Commit 7005b584 authored by Willy Tarreau's avatar Willy Tarreau Committed by Greg Kroah-Hartman

Staging: add lcd-panel driver

This adds the lcd-panel parallel port driver to the staging tree.

See the file, drivers/staging/panel/TODO for what needs to be fixed up
in order for this to be properly merged into the rest of the kernel
tree.

Cc: Willy Tarreau <w@1wt.eu>
Cc: Frank Menne <frank.menne@hsm.de>
Signed-off-by: default avatarGreg Kroah-Hartman <gregkh@suse.de>
parent 18223a99
...@@ -77,5 +77,7 @@ source "drivers/staging/comedi/Kconfig" ...@@ -77,5 +77,7 @@ source "drivers/staging/comedi/Kconfig"
source "drivers/staging/asus_oled/Kconfig" source "drivers/staging/asus_oled/Kconfig"
source "drivers/staging/panel/Kconfig"
endif # !STAGING_EXCLUDE_BUILD endif # !STAGING_EXCLUDE_BUILD
endif # STAGING endif # STAGING
...@@ -21,3 +21,4 @@ obj-$(CONFIG_RT2860) += rt2860/ ...@@ -21,3 +21,4 @@ obj-$(CONFIG_RT2860) += rt2860/
obj-$(CONFIG_BENET) += benet/ obj-$(CONFIG_BENET) += benet/
obj-$(CONFIG_COMEDI) += comedi/ obj-$(CONFIG_COMEDI) += comedi/
obj-$(CONFIG_ASUS_OLED) += asus_oled/ obj-$(CONFIG_ASUS_OLED) += asus_oled/
obj-$(CONFIG_PANEL) += panel/
config PANEL
tristate "Parallel port LCD/Keypad Panel support"
depends on PARPORT
---help---
Say Y here if you have an HD44780 or KS-0074 LCD connected to your
parallel port. This driver also features 4 and 6-key keypads, and a
'smartcard' reader. The LCD is accessible through the /dev/lcd char
device (10, 156), the keypad through /dev/keypad (10, 185), and the
smartcard through /dev/smartcard (10, 186). Both require misc device
to be enabled. This code can either be compiled as a module, or linked
into the kernel and started at boot. If you don't understand what all
this is about, say N.
config PANEL_PARPORT
int "Default parallel port number (0=LPT1)"
depends on PANEL
range 0 255
default "0"
---help---
This is the index of the parallel port the panel is connected to. One
driver instance only supports one parallel port, so if your keypad
and LCD are connected to two separate ports, you have to start two
modules with different arguments. Numbering starts with '0' for LPT1,
and so on.
config PANEL_PROFILE
int "Default panel profile (0-5, 0=custom)"
depends on PANEL
range 0 5
default "5"
---help---
To ease configuration, the driver supports different configuration
profiles for past and recent wirings. These profiles can also be
used to define an approximative configuration, completed by a few
other options. Here are the profiles :
0 = custom (see further)
1 = 2x16 parallel LCD, old keypad
2 = 2x16 serial LCD (KS-0074), new keypad
3 = 2x16 parallel LCD (Hantronix), no keypad
4 = 2x16 parallel LCD (Nexcom NSA1045) with Nexcom's keypad
5 = 2x40 parallel LCD (old one), with old keypad
Custom configurations allow you to define how your display is
wired to the parallel port, and how it works. This is only intended
for experts.
config PANEL_SMARTCARD
depends on PANEL && PANEL_PROFILE="0"
bool "Enable smartcard reader (read help!)"
default "n"
---help---
This enables the 'smartcard' reader as installed on the server at
'www.ant-computing.com'. It was not really a smartcard reader, just
a telephone-card reader. It is left here for demonstration and
experimentation. If you enable this driver, it will be accessible
through character device 10,186.
config PANEL_KEYPAD
depends on PANEL && PANEL_PROFILE="0"
int "Keypad type (0=none, 1=old 6 keys, 2=new 6 keys, 3=Nexcom 4 keys)"
range 0 4
default 0
---help---
This enables and configures a keypad connected to the parallel port.
The keys will be read from character device 10,185. Valid values are :
0 : do not enable this driver
1 : old 6 keys keypad
2 : new 6 keys keypad, as used on the server at www.ant-computing.com
3 : Nexcom NSA1045's 4 keys keypad
New profiles can be described in the driver source. The driver also
supports simultaneous keys pressed when the keypad supports them.
config PANEL_LCD
depends on PANEL && PANEL_PROFILE="0"
int "LCD type (0=none, 1=custom, 2=old //, 3=ks0074, 4=hantronix, 5=Nexcom)"
range 0 5
default 0
---help---
This enables and configures an LCD connected to the parallel port.
The driver includes an interpreter for escape codes starting with
'\e[L' which are specific to the LCD, and a few ANSI codes. The
driver will be registered as character device 10,156, usually
under the name '/dev/lcd'. There are a total of 6 supported types :
0 : do not enable the driver
1 : custom configuration and wiring (see further)
2 : 2x16 & 2x40 parallel LCD (old wiring)
3 : 2x16 serial LCD (KS-0074 based)
4 : 2x16 parallel LCD (Hantronix wiring)
5 : 2x16 parallel LCD (Nexcom wiring)
When type '1' is specified, other options will appear to configure
more precise aspects (wiring, dimensions, protocol, ...). Please note
that those values changed from the 2.4 driver for better consistency.
config PANEL_LCD_HEIGHT
depends on PANEL && PANEL_PROFILE="0" && PANEL_LCD="1"
int "Number of lines on the LCD (1-2)"
range 1 2
default 2
---help---
This is the number of visible character lines on the LCD in custom profile.
It can either be 1 or 2.
config PANEL_LCD_WIDTH
depends on PANEL && PANEL_PROFILE="0" && PANEL_LCD="1"
int "Number of characters per line on the LCD (1-40)"
range 1 40
default 40
---help---
This is the number of characters per line on the LCD in custom profile.
Common values are 16,20,24,40.
config PANEL_LCD_BWIDTH
depends on PANEL && PANEL_PROFILE="0" && PANEL_LCD="1"
int "Internal LCD line width (1-40, 40 by default)"
range 1 40
default 40
---help---
Most LCDs use a standard controller which supports hardware lines of 40
characters, although sometimes only 16, 20 or 24 of them are really wired
to the terminal. This results in some non-visible but adressable characters,
and is the case for most parallel LCDs. Other LCDs, and some serial ones,
however, use the same line width internally as what is visible. The KS0074
for example, uses 16 characters per line for 16 visible characters per line.
This option lets you configure the value used by your LCD in 'custom' profile.
If you don't know, put '40' here.
config PANEL_LCD_HWIDTH
depends on PANEL && PANEL_PROFILE="0" && PANEL_LCD="1"
int "Hardware LCD line width (1-64, 64 by default)"
range 1 64
default 64
---help---
Most LCDs use a single address bit to differentiate line 0 and line 1. Since
some of them need to be able to address 40 chars with the lower bits, they
often use the immediately superior power of 2, which is 64, to address the
next line.
If you don't know what your LCD uses, in doubt let 16 here for a 2x16, and
64 here for a 2x40.
config PANEL_LCD_CHARSET
depends on PANEL && PANEL_PROFILE="0" && PANEL_LCD="1"
int "LCD character set (0=normal, 1=KS0074)"
range 0 1
default 0
---help---
Some controllers such as the KS0074 use a somewhat strange character set
where many symbols are at unusual places. The driver knows how to map
'standard' ASCII characters to the character sets used by these controllers.
Valid values are :
0 : normal (untranslated) character set
1 : KS0074 character set
If you don't know, use the normal one (0).
config PANEL_LCD_PROTO
depends on PANEL && PANEL_PROFILE="0" && PANEL_LCD="1"
int "LCD communication mode (0=parallel 8 bits, 1=serial)"
range 0 1
default 0
---help---
This driver now supports any serial or parallel LCD wired to a parallel
port. But before assigning signals, the driver needs to know if it will
be driving a serial LCD or a parallel one. Serial LCDs only use 2 wires
(SDA/SCL), while parallel ones use 2 or 3 wires for the control signals
(E, RS, sometimes RW), and 4 or 8 for the data. Use 0 here for a 8 bits
parallel LCD, and 1 for a serial LCD.
config PANEL_LCD_PIN_E
depends on PANEL && PANEL_PROFILE="0" && PANEL_LCD="1" && PANEL_LCD_PROTO="0"
int "Parallel port pin number & polarity connected to the LCD E signal (-17...17) "
range -17 17
default 14
---help---
This describes the number of the parallel port pin to which the LCD 'E'
signal has been connected. It can be :
0 : no connection (eg: connected to ground)
1..17 : directly connected to any of these pins on the DB25 plug
-1..-17 : connected to the same pin through an inverter (eg: transistor).
Default for the 'E' pin in custom profile is '14' (AUTOFEED).
config PANEL_LCD_PIN_RS
depends on PANEL && PANEL_PROFILE="0" && PANEL_LCD="1" && PANEL_LCD_PROTO="0"
int "Parallel port pin number & polarity connected to the LCD RS signal (-17...17) "
range -17 17
default 17
---help---
This describes the number of the parallel port pin to which the LCD 'RS'
signal has been connected. It can be :
0 : no connection (eg: connected to ground)
1..17 : directly connected to any of these pins on the DB25 plug
-1..-17 : connected to the same pin through an inverter (eg: transistor).
Default for the 'RS' pin in custom profile is '17' (SELECT IN).
config PANEL_LCD_PIN_RW
depends on PANEL && PANEL_PROFILE="0" && PANEL_LCD="1" && PANEL_LCD_PROTO="0"
int "Parallel port pin number & polarity connected to the LCD RW signal (-17...17) "
range -17 17
default 16
---help---
This describes the number of the parallel port pin to which the LCD 'RW'
signal has been connected. It can be :
0 : no connection (eg: connected to ground)
1..17 : directly connected to any of these pins on the DB25 plug
-1..-17 : connected to the same pin through an inverter (eg: transistor).
Default for the 'RW' pin in custom profile is '16' (INIT).
config PANEL_LCD_PIN_SCL
depends on PANEL && PANEL_PROFILE="0" && PANEL_LCD="1" && PANEL_LCD_PROTO!="0"
int "Parallel port pin number & polarity connected to the LCD SCL signal (-17...17) "
range -17 17
default 1
---help---
This describes the number of the parallel port pin to which the serial
LCD 'SCL' signal has been connected. It can be :
0 : no connection (eg: connected to ground)
1..17 : directly connected to any of these pins on the DB25 plug
-1..-17 : connected to the same pin through an inverter (eg: transistor).
Default for the 'SCL' pin in custom profile is '1' (STROBE).
config PANEL_LCD_PIN_SDA
depends on PANEL && PANEL_PROFILE="0" && PANEL_LCD="1" && PANEL_LCD_PROTO!="0"
int "Parallel port pin number & polarity connected to the LCD SDA signal (-17...17) "
range -17 17
default 2
---help---
This describes the number of the parallel port pin to which the serial
LCD 'SDA' signal has been connected. It can be :
0 : no connection (eg: connected to ground)
1..17 : directly connected to any of these pins on the DB25 plug
-1..-17 : connected to the same pin through an inverter (eg: transistor).
Default for the 'SDA' pin in custom profile is '2' (D0).
config PANEL_LCD_PIN_BL
depends on PANEL && PANEL_PROFILE="0" && PANEL_LCD="1"
int "Parallel port pin number & polarity connected to the LCD backlight signal (-17...17) "
range -17 17
default 0
---help---
This describes the number of the parallel port pin to which the LCD 'BL' signal
has been connected. It can be :
0 : no connection (eg: connected to ground)
1..17 : directly connected to any of these pins on the DB25 plug
-1..-17 : connected to the same pin through an inverter (eg: transistor).
Default for the 'BL' pin in custom profile is '0' (uncontrolled).
config PANEL_CHANGE_MESSAGE
depends on PANEL
bool "Change LCD initialization message ?"
default "n"
---help---
This allows you to replace the boot message indicating the kernel version
and the driver version with a custom message. This is useful on appliances
where a simple 'Starting system' message can be enough to stop a customer
from worrying.
If you say 'Y' here, you'll be able to choose a message yourself. Otherwise,
say 'N' and keep the default message with the version.
config PANEL_BOOT_MESSAGE
depends on PANEL && PANEL_CHANGE_MESSAGE="y"
string "New initialization message"
default ""
---help---
This allows you to replace the boot message indicating the kernel version
and the driver version with a custom message. This is useful on appliances
where a simple 'Starting system' message can be enough to stop a customer
from worrying.
An empty message will only clear the display at driver init time. Any other
printf()-formatted message is valid with newline and escape codes.
obj-$(CONFIG_PANEL) += panel.o
TODO:
- checkpatch.pl cleanups
- Lindent
- review major/minor usages
- review userspace api
- see if all of this could be easier done in userspace instead.
Please send patches to Greg Kroah-Hartman <greg@kroah.com> and
Willy Tarreau <willy@meta-x.org>
Some LCDs allow you to define up to 8 characters, mapped to ASCII
characters 0 to 7. The escape code to define a new character is
'\e[LG' followed by one digit from 0 to 7, representing the character
number, and up to 8 couples of hex digits terminated by a semi-colon
(';'). Each couple of digits represents a line, with 1-bits for each
illuminated pixel with LSB on the right. Lines are numberred from the
top of the character to the bottom. On a 5x7 matrix, only the 5 lower
bits of the 7 first bytes are used for each character. If the string
is incomplete, only complete lines will be redefined. Here are some
examples :
printf "\e[LG0010101050D1F0C04;" => 0 = [enter]
printf "\e[LG1040E1F0000000000;" => 1 = [up]
printf "\e[LG2000000001F0E0400;" => 2 = [down]
printf "\e[LG3040E1F001F0E0400;" => 3 = [up-down]
printf "\e[LG40002060E1E0E0602;" => 4 = [left]
printf "\e[LG500080C0E0F0E0C08;" => 5 = [right]
printf "\e[LG60016051516141400;" => 6 = "IP"
printf "\e[LG00103071F1F070301;" => big speaker
printf "\e[LG00002061E1E060200;" => small speaker
Willy
/*
* Front panel driver for Linux - 20000810 - Willy Tarreau - willy@meta-x.org.
* It includes and LCD display (/dev/lcd), a 4-key keypad (/dev/keypad), and a
* smart card reader (/dev/smartcard).
*
* Updates for this driver may be found here :
*
* http://w.ods.org/linux/kernel/lcdpanel/
*
* the driver skeleton has been stolen from nvram.c which was clearly written.
*
* Changes:
* 2000/08/10
* - keypad now scrolls LCD when not opened
* - released 0.5.1
* 2000/08/10
* - bug fixes
* - released 0.5.2
* 2000/08/10
* - Reposition LCD when opening /dev/keypad (WIP)
* - Released 0.5.3
* 2001/02/04
* - Start of port to kernel 2.4.1
* 2001/03/11
* - implementation of a 24-key keyboard scanner with less electronics
* around, thus allowing to release the IRQ line.
* 2001/03/25
* - the driver now compiles and works with both 2.4.2 and 2.2.18 kernels
* 2001/04/22
* - implementation of KS0074-based serial LCD (load with lcd_enabled=2 and lcd_hwidth=16)
* 2001/04/29
* - added back-light support, released 0.7.1
* 2001/05/01
* - added charset conversion table for ks0074, released 0.7.2
* 2001/05/08
* - start of rewriting towards v0.8
* 2001/10/21
* - replaced linux/malloc.h with linux/slab.h to be 2.4 compliant
* - definition of the multi-layer input system with its naming scheme
* - profile support for simplified configuration
* 2001/10/28
* - smartcard now works for telecards. /dev/smartcard returns the card serial number
* 2001/11/10
* - fix too short sleep for lcd_clear
* 2004/05/09
* - add support for hantronix LCD modules (RS on SELECTIN instead of AUTOLF)
* (load with lcd_enabled=3 or profile=3)
* 2004/06/04
* - changed all parallel LCD functions to be more generic. Now any
* connection of control signal is allowed with lcd_*_pin.
* 2004/07/23
* - cleaned up some code
* - added support for keypads with inverted inputs
* - added support for Nexcom's LCD/Keypad on profile 4
* - added character generator for chars 0-7 : "\e[LG{0-7}{8*2 hexdigits};"
* 2004/07/29 : 0.9.0
* - deprecated lcd_enabled and keypad_enabled in profit of *_type
* - changed configuration so that the user can choose everything at
* kernel compilation time
* 2004/07/31 : 0.9.2
* - fixed a stupid copy-paste bug affecting only the serial LCD
* - moved display geometries to lcd_init() to avoid problems with custom profiles.
* 2004/08/06 : 0.9.3
* - added a system notifier callback to print the system state on the LCD
* during reboots or halts.
*
* 2005/05/20 : 0.9.4
* - first working port on kernel 2.6
*
* 2006/12/18 : 0.9.5
* - fixed a long standing bug in 2.6 causing panics during reboot/kexec
* if the LCD was enabled but not initialized due to lack of parport.
*
* FIXME:
* - the initialization/deinitialization process is very dirty and should
* be rewritten. It may even be buggy.
*
* TODO:
* - document 24 keys keyboard (3 rows of 8 cols, 32 diodes + 2 inputs)
* - make the LCD a part of a virtual screen of Vx*Vy
* - make the inputs list smp-safe
* - change the keyboard to a double mapping : signals -> key_id -> values
* so that applications can change values without knowing signals
*
*/
#include <linux/module.h>
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/spinlock.h>
#include <linux/smp_lock.h>
#include <linux/interrupt.h>
#include <linux/miscdevice.h>
#include <linux/slab.h> // previously <linux/malloc.h>
#include <linux/ioport.h>
#include <linux/fcntl.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/ctype.h>
#include <linux/parport.h>
#include <linux/version.h>
#include <linux/list.h>
#include <linux/notifier.h>
#include <linux/reboot.h>
#include <linux/utsrelease.h>
#include <asm/io.h>
#include <asm/uaccess.h>
#include <asm/system.h>
/* smartcard length */
#define SMARTCARD_BYTES 64
#define LCD_MINOR 156
#define KEYPAD_MINOR 185
#define SMARTCARD_MINOR 186
#define PANEL_VERSION "0.9.5"
#define LCD_MAXBYTES 256 /* max burst write */
#define SMARTCARD_LOGICAL_DETECTOR "S6" /* D6 wired to SELECT = card inserted */
#define KEYPAD_BUFFER 64
#define INPUT_POLL_TIME (HZ/50) /* poll the keyboard this every second */
#define KEYPAD_REP_START (10) /* a key starts to repeat after this times INPUT_POLL_TIME */
#define KEYPAD_REP_DELAY (2) /* a key repeats this times INPUT_POLL_TIME */
#define FLASH_LIGHT_TEMPO (200) /* keep the light on this times INPUT_POLL_TIME for each flash */
/* converts an r_str() input to an active high, bits string : 000BAOSE */
#define PNL_PINPUT(a) ((((unsigned char)(a)) ^ 0x7F) >> 3)
#define PNL_PBUSY 0x80 /* inverted input, active low */
#define PNL_PACK 0x40 /* direct input, active low */
#define PNL_POUTPA 0x20 /* direct input, active high */
#define PNL_PSELECD 0x10 /* direct input, active high */
#define PNL_PERRORP 0x08 /* direct input, active low */
#define PNL_PBIDIR 0x20 /* bi-directional ports */
#define PNL_PINTEN 0x10 /* high to read data in or-ed with data out */
#define PNL_PSELECP 0x08 /* inverted output, active low */
#define PNL_PINITP 0x04 /* direct output, active low */
#define PNL_PAUTOLF 0x02 /* inverted output, active low */
#define PNL_PSTROBE 0x01 /* inverted output */
#define PNL_PD0 0x01
#define PNL_PD1 0x02
#define PNL_PD2 0x04
#define PNL_PD3 0x08
#define PNL_PD4 0x10
#define PNL_PD5 0x20
#define PNL_PD6 0x40
#define PNL_PD7 0x80
#define PIN_NONE 0
#define PIN_STROBE 1
#define PIN_D0 2
#define PIN_D1 3
#define PIN_D2 4
#define PIN_D3 5
#define PIN_D4 6
#define PIN_D5 7
#define PIN_D6 8
#define PIN_D7 9
#define PIN_AUTOLF 14
#define PIN_INITP 16
#define PIN_SELECP 17
#define PIN_NOT_SET 127
/* some smartcard-specific signals */
#define PNL_SC_IO PNL_PD1 /* Warning! inverted output, 0=highZ */
#define PNL_SC_RST PNL_PD2
#define PNL_SC_CLK PNL_PD3
#define PNL_SC_RW PNL_PD4
#define PNL_SC_ENA PNL_PINITP
#define PNL_SC_IOR PNL_PACK
#define PNL_SC_BITS (PNL_SC_IO | PNL_SC_RST | PNL_SC_CLK | PNL_SC_RW)
#define LCD_FLAG_S 0x0001
#define LCD_FLAG_ID 0x0002
#define LCD_FLAG_B 0x0004 /* blink on */
#define LCD_FLAG_C 0x0008 /* cursor on */
#define LCD_FLAG_D 0x0010 /* display on */
#define LCD_FLAG_F 0x0020 /* large font mode */
#define LCD_FLAG_N 0x0040 /* 2-rows mode */
#define LCD_FLAG_L 0x0080 /* backlight enabled */
#define LCD_ESCAPE_LEN 24 /* 24 chars max for an LCD escape command */
#define LCD_ESCAPE_CHAR 27 /* use char 27 for escape command */
/* macros to simplify use of the parallel port */
#define r_ctr(x) (parport_read_control((x)->port))
#define r_dtr(x) (parport_read_data((x)->port))
#define r_str(x) (parport_read_status((x)->port))
#define w_ctr(x,y) do { parport_write_control((x)->port, (y)); } while (0)
#define w_dtr(x,y) do { parport_write_data((x)->port, (y)); } while (0)
/* this defines which bits are to be used and which ones to be ignored */
static __u8 scan_mask_o = 0; /* logical or of the output bits involved in the scan matrix */
static __u8 scan_mask_i = 0; /* logical or of the input bits involved in the scan matrix */
typedef __u64 pmask_t;
enum input_type {
INPUT_TYPE_STD,
INPUT_TYPE_KBD,
};
enum input_state {
INPUT_ST_LOW,
INPUT_ST_RISING,
INPUT_ST_HIGH,
INPUT_ST_FALLING,
};
struct logical_input {
struct list_head list;
pmask_t mask;
pmask_t value;
enum input_type type;
enum input_state state;
__u8 rise_time, fall_time;
__u8 rise_timer, fall_timer, high_timer;
union {
struct { /* this structure is valid when type == INPUT_TYPE_STD */
void(*press_fct)(int);
void(*release_fct)(int);
int press_data;
int release_data;
} std;
struct { /* this structure is valid when type == INPUT_TYPE_KBD */
/* strings can be full-length (ie. non null-terminated) */
char press_str[sizeof(void *) + sizeof (int)];
char repeat_str[sizeof(void *) + sizeof (int)];
char release_str[sizeof(void *) + sizeof (int)];
} kbd;
} u;
};
LIST_HEAD(logical_inputs); /* list of all defined logical inputs */
/* physical contacts history
* Physical contacts are a 45 bits string of 9 groups of 5 bits each.
* The 8 lower groups correspond to output bits 0 to 7, and the 9th group
* corresponds to the ground.
* Within each group, bits are stored in the same order as read on the port :
* BAPSE (busy=4, ack=3, paper empty=2, select=1, error=0).
* So, each __u64 (or pmask_t) is represented like this :
* 0000000000000000000BAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSE
* <-----unused------><gnd><d07><d06><d05><d04><d03><d02><d01><d00>
*/
static pmask_t phys_read; /* what has just been read from the I/O ports */
static pmask_t phys_read_prev; /* previous phys_read */
static pmask_t phys_curr; /* stabilized phys_read (phys_read|phys_read_prev) */
static pmask_t phys_prev; /* previous phys_curr */
static char inputs_stable = 0; /* 0 means that at least one logical signal needs be computed */
/* these variables are specific to the smartcard */
static __u8 smartcard_data[SMARTCARD_BYTES];
static int smartcard_ptr = 0; /* pointer to half bytes in smartcard_data */
/* these variables are specific to the keypad */
static char keypad_buffer[KEYPAD_BUFFER];
static int keypad_buflen = 0;
static int keypad_start = 0;
static char keypressed = 0;
static wait_queue_head_t keypad_read_wait;
static wait_queue_head_t smartcard_read_wait;
/* lcd-specific variables */
static unsigned long int lcd_flags = 0; /* contains the LCD config state */
static unsigned long int lcd_addr_x = 0; /* contains the LCD X offset */
static unsigned long int lcd_addr_y = 0; /* contains the LCD Y offset */
static char lcd_escape[LCD_ESCAPE_LEN+1]; /* current escape sequence, 0 terminated */
static int lcd_escape_len = -1; /* not in escape state. >=0 = escape cmd len */
static int lcd_height = -1;
static int lcd_width = -1;
static int lcd_hwidth = -1; /* hardware buffer width (usually 64) */
static int lcd_bwidth = -1; /* internal buffer width (usually 40) */
/*
* These are the parallel port pins the LCD control signals are connected to.
* Set this to 0 if the signal is not used. Set it to its opposite value
* (negative) if the signal is negated. -MAXINT is used to indicate that the
* pin has not been explicitly specified.
*
* WARNING! no check will be performed about collisions with keypad/smartcard !
*/
static int lcd_e_pin = PIN_NOT_SET;
static int lcd_rs_pin = PIN_NOT_SET;
static int lcd_rw_pin = PIN_NOT_SET;
static int lcd_bl_pin = PIN_NOT_SET;
static int lcd_cl_pin = PIN_NOT_SET;
static int lcd_da_pin = PIN_NOT_SET;
/*
* Bit masks to convert LCD signals to parallel port outputs.
* _d_ are values for data port, _c_ are for control port.
* [0] = signal OFF, [1] = signal ON, [2] = mask
*/
#define BIT_CLR 0
#define BIT_SET 1
#define BIT_MSK 2
#define BIT_STATES 3
/*
* one entry for each bit on the LCD
*/
#define LCD_BIT_E 0
#define LCD_BIT_RS 1
#define LCD_BIT_RW 2
#define LCD_BIT_BL 3
#define LCD_BIT_CL 4
#define LCD_BIT_DA 5
#define LCD_BITS 6
/*
* each bit can be either connected to a DATA or CTRL port
*/
#define LCD_PORT_C 0
#define LCD_PORT_D 1
#define LCD_PORTS 2
static unsigned char lcd_bits[LCD_PORTS][LCD_BITS][BIT_STATES];
/*
* LCD protocols
*/
#define LCD_PROTO_PARALLEL 0
#define LCD_PROTO_SERIAL 1
/*
* LCD character sets
*/
#define LCD_CHARSET_NORMAL 0
#define LCD_CHARSET_KS0074 1
/*
* LCD types
*/
#define LCD_TYPE_NONE 0
#define LCD_TYPE_OLD 1
#define LCD_TYPE_KS0074 2
#define LCD_TYPE_HANTRONIX 3
#define LCD_TYPE_NEXCOM 4
#define LCD_TYPE_CUSTOM 5
/*
* keypad types
*/
#define KEYPAD_TYPE_NONE 0
#define KEYPAD_TYPE_OLD 1
#define KEYPAD_TYPE_NEW 2
#define KEYPAD_TYPE_NEXCOM 3
/*
* panel profiles
*/
#define PANEL_PROFILE_CUSTOM 0
#define PANEL_PROFILE_OLD 1
#define PANEL_PROFILE_NEW 2
#define PANEL_PROFILE_HANTRONIX 3
#define PANEL_PROFILE_NEXCOM 4
#define PANEL_PROFILE_LARGE 5
/*
* Construct custom config from the kernel's configuration
*/
#define DEFAULT_PROFILE PANEL_PROFILE_LARGE
#define DEFAULT_PARPORT 0
#define DEFAULT_LCD LCD_TYPE_OLD
#define DEFAULT_KEYPAD KEYPAD_TYPE_OLD
#define DEFAULT_SMARTCARD 0
#define DEFAULT_LCD_WIDTH 40
#define DEFAULT_LCD_BWIDTH 40
#define DEFAULT_LCD_HWIDTH 64
#define DEFAULT_LCD_HEIGHT 2
#define DEFAULT_LCD_PROTO LCD_PROTO_PARALLEL
#define DEFAULT_LCD_PIN_E PIN_AUTOLF
#define DEFAULT_LCD_PIN_RS PIN_SELECP
#define DEFAULT_LCD_PIN_RW PIN_INITP
#define DEFAULT_LCD_PIN_SCL PIN_STROBE
#define DEFAULT_LCD_PIN_SDA PIN_D0
#define DEFAULT_LCD_PIN_BL PIN_NOT_SET
#define DEFAULT_LCD_CHARSET LCD_CHARSET_NORMAL
#ifdef CONFIG_PANEL_PROFILE
#undef DEFAULT_PROFILE
#define DEFAULT_PROFILE CONFIG_PANEL_PROFILE
#endif
#ifdef CONFIG_PANEL_PARPORT
#undef DEFAULT_PARPORT
#define DEFAULT_PARPORT CONFIG_PANEL_PARPORT
#endif
#if DEFAULT_PROFILE==0 /* custom */
#ifdef CONFIG_PANEL_KEYPAD
#undef DEFAULT_KEYPAD
#define DEFAULT_KEYPAD CONFIG_PANEL_KEYPAD
#endif
#ifdef CONFIG_PANEL_SMARTCARD
#undef DEFAULT_SMARTCARD
#define DEFAULT_SMARTCARD 1
#endif
#ifdef CONFIG_PANEL_LCD
#undef DEFAULT_LCD
#define DEFAULT_LCD CONFIG_PANEL_LCD
#endif
#ifdef CONFIG_PANEL_LCD_WIDTH
#undef DEFAULT_LCD_WIDTH
#define DEFAULT_LCD_WIDTH CONFIG_PANEL_LCD_WIDTH
#endif
#ifdef CONFIG_PANEL_LCD_BWIDTH
#undef DEFAULT_LCD_BWIDTH
#define DEFAULT_LCD_BWIDTH CONFIG_PANEL_LCD_BWIDTH
#endif
#ifdef CONFIG_PANEL_LCD_HWIDTH
#undef DEFAULT_LCD_HWIDTH
#define DEFAULT_LCD_HWIDTH CONFIG_PANEL_LCD_HWIDTH
#endif
#ifdef CONFIG_PANEL_LCD_HEIGHT
#undef DEFAULT_LCD_HEIGHT
#define DEFAULT_LCD_HEIGHT CONFIG_PANEL_LCD_HEIGHT
#endif
#ifdef CONFIG_PANEL_LCD_PROTO
#undef DEFAULT_LCD_PROTO
#define DEFAULT_LCD_PROTO CONFIG_PANEL_LCD_PROTO
#endif
#ifdef CONFIG_PANEL_LCD_PIN_E
#undef DEFAULT_LCD_PIN_E
#define DEFAULT_LCD_PIN_E CONFIG_PANEL_LCD_PIN_E
#endif
#ifdef CONFIG_PANEL_LCD_PIN_RS
#undef DEFAULT_LCD_PIN_RS
#define DEFAULT_LCD_PIN_RS CONFIG_PANEL_LCD_PIN_RS
#endif
#ifdef CONFIG_PANEL_LCD_PIN_RW
#undef DEFAULT_LCD_PIN_RW
#define DEFAULT_LCD_PIN_RW CONFIG_PANEL_LCD_PIN_RW
#endif
#ifdef CONFIG_PANEL_LCD_PIN_SCL
#undef DEFAULT_LCD_PIN_SCL
#define DEFAULT_LCD_PIN_SCL CONFIG_PANEL_LCD_PIN_SCL
#endif
#ifdef CONFIG_PANEL_LCD_PIN_SDA
#undef DEFAULT_LCD_PIN_SDA
#define DEFAULT_LCD_PIN_SDA CONFIG_PANEL_LCD_PIN_SDA
#endif
#ifdef CONFIG_PANEL_LCD_PIN_BL
#undef DEFAULT_LCD_PIN_BL
#define DEFAULT_LCD_PIN_BL CONFIG_PANEL_LCD_PIN_BL
#endif
#ifdef CONFIG_PANEL_LCD_CHARSET
#undef DEFAULT_LCD_CHARSET
#define DEFAULT_LCD_CHARSET
#endif
#endif /* DEFAULT_PROFILE == 0 */
/* global variables */
static int smartcard_open_cnt = 0; /* #times opened */
static int keypad_open_cnt = 0; /* #times opened */
static int lcd_open_cnt = 0; /* #times opened */
static int profile = DEFAULT_PROFILE;
static struct pardevice *pprt = NULL;
static int parport = -1;
static int lcd_enabled = -1;
static int lcd_type = -1;
static int lcd_proto = -1;
static int lcd_charset = -1;
static int keypad_enabled = -1;
static int keypad_type = -1;
static int smartcard_enabled = -1;
static int lcd_initialized, keypad_initialized, smartcard_initialized;
static int light_tempo = 0;
static char lcd_must_clear = 0;
static char lcd_left_shift = 0;
static char init_in_progress = 0;
static void(*lcd_write_cmd)(int) = NULL;
static void(*lcd_write_data)(int) = NULL;
static void(*lcd_clear_fast)(void) = NULL;
static spinlock_t pprt_lock = SPIN_LOCK_UNLOCKED;
static struct timer_list scan_timer;
#ifdef MODULE
MODULE_DESCRIPTION("Generic parallel port LCD/Keypad/Smartcard driver");
module_param(parport, int, 0000);MODULE_PARM_DESC(parport, "Parallel port index (0=lpt1, 1=lpt2, ...)");
module_param(lcd_height, int, 0000);MODULE_PARM_DESC(lcd_height, "Number of lines on the LCD");
module_param(lcd_width, int, 0000);MODULE_PARM_DESC(lcd_width, "Number of columns on the LCD");
module_param(lcd_bwidth, int, 0000);MODULE_PARM_DESC(lcd_bwidth, "Internal LCD line width (40)");
module_param(lcd_hwidth, int, 0000);MODULE_PARM_DESC(lcd_hwidth, "LCD line hardware address (64)");
module_param(lcd_enabled, int, 0000);MODULE_PARM_DESC(lcd_enabled, "Deprecated option, use lcd_type instead");
module_param(keypad_enabled, int, 0000);MODULE_PARM_DESC(keypad_enabled, "Deprecated option, use keypad_type instead");
module_param(lcd_type, int, 0000);MODULE_PARM_DESC(lcd_type, "LCD type: 0=none, 1=old //, 2=serial ks0074, 3=hantronix //, 4=nexcom //, 5=compiled-in");
module_param(lcd_proto, int, 0000);MODULE_PARM_DESC(lcd_proto, "LCD communication: 0=parallel (//), 1=serial");
module_param(lcd_charset, int, 0000);MODULE_PARM_DESC(lcd_charset, "LCD character set: 0=standard, 1=KS0074");
module_param(keypad_type, int, 0000);MODULE_PARM_DESC(keypad_type, "Keypad type: 0=none, 1=old 6 keys, 2=new 6+1 keys, 3=nexcom 4 keys");
module_param(smartcard_enabled, int, 0000);MODULE_PARM_DESC(smartcard_enabled, "Smartcard reader: 0=disabled (default), 1=enabled");
module_param(profile, int, 0000); MODULE_PARM_DESC(profile, "1=16x2 old kp; 2=serial 16x2, new kp; 3=16x2 hantronix; 4=16x2 nexcom; default=40x2, old kp");
module_param(lcd_e_pin, int, 0000); MODULE_PARM_DESC(lcd_e_pin, "# of the // port pin connected to LCD 'E' signal, with polarity (-17..17)");
module_param(lcd_rs_pin, int, 0000);MODULE_PARM_DESC(lcd_rs_pin, "# of the // port pin connected to LCD 'RS' signal, with polarity (-17..17)");
module_param(lcd_rw_pin, int, 0000);MODULE_PARM_DESC(lcd_rw_pin, "# of the // port pin connected to LCD 'RW' signal, with polarity (-17..17)");
module_param(lcd_bl_pin, int, 0000);MODULE_PARM_DESC(lcd_bl_pin, "# of the // port pin connected to LCD backlight, with polarity (-17..17)");
module_param(lcd_da_pin, int, 0000);MODULE_PARM_DESC(lcd_da_pin, "# of the // port pin connected to serial LCD 'SDA' signal, with polarity (-17..17)");
module_param(lcd_cl_pin, int, 0000);MODULE_PARM_DESC(lcd_cl_pin, "# of the // port pin connected to serial LCD 'SCL' signal, with polarity (-17..17)");
#endif
static unsigned char *lcd_char_conv = NULL;
/* for some LCD drivers (ks0074) we need a charset conversion table. */
static unsigned char lcd_char_conv_ks0074[256] = {
/* 0 1 2 3 4 5 6 7 8 9 A B C D E F */
/* 0x00 */ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
/* 0x10 */ 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
/* 0x20 */ 0x20, 0x21, 0x22, 0x23, 0xa2, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
/* 0x30 */ 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f,
/* 0x40 */ 0xa0, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f,
/* 0x50 */ 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5a, 0xfa, 0xfb, 0xfc, 0x1d, 0xc4,
/* 0x60 */ 0x96, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
/* 0x70 */ 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7a, 0xfd, 0xfe, 0xff, 0xce, 0x20,
/* 0x80 */ 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
/* 0x90 */ 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f,
/* 0xA0 */ 0x20, 0x40, 0xb1, 0xa1, 0x24, 0xa3, 0xfe, 0x5f, 0x22, 0xc8, 0x61, 0x14, 0x97, 0x2d, 0xad, 0x96,
/* 0xB0 */ 0x80, 0x8c, 0x82, 0x83, 0x27, 0x8f, 0x86, 0xdd, 0x2c, 0x81, 0x6f, 0x15, 0x8b, 0x8a, 0x84, 0x60,
/* 0xC0 */ 0xe2, 0xe2, 0xe2, 0x5b, 0x5b, 0xae, 0xbc, 0xa9, 0xc5, 0xbf, 0xc6, 0xf1, 0xe3, 0xe3, 0xe3, 0xe3,
/* 0xD0 */ 0x44, 0x5d, 0xa8, 0xe4, 0xec, 0xec, 0x5c, 0x78, 0xab, 0xa6, 0xe5, 0x5e, 0x5e, 0xe6, 0xaa, 0xbe,
/* 0xE0 */ 0x7f, 0xe7, 0xaf, 0x7b, 0x7b, 0xaf, 0xbd, 0xc8, 0xa4, 0xa5, 0xc7, 0xf6, 0xa7, 0xe8, 0x69, 0x69,
/* 0xF0 */ 0xed, 0x7d, 0xa8, 0xe4, 0xec, 0x5c, 0x5c, 0x25, 0xac, 0xa6, 0xea, 0xef, 0x7e, 0xeb, 0xb2, 0x79,
};
char old_keypad_profile[][4][9] = {
{"S0", "Left\n", "Left\n", ""},
{"S1", "Down\n", "Down\n", ""},
{"S2", "Up\n", "Up\n", ""},
{"S3", "Right\n", "Right\n", ""},
{"S4", "Esc\n", "Esc\n", ""},
{"S5", "Ret\n", "Ret\n", ""},
{"","","",""}
};
/* signals, press, repeat, release */
char new_keypad_profile[][4][9] = {
{"S0", "Left\n", "Left\n", ""},
{"S1", "Down\n", "Down\n", ""},
{"S2", "Up\n", "Up\n", ""},
{"S3", "Right\n", "Right\n", ""},
{"S4s5", "", "Esc\n", "Esc\n"},
{"s4S5", "", "Ret\n", "Ret\n"},
{"S4S5", "Help\n", "", ""},
/* add new signals above this line */
{"","","",""}
};
/* signals, press, repeat, release */
char nexcom_keypad_profile[][4][9] = {
{"a-p-e-", "Down\n", "Down\n", ""}, // Down
{"a-p-E-", "Ret\n", "Ret\n", ""}, // Enter
{"a-P-E-", "Esc\n", "Esc\n", ""}, // Esc
{"a-P-e-", "Up\n", "Up\n", ""}, // Up
/* add new signals above this line */
{"","","",""}
};
static char (*keypad_profile)[4][9] = old_keypad_profile;
/* FIXME: this should be converted to a bit array containing signals states */
static struct {
unsigned char e; /* parallel LCD E (data latch on falling edge) */
unsigned char rs; /* parallel LCD RS (0 = cmd, 1 = data) */
unsigned char rw; /* parallel LCD R/W (0 = W, 1 = R) */
unsigned char bl; /* parallel LCD backlight (0 = off, 1 = on) */
unsigned char cl; /* serial LCD clock (latch on rising edge) */
unsigned char da; /* serial LCD data */
} bits;
static void init_scan_timer(void);
/* sets data port bits according to current signals values */
static int set_data_bits(void) {
int val, bit;
val = r_dtr(pprt);
for (bit = 0; bit < LCD_BITS; bit++)
val &= lcd_bits[LCD_PORT_D][bit][BIT_MSK];
val |= lcd_bits[LCD_PORT_D][LCD_BIT_E][bits.e]
| lcd_bits[LCD_PORT_D][LCD_BIT_RS][bits.rs]
| lcd_bits[LCD_PORT_D][LCD_BIT_RW][bits.rw]
| lcd_bits[LCD_PORT_D][LCD_BIT_BL][bits.bl]
| lcd_bits[LCD_PORT_D][LCD_BIT_CL][bits.cl]
| lcd_bits[LCD_PORT_D][LCD_BIT_DA][bits.da];
w_dtr(pprt, val);
return val;
}
/* sets ctrl port bits according to current signals values */
static int set_ctrl_bits(void) {
int val, bit;
val = r_ctr(pprt);
for (bit = 0; bit < LCD_BITS; bit++)
val &= lcd_bits[LCD_PORT_C][bit][BIT_MSK];
val |= lcd_bits[LCD_PORT_C][LCD_BIT_E][bits.e]
| lcd_bits[LCD_PORT_C][LCD_BIT_RS][bits.rs]
| lcd_bits[LCD_PORT_C][LCD_BIT_RW][bits.rw]
| lcd_bits[LCD_PORT_C][LCD_BIT_BL][bits.bl]
| lcd_bits[LCD_PORT_C][LCD_BIT_CL][bits.cl]
| lcd_bits[LCD_PORT_C][LCD_BIT_DA][bits.da];
w_ctr(pprt, val);
return val;
}
/* sets ctrl & data port bits according to current signals values */
static void set_bits(void) {
set_data_bits();
set_ctrl_bits();
}
/*
* Converts a parallel port pin (from -25 to 25) to data and control ports
* masks, and data and control port bits. The signal will be considered
* unconnected if it's on pin 0 or an invalid pin (<-25 or >25).
*
* Result will be used this way :
* out(dport, in(dport) & d_val[2] | d_val[signal_state])
* out(cport, in(cport) & c_val[2] | c_val[signal_state])
*/
void pin_to_bits(int pin, unsigned char *d_val, unsigned char *c_val) {
int d_bit, c_bit, inv;
d_val[0] = c_val[0] = d_val[1] = c_val[1] = 0;
d_val[2] = c_val[2] = 0xFF;
if (pin == 0)
return;
inv = (pin < 0);
if (inv)
pin = -pin;
d_bit = c_bit = 0;
switch (pin) {
case PIN_STROBE: /* strobe, inverted */
c_bit = PNL_PSTROBE;
inv = !inv;
break;
case PIN_D0 ... PIN_D7: /* D0 - D7 = 2 - 9 */
d_bit = 1 << (pin - 2);
break;
case PIN_AUTOLF: /* autofeed, inverted */
c_bit = PNL_PAUTOLF;
inv = !inv;
break;
case PIN_INITP: /* init, direct */
c_bit = PNL_PINITP;
break;
case PIN_SELECP: /* select_in, inverted */
c_bit = PNL_PSELECP;
inv = !inv;
break;
default: /* unknown pin, ignore */
break;
}
if (c_bit) {
c_val[2] &= ~c_bit;
c_val[!inv] = c_bit;
} else if (d_bit) {
d_val[2] &= ~d_bit;
d_val[!inv] = d_bit;
}
}
/* sleeps that many milliseconds with a reschedule */
static void long_sleep(int ms) {
if (in_interrupt())
mdelay(ms);
else {
current->state = TASK_INTERRUPTIBLE;
schedule_timeout((ms*HZ+999)/1000);
}
}
/* send a serial byte to the LCD panel. The caller is responsible for locking if needed. */
static void lcd_send_serial(int byte) {
int bit;
/* the data bit is set on D0, and the clock on STROBE.
* LCD reads D0 on STROBE's rising edge.
*/
for (bit = 0; bit < 8; bit++) {
bits.cl = BIT_CLR; /* CLK low */
set_bits();
bits.da = byte & 1;
set_bits();
udelay(2); /* maintain the data during 2 us before CLK up */
bits.cl = BIT_SET; /* CLK high */
set_bits();
udelay(1); /* maintain the strobe during 1 us */
byte >>= 1;
}
}
/* turn the backlight on or off */
static void lcd_backlight(int on) {
if (lcd_bl_pin == PIN_NONE)
return;
/* The backlight is activated by seting the AUTOFEED line to +5V */
spin_lock(&pprt_lock);
bits.bl = on;
set_bits();
spin_unlock(&pprt_lock);
}
/* send a command to the LCD panel in serial mode */
static void lcd_write_cmd_s(int cmd) {
spin_lock(&pprt_lock);
lcd_send_serial(0x1F); /* R/W=W, RS=0 */
lcd_send_serial(cmd & 0x0F);
lcd_send_serial((cmd >> 4) & 0x0F);
udelay(40); /* the shortest command takes at least 40 us */
spin_unlock(&pprt_lock);
}
/* send data to the LCD panel in serial mode */
static void lcd_write_data_s(int data) {
spin_lock(&pprt_lock);
lcd_send_serial(0x5F); /* R/W=W, RS=1 */
lcd_send_serial(data & 0x0F);
lcd_send_serial((data >> 4) & 0x0F);
udelay(40); /* the shortest data takes at least 40 us */
spin_unlock(&pprt_lock);
}
/* send a command to the LCD panel in 8 bits parallel mode */
static void lcd_write_cmd_p8(int cmd) {
spin_lock(&pprt_lock);
/* present the data to the data port */
w_dtr(pprt, cmd);
udelay(20); /* maintain the data during 20 us before the strobe */
bits.e = BIT_SET ; bits.rs = BIT_CLR ; bits.rw = BIT_CLR;
set_ctrl_bits();
udelay(40); /* maintain the strobe during 40 us */
bits.e = BIT_CLR;
set_ctrl_bits();
udelay(120); /* the shortest command takes at least 120 us */
spin_unlock(&pprt_lock);
}
/* send data to the LCD panel in 8 bits parallel mode */
static void lcd_write_data_p8(int data) {
spin_lock(&pprt_lock);
/* present the data to the data port */
w_dtr(pprt, data);
udelay(20); /* maintain the data during 20 us before the strobe */
bits.e = BIT_SET ; bits.rs = BIT_SET ; bits.rw = BIT_CLR;
set_ctrl_bits();
udelay(40); /* maintain the strobe during 40 us */
bits.e = BIT_CLR;
set_ctrl_bits();
udelay(45); /* the shortest data takes at least 45 us */
spin_unlock(&pprt_lock);
}
static void lcd_gotoxy(void) {
lcd_write_cmd(0x80 /* set DDRAM address */
| (lcd_addr_y ? lcd_hwidth : 0)
/* we force the cursor to stay at the end of the line if it wants to go farther */
| ((lcd_addr_x < lcd_bwidth) ? lcd_addr_x & (lcd_hwidth-1) : lcd_bwidth - 1));
}
static void lcd_print(char c) {
if (lcd_addr_x < lcd_bwidth) {
if (lcd_char_conv != NULL)
c = lcd_char_conv[(unsigned char)c];
lcd_write_data(c);
lcd_addr_x++;
}
/* prevents the cursor from wrapping onto the next line */
if (lcd_addr_x == lcd_bwidth) {
lcd_gotoxy();
}
}
/* fills the display with spaces and resets X/Y */
static void lcd_clear_fast_s(void) {
int pos;
lcd_addr_x = lcd_addr_y = 0;
lcd_gotoxy();
spin_lock(&pprt_lock);
for (pos = 0; pos < lcd_height * lcd_hwidth; pos++) {
lcd_send_serial(0x5F); /* R/W=W, RS=1 */
lcd_send_serial(' ' & 0x0F);
lcd_send_serial((' ' >> 4) & 0x0F);
udelay(40); /* the shortest data takes at least 40 us */
}
spin_unlock(&pprt_lock);
lcd_addr_x = lcd_addr_y = 0;
lcd_gotoxy();
}
/* fills the display with spaces and resets X/Y */
static void lcd_clear_fast_p8(void) {
int pos;
lcd_addr_x = lcd_addr_y = 0;
lcd_gotoxy();
spin_lock(&pprt_lock);
for (pos = 0; pos < lcd_height * lcd_hwidth; pos++) {
/* present the data to the data port */
w_dtr(pprt, ' ');
udelay(20); /* maintain the data during 20 us before the strobe */
bits.e = BIT_SET ; bits.rs = BIT_SET ; bits.rw = BIT_CLR;
set_ctrl_bits();
udelay(40); /* maintain the strobe during 40 us */
bits.e = BIT_CLR;
set_ctrl_bits();
udelay(45); /* the shortest data takes at least 45 us */
}
spin_unlock(&pprt_lock);
lcd_addr_x = lcd_addr_y = 0;
lcd_gotoxy();
}
/* clears the display and resets X/Y */
static void lcd_clear_display(void) {
lcd_write_cmd(0x01); /* clear display */
lcd_addr_x = lcd_addr_y = 0;
/* we must wait a few milliseconds (15) */
long_sleep(15);
}
static void lcd_init_display(void) {
lcd_flags = ((lcd_height > 1) ? LCD_FLAG_N : 0)
| LCD_FLAG_D | LCD_FLAG_C | LCD_FLAG_B;
long_sleep(20); /* wait 20 ms after power-up for the paranoid */
lcd_write_cmd(0x30); /* 8bits, 1 line, small fonts */
long_sleep(10);
lcd_write_cmd(0x30); /* 8bits, 1 line, small fonts */
long_sleep(10);
lcd_write_cmd(0x30); /* 8bits, 1 line, small fonts */
long_sleep(10);
lcd_write_cmd(0x30 /* set font height and lines number */
| ((lcd_flags & LCD_FLAG_F)?4:0)
| ((lcd_flags & LCD_FLAG_N)?8:0)
);
long_sleep(10);
lcd_write_cmd(0x08); /* display off, cursor off, blink off */
long_sleep(10);
lcd_write_cmd(0x08 /* set display mode */
| ((lcd_flags & LCD_FLAG_D)?4:0)
| ((lcd_flags & LCD_FLAG_C)?2:0)
| ((lcd_flags & LCD_FLAG_B)?1:0)
);
lcd_backlight((lcd_flags & LCD_FLAG_L) ? 1 : 0);
long_sleep(10);
lcd_write_cmd(0x06); /* entry mode set : increment, cursor shifting */
lcd_clear_display();
}
/*
* These are the file operation function for user access to /dev/lcd
* This function can also be called from inside the kernel, by
* setting file and ppos to NULL.
*
*/
static ssize_t lcd_write(struct file * file,
const char * buf, size_t count, loff_t *ppos ) {
const char *tmp = buf;
char c;
for( ; count-- > 0; (ppos ? (*ppos)++ : 0), ++tmp ) {
if (!in_interrupt() && (((count + 1) & 0x1f) == 0)) {
schedule(); /* let's be a little nice with other processes that need some CPU */
}
if (ppos == NULL && file == NULL)
c = *tmp; /* let's not use get_user() from the kernel ! */
else if (get_user( c, tmp ))
return -EFAULT;
/* first, we'll test if we're in escape mode */
if ((c != '\n') && lcd_escape_len >= 0) { /* yes, let's add this char to the buffer */
lcd_escape[lcd_escape_len++] = c;
lcd_escape[lcd_escape_len] = 0;
}
else {
lcd_escape_len = -1; /* aborts any previous escape sequence */
switch (c) {
case LCD_ESCAPE_CHAR: /* start of an escape sequence */
lcd_escape_len = 0;
lcd_escape[lcd_escape_len] = 0;
break;
case '\b': /* go back one char and clear it */
if (lcd_addr_x > 0) {
if (lcd_addr_x < lcd_bwidth) /* check if we're not at the end of the line */
lcd_write_cmd(0x10); /* back one char */
lcd_addr_x--;
}
lcd_write_data(' '); /* replace with a space */
lcd_write_cmd(0x10); /* back one char again */
break;
case '\014': /* quickly clear the display */
lcd_clear_fast();
break;
case '\n': /* flush the remainder of the current line and go to the
beginning of the next line */
for (; lcd_addr_x<lcd_bwidth; lcd_addr_x++)
lcd_write_data(' ');
lcd_addr_x = 0;
lcd_addr_y = (lcd_addr_y + 1) % lcd_height;
lcd_gotoxy();
break;
case '\r': /* go to the beginning of the same line */
lcd_addr_x = 0;
lcd_gotoxy();
break;
case '\t': /* print a space instead of the tab */
lcd_print(' ');
break;
default : /* simply print this char */
lcd_print(c);
break;
}
}
/* now we'll see if we're in an escape mode and if the current
escape sequence can be understood.
*/
if (lcd_escape_len >= 2) { /* minimal length for an escape command */
int processed = 0; /* 1 means the command has been processed */
if (!strcmp(lcd_escape,"[2J")) { /* Clear the display */
lcd_clear_fast(); /* clear display */
processed = 1;
}
else if (!strcmp(lcd_escape,"[H")) { /* Cursor to home */
lcd_addr_x = lcd_addr_y = 0;
lcd_gotoxy();
processed = 1;
}
/* codes starting with ^[[L */
else if ((lcd_escape_len >= 3) &&
(lcd_escape[0]=='[') && (lcd_escape[1]=='L')) { /* LCD special codes */
char *esc = lcd_escape + 2;
int oldflags = lcd_flags;
/* check for display mode flags */
switch (*esc) {
case 'D' : /* Display ON */
lcd_flags |= LCD_FLAG_D;
processed = 1;
break;
case 'd' : /* Display OFF */
lcd_flags &= ~LCD_FLAG_D;
processed = 1;
break;
case 'C' : /* Cursor ON */
lcd_flags |= LCD_FLAG_C;
processed = 1;
break;
case 'c' : /* Cursor OFF */
lcd_flags &= ~LCD_FLAG_C;
processed = 1;
break;
case 'B' : /* Blink ON */
lcd_flags |= LCD_FLAG_B;
processed = 1;
break;
case 'b' : /* Blink OFF */
lcd_flags &= ~LCD_FLAG_B;
processed = 1;
break;
case '+' : /* Back light ON */
lcd_flags |= LCD_FLAG_L;
processed = 1;
break;
case '-' : /* Back light OFF */
lcd_flags &= ~LCD_FLAG_L;
processed = 1;
break;
case '*' : /* flash back light using the keypad timer */
if (scan_timer.function != NULL) {
if (light_tempo == 0 && ((lcd_flags & LCD_FLAG_L) == 0))
lcd_backlight(1);
light_tempo = FLASH_LIGHT_TEMPO;
}
processed = 1;
break;
case 'f' : /* Small Font */
lcd_flags &= ~LCD_FLAG_F;
processed = 1;
break;
case 'F' : /* Large Font */
lcd_flags |= LCD_FLAG_F;
processed = 1;
break;
case 'n' : /* One Line */
lcd_flags &= ~LCD_FLAG_N;
processed = 1;
break;
case 'N' : /* Two Lines */
lcd_flags |= LCD_FLAG_N;
break;
case 'l' : /* Shift Cursor Left */
if (lcd_addr_x > 0) {
if (lcd_addr_x < lcd_bwidth)
lcd_write_cmd(0x10); /* back one char if not at end of line */
lcd_addr_x--;
}
processed = 1;
break;
case 'r' : /* shift cursor right */
if (lcd_addr_x < lcd_width) {
if (lcd_addr_x < (lcd_bwidth - 1))
lcd_write_cmd(0x14); /* allow the cursor to pass the end of the line */
lcd_addr_x++;
}
processed = 1;
break;
case 'L' : /* shift display left */
lcd_left_shift++;
lcd_write_cmd(0x18);
processed = 1;
break;
case 'R' : /* shift display right */
lcd_left_shift--;
lcd_write_cmd(0x1C);
processed = 1;
break;
case 'k' : { /* kill end of line */
int x;
for (x=lcd_addr_x; x<lcd_bwidth; x++)
lcd_write_data(' ');
lcd_gotoxy(); /* restore cursor position */
processed = 1;
break;
}
case 'I' : /* reinitialize display */
lcd_init_display();
lcd_left_shift = 0;
processed = 1;
break;
case 'G' : /* Generator : LGcxxxxx...xx; */ {
/* must have <c> between '0' and '7', representing the numerical
* ASCII code of the redefined character, and <xx...xx> a sequence
* of 16 hex digits representing 8 bytes for each character. Most
* LCDs will only use 5 lower bits of the 7 first bytes.
*/
unsigned char cgbytes[8];
unsigned char cgaddr;
int cgoffset;
int shift;
char value;
int addr;
if (strchr(esc, ';') == NULL)
break;
esc++;
cgaddr = *(esc++) - '0';
if (cgaddr > 7) {
processed = 1;
break;
}
cgoffset = 0;
shift = 0;
value = 0;
while (*esc && cgoffset < 8) {
shift ^= 4;
if (*esc >= '0' && *esc <='9')
value |= (*esc - '0') << shift;
else if (*esc >= 'A' && *esc <='Z')
value |= (*esc - 'A' + 10) << shift;
else if (*esc >= 'a' && *esc <='z')
value |= (*esc - 'a' + 10) << shift;
else {
esc++;
continue;
}
if (shift == 0) {
cgbytes[cgoffset++] = value;
value = 0;
}
esc++;
}
lcd_write_cmd(0x40 | (cgaddr * 8));
for (addr = 0; addr < cgoffset; addr++) {
lcd_write_data(cgbytes[addr]);
}
lcd_gotoxy(); /* ensures that we stop writing to CGRAM */
processed = 1;
break;
}
case 'x' : /* gotoxy : LxXXX[yYYY]; */
case 'y' : /* gotoxy : LyYYY[xXXX]; */
if (strchr(esc, ';') == NULL)
break;
while (*esc) {
if (*esc == 'x') {
esc++;
lcd_addr_x = 0;
while (isdigit(*esc)) {
lcd_addr_x = lcd_addr_x*10 + (*esc - '0');
esc++;
}
}
else if (*esc == 'y') {
esc++;
lcd_addr_y = 0;
while (isdigit(*esc)) {
lcd_addr_y = lcd_addr_y*10 + (*esc - '0');
esc++;
}
}
else break;
}
lcd_gotoxy();
processed = 1;
break;
} /* end of switch */
/* Check wether one flag was changed */
if (oldflags != lcd_flags) {
/* check wether one of B,C,D flags was changed */
if ((oldflags ^ lcd_flags) & (LCD_FLAG_B | LCD_FLAG_C | LCD_FLAG_D))
lcd_write_cmd(0x08 /* set display mode */
| ((lcd_flags & LCD_FLAG_D)?4:0)
| ((lcd_flags & LCD_FLAG_C)?2:0)
| ((lcd_flags & LCD_FLAG_B)?1:0)
);
/* check wether one of F,N flags was changed */
else if ((oldflags ^ lcd_flags) & (LCD_FLAG_F | LCD_FLAG_N))
lcd_write_cmd(0x30
| ((lcd_flags & LCD_FLAG_F)?4:0)
| ((lcd_flags & LCD_FLAG_N)?8:0)
);
/* check wether L flag was changed */
else if ((oldflags ^ lcd_flags) & (LCD_FLAG_L)) {
if (lcd_flags & (LCD_FLAG_L))
lcd_backlight(1);
else if (light_tempo == 0) /* switch off the light only when the tempo lighting is gone */
lcd_backlight(0);
}
}
} /* LCD special escape codes */
/* flush the escape sequence if it's been processed or if it is
getting too long. */
if (processed || (lcd_escape_len >= LCD_ESCAPE_LEN))
lcd_escape_len = -1;
} /* escape codes */
}
return( tmp - buf );
}
static int lcd_open( struct inode *inode, struct file *file ) {
if (lcd_open_cnt)
return( -EBUSY ); /* open only once at a time */
if (file->f_mode & FMODE_READ) /* device is write-only */
return ( -EPERM );
if (lcd_must_clear) {
lcd_clear_display();
lcd_must_clear = 0;
}
lcd_open_cnt++;
return( 0 );
}
static int lcd_release( struct inode *inode, struct file *file ) {
lcd_open_cnt--;
return( 0 );
}
static struct file_operations lcd_fops = {
write: lcd_write,
open: lcd_open,
release: lcd_release,
};
static struct miscdevice lcd_dev = {
LCD_MINOR,
"lcd",
&lcd_fops
};
/* public function usable from the kernel for any purpose */
void panel_lcd_print(char *s) {
if (lcd_enabled && lcd_initialized)
lcd_write(NULL, s, strlen(s), NULL);
}
/* initialize the LCD driver */
void lcd_init(void) {
switch (lcd_type) {
case LCD_TYPE_OLD : /* parallel mode, 8 bits */
if (lcd_proto < 0) lcd_proto = LCD_PROTO_PARALLEL;
if (lcd_charset < 0) lcd_charset = LCD_CHARSET_NORMAL;
if (lcd_e_pin == PIN_NOT_SET) lcd_e_pin = PIN_STROBE;
if (lcd_rs_pin == PIN_NOT_SET) lcd_rs_pin = PIN_AUTOLF;
if (lcd_width < 0) lcd_width = 40;
if (lcd_bwidth < 0) lcd_bwidth = 40;
if (lcd_hwidth < 0) lcd_hwidth = 64;
if (lcd_height < 0) lcd_height = 2;
break;
case LCD_TYPE_KS0074 : /* serial mode, ks0074 */
if (lcd_proto < 0) lcd_proto = LCD_PROTO_SERIAL;
if (lcd_charset < 0) lcd_charset = LCD_CHARSET_KS0074;
if (lcd_bl_pin == PIN_NOT_SET) lcd_bl_pin = PIN_AUTOLF;
if (lcd_cl_pin == PIN_NOT_SET) lcd_cl_pin = PIN_STROBE;
if (lcd_da_pin == PIN_NOT_SET) lcd_da_pin = PIN_D0;
if (lcd_width < 0) lcd_width = 16;
if (lcd_bwidth < 0) lcd_bwidth = 40;
if (lcd_hwidth < 0) lcd_hwidth = 16;
if (lcd_height < 0) lcd_height = 2;
break;
case LCD_TYPE_NEXCOM : /* parallel mode, 8 bits, generic */
if (lcd_proto < 0) lcd_proto = LCD_PROTO_PARALLEL;
if (lcd_charset < 0) lcd_charset = LCD_CHARSET_NORMAL;
if (lcd_e_pin == PIN_NOT_SET) lcd_e_pin = PIN_AUTOLF;
if (lcd_rs_pin == PIN_NOT_SET) lcd_rs_pin = PIN_SELECP;
if (lcd_rw_pin == PIN_NOT_SET) lcd_rw_pin = PIN_INITP;
if (lcd_width < 0) lcd_width = 16;
if (lcd_bwidth < 0) lcd_bwidth = 40;
if (lcd_hwidth < 0) lcd_hwidth = 64;
if (lcd_height < 0) lcd_height = 2;
break;
case LCD_TYPE_CUSTOM : /* customer-defined */
if (lcd_proto < 0) lcd_proto = DEFAULT_LCD_PROTO;
if (lcd_charset < 0) lcd_charset = DEFAULT_LCD_CHARSET;
/* default geometry will be set later */
break;
case LCD_TYPE_HANTRONIX : /* parallel mode, 8 bits, hantronix-like */
default :
if (lcd_proto < 0) lcd_proto = LCD_PROTO_PARALLEL;
if (lcd_charset < 0) lcd_charset = LCD_CHARSET_NORMAL;
if (lcd_e_pin == PIN_NOT_SET) lcd_e_pin = PIN_STROBE;
if (lcd_rs_pin == PIN_NOT_SET) lcd_rs_pin = PIN_SELECP;
if (lcd_width < 0) lcd_width = 16;
if (lcd_bwidth < 0) lcd_bwidth = 40;
if (lcd_hwidth < 0) lcd_hwidth = 64;
if (lcd_height < 0) lcd_height = 2;
break;
}
/* this is used to catch wrong and default values */
if (lcd_width <= 0) lcd_width = DEFAULT_LCD_WIDTH;
if (lcd_bwidth <= 0) lcd_bwidth = DEFAULT_LCD_BWIDTH;
if (lcd_hwidth <= 0) lcd_hwidth = DEFAULT_LCD_HWIDTH;
if (lcd_height <= 0) lcd_height = DEFAULT_LCD_HEIGHT;
if (lcd_proto == LCD_PROTO_SERIAL) { /* SERIAL */
lcd_write_cmd = lcd_write_cmd_s;
lcd_write_data = lcd_write_data_s;
lcd_clear_fast = lcd_clear_fast_s;
if (lcd_cl_pin == PIN_NOT_SET)
lcd_cl_pin = DEFAULT_LCD_PIN_SCL;
if (lcd_da_pin == PIN_NOT_SET)
lcd_da_pin = DEFAULT_LCD_PIN_SDA;
} else { /* PARALLEL */
lcd_write_cmd = lcd_write_cmd_p8;
lcd_write_data = lcd_write_data_p8;
lcd_clear_fast = lcd_clear_fast_p8;
if (lcd_e_pin == PIN_NOT_SET)
lcd_e_pin = DEFAULT_LCD_PIN_E;
if (lcd_rs_pin == PIN_NOT_SET)
lcd_rs_pin = DEFAULT_LCD_PIN_RS;
if (lcd_rw_pin == PIN_NOT_SET)
lcd_rw_pin = DEFAULT_LCD_PIN_RW;
}
if (lcd_bl_pin == PIN_NOT_SET)
lcd_bl_pin = DEFAULT_LCD_PIN_BL;
if (lcd_e_pin == PIN_NOT_SET) lcd_e_pin = PIN_NONE;
if (lcd_rs_pin == PIN_NOT_SET) lcd_rs_pin = PIN_NONE;
if (lcd_rw_pin == PIN_NOT_SET) lcd_rw_pin = PIN_NONE;
if (lcd_bl_pin == PIN_NOT_SET) lcd_bl_pin = PIN_NONE;
if (lcd_cl_pin == PIN_NOT_SET) lcd_cl_pin = PIN_NONE;
if (lcd_da_pin == PIN_NOT_SET) lcd_da_pin = PIN_NONE;
if (lcd_charset < 0)
lcd_charset = DEFAULT_LCD_CHARSET;
if (lcd_charset == LCD_CHARSET_KS0074)
lcd_char_conv = lcd_char_conv_ks0074;
else
lcd_char_conv = NULL;
if (lcd_bl_pin != PIN_NONE)
init_scan_timer();
pin_to_bits(lcd_e_pin, lcd_bits[LCD_PORT_D][LCD_BIT_E], lcd_bits[LCD_PORT_C][LCD_BIT_E]);
pin_to_bits(lcd_rs_pin, lcd_bits[LCD_PORT_D][LCD_BIT_RS], lcd_bits[LCD_PORT_C][LCD_BIT_RS]);
pin_to_bits(lcd_rw_pin, lcd_bits[LCD_PORT_D][LCD_BIT_RW], lcd_bits[LCD_PORT_C][LCD_BIT_RW]);
pin_to_bits(lcd_bl_pin, lcd_bits[LCD_PORT_D][LCD_BIT_BL], lcd_bits[LCD_PORT_C][LCD_BIT_BL]);
pin_to_bits(lcd_cl_pin, lcd_bits[LCD_PORT_D][LCD_BIT_CL], lcd_bits[LCD_PORT_C][LCD_BIT_CL]);
pin_to_bits(lcd_da_pin, lcd_bits[LCD_PORT_D][LCD_BIT_DA], lcd_bits[LCD_PORT_C][LCD_BIT_DA]);
/* before this line, we must NOT send anything to the display.
* Since lcd_init_display() needs to write data, we have to
* enable mark the LCD initialized just before.
*/
lcd_initialized = 1;
lcd_init_display();
/* display a short message */
#ifdef CONFIG_PANEL_CHANGE_MESSAGE
#ifdef CONFIG_PANEL_BOOT_MESSAGE
panel_lcd_print("\x1b[Lc\x1b[Lb\x1b[L*" CONFIG_PANEL_BOOT_MESSAGE);
#endif
#else
panel_lcd_print("\x1b[Lc\x1b[Lb\x1b[L*Linux-" UTS_RELEASE "\nPanel-" PANEL_VERSION);
#endif
lcd_addr_x = lcd_addr_y = 0;
lcd_must_clear = 1; /* clear the display on the next device opening */
lcd_gotoxy();
}
/*
* These are the file operation function for user access to /dev/keypad
*/
static ssize_t keypad_read(struct file * file,
char * buf, size_t count, loff_t *ppos ) {
unsigned i = *ppos;
char *tmp = buf;
if (keypad_buflen == 0) {
if (file->f_flags & O_NONBLOCK)
return -EAGAIN;
//printk(KERN_ERR "keypad_read():1 len=%d", keypad_buflen);
interruptible_sleep_on(&keypad_read_wait);
//printk(KERN_ERR "keypad_read():2 len=%d", keypad_buflen);
if (signal_pending(current))
return -EINTR;
}
//printk(KERN_ERR "keypad_read():3 len=%d", keypad_buflen);
for( ; count-- > 0 && (keypad_buflen > 0); ++i, ++tmp, --keypad_buflen ) {
put_user( keypad_buffer[keypad_start], tmp );
keypad_start = (keypad_start + 1) % KEYPAD_BUFFER;
}
*ppos = i;
//printk(KERN_ERR "keypad_read():4 len=%d", keypad_buflen);
return( tmp - buf );
}
static int keypad_open( struct inode *inode, struct file *file ) {
if (keypad_open_cnt)
return( -EBUSY ); /* open only once at a time */
if (file->f_mode & FMODE_WRITE) /* device is read-only */
return ( -EPERM );
keypad_buflen = 0; /* flush the buffer on opening */
keypad_open_cnt++;
return( 0 );
}
static int keypad_release( struct inode *inode, struct file *file ) {
keypad_open_cnt--;
return( 0 );
}
static struct file_operations keypad_fops = {
read: keypad_read, /* read */
open: keypad_open, /* open */
release: keypad_release, /* close */
};
static struct miscdevice keypad_dev = {
KEYPAD_MINOR,
"keypad",
&keypad_fops
};
static void keypad_send_key(char *string, int max_len) {
//printk(KERN_ERR "keypad_send_key(%c,%d):1\n", *string,max_len);
if (init_in_progress)
return;
//printk(KERN_ERR "keypad_send_key(%c,%d):2\n", *string,max_len);
/* send the key to the device only if a process is attached to it. */
if (keypad_open_cnt > 0) {
//printk(KERN_ERR "keypad_send_key(%c,%d):3\n", *string,max_len);
while (max_len-- && keypad_buflen < KEYPAD_BUFFER && *string) {
keypad_buffer[(keypad_start + keypad_buflen++) % KEYPAD_BUFFER] = *string++;
}
//printk(KERN_ERR "keypad_send_key(%d):4\n", *string,max_len);
wake_up_interruptible(&keypad_read_wait);
}
//printk(KERN_ERR "keypad_send_key(%d):5\n", *string,max_len);
}
/* this function scans all the bits involving at least one logical signal, and puts the
* results in the bitfield "phys_read" (one bit per established contact), and sets
* "phys_read_prev" to "phys_read".
*
* Note: to debounce input signals, we will only consider as switched a signal which is
* stable across 2 measures. Signals which are different between two reads will be kept
* as they previously were in their logical form (phys_prev). A signal which has just
* switched will have a 1 in (phys_read ^ phys_read_prev).
*/
static void phys_scan_contacts(void) {
int bit, bitval;
char oldval;
char bitmask;
char gndmask;
phys_prev = phys_curr;
phys_read_prev = phys_read;
phys_read = 0; /* flush all signals */
oldval = r_dtr(pprt) | scan_mask_o; /* keep track of old value, with all outputs disabled */
w_dtr(pprt, oldval & ~scan_mask_o); /* activate all keyboard outputs (active low) */
bitmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i; /* will have a 1 for each bit set to gnd */
w_dtr(pprt, oldval); /* disable all matrix signals */
/* now that all outputs are cleared, the only active input bits are
* directly connected to the ground
*/
gndmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i; /* 1 for each grounded input */
phys_read |= (pmask_t)gndmask << 40; /* grounded inputs are signals 40-44 */
if (bitmask != gndmask) {
/* since clearing the outputs changed some inputs, we know that some
* input signals are currently tied to some outputs. So we'll scan them.
*/
for (bit = 0; bit < 8; bit ++) {
bitval = 1 << bit;
if (!(scan_mask_o & bitval)) /* skip unused bits */
continue;
w_dtr(pprt, oldval & ~bitval); /* enable this output */
bitmask = PNL_PINPUT(r_str(pprt)) & ~gndmask;
phys_read |= (pmask_t) bitmask << (5*bit);
}
w_dtr(pprt, oldval); /* disable all outputs */
}
/* this is easy: use old bits when they are flapping, use new ones when stable */
phys_curr = (phys_prev & (phys_read ^ phys_read_prev)) | (phys_read & ~(phys_read ^ phys_read_prev));
}
static void panel_process_inputs(void) {
struct list_head *item;
struct logical_input *input;
#if 0
printk(KERN_DEBUG "entering panel_process_inputs with pp=%016Lx & pc=%016Lx\n",
phys_prev, phys_curr);
#endif
keypressed = 0;
inputs_stable = 1;
list_for_each(item, &logical_inputs) {
input = list_entry(item, struct logical_input, list);
switch (input->state) {
case INPUT_ST_LOW:
if ((phys_curr & input->mask) != input->value)
break;
/* if all needed ones were already set previously, this means that
* this logical signal has been activated by the releasing of
* another combined signal, so we don't want to match.
* eg: AB -(release B)-> A -(release A)-> 0 : don't match A.
*/
if ((phys_prev & input->mask) == input->value)
break;
input->rise_timer = 0;
input->state = INPUT_ST_RISING;
/* no break here, fall through */
case INPUT_ST_RISING:
if ((phys_curr & input->mask) != input->value) {
input->state = INPUT_ST_LOW;
break;
}
if (input->rise_timer < input->rise_time) {
inputs_stable = 0;
input->rise_timer++;
break;
}
input->high_timer = 0;
input->state = INPUT_ST_HIGH;
/* no break here, fall through */
case INPUT_ST_HIGH:
#if 0
/* FIXME:
* this is an invalid test. It tries to catch transitions from single-key
* to multiple-key, but doesn't take into account the contacts polarity.
* The only solution to the problem is to parse keys from the most complex
* to the simplest combinations, and mark them as 'caught' once a combination
* matches, then unmatch it for all other ones.
*/
/* try to catch dangerous transitions cases :
* someone adds a bit, so this signal was a false
* positive resulting from a transition. We should invalidate
* the signal immediately and not call the release function.
* eg: 0 -(press A)-> A -(press B)-> AB : don't match A's release.
*/
if (((phys_prev & input->mask) == input->value)
&& ((phys_curr & input->mask) > input->value)) {
input->state = INPUT_ST_LOW; /* invalidate */
break;
}
//else
#endif
if ((phys_curr & input->mask) == input->value) {
if ((input->type == INPUT_TYPE_STD) && (input->high_timer == 0)) {
input->high_timer++;
if (input->u.std.press_fct != NULL)
input->u.std.press_fct(input->u.std.press_data);
}
else if (input->type == INPUT_TYPE_KBD) {
keypressed = 1; /* will turn on the light */
if (input->high_timer == 0) {
if (input->u.kbd.press_str[0])
keypad_send_key(input->u.kbd.press_str, sizeof(input->u.kbd.press_str));
}
if (input->u.kbd.repeat_str[0]) {
if (input->high_timer >= KEYPAD_REP_START) {
input->high_timer -= KEYPAD_REP_DELAY;
keypad_send_key(input->u.kbd.repeat_str, sizeof(input->u.kbd.repeat_str));
}
inputs_stable = 0; /* we will need to come back here soon */
}
if (input->high_timer < 255) {
input->high_timer++;
}
}
break;
}
else {
/* else signal falling down. Let's fall through. */
input->state = INPUT_ST_FALLING;
input->fall_timer = 0;
}
/* no break here, fall through */
case INPUT_ST_FALLING:
#if 0
/* FIXME !!! same comment as above */
if (((phys_prev & input->mask) == input->value)
&& ((phys_curr & input->mask) > input->value)) {
input->state = INPUT_ST_LOW; /* invalidate */
break;
}
//else
#endif
if ((phys_curr & input->mask) == input->value) {
if (input->type == INPUT_TYPE_KBD) {
keypressed = 1; /* will turn on the light */
if (input->u.kbd.repeat_str[0]) {
if (input->high_timer >= KEYPAD_REP_START)
input->high_timer -= KEYPAD_REP_DELAY;
keypad_send_key(input->u.kbd.repeat_str, sizeof(input->u.kbd.repeat_str));
inputs_stable = 0; /* we will need to come back here soon */
}
if (input->high_timer < 255) {
input->high_timer++;
}
}
input->state = INPUT_ST_HIGH;
break;
}
else if (input->fall_timer >= input->fall_time) {
/* call release event */
if (input->type == INPUT_TYPE_STD) {
if (input->u.std.release_fct != NULL)
input->u.std.release_fct(input->u.std.release_data);
}
else if (input->type == INPUT_TYPE_KBD) {
if (input->u.kbd.release_str[0])
keypad_send_key(input->u.kbd.release_str, sizeof(input->u.kbd.release_str));
}
input->state = INPUT_ST_LOW;
break;
}
else {
input->fall_timer++;
inputs_stable = 0;
break;
}
}
}
}
static void panel_scan_timer(void) {
if ((keypad_enabled && keypad_initialized)
|| (smartcard_enabled && smartcard_enabled)) {
if (spin_trylock(&pprt_lock)) {
phys_scan_contacts();
spin_unlock(&pprt_lock); /* no need for the parport anymore */
}
if (!inputs_stable || phys_curr != phys_prev) {
panel_process_inputs();
}
}
if (lcd_enabled && lcd_initialized) {
if (keypressed) {
if (light_tempo == 0 && ((lcd_flags & LCD_FLAG_L) == 0))
lcd_backlight(1);
light_tempo = FLASH_LIGHT_TEMPO;
}
else if (light_tempo > 0) {
light_tempo--;
if (light_tempo == 0 && ((lcd_flags & LCD_FLAG_L) == 0))
lcd_backlight(0);
}
}
mod_timer(&scan_timer, jiffies + INPUT_POLL_TIME);
}
/* send a high / low clock impulse of <duration> microseconds high and low */
static void smartcard_send_clock(int duration) {
int old;
w_dtr(pprt, (old = r_dtr(pprt)) | PNL_SC_CLK);
udelay(duration);
w_dtr(pprt, (old & ~PNL_SC_CLK));
udelay(duration);
}
static void smartcard_insert(int dummy) {
int ofs;
spin_lock(&pprt_lock);
w_dtr(pprt, (r_dtr(pprt) & ~PNL_SC_BITS));
w_ctr(pprt, (r_ctr(pprt) | PNL_SC_ENA));
udelay(30); /* ensure the rst is low at least 30 us */
smartcard_send_clock(100); /* reset address counter */
w_dtr(pprt, r_dtr(pprt) | PNL_SC_RST);
udelay(30); /* ensure the rst is high at least 30 us */
for (ofs = 0; ofs < SMARTCARD_BYTES; ofs++) {
int bit, byte;
byte = 0;
for (bit = 128; bit > 0; bit >>= 1) {
if (!(r_str(pprt) & PNL_SC_IOR))
byte |= bit;
smartcard_send_clock(15); /* 15 us are enough for data */
}
smartcard_data[ofs] = byte;
}
w_dtr(pprt, (r_dtr(pprt) & ~PNL_SC_BITS));
w_ctr(pprt, (r_ctr(pprt) & ~PNL_SC_ENA));
spin_unlock(&pprt_lock);
printk(KERN_INFO "Panel: smart card inserted : %02x%02x%02x%02x%1x\n",
smartcard_data[2], smartcard_data[3], smartcard_data[4],
smartcard_data[5], smartcard_data[6] >> 4);
keypad_send_key("CardIn\n", 7);
}
static void smartcard_remove(int dummy) {
printk(KERN_INFO "Panel: smart card removed : %02x%02x%02x%02x%1x\n",
smartcard_data[2], smartcard_data[3], smartcard_data[4],
smartcard_data[5], smartcard_data[6] >> 4);
memset(smartcard_data, 0, sizeof(smartcard_data));
keypad_send_key("CardOut\n", 8);
}
/*
* These are the file operation function for user access to /dev/smartcard
*/
static ssize_t smartcard_read(struct file * file,
char * buf, size_t count, loff_t *ppos ) {
unsigned i = *ppos;
char *tmp = buf;
for( ; count-- > 0 && (smartcard_ptr < 9); ++i, ++tmp, ++smartcard_ptr ) {
if (smartcard_ptr & 1)
put_user( '0' + (smartcard_data[2 + (smartcard_ptr >> 1)] & 0xF), tmp );
else
put_user( '0' + (smartcard_data[2 + (smartcard_ptr >> 1)] >> 4), tmp );
}
*ppos = i;
return( tmp - buf );
}
static int smartcard_open( struct inode *inode, struct file *file ) {
if (smartcard_open_cnt)
return( -EBUSY ); /* open only once at a time */
if (file->f_mode & FMODE_WRITE) /* device is read-only */
return ( -EPERM );
smartcard_ptr = 0; /* flush the buffer on opening */
smartcard_open_cnt++;
return( 0 );
}
static int smartcard_release( struct inode *inode, struct file *file ) {
smartcard_open_cnt--;
return( 0 );
}
static struct file_operations smartcard_fops = {
read: smartcard_read, /* read */
open: smartcard_open, /* open */
release: smartcard_release, /* close */
};
static struct miscdevice smartcard_dev = {
SMARTCARD_MINOR,
"smartcard",
&smartcard_fops
};
static void init_scan_timer(void) {
if (scan_timer.function != NULL)
return; /* already started */
init_timer(&scan_timer);
scan_timer.expires = jiffies + INPUT_POLL_TIME;
scan_timer.data = 0;
scan_timer.function = (void *)&panel_scan_timer;
add_timer(&scan_timer);
}
/* converts a name of the form "({BbAaPpSsEe}{01234567-})*" to a series of bits.
* if <omask> or <imask> are non-null, they will be or'ed with the bits corresponding
* to out and in bits respectively.
* returns 1 if ok, 0 if error (in which case, nothing is written).
*/
static int input_name2mask(char *name, pmask_t *mask, pmask_t *value, char *imask, char *omask) {
static char sigtab[10]="EeSsPpAaBb";
char im, om;
pmask_t m, v;
om = im = m = v = 0ULL;
while (*name) {
int in, out, bit, neg;
for (in = 0; (in < sizeof(sigtab)) && (sigtab[in] != *name); in++);
if (in >= sizeof(sigtab))
return 0; /* input name not found */
neg = (in & 1); /* odd (lower) names are negated */
in >>= 1;
im |= (1 << in);
name++;
if (isdigit(*name)) {
out = *name - '0';
om |= (1 << out);
}
else if (*name == '-')
out = 8;
else
return 0; /* unknown bit name */
bit = (out * 5) + in;
m |= 1ULL << bit;
if (!neg)
v |= 1ULL << bit;
name++;
}
*mask = m;
*value = v;
if (imask)
*imask |= im;
if (omask)
*omask |= om;
return 1;
}
/* tries to bind a key to the signal name <name>. The key will send the
* strings <press>, <repeat>, <release> for these respective events.
* Returns the pointer to the new key if ok, NULL if the key could not be bound.
*/
static struct logical_input *panel_bind_key(char *name, char *press, char *repeat, char *release) {
struct logical_input *key;
key = (struct logical_input*)kmalloc(sizeof(struct logical_input), GFP_KERNEL);
if (!key) {
printk(KERN_ERR "panel: not enough memory\n");
return NULL;
}
memset(key, 0, sizeof(struct logical_input));
if (!input_name2mask(name, &key->mask, &key->value, &scan_mask_i, &scan_mask_o))
return NULL;
key->type = INPUT_TYPE_KBD;
key->state = INPUT_ST_LOW;
key->rise_time = 1;
key->fall_time = 1;
#if 0
printk(KERN_DEBUG "bind: <%s> : m=%016Lx v=%016Lx\n", name, key->mask, key->value);
#endif
strncpy(key->u.kbd.press_str, press, sizeof(key->u.kbd.press_str));
strncpy(key->u.kbd.repeat_str, repeat, sizeof(key->u.kbd.repeat_str));
strncpy(key->u.kbd.release_str, release, sizeof(key->u.kbd.release_str));
list_add(&key->list, &logical_inputs);
return key;
}
/* tries to bind a callback function to the signal name <name>. The function
* <press_fct> will be called with the <press_data> arg when the signal is
* activated, and so on for <release_fct>/<release_data>
* Returns the pointer to the new signal if ok, NULL if the signal could not be bound.
*/
static struct logical_input *panel_bind_callback(char *name,
void (*press_fct)(int), int press_data,
void (*release_fct)(int), int release_data) {
struct logical_input *callback;
callback = (struct logical_input*)kmalloc(sizeof(struct logical_input), GFP_KERNEL);
if (!callback) {
printk(KERN_ERR "panel: not enough memory\n");
return NULL;
}
memset(callback, 0, sizeof(struct logical_input));
if (!input_name2mask(name, &callback->mask, &callback->value, &scan_mask_i, &scan_mask_o))
return NULL;
callback->type = INPUT_TYPE_STD;
callback->state = INPUT_ST_LOW;
callback->rise_time = 1;
callback->fall_time = 1;
callback->u.std.press_fct = press_fct;
callback->u.std.press_data = press_data;
callback->u.std.release_fct = release_fct;
callback->u.std.release_data = release_data;
list_add(&callback->list, &logical_inputs);
return callback;
}
static void keypad_init(void) {
int keynum;
init_waitqueue_head(&keypad_read_wait);
keypad_buflen = 0; /* flushes any eventual noisy keystroke */
/* Let's create all known keys */
for (keynum = 0; keypad_profile[keynum][0][0]; keynum++) {
panel_bind_key(keypad_profile[keynum][0],
keypad_profile[keynum][1],
keypad_profile[keynum][2],
keypad_profile[keynum][3]);
}
init_scan_timer();
keypad_initialized = 1;
}
static void smartcard_init(void) {
init_waitqueue_head(&smartcard_read_wait);
panel_bind_callback(SMARTCARD_LOGICAL_DETECTOR, &smartcard_insert, 0, &smartcard_remove, 0);
init_scan_timer();
smartcard_enabled = 1;
}
/**************************************************/
/* device initialization */
/**************************************************/
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,0)
#define INIT_FUNC static int __init panel_init_module
#define CLEANUP_FUNC static void __exit panel_cleanup_module
#elif LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,0)
#define INIT_FUNC static int __init panel_init_module
#define CLEANUP_FUNC static void panel_cleanup_module
#else
#define INIT_FUNC int init_module
#define CLEANUP_FUNC int cleanup_module
#endif
#ifndef MODULE
/* called when compiled into the kernel */
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,0)
static int __init panel_setup(char *str)
#else
__initfunc(void panel_setup(char *str, int *ints))
#endif
{
int dummy;
int *where;
int helpdisplayed = 0;
if (!str)
return 0;
while (*str) {
where = NULL;
/* let's parse each of the command line parameters of the following form :
panel=[parport:x],[lcd_height:x],[lcd_width:x],[lcd_bwidth:x],[lcd_hwidth:x]
*/
if (!strncmp(str, "parport:", 8)) {
str += 8;
where = &parport;
}
else if (!strncmp(str, "disabled", 8)) {
return 0;
}
else if (!strncmp(str, "lcd_height:", 11)) {
str += 11;
where = &lcd_height;
}
else if (!strncmp(str, "lcd_width:", 10)) {
str += 10;
where = &lcd_width;
}
else if (!strncmp(str, "lcd_bwidth:", 11)) {
str += 11;
where = &lcd_bwidth;
}
else if (!strncmp(str, "lcd_hwidth:", 11)) {
str += 11;
where = &lcd_hwidth;
}
else if (!strncmp(str, "lcd_enabled:", 12)) {
str += 12;
where = &lcd_enabled;
}
else if (!strncmp(str, "keypad_enabled:", 15)) {
str += 15;
where = &keypad_enabled;
}
else if (!strncmp(str, "smartcard_enabled:", 18)) {
str += 18;
where = &smartcard_enabled;
}
else if (!strncmp(str, "profile:", 8)) {
str += 8;
where = &profile;
}
else if (!helpdisplayed) {
helpdisplayed = 1;
printk(KERN_ERR "Panel version " PANEL_VERSION ": invalid argument. Known arguments are :\n"
" parport:, lcd_{height,width,bwidth,enabled}:, keypad_enabled:\n");
}
/* see if we need to read a number */
if (where != NULL) {
dummy = 0;
while (isdigit(*str)) {
dummy = (dummy*10) + (*str - '0');
str++;
}
*where = dummy;
}
/* look for next arg */
while (*str && (*str != ','))
str++;
while (*str == ',')
str++;
}
return 1;
}
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,0)
__setup("panel=", panel_setup );
#else
__setup("panel", panel_setup );
#endif
#endif /* !MODULE */
static int panel_notify_sys(struct notifier_block *this, unsigned long code, void *unused) {
if (lcd_enabled && lcd_initialized) {
switch(code) {
case SYS_DOWN:
panel_lcd_print("\x0cReloading\nSystem...\x1b[Lc\x1b[Lb\x1b[L+");
break;
case SYS_HALT:
panel_lcd_print("\x0cSystem Halted.\x1b[Lc\x1b[Lb\x1b[L+");
break;
case SYS_POWER_OFF:
panel_lcd_print("\x0cPower off.\x1b[Lc\x1b[Lb\x1b[L+");
break;
default:
break;
}
}
return NOTIFY_DONE;
}
static struct notifier_block panel_notifier = {
panel_notify_sys,
NULL,
0
};
static void panel_attach (struct parport *port)
{
if (port->number != parport)
return;
if (pprt) {
printk(KERN_ERR "panel_attach(): port->number=%d parport=%d, already registered !\n", port->number, parport);
return;
}
pprt = parport_register_device(port, "panel",
NULL, NULL, /* pf, kf */
NULL,
/*PARPORT_DEV_EXCL*/
0,
(void *)&pprt);
if (parport_claim(pprt)) {
printk(KERN_ERR "Panel: could not claim access to parport%d. Aborting.\n", parport);
//parport_unregister_device(pprt);
//parport_unregister_driver(&panel_driver);
//return -EIO;
return;
}
/* turns IRQ off */
// port->ops->disable_irq(port);
/* must init LCD first, just in case an IRQ from the keypad is generated at keypad init */
if (lcd_enabled) {
lcd_init();
misc_register( &lcd_dev );
}
if (keypad_enabled) {
keypad_init();
misc_register( &keypad_dev );
}
if (smartcard_enabled) {
smartcard_init();
misc_register( &smartcard_dev );
}
}
static void panel_detach (struct parport *port)
{
if (port->number != parport)
return;
if (!pprt) {
printk(KERN_ERR "panel_detach(): port->number=%d parport=%d, nothing to unregister.\n",
port->number, parport);
return;
}
if (smartcard_enabled && smartcard_initialized) {
misc_deregister( &smartcard_dev );
}
if (keypad_enabled && keypad_initialized) {
misc_deregister( &keypad_dev );
}
if (lcd_enabled && lcd_initialized) {
misc_deregister( &lcd_dev );
}
parport_release(pprt);
parport_unregister_device(pprt);
pprt = NULL;
}
static struct parport_driver panel_driver = {
.name = "panel",
.attach = panel_attach,
.detach = panel_detach,
};
/* init function */
int panel_init (void) {
/* for backwards compatibility */
if (keypad_type < 0)
keypad_type = keypad_enabled;
if (lcd_type < 0)
lcd_type = lcd_enabled;
if (parport < 0)
parport = DEFAULT_PARPORT;
/* take care of an eventual profile */
switch (profile) {
case PANEL_PROFILE_CUSTOM: /* custom profile */
if (keypad_type < 0) keypad_type = DEFAULT_KEYPAD;
if (smartcard_enabled < 0) smartcard_enabled = DEFAULT_SMARTCARD;
if (lcd_type < 0) lcd_type = DEFAULT_LCD;
break;
case PANEL_PROFILE_OLD: /* 8 bits, 2*16, old keypad */
if (keypad_type < 0) keypad_type = KEYPAD_TYPE_OLD;
if (smartcard_enabled < 0) smartcard_enabled = 0;
if (lcd_type < 0) lcd_type = LCD_TYPE_OLD;
if (lcd_width < 0) lcd_width = 16;
if (lcd_hwidth < 0) lcd_hwidth = 16;
break;
case PANEL_PROFILE_NEW: /* serial, 2*16, new keypad */
if (keypad_type < 0) keypad_type = KEYPAD_TYPE_NEW;
if (smartcard_enabled < 0) smartcard_enabled = 1;
if (lcd_type < 0) lcd_type = LCD_TYPE_KS0074;
break;
case PANEL_PROFILE_HANTRONIX: /* 8 bits, 2*16 hantronix-like, no keypad */
if (keypad_type < 0) keypad_type = KEYPAD_TYPE_NONE;
if (smartcard_enabled < 0) smartcard_enabled = 0;
if (lcd_type < 0) lcd_type = LCD_TYPE_HANTRONIX;
break;
case PANEL_PROFILE_NEXCOM: /* generic 8 bits, 2*16, nexcom keypad, eg. Nexcom. */
if (keypad_type < 0) keypad_type = KEYPAD_TYPE_NEXCOM;
if (smartcard_enabled < 0) smartcard_enabled = 0;
if (lcd_type < 0) lcd_type = LCD_TYPE_NEXCOM;
break;
case PANEL_PROFILE_LARGE: /* 8 bits, 2*40, old keypad */
if (keypad_type < 0) keypad_type = KEYPAD_TYPE_OLD;
if (smartcard_enabled < 0) smartcard_enabled = 0;
if (lcd_type < 0) lcd_type = LCD_TYPE_OLD;
break;
}
lcd_enabled = (lcd_type > 0);
keypad_enabled = (keypad_type > 0);
switch (keypad_type) {
case KEYPAD_TYPE_OLD:
keypad_profile = old_keypad_profile;
break;
case KEYPAD_TYPE_NEW:
keypad_profile = new_keypad_profile;
break;
case KEYPAD_TYPE_NEXCOM:
keypad_profile = nexcom_keypad_profile;
break;
default:
keypad_profile = NULL;
break;
}
/* tells various subsystems about the fact that we are initializing */
init_in_progress = 1;
if (parport_register_driver(&panel_driver)) {
printk(KERN_ERR "Panel: could not register with parport. Aborting.\n");
return -EIO;
}
// The parport can be asynchronously registered later.
//if (pprt == NULL) {
// printk(KERN_ERR "Panel: could not register parport%d. Aborting.\n", parport);
// parport_unregister_driver(&panel_driver);
// return -ENODEV; /* port not found */
//}
if (!lcd_enabled && !keypad_enabled && !smartcard_enabled) { /* no device enabled, let's release the parport */
if (pprt) {
parport_release(pprt);
parport_unregister_device(pprt);
}
parport_unregister_driver(&panel_driver);
printk(KERN_ERR "Panel driver version " PANEL_VERSION " disabled.\n");
return -ENODEV;
}
register_reboot_notifier(&panel_notifier);
if (pprt)
printk(KERN_INFO "Panel driver version " PANEL_VERSION " registered on parport%d (io=0x%lx).\n",
parport, pprt->port->base);
else
printk(KERN_INFO "Panel driver version " PANEL_VERSION " not yet registered\n");
/* tells various subsystems about the fact that initialization is finished */
init_in_progress = 0;
return 0;
}
#if defined(MODULE) || (LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,0))
INIT_FUNC (void) {
return panel_init();
}
CLEANUP_FUNC (void) {
unregister_reboot_notifier(&panel_notifier);
if (scan_timer.function != NULL) {
del_timer(&scan_timer);
}
if (keypad_enabled) {
misc_deregister( &keypad_dev );
}
if (smartcard_enabled) {
misc_deregister( &smartcard_dev );
}
if (lcd_enabled) {
panel_lcd_print("\x0cLCD driver " PANEL_VERSION "\nunloaded.\x1b[Lc\x1b[Lb\x1b[L-");
misc_deregister( &lcd_dev );
}
/* TODO: free all input signals */
parport_release(pprt);
parport_unregister_device(pprt);
parport_unregister_driver(&panel_driver);
}
#endif
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,0)
module_init(panel_init_module);
module_exit(panel_cleanup_module);
MODULE_AUTHOR("Willy Tarreau");
MODULE_LICENSE("GPL");
#endif
/*
* Local variables:
* c-indent-level: 4
* tab-width: 8
* End:
*/
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment