*/
static int reserve_blocks(struct super_block *sb, int count)
static void release_blocks(struct super_block *sb, int count)
{
if (count) {
struct ext2_sb_info *sbi = EXT2_SB(sb);
percpu_counter_add(&sbi->s_freeblocks_counter, count);
sb->s_dirt = 1;
}
}
static void group_adjust_blocks(struct super_block *sb, int group_no,
struct ext2_group_desc *desc, struct buffer_head *bh, int count)
{
if (count) {
struct ext2_sb_info *sbi = EXT2_SB(sb);
struct ext2_super_block *es = sbi->s_es;
unsigned free_blocks;
unsigned root_blocks;
free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
root_blocks = le32_to_cpu(es->s_r_blocks_count);
spin_lock(sb_bgl_lock(sbi, group_no));
free_blocks = le16_to_cpu(desc->bg_free_blocks_count);
desc->bg_free_blocks_count = cpu_to_le16(free_blocks + count);
spin_unlock(sb_bgl_lock(sbi, group_no));
sb->s_dirt = 1;
mark_buffer_dirty(bh);
}
}
if (free_blocks < count)
count = free_blocks;
/*
* The reservation window structure operations
* --------------------------------------------
* Operations include:
* dump, find, add, remove, is_empty, find_next_reservable_window, etc.
*
* We use a red-black tree to represent per-filesystem reservation
* windows.
*
*/
if (free_blocks < root_blocks + count && !capable(CAP_SYS_RESOURCE) &&
sbi->s_resuid != current->fsuid &&
(sbi->s_resgid == 0 || !in_group_p (sbi->s_resgid))) {
/*
* We are too close to reserve and we are not privileged.
* Can we allocate anything at all?
/**
* __rsv_window_dump() -- Dump the filesystem block allocation reservation map
* @rb_root: root of per-filesystem reservation rb tree
* @verbose: verbose mode
* @fn: function which wishes to dump the reservation map
*
* If verbose is turned on, it will print the whole block reservation
* windows(start, end). Otherwise, it will only print out the "bad" windows,
* those windows that overlap with their immediate neighbors.
*/
if (free_blocks > root_blocks)
count = free_blocks - root_blocks;
else
return 0;
#if 1
static void __rsv_window_dump(struct rb_root *root, int verbose,
const char *fn)
{
struct rb_node *n;
struct ext2_reserve_window_node *rsv, *prev;
int bad;
restart:
n = rb_first(root);
bad = 0;
prev = NULL;
printk("Block Allocation Reservation Windows Map (%s):\n", fn);
while (n) {
rsv = rb_entry(n, struct ext2_reserve_window_node, rsv_node);
if (verbose)
printk("reservation window 0x%p "
"start: %lu, end: %lu\n",
rsv, rsv->rsv_start, rsv->rsv_end);
if (rsv->rsv_start && rsv->rsv_start >= rsv->rsv_end) {
printk("Bad reservation %p (start >= end)\n",
rsv);
bad = 1;
}
if (prev && prev->rsv_end >= rsv->rsv_start) {
printk("Bad reservation %p (prev->end >= start)\n",
rsv);
bad = 1;
}
if (bad) {
if (!verbose) {
printk("Restarting reservation walk in verbose mode\n");
verbose = 1;
goto restart;
}
}
n = rb_next(n);
prev = rsv;
}
printk("Window map complete.\n");
if (bad)
BUG();
}
#define rsv_window_dump(root, verbose) \
__rsv_window_dump((root), (verbose), __FUNCTION__)
#else
#define rsv_window_dump(root, verbose) do {} while (0)
#endif
percpu_counter_sub(&sbi->s_freeblocks_counter, count);
sb->s_dirt = 1;
return count;
/**
* goal_in_my_reservation()
* @rsv: inode's reservation window
* @grp_goal: given goal block relative to the allocation block group
* @group: the current allocation block group
* @sb: filesystem super block
*
* Test if the given goal block (group relative) is within the file's
* own block reservation window range.
*
* If the reservation window is outside the goal allocation group, return 0;
* grp_goal (given goal block) could be -1, which means no specific
* goal block. In this case, always return 1.
* If the goal block is within the reservation window, return 1;
* otherwise, return 0;
*/
static int
goal_in_my_reservation(struct ext2_reserve_window *rsv, ext2_grpblk_t grp_goal,
unsigned int group, struct super_block * sb)
{
ext2_fsblk_t group_first_block, group_last_block;
group_first_block = ext2_group_first_block_no(sb, group);
group_last_block = group_first_block + EXT2_BLOCKS_PER_GROUP(sb) - 1;
if ((rsv->_rsv_start > group_last_block) ||
(rsv->_rsv_end < group_first_block))
return 0;
if ((grp_goal >= 0) && ((grp_goal + group_first_block < rsv->_rsv_start)
|| (grp_goal + group_first_block > rsv->_rsv_end)))
return 0;
return 1;
}
static void release_blocks(struct super_block *sb, int count)
/**
* search_reserve_window()
* @rb_root: root of reservation tree
* @goal: target allocation block
*
* Find the reserved window which includes the goal, or the previous one
* if the goal is not in any window.
* Returns NULL if there are no windows or if all windows start after the goal.
*/
static struct ext2_reserve_window_node *
search_reserve_window(struct rb_root *root, ext2_fsblk_t goal)
{
if (count) {
struct ext2_sb_info *sbi = EXT2_SB(sb);
struct rb_node *n = root->rb_node;
struct ext2_reserve_window_node *rsv;
percpu_counter_add(&sbi->s_freeblocks_counter, count);
sb->s_dirt = 1;
if (!n)
return NULL;
do {
rsv = rb_entry(n, struct ext2_reserve_window_node, rsv_node);
if (goal < rsv->rsv_start)
n = n->rb_left;
else if (goal > rsv->rsv_end)
n = n->rb_right;
else
return rsv;
} while (n);
/*
* We've fallen off the end of the tree: the goal wasn't inside
* any particular node. OK, the previous node must be to one
* side of the interval containing the goal. If it's the RHS,
* we need to back up one.
*/
if (rsv->rsv_start > goal) {
n = rb_prev(&rsv->rsv_node);
rsv = rb_entry(n, struct ext2_reserve_window_node, rsv_node);
}
return rsv;
}
static int group_reserve_blocks(struct ext2_sb_info *sbi, int group_no,
struct ext2_group_desc *desc, struct buffer_head *bh, int count)
/*
* ext2_rsv_window_add() -- Insert a window to the block reservation rb tree.
* @sb: super block
* @rsv: reservation window to add
*
* Must be called with rsv_lock held.
*/
void ext2_rsv_window_add(struct super_block *sb,
struct ext2_reserve_window_node *rsv)
{
unsigned free_blocks;
struct rb_root *root = &EXT2_SB(sb)->s_rsv_window_root;
struct rb_node *node = &rsv->rsv_node;
ext2_fsblk_t start = rsv->rsv_start;
struct rb_node ** p = &root->rb_node;
struct rb_node * parent = NULL;
struct ext2_reserve_window_node *this;
while (*p)
{
parent = *p;
this = rb_entry(parent, struct ext2_reserve_window_node, rsv_node);
if (start < this->rsv_start)
p = &(*p)->rb_left;
else if (start > this->rsv_end)
p = &(*p)->rb_right;
else {
rsv_window_dump(root, 1);
BUG();
}
}
if (!desc->bg_free_blocks_count)
return 0;
rb_link_node(node, parent, p);
rb_insert_color(node, root);
}
spin_lock(sb_bgl_lock(sbi, group_no));
free_blocks = le16_to_cpu(desc->bg_free_blocks_count);
if (free_blocks < count)
count = free_blocks;
desc->bg_free_blocks_count = cpu_to_le16(free_blocks - count);
spin_unlock(sb_bgl_lock(sbi, group_no));
mark_buffer_dirty(bh);
return count;
/**
* rsv_window_remove() -- unlink a window from the reservation rb tree
* @sb: super block
* @rsv: reservation window to remove
*
* Mark the block reservation window as not allocated, and unlink it
* from the filesystem reservation window rb tree. Must be called with
* rsv_lock held.
*/
static void rsv_window_remove(struct super_block *sb,
struct ext2_reserve_window_node *rsv)
{
rsv->rsv_start = EXT2_RESERVE_WINDOW_NOT_ALLOCATED;
rsv->rsv_end = EXT2_RESERVE_WINDOW_NOT_ALLOCATED;
rsv->rsv_alloc_hit = 0;
rb_erase(&rsv->rsv_node, &EXT2_SB(sb)->s_rsv_window_root);
}
static void group_release_blocks(struct super_block *sb, int group_no,
struct ext2_group_desc *desc, struct buffer_head *bh, int count)
/*
* rsv_is_empty() -- Check if the reservation window is allocated.
* @rsv: given reservation window to check
*
* returns 1 if the end block is EXT2_RESERVE_WINDOW_NOT_ALLOCATED.
*/
static inline int rsv_is_empty(struct ext2_reserve_window *rsv)
{
if (count) {
struct ext2_sb_info *sbi = EXT2_SB(sb);
unsigned free_blocks;
/* a valid reservation end block could not be 0 */
return (rsv->_rsv_end == EXT2_RESERVE_WINDOW_NOT_ALLOCATED);
}
spin_lock(sb_bgl_lock(sbi, group_no));
free_blocks = le16_to_cpu(desc->bg_free_blocks_count);
desc->bg_free_blocks_count = cpu_to_le16(free_blocks + count);
spin_unlock(sb_bgl_lock(sbi, group_no));
sb->s_dirt = 1;
mark_buffer_dirty(bh);
/**
* ext2_init_block_alloc_info()
* @inode: file inode structure
*
* Allocate and initialize the reservation window structure, and
* link the window to the ext2 inode structure at last
*
* The reservation window structure is only dynamically allocated
* and linked to ext2 inode the first time the open file
* needs a new block. So, before every ext2_new_block(s) call, for
* regular files, we should check whether the reservation window
* structure exists or not. In the latter case, this function is called.
* Fail to do so will result in block reservation being turned off for that
* open file.
*
* This function is called from ext2_get_blocks_handle(), also called
* when setting the reservation window size through ioctl before the file
* is open for write (needs block allocation).
*
* Needs truncate_mutex protection prior to calling this function.
*/
void ext2_init_block_alloc_info(struct inode *inode)
{
struct ext2_inode_info *ei = EXT2_I(inode);
struct ext2_block_alloc_info *block_i = ei->i_block_alloc_info;
struct super_block *sb = inode->i_sb;
block_i = kmalloc(sizeof(*block_i), GFP_NOFS);
if (block_i) {
struct ext2_reserve_window_node *rsv = &block_i->rsv_window_node;
rsv->rsv_start = EXT2_RESERVE_WINDOW_NOT_ALLOCATED;
rsv->rsv_end = EXT2_RESERVE_WINDOW_NOT_ALLOCATED;
/*
* if filesystem is mounted with NORESERVATION, the goal
* reservation window size is set to zero to indicate
* block reservation is off
*/
if (!test_opt(sb, RESERVATION))
rsv->rsv_goal_size = 0;
else
rsv->rsv_goal_size = EXT2_DEFAULT_RESERVE_BLOCKS;
rsv->rsv_alloc_hit = 0;
block_i->last_alloc_logical_block = 0;
block_i->last_alloc_physical_block = 0;
}
ei->i_block_alloc_info = block_i;
}
/* Free given blocks, update quota and i_blocks field */
/**
* ext2_discard_reservation()
* @inode: inode
*
* Discard(free) block reservation window on last file close, or truncate
* or at last iput().
*
* It is being called in three cases:
* ext2_release_file(): last writer closes the file
* ext2_clear_inode(): last iput(), when nobody links to this file.
* ext2_truncate(): when the block indirect map is about to change.
*/
void ext2_discard_reservation(struct inode *inode)
{
struct ext2_inode_info *ei = EXT2_I(inode);
struct ext2_block_alloc_info *block_i = ei->i_block_alloc_info;
struct ext2_reserve_window_node *rsv;
spinlock_t *rsv_lock = &EXT2_SB(inode->i_sb)->s_rsv_window_lock;
if (!block_i)
return;
rsv = &block_i->rsv_window_node;
if (!rsv_is_empty(&rsv->rsv_window)) {
spin_lock(rsv_lock);
if (!rsv_is_empty(&rsv->rsv_window))
rsv_window_remove(inode->i_sb, rsv);
spin_unlock(rsv_lock);
}
}
/**
* ext2_free_blocks_sb() -- Free given blocks and update quota and i_blocks
* @inode: inode
* @block: start physcial block to free
* @count: number of blocks to free
*/
void ext2_free_blocks (struct inode * inode, unsigned long block,
unsigned long count)
{
......@@ -287,7 +533,7 @@ do_more:
if (sb->s_flags & MS_SYNCHRONOUS)
sync_dirty_buffer(bitmap_bh);
group_release_blocks(sb, block_group, desc, bh2, group_freed);
group_adjust_blocks(sb, block_group, desc, bh2, group_freed);
freed += group_freed;
if (overflow) {
......@@ -301,16 +547,46 @@ error_return:
DQUOT_FREE_BLOCK(inode, freed);
}
static int grab_block(spinlock_t *lock, char *map, unsigned size, int goal)
/**
* bitmap_search_next_usable_block()
* @start: the starting block (group relative) of the search
* @bh: bufferhead contains the block group bitmap
* @maxblocks: the ending block (group relative) of the reservation
*
* The bitmap search --- search forward through the actual bitmap on disk until
* we find a bit free.
*/
static ext2_grpblk_t
bitmap_search_next_usable_block(ext2_grpblk_t start, struct buffer_head *bh,
ext2_grpblk_t maxblocks)
{
ext2_grpblk_t next;
next = ext2_find_next_zero_bit(bh->b_data, maxblocks, start);
if (next >= maxblocks)
return -1;
return next;
}
/**
* find_next_usable_block()
* @start: the starting block (group relative) to find next
* allocatable block in bitmap.
* @bh: bufferhead contains the block group bitmap
* @maxblocks: the ending block (group relative) for the search
*
* Find an allocatable block in a bitmap. We perform the "most
* appropriate allocation" algorithm of looking for a free block near
* the initial goal; then for a free byte somewhere in the bitmap;
* then for any free bit in the bitmap.
*/
static ext2_grpblk_t
find_next_usable_block(int start, struct buffer_head *bh, int maxblocks)
{
int k;
ext2_grpblk_t here, next;
char *p, *r;
if (!ext2_test_bit(goal, map))
goto got_it;
repeat:
if (goal) {
if (start > 0) {
/*
* The goal was occupied; search forward for a free
* block within the next XX blocks.
......@@ -319,244 +595,807 @@ repeat:
* less than EXT2_BLOCKS_PER_GROUP. Aligning up to the
* next 64-bit boundary is simple..
*/
k = (goal + 63) & ~63;
goal = ext2_find_next_zero_bit(map, k, goal);
if (goal < k)
goto got_it;
ext2_grpblk_t end_goal = (start + 63) & ~63;
if (end_goal > maxblocks)
end_goal = maxblocks;
here = ext2_find_next_zero_bit(bh->b_data, end_goal, start);
if (here < end_goal)
return here;
ext2_debug("Bit not found near goal\n");
}
here = start;
if (here < 0)
here = 0;
p = ((char *)bh->b_data) + (here >> 3);
r = memscan(p, 0, ((maxblocks + 7) >> 3) - (here >> 3));
next = (r - ((char *)bh->b_data)) << 3;
if (next < maxblocks && next >= here)
return next;
here = bitmap_search_next_usable_block(here, bh, maxblocks);
return here;
}
/*
* ext2_try_to_allocate()
* @sb: superblock
* @handle: handle to this transaction
* @group: given allocation block group
* @bitmap_bh: bufferhead holds the block bitmap
* @grp_goal: given target block within the group
* @count: target number of blocks to allocate
* @my_rsv: reservation window
*
* Attempt to allocate blocks within a give range. Set the range of allocation
* first, then find the first free bit(s) from the bitmap (within the range),
* and at last, allocate the blocks by claiming the found free bit as allocated.
*
* To set the range of this allocation:
* if there is a reservation window, only try to allocate block(s)
* from the file's own reservation window;
* Otherwise, the allocation range starts from the give goal block,
* ends at the block group's last block.
*
* If we failed to allocate the desired block then we may end up crossing to a
* new bitmap.
*/
static int
ext2_try_to_allocate(struct super_block *sb, int group,
struct buffer_head *bitmap_bh, ext2_grpblk_t grp_goal,
unsigned long *count,
struct ext2_reserve_window *my_rsv)
{
ext2_fsblk_t group_first_block;
ext2_grpblk_t start, end;
unsigned long num = 0;
/* we do allocation within the reservation window if we have a window */
if (my_rsv) {
group_first_block = ext2_group_first_block_no(sb, group);
if (my_rsv->_rsv_start >= group_first_block)
start = my_rsv->_rsv_start - group_first_block;
else
/* reservation window cross group boundary */
start = 0;
end = my_rsv->_rsv_end - group_first_block + 1;
if (end > EXT2_BLOCKS_PER_GROUP(sb))
/* reservation window crosses group boundary */
end = EXT2_BLOCKS_PER_GROUP(sb);
if ((start <= grp_goal) && (grp_goal < end))
start = grp_goal;
else
grp_goal = -1;
} else {
if (grp_goal > 0)
start = grp_goal;
else
start = 0;
end = EXT2_BLOCKS_PER_GROUP(sb);
}
BUG_ON(start > EXT2_BLOCKS_PER_GROUP(sb));
repeat:
if (grp_goal < 0) {
grp_goal = find_next_usable_block(start, bitmap_bh, end);
if (grp_goal < 0)
goto fail_access;
if (!my_rsv) {
int i;
for (i = 0; i < 7 && grp_goal > start &&
!ext2_test_bit(grp_goal - 1,
bitmap_bh->b_data);
i++, grp_goal--)
;
}
}
start = grp_goal;
if (ext2_set_bit_atomic(sb_bgl_lock(EXT2_SB(sb), group), grp_goal,
bitmap_bh->b_data)) {
/*
* Search in the remainder of the current group.
* The block was allocated by another thread, or it was
* allocated and then freed by another thread
*/
start++;
grp_goal++;
if (start >= end)
goto fail_access;
goto repeat;
}
num++;
grp_goal++;
while (num < *count && grp_goal < end
&& !ext2_set_bit_atomic(sb_bgl_lock(EXT2_SB(sb), group),
grp_goal, bitmap_bh->b_data)) {
num++;
grp_goal++;
}
*count = num;
return grp_goal - num;
fail_access:
*count = num;
return -1;
}
/**
* find_next_reservable_window():
* find a reservable space within the given range.
* It does not allocate the reservation window for now:
* alloc_new_reservation() will do the work later.
*
* @search_head: the head of the searching list;
* This is not necessarily the list head of the whole filesystem
*
* We have both head and start_block to assist the search
* for the reservable space. The list starts from head,
* but we will shift to the place where start_block is,
* then start from there, when looking for a reservable space.
*
* @size: the target new reservation window size
*
* @group_first_block: the first block we consider to start
* the real search from
*
* @last_block:
* the maximum block number that our goal reservable space
* could start from. This is normally the last block in this
* group. The search will end when we found the start of next
* possible reservable space is out of this boundary.
* This could handle the cross boundary reservation window
* request.
*
* basically we search from the given range, rather than the whole
* reservation double linked list, (start_block, last_block)
* to find a free region that is of my size and has not
* been reserved.
*
*/
static int find_next_reservable_window(
struct ext2_reserve_window_node *search_head,
struct ext2_reserve_window_node *my_rsv,
struct super_block * sb,
ext2_fsblk_t start_block,
ext2_fsblk_t last_block)
{
struct rb_node *next;
struct ext2_reserve_window_node *rsv, *prev;
ext2_fsblk_t cur;
int size = my_rsv->rsv_goal_size;
/* TODO: make the start of the reservation window byte-aligned */
/* cur = *start_block & ~7;*/
cur = start_block;
rsv = search_head;
if (!rsv)
return -1;
while (1) {
if (cur <= rsv->rsv_end)
cur = rsv->rsv_end + 1;
/* TODO?
* in the case we could not find a reservable space
* that is what is expected, during the re-search, we could
* remember what's the largest reservable space we could have
* and return that one.
*
* For now it will fail if we could not find the reservable
* space with expected-size (or more)...
*/
if (cur > last_block)
return -1; /* fail */
prev = rsv;
next = rb_next(&rsv->rsv_node);
rsv = rb_entry(next,struct ext2_reserve_window_node,rsv_node);
p = map + (goal >> 3);
r = memscan(p, 0, (size - goal + 7) >> 3);
k = (r - map) << 3;
if (k < size) {
/*
* We have succeeded in finding a free byte in the block
* bitmap. Now search backwards to find the start of this
* group of free blocks - won't take more than 7 iterations.
* Reached the last reservation, we can just append to the
* previous one.
*/
for (goal = k; goal && !ext2_test_bit (goal - 1, map); goal--)
;
goto got_it;
if (!next)
break;
if (cur + size <= rsv->rsv_start) {
/*
* Found a reserveable space big enough. We could
* have a reservation across the group boundary here
*/
break;
}
}
/*
* we come here either :
* when we reach the end of the whole list,
* and there is empty reservable space after last entry in the list.
* append it to the end of the list.
*
* or we found one reservable space in the middle of the list,
* return the reservation window that we could append to.
* succeed.
*/
if ((prev != my_rsv) && (!rsv_is_empty(&my_rsv->rsv_window)))
rsv_window_remove(sb, my_rsv);
/*
* Let's book the whole avaliable window for now. We will check the
* disk bitmap later and then, if there are free blocks then we adjust
* the window size if it's larger than requested.
* Otherwise, we will remove this node from the tree next time
* call find_next_reservable_window.
*/
my_rsv->rsv_start = cur;
my_rsv->rsv_end = cur + size - 1;
my_rsv->rsv_alloc_hit = 0;
if (prev != my_rsv)
ext2_rsv_window_add(sb, my_rsv);
k = ext2_find_next_zero_bit ((u32 *)map, size, goal);
if (k < size) {
goal = k;
goto got_it;
return 0;
}
/**
* alloc_new_reservation()--allocate a new reservation window
*
* To make a new reservation, we search part of the filesystem
* reservation list (the list that inside the group). We try to
* allocate a new reservation window near the allocation goal,
* or the beginning of the group, if there is no goal.
*
* We first find a reservable space after the goal, then from
* there, we check the bitmap for the first free block after
* it. If there is no free block until the end of group, then the
* whole group is full, we failed. Otherwise, check if the free
* block is inside the expected reservable space, if so, we
* succeed.
* If the first free block is outside the reservable space, then
* start from the first free block, we search for next available
* space, and go on.
*
* on succeed, a new reservation will be found and inserted into the list
* It contains at least one free block, and it does not overlap with other
* reservation windows.
*
* failed: we failed to find a reservation window in this group
*
* @rsv: the reservation
*
* @grp_goal: The goal (group-relative). It is where the search for a
* free reservable space should start from.
* if we have a goal(goal >0 ), then start from there,
* no goal(goal = -1), we start from the first block
* of the group.
*
* @sb: the super block
* @group: the group we are trying to allocate in
* @bitmap_bh: the block group block bitmap
*
*/
static int alloc_new_reservation(struct ext2_reserve_window_node *my_rsv,
ext2_grpblk_t grp_goal, struct super_block *sb,
unsigned int group, struct buffer_head *bitmap_bh)
{
struct ext2_reserve_window_node *search_head;
ext2_fsblk_t group_first_block, group_end_block, start_block;
ext2_grpblk_t first_free_block;
struct rb_root *fs_rsv_root = &EXT2_SB(sb)->s_rsv_window_root;
unsigned long size;
int ret;
spinlock_t *rsv_lock = &EXT2_SB(sb)->s_rsv_window_lock;
group_first_block = ext2_group_first_block_no(sb, group);
group_end_block = group_first_block + (EXT2_BLOCKS_PER_GROUP(sb) - 1);
if (grp_goal < 0)
start_block = group_first_block;
else
start_block = grp_goal + group_first_block;
size = my_rsv->rsv_goal_size;
if (!rsv_is_empty(&my_rsv->rsv_window)) {
/*
* if the old reservation is cross group boundary
* and if the goal is inside the old reservation window,
* we will come here when we just failed to allocate from
* the first part of the window. We still have another part
* that belongs to the next group. In this case, there is no
* point to discard our window and try to allocate a new one
* in this group(which will fail). we should
* keep the reservation window, just simply move on.
*
* Maybe we could shift the start block of the reservation
* window to the first block of next group.
*/
if ((my_rsv->rsv_start <= group_end_block) &&
(my_rsv->rsv_end > group_end_block) &&
(start_block >= my_rsv->rsv_start))
return -1;
if ((my_rsv->rsv_alloc_hit >
(my_rsv->rsv_end - my_rsv->rsv_start + 1) / 2)) {
/*
* if the previously allocation hit ratio is
* greater than 1/2, then we double the size of
* the reservation window the next time,
* otherwise we keep the same size window
*/
size = size * 2;
if (size > EXT2_MAX_RESERVE_BLOCKS)
size = EXT2_MAX_RESERVE_BLOCKS;
my_rsv->rsv_goal_size= size;
}
}
spin_lock(rsv_lock);
/*
* shift the search start to the window near the goal block
*/
search_head = search_reserve_window(fs_rsv_root, start_block);
/*
* find_next_reservable_window() simply finds a reservable window
* inside the given range(start_block, group_end_block).
*
* To make sure the reservation window has a free bit inside it, we
* need to check the bitmap after we found a reservable window.
*/
retry:
ret = find_next_reservable_window(search_head, my_rsv, sb,
start_block, group_end_block);
if (ret == -1) {
if (!rsv_is_empty(&my_rsv->rsv_window))
rsv_window_remove(sb, my_rsv);
spin_unlock(rsv_lock);
return -1;
got_it:
if (ext2_set_bit_atomic(lock, goal, (void *) map))
goto repeat;
return goal;
}
/*
* On success, find_next_reservable_window() returns the
* reservation window where there is a reservable space after it.
* Before we reserve this reservable space, we need
* to make sure there is at least a free block inside this region.
*
* Search the first free bit on the block bitmap. Search starts from
* the start block of the reservable space we just found.
*/
spin_unlock(rsv_lock);
first_free_block = bitmap_search_next_usable_block(
my_rsv->rsv_start - group_first_block,
bitmap_bh, group_end_block - group_first_block + 1);
if (first_free_block < 0) {
/*
* no free block left on the bitmap, no point
* to reserve the space. return failed.
*/
spin_lock(rsv_lock);
if (!rsv_is_empty(&my_rsv->rsv_window))
rsv_window_remove(sb, my_rsv);
spin_unlock(rsv_lock);
return -1; /* failed */
}
start_block = first_free_block + group_first_block;
/*
* check if the first free block is within the
* free space we just reserved
*/
if (start_block >= my_rsv->rsv_start && start_block <= my_rsv->rsv_end)
return 0; /* success */
/*
* if the first free bit we found is out of the reservable space
* continue search for next reservable space,
* start from where the free block is,
* we also shift the list head to where we stopped last time
*/
search_head = my_rsv;
spin_lock(rsv_lock);
goto retry;
}
/**
* try_to_extend_reservation()
* @my_rsv: given reservation window
* @sb: super block
* @size: the delta to extend
*
* Attempt to expand the reservation window large enough to have
* required number of free blocks
*
* Since ext2_try_to_allocate() will always allocate blocks within
* the reservation window range, if the window size is too small,
* multiple blocks allocation has to stop at the end of the reservation
* window. To make this more efficient, given the total number of
* blocks needed and the current size of the window, we try to
* expand the reservation window size if necessary on a best-effort
* basis before ext2_new_blocks() tries to allocate blocks.
*/
static void try_to_extend_reservation(struct ext2_reserve_window_node *my_rsv,
struct super_block *sb, int size)
{
struct ext2_reserve_window_node *next_rsv;
struct rb_node *next;
spinlock_t *rsv_lock = &EXT2_SB(sb)->s_rsv_window_lock;
if (!spin_trylock(rsv_lock))
return;
next = rb_next(&my_rsv->rsv_node);
if (!next)
my_rsv->rsv_end += size;
else {
next_rsv = rb_entry(next, struct ext2_reserve_window_node, rsv_node);
if ((next_rsv->rsv_start - my_rsv->rsv_end - 1) >= size)
my_rsv->rsv_end += size;
else
my_rsv->rsv_end = next_rsv->rsv_start - 1;
}
spin_unlock(rsv_lock);
}
/**
* ext2_try_to_allocate_with_rsv()
* @sb: superblock
* @group: given allocation block group
* @bitmap_bh: bufferhead holds the block bitmap
* @grp_goal: given target block within the group
* @count: target number of blocks to allocate
* @my_rsv: reservation window
*
* This is the main function used to allocate a new block and its reservation
* window.
*
* Each time when a new block allocation is need, first try to allocate from
* its own reservation. If it does not have a reservation window, instead of
* looking for a free bit on bitmap first, then look up the reservation list to
* see if it is inside somebody else's reservation window, we try to allocate a
* reservation window for it starting from the goal first. Then do the block
* allocation within the reservation window.
*
* This will avoid keeping on searching the reservation list again and
* again when somebody is looking for a free block (without
* reservation), and there are lots of free blocks, but they are all
* being reserved.
*
* We use a red-black tree for the per-filesystem reservation list.
*/
static ext2_grpblk_t
ext2_try_to_allocate_with_rsv(struct super_block *sb, unsigned int group,
struct buffer_head *bitmap_bh, ext2_grpblk_t grp_goal,
struct ext2_reserve_window_node * my_rsv,
unsigned long *count)
{
ext2_fsblk_t group_first_block, group_last_block;
ext2_grpblk_t ret = 0;
unsigned long num = *count;
/*
* we don't deal with reservation when
* filesystem is mounted without reservation
* or the file is not a regular file
* or last attempt to allocate a block with reservation turned on failed
*/
if (my_rsv == NULL) {
return ext2_try_to_allocate(sb, group, bitmap_bh,
grp_goal, count, NULL);
}
/*
* grp_goal is a group relative block number (if there is a goal)
* 0 <= grp_goal < EXT2_BLOCKS_PER_GROUP(sb)
* first block is a filesystem wide block number
* first block is the block number of the first block in this group
*/
group_first_block = ext2_group_first_block_no(sb, group);
group_last_block = group_first_block + (EXT2_BLOCKS_PER_GROUP(sb) - 1);
/*
* Basically we will allocate a new block from inode's reservation
* window.
*
* We need to allocate a new reservation window, if:
* a) inode does not have a reservation window; or
* b) last attempt to allocate a block from existing reservation
* failed; or
* c) we come here with a goal and with a reservation window
*
* We do not need to allocate a new reservation window if we come here
* at the beginning with a goal and the goal is inside the window, or
* we don't have a goal but already have a reservation window.
* then we could go to allocate from the reservation window directly.
*/
while (1) {
if (rsv_is_empty(&my_rsv->rsv_window) || (ret < 0) ||
!goal_in_my_reservation(&my_rsv->rsv_window,
grp_goal, group, sb)) {
if (my_rsv->rsv_goal_size < *count)
my_rsv->rsv_goal_size = *count;
ret = alloc_new_reservation(my_rsv, grp_goal, sb,
group, bitmap_bh);
if (ret < 0)
break; /* failed */
if (!goal_in_my_reservation(&my_rsv->rsv_window,
grp_goal, group, sb))
grp_goal = -1;
} else if (grp_goal >= 0) {
int curr = my_rsv->rsv_end -
(grp_goal + group_first_block) + 1;
if (curr < *count)
try_to_extend_reservation(my_rsv, sb,
*count - curr);
}
if ((my_rsv->rsv_start > group_last_block) ||
(my_rsv->rsv_end < group_first_block)) {
rsv_window_dump(&EXT2_SB(sb)->s_rsv_window_root, 1);
BUG();
}
ret = ext2_try_to_allocate(sb, group, bitmap_bh, grp_goal,
&num, &my_rsv->rsv_window);
if (ret >= 0) {
my_rsv->rsv_alloc_hit += num;
*count = num;
break; /* succeed */
}
num = *count;
}
return ret;
}
/**
* ext2_has_free_blocks()
* @sbi: in-core super block structure.
*
* Check if filesystem has at least 1 free block available for allocation.
*/
static int ext2_has_free_blocks(struct ext2_sb_info *sbi)
{
ext2_fsblk_t free_blocks, root_blocks;
free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
root_blocks = le32_to_cpu(sbi->s_es->s_r_blocks_count);
if (free_blocks < root_blocks + 1 && !capable(CAP_SYS_RESOURCE) &&
sbi->s_resuid != current->fsuid &&
(sbi->s_resgid == 0 || !in_group_p (sbi->s_resgid))) {
return 0;
}
return 1;
}
/*
* ext2_new_block uses a goal block to assist allocation. If the goal is
* ext2_new_blocks() -- core block(s) allocation function
* @inode: file inode
* @goal: given target block(filesystem wide)
* @count: target number of blocks to allocate
* @errp: error code
*
* ext2_new_blocks uses a goal block to assist allocation. If the goal is
* free, or there is a free block within 32 blocks of the goal, that block
* is allocated. Otherwise a forward search is made for a free block; within
* each block group the search first looks for an entire free byte in the block
* bitmap, and then for any free bit if that fails.
* This function also updates quota and i_blocks field.
*/
int ext2_new_block(struct inode *inode, unsigned long goal,
u32 *prealloc_count, u32 *prealloc_block, int *err)
ext2_fsblk_t ext2_new_blocks(struct inode *inode, ext2_fsblk_t goal,
unsigned long *count, int *errp)
{
struct buffer_head *bitmap_bh = NULL;
struct buffer_head *gdp_bh; /* bh2 */
struct ext2_group_desc *desc;
int group_no; /* i */
int ret_block; /* j */
int group_idx; /* k */
int target_block; /* tmp */
int block = 0;
struct super_block *sb = inode->i_sb;
struct ext2_sb_info *sbi = EXT2_SB(sb);
struct ext2_super_block *es = sbi->s_es;
unsigned group_size = EXT2_BLOCKS_PER_GROUP(sb);
unsigned prealloc_goal = es->s_prealloc_blocks;
unsigned group_alloc = 0, es_alloc, dq_alloc;
int nr_scanned_groups;
if (!prealloc_goal--)
prealloc_goal = EXT2_DEFAULT_PREALLOC_BLOCKS - 1;
if (!prealloc_count || *prealloc_count)
prealloc_goal = 0;
if (DQUOT_ALLOC_BLOCK(inode, 1)) {
*err = -EDQUOT;
goto out;
struct buffer_head *gdp_bh;
int group_no;
int goal_group;
ext2_grpblk_t grp_target_blk; /* blockgroup relative goal block */
ext2_grpblk_t grp_alloc_blk; /* blockgroup-relative allocated block*/
ext2_fsblk_t ret_block; /* filesyetem-wide allocated block */
int bgi; /* blockgroup iteration index */
int performed_allocation = 0;
ext2_grpblk_t free_blocks; /* number of free blocks in a group */
struct super_block *sb;
struct ext2_group_desc *gdp;
struct ext2_super_block *es;
struct ext2_sb_info *sbi;
struct ext2_reserve_window_node *my_rsv = NULL;
struct ext2_block_alloc_info *block_i;
unsigned short windowsz = 0;
unsigned long ngroups;
unsigned long num = *count;
*errp = -ENOSPC;
sb = inode->i_sb;
if (!sb) {
printk("ext2_new_blocks: nonexistent device");
return 0;
}
while (prealloc_goal && DQUOT_PREALLOC_BLOCK(inode, prealloc_goal))
prealloc_goal--;
/*
* Check quota for allocation of this block.
*/
if (DQUOT_ALLOC_BLOCK(inode, num)) {
*errp = -EDQUOT;
return 0;
}
dq_alloc = prealloc_goal + 1;
es_alloc = reserve_blocks(sb, dq_alloc);
if (!es_alloc) {
*err = -ENOSPC;
goto out_dquot;
sbi = EXT2_SB(sb);
es = EXT2_SB(sb)->s_es;
ext2_debug("goal=%lu.\n", goal);
/*
* Allocate a block from reservation only when
* filesystem is mounted with reservation(default,-o reservation), and
* it's a regular file, and
* the desired window size is greater than 0 (One could use ioctl
* command EXT2_IOC_SETRSVSZ to set the window size to 0 to turn off
* reservation on that particular file)
*/
block_i = EXT2_I(inode)->i_block_alloc_info;
if (block_i) {
windowsz = block_i->rsv_window_node.rsv_goal_size;
if (windowsz > 0)
my_rsv = &block_i->rsv_window_node;
}
ext2_debug ("goal=%lu.\n", goal);
if (!ext2_has_free_blocks(sbi)) {
*errp = -ENOSPC;
goto out;
}
/*
* First, test whether the goal block is free.
*/
if (goal < le32_to_cpu(es->s_first_data_block) ||
goal >= le32_to_cpu(es->s_blocks_count))
goal = le32_to_cpu(es->s_first_data_block);
group_no = (goal - le32_to_cpu(es->s_first_data_block)) / group_size;
desc = ext2_get_group_desc (sb, group_no, &gdp_bh);
if (!desc) {
group_no = (goal - le32_to_cpu(es->s_first_data_block)) /
EXT2_BLOCKS_PER_GROUP(sb);
goal_group = group_no;
retry_alloc:
gdp = ext2_get_group_desc(sb, group_no, &gdp_bh);
if (!gdp)
goto io_error;
free_blocks = le16_to_cpu(gdp->bg_free_blocks_count);
/*
* gdp_bh may still be uninitialised. But group_release_blocks
* will not touch it because group_alloc is zero.
* if there is not enough free blocks to make a new resevation
* turn off reservation for this allocation
*/
goto io_error;
}
if (my_rsv && (free_blocks < windowsz)
&& (rsv_is_empty(&my_rsv->rsv_window)))
my_rsv = NULL;
group_alloc = group_reserve_blocks(sbi, group_no, desc,
gdp_bh, es_alloc);
if (group_alloc) {
ret_block = ((goal - le32_to_cpu(es->s_first_data_block)) %
group_size);
brelse(bitmap_bh);
if (free_blocks > 0) {
grp_target_blk = ((goal - le32_to_cpu(es->s_first_data_block)) %
EXT2_BLOCKS_PER_GROUP(sb));
bitmap_bh = read_block_bitmap(sb, group_no);
if (!bitmap_bh)
goto io_error;
ext2_debug("goal is at %d:%d.\n", group_no, ret_block);
ret_block = grab_block(sb_bgl_lock(sbi, group_no),
bitmap_bh->b_data, group_size, ret_block);
if (ret_block >= 0)
goto got_block;
group_release_blocks(sb, group_no, desc, gdp_bh, group_alloc);
group_alloc = 0;
grp_alloc_blk = ext2_try_to_allocate_with_rsv(sb, group_no,
bitmap_bh, grp_target_blk,
my_rsv, &num);
if (grp_alloc_blk >= 0)
goto allocated;
}
ext2_debug ("Bit not found in block group %d.\n", group_no);
ngroups = EXT2_SB(sb)->s_groups_count;
smp_rmb();
/*
* Now search the rest of the groups. We assume that
* i and desc correctly point to the last group visited.
* i and gdp correctly point to the last group visited.
*/
nr_scanned_groups = 0;
retry:
for (group_idx = 0; !group_alloc &&
group_idx < sbi->s_groups_count; group_idx++) {
for (bgi = 0; bgi < ngroups; bgi++) {
group_no++;
if (group_no >= sbi->s_groups_count)
if (group_no >= ngroups)
group_no = 0;
desc = ext2_get_group_desc(sb, group_no, &gdp_bh);
if (!desc)
gdp = ext2_get_group_desc(sb, group_no, &gdp_bh);
if (!gdp)
goto io_error;
group_alloc = group_reserve_blocks(sbi, group_no, desc,
gdp_bh, es_alloc);
}
if (!group_alloc) {
*err = -ENOSPC;
goto out_release;
}
free_blocks = le16_to_cpu(gdp->bg_free_blocks_count);
/*
* skip this group if the number of
* free blocks is less than half of the reservation
* window size.
*/
if (free_blocks <= (windowsz/2))
continue;
brelse(bitmap_bh);
bitmap_bh = read_block_bitmap(sb, group_no);
if (!bitmap_bh)
goto io_error;
ret_block = grab_block(sb_bgl_lock(sbi, group_no), bitmap_bh->b_data,
group_size, 0);
if (ret_block < 0) {
/*
* If a free block counter is corrupted we can loop inifintely.
* Detect that here.
* try to allocate block(s) from this group, without a goal(-1).
*/
nr_scanned_groups++;
if (nr_scanned_groups > 2 * sbi->s_groups_count) {
ext2_error(sb, "ext2_new_block",
"corrupted free blocks counters");
goto io_error;
grp_alloc_blk = ext2_try_to_allocate_with_rsv(sb, group_no,
bitmap_bh, -1, my_rsv, &num);
if (grp_alloc_blk >= 0)
goto allocated;
}
/*
* Someone else grabbed the last free block in this blockgroup
* before us. Retry the scan.
* We may end up a bogus ealier ENOSPC error due to
* filesystem is "full" of reservations, but
* there maybe indeed free blocks avaliable on disk
* In this case, we just forget about the reservations
* just do block allocation as without reservations.
*/
group_release_blocks(sb, group_no, desc, gdp_bh, group_alloc);
group_alloc = 0;
goto retry;
if (my_rsv) {
my_rsv = NULL;
windowsz = 0;
group_no = goal_group;
goto retry_alloc;
}
/* No space left on the device */
*errp = -ENOSPC;
goto out;
allocated:
got_block:
ext2_debug("using block group %d(%d)\n",
group_no, desc->bg_free_blocks_count);
group_no, gdp->bg_free_blocks_count);
target_block = ret_block + group_no * group_size +
le32_to_cpu(es->s_first_data_block);
ret_block = grp_alloc_blk + ext2_group_first_block_no(sb, group_no);
if (target_block == le32_to_cpu(desc->bg_block_bitmap) ||
target_block == le32_to_cpu(desc->bg_inode_bitmap) ||
in_range(target_block, le32_to_cpu(desc->bg_inode_table),
sbi->s_itb_per_group))
ext2_error (sb, "ext2_new_block",
if (in_range(le32_to_cpu(gdp->bg_block_bitmap), ret_block, num) ||
in_range(le32_to_cpu(gdp->bg_inode_bitmap), ret_block, num) ||
in_range(ret_block, le32_to_cpu(gdp->bg_inode_table),
EXT2_SB(sb)->s_itb_per_group) ||
in_range(ret_block + num - 1, le32_to_cpu(gdp->bg_inode_table),
EXT2_SB(sb)->s_itb_per_group))
ext2_error(sb, "ext2_new_blocks",
"Allocating block in system zone - "
"block = %u", target_block);
"blocks from "E2FSBLK", length %lu",
ret_block, num);
performed_allocation = 1;
if (target_block >= le32_to_cpu(es->s_blocks_count)) {
ext2_error (sb, "ext2_new_block",
"block(%d) >= blocks count(%d) - "
if (ret_block + num - 1 >= le32_to_cpu(es->s_blocks_count)) {
ext2_error(sb, "ext2_new_blocks",
"block("E2FSBLK") >= blocks count(%d) - "
"block_group = %d, es == %p ", ret_block,
le32_to_cpu(es->s_blocks_count), group_no, es);
goto io_error;
goto out;
}
block = target_block;
/* OK, we _had_ allocated something */
ext2_debug("found bit %d\n", ret_block);
dq_alloc--;
es_alloc--;
group_alloc--;
/*
* Do block preallocation now if required.
*/
write_lock(&EXT2_I(inode)->i_meta_lock);
if (group_alloc && !*prealloc_count) {
unsigned n;
for (n = 0; n < group_alloc && ++ret_block < group_size; n++) {
if (ext2_set_bit_atomic(sb_bgl_lock(sbi, group_no),
ret_block,
(void*) bitmap_bh->b_data))
break;
}
*prealloc_block = block + 1;
*prealloc_count = n;
es_alloc -= n;
dq_alloc -= n;
group_alloc -= n;
}
write_unlock(&EXT2_I(inode)->i_meta_lock);
group_adjust_blocks(sb, group_no, gdp, gdp_bh, -num);
percpu_counter_sub(&sbi->s_freeblocks_counter, num);
mark_buffer_dirty(bitmap_bh);
if (sb->s_flags & MS_SYNCHRONOUS)
sync_dirty_buffer(bitmap_bh);
ext2_debug ("allocating block %d. ", block);
*errp = 0;
brelse(bitmap_bh);
DQUOT_FREE_BLOCK(inode, *count-num);
*count = num;
return ret_block;
*err = 0;
out_release:
group_release_blocks(sb, group_no, desc, gdp_bh, group_alloc);
release_blocks(sb, es_alloc);
out_dquot:
DQUOT_FREE_BLOCK(inode, dq_alloc);
io_error:
*errp = -EIO;
out:
/*
* Undo the block allocation
*/
if (!performed_allocation)
DQUOT_FREE_BLOCK(inode, *count);
brelse(bitmap_bh);
return block;
return 0;
}
io_error:
*err = -EIO;
goto out_release;
ext2_fsblk_t ext2_new_block(struct inode *inode, unsigned long goal, int *errp)
{
unsigned long count = 1;
return ext2_new_blocks(inode, goal, &count, errp);
}
#ifdef EXT2FS_DEBUG
......
......@@ -33,22 +33,9 @@ struct ext2_inode_info {
*/
__u32 i_block_group;
/*
* i_next_alloc_block is the logical (file-relative) number of the
* most-recently-allocated block in this file. Yes, it is misnamed.
* We use this for detecting linearly ascending allocation requests.
*/
__u32 i_next_alloc_block;
/* block reservation info */
struct ext2_block_alloc_info *i_block_alloc_info;
/*
* i_next_alloc_goal is the *physical* companion to i_next_alloc_block.
* it the the physical block number of the block which was most-recently
* allocated to this file. This give us the goal (target) for the next
* allocation when we detect linearly ascending requests.
*/
__u32 i_next_alloc_goal;
__u32 i_prealloc_block;
__u32 i_prealloc_count;
__u32 i_dir_start_lookup;
#ifdef CONFIG_EXT2_FS_XATTR
/*
......@@ -65,7 +52,16 @@ struct ext2_inode_info {
struct posix_acl *i_default_acl;
#endif
rwlock_t i_meta_lock;
/*
* truncate_mutex is for serialising ext2_truncate() against
* ext2_getblock(). It also protects the internals of the inode's
* reservation data structures: ext2_reserve_window and
* ext2_reserve_window_node.
*/
struct mutex truncate_mutex;
struct inode vfs_inode;
struct list_head i_orphan; /* unlinked but open inodes */
};
/*
......@@ -91,8 +87,9 @@ static inline struct ext2_inode_info *EXT2_I(struct inode *inode)
/* balloc.c */
extern int ext2_bg_has_super(struct super_block *sb, int group);
extern unsigned long ext2_bg_num_gdb(struct super_block *sb, int group);
extern int ext2_new_block (struct inode *, unsigned long,
__u32 *, __u32 *, int *);
extern ext2_fsblk_t ext2_new_block(struct inode *, unsigned long, int *);
extern ext2_fsblk_t ext2_new_blocks(struct inode *, unsigned long,
unsigned long *, int *);
extern void ext2_free_blocks (struct inode *, unsigned long,
unsigned long);
extern unsigned long ext2_count_free_blocks (struct super_block *);
......@@ -101,6 +98,10 @@ extern void ext2_check_blocks_bitmap (struct super_block *);
extern struct ext2_group_desc * ext2_get_group_desc(struct super_block * sb,
unsigned int block_group,
struct buffer_head ** bh);
extern void ext2_discard_reservation (struct inode *);
extern int ext2_should_retry_alloc(struct super_block *sb, int *retries);
extern void ext2_init_block_alloc_info(struct inode *);
extern void ext2_rsv_window_add(struct super_block *sb, struct ext2_reserve_window_node *rsv);
/* dir.c */
extern int ext2_add_link (struct dentry *, struct inode *);
......@@ -128,7 +129,6 @@ extern int ext2_write_inode (struct inode *, int);
extern void ext2_put_inode (struct inode *);
extern void ext2_delete_inode (struct inode *);
extern int ext2_sync_inode (struct inode *);
extern void ext2_discard_prealloc (struct inode *);
extern int ext2_get_block(struct inode *, sector_t, struct buffer_head *, int);
extern void ext2_truncate (struct inode *);
extern int ext2_setattr (struct dentry *, struct iattr *);
......
......@@ -30,8 +30,11 @@
*/
static int ext2_release_file (struct inode * inode, struct file * filp)
{
if (filp->f_mode & FMODE_WRITE)
ext2_discard_prealloc (inode);
if (filp->f_mode & FMODE_WRITE) {
mutex_lock(&EXT2_I(inode)->truncate_mutex);
ext2_discard_reservation(inode);
mutex_unlock(&EXT2_I(inode)->truncate_mutex);
}
return 0;
}
......
......@@ -581,11 +581,8 @@ got:
ei->i_file_acl = 0;
ei->i_dir_acl = 0;
ei->i_dtime = 0;
ei->i_block_alloc_info = NULL;
ei->i_block_group = group;
ei->i_next_alloc_block = 0;
ei->i_next_alloc_goal = 0;
ei->i_prealloc_block = 0;
ei->i_prealloc_count = 0;
ei->i_dir_start_lookup = 0;
ei->i_state = EXT2_STATE_NEW;
ext2_set_inode_flags(inode);
......
......@@ -53,19 +53,6 @@ static inline int ext2_inode_is_fast_symlink(struct inode *inode)
inode->i_blocks - ea_blocks == 0);
}
/*
* Called at each iput().
*
* The inode may be "bad" if ext2_read_inode() saw an error from
* ext2_get_inode(), so we need to check that to avoid freeing random disk
* blocks.
*/
void ext2_put_inode(struct inode *inode)
{
if (!is_bad_inode(inode))
ext2_discard_prealloc(inode);
}
/*
* Called at the last iput() if i_nlink is zero.
*/
......@@ -89,61 +76,6 @@ no_delete:
clear_inode(inode); /* We must guarantee clearing of inode... */
}
void ext2_discard_prealloc (struct inode * inode)
{
#ifdef EXT2_PREALLOCATE
struct ext2_inode_info *ei = EXT2_I(inode);
write_lock(&ei->i_meta_lock);
if (ei->i_prealloc_count) {
unsigned short total = ei->i_prealloc_count;
unsigned long block = ei->i_prealloc_block;
ei->i_prealloc_count = 0;
ei->i_prealloc_block = 0;
write_unlock(&ei->i_meta_lock);
ext2_free_blocks (inode, block, total);
return;
} else
write_unlock(&ei->i_meta_lock);
#endif
}
static int ext2_alloc_block (struct inode * inode, unsigned long goal, int *err)
{
#ifdef EXT2FS_DEBUG
static unsigned long alloc_hits, alloc_attempts;
#endif
unsigned long result;
#ifdef EXT2_PREALLOCATE
struct ext2_inode_info *ei = EXT2_I(inode);
write_lock(&ei->i_meta_lock);
if (ei->i_prealloc_count &&
(goal == ei->i_prealloc_block || goal + 1 == ei->i_prealloc_block))
{
result = ei->i_prealloc_block++;
ei->i_prealloc_count--;
write_unlock(&ei->i_meta_lock);
ext2_debug ("preallocation hit (%lu/%lu).\n",
++alloc_hits, ++alloc_attempts);
} else {
write_unlock(&ei->i_meta_lock);
ext2_discard_prealloc (inode);
ext2_debug ("preallocation miss (%lu/%lu).\n",
alloc_hits, ++alloc_attempts);
if (S_ISREG(inode->i_mode))
result = ext2_new_block (inode, goal,
&ei->i_prealloc_count,
&ei->i_prealloc_block, err);
else
result = ext2_new_block(inode, goal, NULL, NULL, err);
}
#else
result = ext2_new_block (inode, goal, 0, 0, err);
#endif
return result;
}
typedef struct {
__le32 *p;
__le32 key;
......@@ -228,7 +160,8 @@ static int ext2_block_to_path(struct inode *inode,
ext2_warning (inode->i_sb, "ext2_block_to_path", "block > big");
}
if (boundary)
*boundary = (i_block & (ptrs - 1)) == (final - 1);
*boundary = final - 1 - (i_block & (ptrs - 1));
return n;
}
......@@ -355,39 +288,129 @@ static unsigned long ext2_find_near(struct inode *inode, Indirect *ind)
* @block: block we want
* @chain: chain of indirect blocks
* @partial: pointer to the last triple within a chain
* @goal: place to store the result.
*
* Normally this function find the prefered place for block allocation,
* stores it in *@goal and returns zero. If the branch had been changed
* under us we return -EAGAIN.
* Returns preferred place for a block (the goal).
*/
static inline int ext2_find_goal(struct inode *inode,
long block,
Indirect chain[4],
Indirect *partial,
unsigned long *goal)
Indirect *partial)
{
struct ext2_inode_info *ei = EXT2_I(inode);
write_lock(&ei->i_meta_lock);
if ((block == ei->i_next_alloc_block + 1) && ei->i_next_alloc_goal) {
ei->i_next_alloc_block++;
ei->i_next_alloc_goal++;
}
if (verify_chain(chain, partial)) {
struct ext2_block_alloc_info *block_i;
block_i = EXT2_I(inode)->i_block_alloc_info;
/*
* try the heuristic for sequential allocation,
* failing that at least try to get decent locality.
*/
if (block == ei->i_next_alloc_block)
*goal = ei->i_next_alloc_goal;
if (!*goal)
*goal = ext2_find_near(inode, partial);
write_unlock(&ei->i_meta_lock);
return 0;
if (block_i && (block == block_i->last_alloc_logical_block + 1)
&& (block_i->last_alloc_physical_block != 0)) {
return block_i->last_alloc_physical_block + 1;
}
write_unlock(&ei->i_meta_lock);
return -EAGAIN;
return ext2_find_near(inode, partial);
}
/**
* ext2_blks_to_allocate: Look up the block map and count the number
* of direct blocks need to be allocated for the given branch.
*
* @branch: chain of indirect blocks
* @k: number of blocks need for indirect blocks
* @blks: number of data blocks to be mapped.
* @blocks_to_boundary: the offset in the indirect block
*
* return the total number of blocks to be allocate, including the
* direct and indirect blocks.
*/
static int
ext2_blks_to_allocate(Indirect * branch, int k, unsigned long blks,
int blocks_to_boundary)
{
unsigned long count = 0;
/*
* Simple case, [t,d]Indirect block(s) has not allocated yet
* then it's clear blocks on that path have not allocated
*/
if (k > 0) {
/* right now don't hanel cross boundary allocation */
if (blks < blocks_to_boundary + 1)
count += blks;
else
count += blocks_to_boundary + 1;
return count;
}
count++;
while (count < blks && count <= blocks_to_boundary
&& le32_to_cpu(*(branch[0].p + count)) == 0) {
count++;
}
return count;
}
/**
* ext2_alloc_blocks: multiple allocate blocks needed for a branch
* @indirect_blks: the number of blocks need to allocate for indirect
* blocks
*
* @new_blocks: on return it will store the new block numbers for
* the indirect blocks(if needed) and the first direct block,
* @blks: on return it will store the total number of allocated
* direct blocks
*/
static int ext2_alloc_blocks(struct inode *inode,
ext2_fsblk_t goal, int indirect_blks, int blks,
ext2_fsblk_t new_blocks[4], int *err)
{
int target, i;
unsigned long count = 0;
int index = 0;
ext2_fsblk_t current_block = 0;
int ret = 0;
/*
* Here we try to allocate the requested multiple blocks at once,
* on a best-effort basis.
* To build a branch, we should allocate blocks for
* the indirect blocks(if not allocated yet), and at least
* the first direct block of this branch. That's the
* minimum number of blocks need to allocate(required)
*/
target = blks + indirect_blks;
while (1) {
count = target;
/* allocating blocks for indirect blocks and direct blocks */
current_block = ext2_new_blocks(inode,goal,&count,err);
if (*err)
goto failed_out;
target -= count;
/* allocate blocks for indirect blocks */
while (index < indirect_blks && count) {
new_blocks[index++] = current_block++;
count--;
}
if (count > 0)
break;
}
/* save the new block number for the first direct block */
new_blocks[index] = current_block;
/* total number of blocks allocated for direct blocks */
ret = count;
*err = 0;
return ret;
failed_out:
for (i = 0; i <index; i++)
ext2_free_blocks(inode, new_blocks[i], 1);
return ret;
}
/**
......@@ -416,39 +439,49 @@ static inline int ext2_find_goal(struct inode *inode,
*/
static int ext2_alloc_branch(struct inode *inode,
int num,
unsigned long goal,
int *offsets,
Indirect *branch)
int indirect_blks, int *blks, ext2_fsblk_t goal,
int *offsets, Indirect *branch)
{
int blocksize = inode->i_sb->s_blocksize;
int n = 0;
int err;
int i;
int parent = ext2_alloc_block(inode, goal, &err);
branch[0].key = cpu_to_le32(parent);
if (parent) for (n = 1; n < num; n++) {
int i, n = 0;
int err = 0;
struct buffer_head *bh;
/* Allocate the next block */
int nr = ext2_alloc_block(inode, parent, &err);
if (!nr)
break;
branch[n].key = cpu_to_le32(nr);
int num;
ext2_fsblk_t new_blocks[4];
ext2_fsblk_t current_block;
num = ext2_alloc_blocks(inode, goal, indirect_blks,
*blks, new_blocks, &err);
if (err)
return err;
branch[0].key = cpu_to_le32(new_blocks[0]);
/*
* Get buffer_head for parent block, zero it out and set
* the pointer to new one, then send parent to disk.
* metadata blocks and data blocks are allocated.
*/
bh = sb_getblk(inode->i_sb, parent);
if (!bh) {
err = -EIO;
break;
}
for (n = 1; n <= indirect_blks; n++) {
/*
* Get buffer_head for parent block, zero it out
* and set the pointer to new one, then send
* parent to disk.
*/
bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
branch[n].bh = bh;
lock_buffer(bh);
memset(bh->b_data, 0, blocksize);
branch[n].bh = bh;
branch[n].p = (__le32 *) bh->b_data + offsets[n];
branch[n].key = cpu_to_le32(new_blocks[n]);
*branch[n].p = branch[n].key;
if ( n == indirect_blks) {
current_block = new_blocks[n];
/*
* End of chain, update the last new metablock of
* the chain to point to the new allocated
* data blocks numbers
*/
for (i=1; i < num; i++)
*(branch[n].p + i) = cpu_to_le32(++current_block);
}
set_buffer_uptodate(bh);
unlock_buffer(bh);
mark_buffer_dirty_inode(bh, inode);
......@@ -458,16 +491,8 @@ static int ext2_alloc_branch(struct inode *inode,
*/
if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
sync_dirty_buffer(bh);
parent = nr;
}
if (n == num)
return 0;
/* Allocation failed, free what we already allocated */
for (i = 1; i < n; i++)
bforget(branch[i].bh);
for (i = 0; i < n; i++)
ext2_free_blocks(inode, le32_to_cpu(branch[i].key), 1);
*blks = num;
return err;
}
......@@ -478,57 +503,56 @@ static int ext2_alloc_branch(struct inode *inode,
* @chain: chain of indirect blocks (with a missing link - see
* ext2_alloc_branch)
* @where: location of missing link
* @num: number of blocks we are adding
* @num: number of indirect blocks we are adding
* @blks: number of direct blocks we are adding
*
* This function verifies that chain (up to the missing link) had not
* changed, fills the missing link and does all housekeeping needed in
* This function fills the missing link and does all housekeeping needed in
* inode (->i_blocks, etc.). In case of success we end up with the full
* chain to new block and return 0. Otherwise (== chain had been changed)
* we free the new blocks (forgetting their buffer_heads, indeed) and
* return -EAGAIN.
* chain to new block and return 0.
*/
static inline int ext2_splice_branch(struct inode *inode,
long block,
Indirect chain[4],
Indirect *where,
int num)
static void ext2_splice_branch(struct inode *inode,
long block, Indirect *where, int num, int blks)
{
struct ext2_inode_info *ei = EXT2_I(inode);
int i;
struct ext2_block_alloc_info *block_i;
ext2_fsblk_t current_block;
/* Verify that place we are splicing to is still there and vacant */
write_lock(&ei->i_meta_lock);
if (!verify_chain(chain, where-1) || *where->p)
goto changed;
block_i = EXT2_I(inode)->i_block_alloc_info;
/* XXX LOCKING probably should have i_meta_lock ?*/
/* That's it */
*where->p = where->key;
ei->i_next_alloc_block = block;
ei->i_next_alloc_goal = le32_to_cpu(where[num-1].key);
write_unlock(&ei->i_meta_lock);
/*
* Update the host buffer_head or inode to point to more just allocated
* direct blocks blocks
*/
if (num == 0 && blks > 1) {
current_block = le32_to_cpu(where->key) + 1;
for (i = 1; i < blks; i++)
*(where->p + i ) = cpu_to_le32(current_block++);
}
/* We are done with atomic stuff, now do the rest of housekeeping */
/*
* update the most recently allocated logical & physical block
* in i_block_alloc_info, to assist find the proper goal block for next
* allocation
*/
if (block_i) {
block_i->last_alloc_logical_block = block + blks - 1;
block_i->last_alloc_physical_block =
le32_to_cpu(where[num].key) + blks - 1;
}
inode->i_ctime = CURRENT_TIME_SEC;
/* We are done with atomic stuff, now do the rest of housekeeping */
/* had we spliced it onto indirect block? */
if (where->bh)
mark_buffer_dirty_inode(where->bh, inode);
inode->i_ctime = CURRENT_TIME_SEC;
mark_inode_dirty(inode);
return 0;
changed:
write_unlock(&ei->i_meta_lock);
for (i = 1; i < num; i++)
bforget(where[i].bh);
for (i = 0; i < num; i++)
ext2_free_blocks(inode, le32_to_cpu(where[i].key), 1);
return -EAGAIN;
}
/*
......@@ -542,64 +566,99 @@ changed:
* That has a nice additional property: no special recovery from the failed
* allocations is needed - we simply release blocks and do not touch anything
* reachable from inode.
*
* `handle' can be NULL if create == 0.
*
* The BKL may not be held on entry here. Be sure to take it early.
* return > 0, # of blocks mapped or allocated.
* return = 0, if plain lookup failed.
* return < 0, error case.
*/
int ext2_get_block(struct inode *inode, sector_t iblock, struct buffer_head *bh_result, int create)
static int ext2_get_blocks(struct inode *inode,
sector_t iblock, unsigned long maxblocks,
struct buffer_head *bh_result,
int create)
{
int err = -EIO;
int offsets[4];
Indirect chain[4];
Indirect *partial;
unsigned long goal;
int left;
int boundary = 0;
int depth = ext2_block_to_path(inode, iblock, offsets, &boundary);
ext2_fsblk_t goal;
int indirect_blks;
int blocks_to_boundary = 0;
int depth;
struct ext2_inode_info *ei = EXT2_I(inode);
int count = 0;
ext2_fsblk_t first_block = 0;
if (depth == 0)
goto out;
depth = ext2_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
if (depth == 0)
return (err);
reread:
partial = ext2_get_branch(inode, depth, offsets, chain, &err);
/* Simplest case - block found, no allocation needed */
if (!partial) {
got_it:
map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
if (boundary)
set_buffer_boundary(bh_result);
/* Clean up and exit */
partial = chain+depth-1; /* the whole chain */
goto cleanup;
}
first_block = le32_to_cpu(chain[depth - 1].key);
clear_buffer_new(bh_result); /* What's this do? */
count++;
/*map more blocks*/
while (count < maxblocks && count <= blocks_to_boundary) {
ext2_fsblk_t blk;
/* Next simple case - plain lookup or failed read of indirect block */
if (!create || err == -EIO) {
cleanup:
while (partial > chain) {
brelse(partial->bh);
partial--;
if (!verify_chain(chain, partial)) {
/*
* Indirect block might be removed by
* truncate while we were reading it.
* Handling of that case: forget what we've
* got now, go to reread.
*/
count = 0;
goto changed;
}
out:
return err;
blk = le32_to_cpu(*(chain[depth-1].p + count));
if (blk == first_block + count)
count++;
else
break;
}
goto got_it;
}
/* Next simple case - plain lookup or failed read of indirect block */
if (!create || err == -EIO)
goto cleanup;
mutex_lock(&ei->truncate_mutex);
/*
* Indirect block might be removed by truncate while we were
* reading it. Handling of that case (forget what we've got and
* reread) is taken out of the main path.
* Okay, we need to do block allocation. Lazily initialize the block
* allocation info here if necessary
*/
if (err == -EAGAIN)
goto changed;
if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
ext2_init_block_alloc_info(inode);
goal = 0;
if (ext2_find_goal(inode, iblock, chain, partial, &goal) < 0)
goto changed;
goal = ext2_find_goal(inode, iblock, chain, partial);
left = (chain + depth) - partial;
err = ext2_alloc_branch(inode, left, goal,
offsets+(partial-chain), partial);
if (err)
/* the number of blocks need to allocate for [d,t]indirect blocks */
indirect_blks = (chain + depth) - partial - 1;
/*
* Next look up the indirect map to count the totoal number of
* direct blocks to allocate for this branch.
*/
count = ext2_blks_to_allocate(partial, indirect_blks,
maxblocks, blocks_to_boundary);
/*
* XXX ???? Block out ext2_truncate while we alter the tree
*/
err = ext2_alloc_branch(inode, indirect_blks, &count, goal,
offsets + (partial - chain), partial);
if (err) {
mutex_unlock(&ei->truncate_mutex);
goto cleanup;
}
if (ext2_use_xip(inode->i_sb)) {
/*
......@@ -607,16 +666,28 @@ out:
*/
err = ext2_clear_xip_target (inode,
le32_to_cpu(chain[depth-1].key));
if (err)
if (err) {
mutex_unlock(&ei->truncate_mutex);
goto cleanup;
}
}
if (ext2_splice_branch(inode, iblock, chain, partial, left) < 0)
goto changed;
ext2_splice_branch(inode, iblock, partial, indirect_blks, count);
mutex_unlock(&ei->truncate_mutex);
set_buffer_new(bh_result);
goto got_it;
got_it:
map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
if (count > blocks_to_boundary)
set_buffer_boundary(bh_result);
err = count;
/* Clean up and exit */
partial = chain + depth - 1; /* the whole chain */
cleanup:
while (partial > chain) {
brelse(partial->bh);
partial--;
}
return err;
changed:
while (partial > chain) {
brelse(partial->bh);
......@@ -625,6 +696,19 @@ changed:
goto reread;
}
int ext2_get_block(struct inode *inode, sector_t iblock, struct buffer_head *bh_result, int create)
{
unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
int ret = ext2_get_blocks(inode, iblock, max_blocks,
bh_result, create);
if (ret > 0) {
bh_result->b_size = (ret << inode->i_blkbits);
ret = 0;
}
return ret;
}
static int ext2_writepage(struct page *page, struct writeback_control *wbc)
{
return block_write_full_page(page, ext2_get_block, wbc);
......@@ -913,9 +997,10 @@ static void ext2_free_branches(struct inode *inode, __le32 *p, __le32 *q, int de
ext2_free_data(inode, p, q);
}
void ext2_truncate (struct inode * inode)
void ext2_truncate(struct inode *inode)
{
__le32 *i_data = EXT2_I(inode)->i_data;
struct ext2_inode_info *ei = EXT2_I(inode);
int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
int offsets[4];
Indirect chain[4];
......@@ -933,8 +1018,6 @@ void ext2_truncate (struct inode * inode)
if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
return;
ext2_discard_prealloc(inode);
blocksize = inode->i_sb->s_blocksize;
iblock = (inode->i_size + blocksize-1)
>> EXT2_BLOCK_SIZE_BITS(inode->i_sb);
......@@ -952,6 +1035,12 @@ void ext2_truncate (struct inode * inode)
if (n == 0)
return;
/*
* From here we block out all ext2_get_block() callers who want to
* modify the block allocation tree.
*/
mutex_lock(&ei->truncate_mutex);
if (n == 1) {
ext2_free_data(inode, i_data+offsets[0],
i_data + EXT2_NDIR_BLOCKS);
......@@ -1004,6 +1093,10 @@ do_indirects:
case EXT2_TIND_BLOCK:
;
}
ext2_discard_reservation(inode);
mutex_unlock(&ei->truncate_mutex);
inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
if (inode_needs_sync(inode)) {
sync_mapping_buffers(inode->i_mapping);
......@@ -1104,6 +1197,8 @@ void ext2_read_inode (struct inode * inode)
ei->i_acl = EXT2_ACL_NOT_CACHED;
ei->i_default_acl = EXT2_ACL_NOT_CACHED;
#endif
ei->i_block_alloc_info = NULL;
if (IS_ERR(raw_inode))
goto bad_inode;
......@@ -1145,9 +1240,6 @@ void ext2_read_inode (struct inode * inode)
ei->i_dtime = 0;
inode->i_generation = le32_to_cpu(raw_inode->i_generation);
ei->i_state = 0;
ei->i_next_alloc_block = 0;
ei->i_next_alloc_goal = 0;
ei->i_prealloc_count = 0;
ei->i_block_group = (ino - 1) / EXT2_INODES_PER_GROUP(inode->i_sb);
ei->i_dir_start_lookup = 0;
......
......@@ -22,6 +22,7 @@ int ext2_ioctl (struct inode * inode, struct file * filp, unsigned int cmd,
{
struct ext2_inode_info *ei = EXT2_I(inode);
unsigned int flags;
unsigned short rsv_window_size;
ext2_debug ("cmd = %u, arg = %lu\n", cmd, arg);
......@@ -83,6 +84,50 @@ int ext2_ioctl (struct inode * inode, struct file * filp, unsigned int cmd,
inode->i_ctime = CURRENT_TIME_SEC;
mark_inode_dirty(inode);
return 0;
case EXT2_IOC_GETRSVSZ:
if (test_opt(inode->i_sb, RESERVATION)
&& S_ISREG(inode->i_mode)
&& ei->i_block_alloc_info) {
rsv_window_size = ei->i_block_alloc_info->rsv_window_node.rsv_goal_size;
return put_user(rsv_window_size, (int __user *)arg);
}
return -ENOTTY;
case EXT2_IOC_SETRSVSZ: {
if (!test_opt(inode->i_sb, RESERVATION) ||!S_ISREG(inode->i_mode))
return -ENOTTY;
if (IS_RDONLY(inode))
return -EROFS;
if ((current->fsuid != inode->i_uid) && !capable(CAP_FOWNER))
return -EACCES;
if (get_user(rsv_window_size, (int __user *)arg))
return -EFAULT;
if (rsv_window_size > EXT2_MAX_RESERVE_BLOCKS)
rsv_window_size = EXT2_MAX_RESERVE_BLOCKS;
/*
* need to allocate reservation structure for this inode
* before set the window size
*/
/*
* XXX What lock should protect the rsv_goal_size?
* Accessed in ext2_get_block only. ext3 uses i_truncate.
*/
mutex_lock(&ei->truncate_mutex);
if (!ei->i_block_alloc_info)
ext2_init_block_alloc_info(inode);
if (ei->i_block_alloc_info){
struct ext2_reserve_window_node *rsv = &ei->i_block_alloc_info->rsv_window_node;
rsv->rsv_goal_size = rsv_window_size;
}
mutex_unlock(&ei->truncate_mutex);
return 0;
}
default:
return -ENOTTY;
}
......
......@@ -149,6 +149,7 @@ static struct inode *ext2_alloc_inode(struct super_block *sb)
ei->i_acl = EXT2_ACL_NOT_CACHED;
ei->i_default_acl = EXT2_ACL_NOT_CACHED;
#endif
ei->i_block_alloc_info = NULL;
ei->vfs_inode.i_version = 1;
return &ei->vfs_inode;
}
......@@ -166,6 +167,7 @@ static void init_once(struct kmem_cache * cachep, void *foo)
#ifdef CONFIG_EXT2_FS_XATTR
init_rwsem(&ei->xattr_sem);
#endif
mutex_init(&ei->truncate_mutex);
inode_init_once(&ei->vfs_inode);
}
......@@ -188,6 +190,7 @@ static void destroy_inodecache(void)
static void ext2_clear_inode(struct inode *inode)
{
struct ext2_block_alloc_info *rsv = EXT2_I(inode)->i_block_alloc_info;
#ifdef CONFIG_EXT2_FS_POSIX_ACL
struct ext2_inode_info *ei = EXT2_I(inode);
......@@ -200,6 +203,10 @@ static void ext2_clear_inode(struct inode *inode)
ei->i_default_acl = EXT2_ACL_NOT_CACHED;
}
#endif
ext2_discard_reservation(inode);
EXT2_I(inode)->i_block_alloc_info = NULL;
if (unlikely(rsv))
kfree(rsv);
}
static int ext2_show_options(struct seq_file *seq, struct vfsmount *vfs)
......@@ -291,7 +298,6 @@ static const struct super_operations ext2_sops = {
.destroy_inode = ext2_destroy_inode,
.read_inode = ext2_read_inode,
.write_inode = ext2_write_inode,
.put_inode = ext2_put_inode,
.delete_inode = ext2_delete_inode,
.put_super = ext2_put_super,
.write_super = ext2_write_super,
......@@ -379,7 +385,7 @@ enum {
Opt_err_ro, Opt_nouid32, Opt_nocheck, Opt_debug,
Opt_oldalloc, Opt_orlov, Opt_nobh, Opt_user_xattr, Opt_nouser_xattr,
Opt_acl, Opt_noacl, Opt_xip, Opt_ignore, Opt_err, Opt_quota,
Opt_usrquota, Opt_grpquota
Opt_usrquota, Opt_grpquota, Opt_reservation, Opt_noreservation
};
static match_table_t tokens = {
......@@ -411,6 +417,8 @@ static match_table_t tokens = {
{Opt_ignore, "noquota"},
{Opt_quota, "quota"},
{Opt_usrquota, "usrquota"},
{Opt_reservation, "reservation"},
{Opt_noreservation, "noreservation"},
{Opt_err, NULL}
};
......@@ -543,6 +551,14 @@ static int parse_options (char * options,
break;
#endif
case Opt_reservation:
set_opt(sbi->s_mount_opt, RESERVATION);
printk("reservations ON\n");
break;
case Opt_noreservation:
clear_opt(sbi->s_mount_opt, RESERVATION);
printk("reservations OFF\n");
break;
case Opt_ignore:
break;
default:
......@@ -784,6 +800,8 @@ static int ext2_fill_super(struct super_block *sb, void *data, int silent)
sbi->s_resuid = le16_to_cpu(es->s_def_resuid);
sbi->s_resgid = le16_to_cpu(es->s_def_resgid);
set_opt(sbi->s_mount_opt, RESERVATION);
if (!parse_options ((char *) data, sbi))
goto failed_mount;
......@@ -965,6 +983,21 @@ static int ext2_fill_super(struct super_block *sb, void *data, int silent)
get_random_bytes(&sbi->s_next_generation, sizeof(u32));
spin_lock_init(&sbi->s_next_gen_lock);
/* per fileystem reservation list head & lock */
spin_lock_init(&sbi->s_rsv_window_lock);
sbi->s_rsv_window_root = RB_ROOT;
/*
* Add a single, static dummy reservation to the start of the
* reservation window list --- it gives us a placeholder for
* append-at-start-of-list which makes the allocation logic
* _much_ simpler.
*/
sbi->s_rsv_window_head.rsv_start = EXT2_RESERVE_WINDOW_NOT_ALLOCATED;
sbi->s_rsv_window_head.rsv_end = EXT2_RESERVE_WINDOW_NOT_ALLOCATED;
sbi->s_rsv_window_head.rsv_alloc_hit = 0;
sbi->s_rsv_window_head.rsv_goal_size = 0;
ext2_rsv_window_add(sb, &sbi->s_rsv_window_head);
err = percpu_counter_init(&sbi->s_freeblocks_counter,
ext2_count_free_blocks(sb));
if (!err) {
......@@ -1260,7 +1293,7 @@ static ssize_t ext2_quota_read(struct super_block *sb, int type, char *data,
tmp_bh.b_state = 0;
err = ext2_get_block(inode, blk, &tmp_bh, 0);
if (err)
if (err < 0)
return err;
if (!buffer_mapped(&tmp_bh)) /* A hole? */
memset(data, 0, tocopy);
......@@ -1299,7 +1332,7 @@ static ssize_t ext2_quota_write(struct super_block *sb, int type,
tmp_bh.b_state = 0;
err = ext2_get_block(inode, blk, &tmp_bh, 1);
if (err)
if (err < 0)
goto out;
if (offset || tocopy != EXT2_BLOCK_SIZE(sb))
bh = sb_bread(sb, tmp_bh.b_blocknr);
......
......@@ -664,8 +664,7 @@ ext2_xattr_set2(struct inode *inode, struct buffer_head *old_bh,
s_first_data_block) +
EXT2_I(inode)->i_block_group *
EXT2_BLOCKS_PER_GROUP(sb);
int block = ext2_new_block(inode, goal,
NULL, NULL, &error);
int block = ext2_new_block(inode, goal, &error);
if (error)
goto cleanup;
ea_idebug(inode, "creating block %d", block);
......
......@@ -29,11 +29,12 @@
#undef EXT2FS_DEBUG
/*
* Define EXT2_PREALLOCATE to preallocate data blocks for expanding files
* Define EXT2_RESERVATION to reserve data blocks for expanding files
*/
#define EXT2_PREALLOCATE
#define EXT2_DEFAULT_PREALLOC_BLOCKS 8
#define EXT2_DEFAULT_RESERVE_BLOCKS 8
/*max window size: 1024(direct blocks) + 3([t,d]indirect blocks) */
#define EXT2_MAX_RESERVE_BLOCKS 1027
#define EXT2_RESERVE_WINDOW_NOT_ALLOCATED 0
/*
* The second extended file system version
*/
......@@ -200,6 +201,8 @@ struct ext2_group_desc
#define EXT2_IOC_SETFLAGS FS_IOC_SETFLAGS
#define EXT2_IOC_GETVERSION FS_IOC_GETVERSION
#define EXT2_IOC_SETVERSION FS_IOC_SETVERSION
#define EXT2_IOC_GETRSVSZ _IOR('f', 5, long)
#define EXT2_IOC_SETRSVSZ _IOW('f', 6, long)
/*
* ioctl commands in 32 bit emulation
......@@ -319,6 +322,7 @@ struct ext2_inode {
#define EXT2_MOUNT_XIP 0x010000 /* Execute in place */
#define EXT2_MOUNT_USRQUOTA 0x020000 /* user quota */
#define EXT2_MOUNT_GRPQUOTA 0x040000 /* group quota */
#define EXT2_MOUNT_RESERVATION 0x080000 /* Preallocation */
#define clear_opt(o, opt) o &= ~EXT2_MOUNT_##opt
......@@ -558,4 +562,11 @@ enum {
#define EXT2_DIR_REC_LEN(name_len) (((name_len) + 8 + EXT2_DIR_ROUND) & \
~EXT2_DIR_ROUND)
static inline ext2_fsblk_t
ext2_group_first_block_no(struct super_block *sb, unsigned long group_no)
{
return group_no * (ext2_fsblk_t)EXT2_BLOCKS_PER_GROUP(sb) +
le32_to_cpu(EXT2_SB(sb)->s_es->s_first_data_block);
}
#endif /* _LINUX_EXT2_FS_H */
......@@ -18,6 +18,52 @@
#include <linux/blockgroup_lock.h>
#include <linux/percpu_counter.h>
#include <linux/rbtree.h>
/* XXX Here for now... not interested in restructing headers JUST now */
/* data type for block offset of block group */
typedef int ext2_grpblk_t;
/* data type for filesystem-wide blocks number */
typedef unsigned long ext2_fsblk_t;
#define E2FSBLK "%lu"
struct ext2_reserve_window {
ext2_fsblk_t _rsv_start; /* First byte reserved */
ext2_fsblk_t _rsv_end; /* Last byte reserved or 0 */
};
struct ext2_reserve_window_node {
struct rb_node rsv_node;
__u32 rsv_goal_size;
__u32 rsv_alloc_hit;
struct ext2_reserve_window rsv_window;
};
struct ext2_block_alloc_info {
/* information about reservation window */
struct ext2_reserve_window_node rsv_window_node;
/*
* was i_next_alloc_block in ext2_inode_info
* is the logical (file-relative) number of the
* most-recently-allocated block in this file.
* We use this for detecting linearly ascending allocation requests.
*/
__u32 last_alloc_logical_block;
/*
* Was i_next_alloc_goal in ext2_inode_info
* is the *physical* companion to i_next_alloc_block.
* it the the physical block number of the block which was most-recentl
* allocated to this file. This give us the goal (target) for the next
* allocation when we detect linearly ascending requests.
*/
ext2_fsblk_t last_alloc_physical_block;
};
#define rsv_start rsv_window._rsv_start
#define rsv_end rsv_window._rsv_end
/*
* second extended-fs super-block data in memory
......@@ -56,6 +102,10 @@ struct ext2_sb_info {
struct percpu_counter s_freeinodes_counter;
struct percpu_counter s_dirs_counter;
struct blockgroup_lock s_blockgroup_lock;
/* root of the per fs reservation window tree */
spinlock_t s_rsv_window_lock;
struct rb_root s_rsv_window_root;
struct ext2_reserve_window_node s_rsv_window_head;
};
#endif /* _LINUX_EXT2_FS_SB */
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment