Commit a53a35a8 authored by Glauber de Oliveira Costa's avatar Glauber de Oliveira Costa Committed by Rusty Russell

lguest: make registers per-vcpu

This is the most obvious per-vcpu field: registers.

So this patch moves it from struct lguest to struct vcpu,
and patch the places in which they are used, accordingly
Signed-off-by: default avatarGlauber de Oliveira Costa <gcosta@redhat.com>
Signed-off-by: default avatarRusty Russell <rusty@rustcorp.com.au>
parent a3863f68
...@@ -70,7 +70,7 @@ static void set_guest_interrupt(struct lg_cpu *cpu, u32 lo, u32 hi, int has_err) ...@@ -70,7 +70,7 @@ static void set_guest_interrupt(struct lg_cpu *cpu, u32 lo, u32 hi, int has_err)
/* There are two cases for interrupts: one where the Guest is already /* There are two cases for interrupts: one where the Guest is already
* in the kernel, and a more complex one where the Guest is in * in the kernel, and a more complex one where the Guest is in
* userspace. We check the privilege level to find out. */ * userspace. We check the privilege level to find out. */
if ((lg->regs->ss&0x3) != GUEST_PL) { if ((cpu->regs->ss&0x3) != GUEST_PL) {
/* The Guest told us their kernel stack with the SET_STACK /* The Guest told us their kernel stack with the SET_STACK
* hypercall: both the virtual address and the segment */ * hypercall: both the virtual address and the segment */
virtstack = lg->esp1; virtstack = lg->esp1;
...@@ -81,12 +81,12 @@ static void set_guest_interrupt(struct lg_cpu *cpu, u32 lo, u32 hi, int has_err) ...@@ -81,12 +81,12 @@ static void set_guest_interrupt(struct lg_cpu *cpu, u32 lo, u32 hi, int has_err)
* stack: when the Guest does an "iret" back from the interrupt * stack: when the Guest does an "iret" back from the interrupt
* handler the CPU will notice they're dropping privilege * handler the CPU will notice they're dropping privilege
* levels and expect these here. */ * levels and expect these here. */
push_guest_stack(lg, &gstack, lg->regs->ss); push_guest_stack(lg, &gstack, cpu->regs->ss);
push_guest_stack(lg, &gstack, lg->regs->esp); push_guest_stack(lg, &gstack, cpu->regs->esp);
} else { } else {
/* We're staying on the same Guest (kernel) stack. */ /* We're staying on the same Guest (kernel) stack. */
virtstack = lg->regs->esp; virtstack = cpu->regs->esp;
ss = lg->regs->ss; ss = cpu->regs->ss;
origstack = gstack = guest_pa(lg, virtstack); origstack = gstack = guest_pa(lg, virtstack);
} }
...@@ -95,7 +95,7 @@ static void set_guest_interrupt(struct lg_cpu *cpu, u32 lo, u32 hi, int has_err) ...@@ -95,7 +95,7 @@ static void set_guest_interrupt(struct lg_cpu *cpu, u32 lo, u32 hi, int has_err)
* the "Interrupt Flag" bit is always set. We copy that bit from the * the "Interrupt Flag" bit is always set. We copy that bit from the
* Guest's "irq_enabled" field into the eflags word: we saw the Guest * Guest's "irq_enabled" field into the eflags word: we saw the Guest
* copy it back in "lguest_iret". */ * copy it back in "lguest_iret". */
eflags = lg->regs->eflags; eflags = cpu->regs->eflags;
if (get_user(irq_enable, &lg->lguest_data->irq_enabled) == 0 if (get_user(irq_enable, &lg->lguest_data->irq_enabled) == 0
&& !(irq_enable & X86_EFLAGS_IF)) && !(irq_enable & X86_EFLAGS_IF))
eflags &= ~X86_EFLAGS_IF; eflags &= ~X86_EFLAGS_IF;
...@@ -104,19 +104,19 @@ static void set_guest_interrupt(struct lg_cpu *cpu, u32 lo, u32 hi, int has_err) ...@@ -104,19 +104,19 @@ static void set_guest_interrupt(struct lg_cpu *cpu, u32 lo, u32 hi, int has_err)
* "eflags" word, the old code segment, and the old instruction * "eflags" word, the old code segment, and the old instruction
* pointer. */ * pointer. */
push_guest_stack(lg, &gstack, eflags); push_guest_stack(lg, &gstack, eflags);
push_guest_stack(lg, &gstack, lg->regs->cs); push_guest_stack(lg, &gstack, cpu->regs->cs);
push_guest_stack(lg, &gstack, lg->regs->eip); push_guest_stack(lg, &gstack, cpu->regs->eip);
/* For the six traps which supply an error code, we push that, too. */ /* For the six traps which supply an error code, we push that, too. */
if (has_err) if (has_err)
push_guest_stack(lg, &gstack, lg->regs->errcode); push_guest_stack(lg, &gstack, cpu->regs->errcode);
/* Now we've pushed all the old state, we change the stack, the code /* Now we've pushed all the old state, we change the stack, the code
* segment and the address to execute. */ * segment and the address to execute. */
lg->regs->ss = ss; cpu->regs->ss = ss;
lg->regs->esp = virtstack + (gstack - origstack); cpu->regs->esp = virtstack + (gstack - origstack);
lg->regs->cs = (__KERNEL_CS|GUEST_PL); cpu->regs->cs = (__KERNEL_CS|GUEST_PL);
lg->regs->eip = idt_address(lo, hi); cpu->regs->eip = idt_address(lo, hi);
/* There are two kinds of interrupt handlers: 0xE is an "interrupt /* There are two kinds of interrupt handlers: 0xE is an "interrupt
* gate" which expects interrupts to be disabled on entry. */ * gate" which expects interrupts to be disabled on entry. */
...@@ -157,7 +157,7 @@ void maybe_do_interrupt(struct lg_cpu *cpu) ...@@ -157,7 +157,7 @@ void maybe_do_interrupt(struct lg_cpu *cpu)
/* They may be in the middle of an iret, where they asked us never to /* They may be in the middle of an iret, where they asked us never to
* deliver interrupts. */ * deliver interrupts. */
if (lg->regs->eip >= lg->noirq_start && lg->regs->eip < lg->noirq_end) if (cpu->regs->eip >= lg->noirq_start && cpu->regs->eip < lg->noirq_end)
return; return;
/* If they're halted, interrupts restart them. */ /* If they're halted, interrupts restart them. */
......
...@@ -44,6 +44,10 @@ struct lg_cpu { ...@@ -44,6 +44,10 @@ struct lg_cpu {
unsigned int id; unsigned int id;
struct lguest *lg; struct lguest *lg;
/* At end of a page shared mapped over lguest_pages in guest. */
unsigned long regs_page;
struct lguest_regs *regs;
/* If a hypercall was asked for, this points to the arguments. */ /* If a hypercall was asked for, this points to the arguments. */
struct hcall_args *hcall; struct hcall_args *hcall;
u32 next_hcall; u32 next_hcall;
...@@ -58,9 +62,6 @@ struct lg_cpu { ...@@ -58,9 +62,6 @@ struct lg_cpu {
/* The private info the thread maintains about the guest. */ /* The private info the thread maintains about the guest. */
struct lguest struct lguest
{ {
/* At end of a page shared mapped over lguest_pages in guest. */
unsigned long regs_page;
struct lguest_regs *regs;
struct lguest_data __user *lguest_data; struct lguest_data __user *lguest_data;
struct task_struct *tsk; struct task_struct *tsk;
struct mm_struct *mm; /* == tsk->mm, but that becomes NULL on exit */ struct mm_struct *mm; /* == tsk->mm, but that becomes NULL on exit */
...@@ -181,7 +182,7 @@ void lguest_arch_run_guest(struct lg_cpu *cpu); ...@@ -181,7 +182,7 @@ void lguest_arch_run_guest(struct lg_cpu *cpu);
void lguest_arch_handle_trap(struct lg_cpu *cpu); void lguest_arch_handle_trap(struct lg_cpu *cpu);
int lguest_arch_init_hypercalls(struct lg_cpu *cpu); int lguest_arch_init_hypercalls(struct lg_cpu *cpu);
int lguest_arch_do_hcall(struct lg_cpu *cpu, struct hcall_args *args); int lguest_arch_do_hcall(struct lg_cpu *cpu, struct hcall_args *args);
void lguest_arch_setup_regs(struct lguest *lg, unsigned long start); void lguest_arch_setup_regs(struct lg_cpu *cpu, unsigned long start);
/* <arch>/switcher.S: */ /* <arch>/switcher.S: */
extern char start_switcher_text[], end_switcher_text[], switch_to_guest[]; extern char start_switcher_text[], end_switcher_text[], switch_to_guest[];
......
...@@ -106,6 +106,19 @@ static int lg_cpu_start(struct lg_cpu *cpu, unsigned id, unsigned long start_ip) ...@@ -106,6 +106,19 @@ static int lg_cpu_start(struct lg_cpu *cpu, unsigned id, unsigned long start_ip)
cpu->lg->nr_cpus++; cpu->lg->nr_cpus++;
init_clockdev(cpu); init_clockdev(cpu);
/* We need a complete page for the Guest registers: they are accessible
* to the Guest and we can only grant it access to whole pages. */
cpu->regs_page = get_zeroed_page(GFP_KERNEL);
if (!cpu->regs_page)
return -ENOMEM;
/* We actually put the registers at the bottom of the page. */
cpu->regs = (void *)cpu->regs_page + PAGE_SIZE - sizeof(*cpu->regs);
/* Now we initialize the Guest's registers, handing it the start
* address. */
lguest_arch_setup_regs(cpu, start_ip);
return 0; return 0;
} }
...@@ -160,16 +173,6 @@ static int initialize(struct file *file, const unsigned long __user *input) ...@@ -160,16 +173,6 @@ static int initialize(struct file *file, const unsigned long __user *input)
if (err) if (err)
goto release_guest; goto release_guest;
/* We need a complete page for the Guest registers: they are accessible
* to the Guest and we can only grant it access to whole pages. */
lg->regs_page = get_zeroed_page(GFP_KERNEL);
if (!lg->regs_page) {
err = -ENOMEM;
goto release_guest;
}
/* We actually put the registers at the bottom of the page. */
lg->regs = (void *)lg->regs_page + PAGE_SIZE - sizeof(*lg->regs);
/* Initialize the Guest's shadow page tables, using the toplevel /* Initialize the Guest's shadow page tables, using the toplevel
* address the Launcher gave us. This allocates memory, so can * address the Launcher gave us. This allocates memory, so can
* fail. */ * fail. */
...@@ -177,10 +180,6 @@ static int initialize(struct file *file, const unsigned long __user *input) ...@@ -177,10 +180,6 @@ static int initialize(struct file *file, const unsigned long __user *input)
if (err) if (err)
goto free_regs; goto free_regs;
/* Now we initialize the Guest's registers, handing it the start
* address. */
lguest_arch_setup_regs(lg, args[3]);
/* We keep a pointer to the Launcher task (ie. current task) for when /* We keep a pointer to the Launcher task (ie. current task) for when
* other Guests want to wake this one (inter-Guest I/O). */ * other Guests want to wake this one (inter-Guest I/O). */
lg->tsk = current; lg->tsk = current;
...@@ -205,7 +204,8 @@ static int initialize(struct file *file, const unsigned long __user *input) ...@@ -205,7 +204,8 @@ static int initialize(struct file *file, const unsigned long __user *input)
return sizeof(args); return sizeof(args);
free_regs: free_regs:
free_page(lg->regs_page); /* FIXME: This should be in free_vcpu */
free_page(lg->cpus[0].regs_page);
release_guest: release_guest:
kfree(lg); kfree(lg);
unlock: unlock:
...@@ -280,9 +280,12 @@ static int close(struct inode *inode, struct file *file) ...@@ -280,9 +280,12 @@ static int close(struct inode *inode, struct file *file)
/* We need the big lock, to protect from inter-guest I/O and other /* We need the big lock, to protect from inter-guest I/O and other
* Launchers initializing guests. */ * Launchers initializing guests. */
mutex_lock(&lguest_lock); mutex_lock(&lguest_lock);
for (i = 0; i < lg->nr_cpus; i++) for (i = 0; i < lg->nr_cpus; i++) {
/* Cancels the hrtimer set via LHCALL_SET_CLOCKEVENT. */ /* Cancels the hrtimer set via LHCALL_SET_CLOCKEVENT. */
hrtimer_cancel(&lg->cpus[i].hrt); hrtimer_cancel(&lg->cpus[i].hrt);
/* We can free up the register page we allocated. */
free_page(lg->cpus[i].regs_page);
}
/* Free up the shadow page tables for the Guest. */ /* Free up the shadow page tables for the Guest. */
free_guest_pagetable(lg); free_guest_pagetable(lg);
/* Now all the memory cleanups are done, it's safe to release the /* Now all the memory cleanups are done, it's safe to release the
...@@ -292,8 +295,6 @@ static int close(struct inode *inode, struct file *file) ...@@ -292,8 +295,6 @@ static int close(struct inode *inode, struct file *file)
* kmalloc()ed string, either of which is ok to hand to kfree(). */ * kmalloc()ed string, either of which is ok to hand to kfree(). */
if (!IS_ERR(lg->dead)) if (!IS_ERR(lg->dead))
kfree(lg->dead); kfree(lg->dead);
/* We can free up the register page we allocated. */
free_page(lg->regs_page);
/* We clear the entire structure, which also marks it as free for the /* We clear the entire structure, which also marks it as free for the
* next user. */ * next user. */
memset(lg, 0, sizeof(*lg)); memset(lg, 0, sizeof(*lg));
......
...@@ -640,6 +640,7 @@ void map_switcher_in_guest(struct lg_cpu *cpu, struct lguest_pages *pages) ...@@ -640,6 +640,7 @@ void map_switcher_in_guest(struct lg_cpu *cpu, struct lguest_pages *pages)
pte_t *switcher_pte_page = __get_cpu_var(switcher_pte_pages); pte_t *switcher_pte_page = __get_cpu_var(switcher_pte_pages);
pgd_t switcher_pgd; pgd_t switcher_pgd;
pte_t regs_pte; pte_t regs_pte;
unsigned long pfn;
/* Make the last PGD entry for this Guest point to the Switcher's PTE /* Make the last PGD entry for this Guest point to the Switcher's PTE
* page for this CPU (with appropriate flags). */ * page for this CPU (with appropriate flags). */
...@@ -654,7 +655,8 @@ void map_switcher_in_guest(struct lg_cpu *cpu, struct lguest_pages *pages) ...@@ -654,7 +655,8 @@ void map_switcher_in_guest(struct lg_cpu *cpu, struct lguest_pages *pages)
* CPU's "struct lguest_pages": if we make sure the Guest's register * CPU's "struct lguest_pages": if we make sure the Guest's register
* page is already mapped there, we don't have to copy them out * page is already mapped there, we don't have to copy them out
* again. */ * again. */
regs_pte = pfn_pte (__pa(lg->regs_page) >> PAGE_SHIFT, __pgprot(_PAGE_KERNEL)); pfn = __pa(cpu->regs_page) >> PAGE_SHIFT;
regs_pte = pfn_pte(pfn, __pgprot(_PAGE_KERNEL));
switcher_pte_page[(unsigned long)pages/PAGE_SIZE%PTRS_PER_PTE] = regs_pte; switcher_pte_page[(unsigned long)pages/PAGE_SIZE%PTRS_PER_PTE] = regs_pte;
} }
/*:*/ /*:*/
......
...@@ -127,7 +127,7 @@ static void run_guest_once(struct lg_cpu *cpu, struct lguest_pages *pages) ...@@ -127,7 +127,7 @@ static void run_guest_once(struct lg_cpu *cpu, struct lguest_pages *pages)
/* Set the trap number to 256 (impossible value). If we fault while /* Set the trap number to 256 (impossible value). If we fault while
* switching to the Guest (bad segment registers or bug), this will * switching to the Guest (bad segment registers or bug), this will
* cause us to abort the Guest. */ * cause us to abort the Guest. */
lg->regs->trapnum = 256; cpu->regs->trapnum = 256;
/* Now: we push the "eflags" register on the stack, then do an "lcall". /* Now: we push the "eflags" register on the stack, then do an "lcall".
* This is how we change from using the kernel code segment to using * This is how we change from using the kernel code segment to using
...@@ -195,11 +195,11 @@ void lguest_arch_run_guest(struct lg_cpu *cpu) ...@@ -195,11 +195,11 @@ void lguest_arch_run_guest(struct lg_cpu *cpu)
* bad virtual address. We have to grab this now, because once we * bad virtual address. We have to grab this now, because once we
* re-enable interrupts an interrupt could fault and thus overwrite * re-enable interrupts an interrupt could fault and thus overwrite
* cr2, or we could even move off to a different CPU. */ * cr2, or we could even move off to a different CPU. */
if (lg->regs->trapnum == 14) if (cpu->regs->trapnum == 14)
lg->arch.last_pagefault = read_cr2(); lg->arch.last_pagefault = read_cr2();
/* Similarly, if we took a trap because the Guest used the FPU, /* Similarly, if we took a trap because the Guest used the FPU,
* we have to restore the FPU it expects to see. */ * we have to restore the FPU it expects to see. */
else if (lg->regs->trapnum == 7) else if (cpu->regs->trapnum == 7)
math_state_restore(); math_state_restore();
/* Restore SYSENTER if it's supposed to be on. */ /* Restore SYSENTER if it's supposed to be on. */
...@@ -225,12 +225,12 @@ static int emulate_insn(struct lg_cpu *cpu) ...@@ -225,12 +225,12 @@ static int emulate_insn(struct lg_cpu *cpu)
unsigned int insnlen = 0, in = 0, shift = 0; unsigned int insnlen = 0, in = 0, shift = 0;
/* The eip contains the *virtual* address of the Guest's instruction: /* The eip contains the *virtual* address of the Guest's instruction:
* guest_pa just subtracts the Guest's page_offset. */ * guest_pa just subtracts the Guest's page_offset. */
unsigned long physaddr = guest_pa(lg, lg->regs->eip); unsigned long physaddr = guest_pa(lg, cpu->regs->eip);
/* This must be the Guest kernel trying to do something, not userspace! /* This must be the Guest kernel trying to do something, not userspace!
* The bottom two bits of the CS segment register are the privilege * The bottom two bits of the CS segment register are the privilege
* level. */ * level. */
if ((lg->regs->cs & 3) != GUEST_PL) if ((cpu->regs->cs & 3) != GUEST_PL)
return 0; return 0;
/* Decoding x86 instructions is icky. */ /* Decoding x86 instructions is icky. */
...@@ -273,12 +273,12 @@ static int emulate_insn(struct lg_cpu *cpu) ...@@ -273,12 +273,12 @@ static int emulate_insn(struct lg_cpu *cpu)
if (in) { if (in) {
/* Lower bit tells is whether it's a 16 or 32 bit access */ /* Lower bit tells is whether it's a 16 or 32 bit access */
if (insn & 0x1) if (insn & 0x1)
lg->regs->eax = 0xFFFFFFFF; cpu->regs->eax = 0xFFFFFFFF;
else else
lg->regs->eax |= (0xFFFF << shift); cpu->regs->eax |= (0xFFFF << shift);
} }
/* Finally, we've "done" the instruction, so move past it. */ /* Finally, we've "done" the instruction, so move past it. */
lg->regs->eip += insnlen; cpu->regs->eip += insnlen;
/* Success! */ /* Success! */
return 1; return 1;
} }
...@@ -287,12 +287,12 @@ static int emulate_insn(struct lg_cpu *cpu) ...@@ -287,12 +287,12 @@ static int emulate_insn(struct lg_cpu *cpu)
void lguest_arch_handle_trap(struct lg_cpu *cpu) void lguest_arch_handle_trap(struct lg_cpu *cpu)
{ {
struct lguest *lg = cpu->lg; struct lguest *lg = cpu->lg;
switch (lg->regs->trapnum) { switch (cpu->regs->trapnum) {
case 13: /* We've intercepted a General Protection Fault. */ case 13: /* We've intercepted a General Protection Fault. */
/* Check if this was one of those annoying IN or OUT /* Check if this was one of those annoying IN or OUT
* instructions which we need to emulate. If so, we just go * instructions which we need to emulate. If so, we just go
* back into the Guest after we've done it. */ * back into the Guest after we've done it. */
if (lg->regs->errcode == 0) { if (cpu->regs->errcode == 0) {
if (emulate_insn(cpu)) if (emulate_insn(cpu))
return; return;
} }
...@@ -307,7 +307,7 @@ void lguest_arch_handle_trap(struct lg_cpu *cpu) ...@@ -307,7 +307,7 @@ void lguest_arch_handle_trap(struct lg_cpu *cpu)
* *
* The errcode tells whether this was a read or a write, and * The errcode tells whether this was a read or a write, and
* whether kernel or userspace code. */ * whether kernel or userspace code. */
if (demand_page(lg, lg->arch.last_pagefault, lg->regs->errcode)) if (demand_page(lg, lg->arch.last_pagefault, cpu->regs->errcode))
return; return;
/* OK, it's really not there (or not OK): the Guest needs to /* OK, it's really not there (or not OK): the Guest needs to
...@@ -338,19 +338,19 @@ void lguest_arch_handle_trap(struct lg_cpu *cpu) ...@@ -338,19 +338,19 @@ void lguest_arch_handle_trap(struct lg_cpu *cpu)
case LGUEST_TRAP_ENTRY: case LGUEST_TRAP_ENTRY:
/* Our 'struct hcall_args' maps directly over our regs: we set /* Our 'struct hcall_args' maps directly over our regs: we set
* up the pointer now to indicate a hypercall is pending. */ * up the pointer now to indicate a hypercall is pending. */
cpu->hcall = (struct hcall_args *)lg->regs; cpu->hcall = (struct hcall_args *)cpu->regs;
return; return;
} }
/* We didn't handle the trap, so it needs to go to the Guest. */ /* We didn't handle the trap, so it needs to go to the Guest. */
if (!deliver_trap(cpu, lg->regs->trapnum)) if (!deliver_trap(cpu, cpu->regs->trapnum))
/* If the Guest doesn't have a handler (either it hasn't /* If the Guest doesn't have a handler (either it hasn't
* registered any yet, or it's one of the faults we don't let * registered any yet, or it's one of the faults we don't let
* it handle), it dies with a cryptic error message. */ * it handle), it dies with a cryptic error message. */
kill_guest(lg, "unhandled trap %li at %#lx (%#lx)", kill_guest(lg, "unhandled trap %li at %#lx (%#lx)",
lg->regs->trapnum, lg->regs->eip, cpu->regs->trapnum, cpu->regs->eip,
lg->regs->trapnum == 14 ? lg->arch.last_pagefault cpu->regs->trapnum == 14 ? lg->arch.last_pagefault
: lg->regs->errcode); : cpu->regs->errcode);
} }
/* Now we can look at each of the routines this calls, in increasing order of /* Now we can look at each of the routines this calls, in increasing order of
...@@ -557,9 +557,9 @@ int lguest_arch_init_hypercalls(struct lg_cpu *cpu) ...@@ -557,9 +557,9 @@ int lguest_arch_init_hypercalls(struct lg_cpu *cpu)
* *
* Most of the Guest's registers are left alone: we used get_zeroed_page() to * Most of the Guest's registers are left alone: we used get_zeroed_page() to
* allocate the structure, so they will be 0. */ * allocate the structure, so they will be 0. */
void lguest_arch_setup_regs(struct lguest *lg, unsigned long start) void lguest_arch_setup_regs(struct lg_cpu *cpu, unsigned long start)
{ {
struct lguest_regs *regs = lg->regs; struct lguest_regs *regs = cpu->regs;
/* There are four "segment" registers which the Guest needs to boot: /* There are four "segment" registers which the Guest needs to boot:
* The "code segment" register (cs) refers to the kernel code segment * The "code segment" register (cs) refers to the kernel code segment
...@@ -586,5 +586,5 @@ void lguest_arch_setup_regs(struct lguest *lg, unsigned long start) ...@@ -586,5 +586,5 @@ void lguest_arch_setup_regs(struct lguest *lg, unsigned long start)
/* There are a couple of GDT entries the Guest expects when first /* There are a couple of GDT entries the Guest expects when first
* booting. */ * booting. */
setup_guest_gdt(lg); setup_guest_gdt(cpu->lg);
} }
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment