Commit 64be7eed authored by Venkatesh Pallipadi's avatar Venkatesh Pallipadi Committed by Dave Jones

[CPUFREQ][5/8] acpi-cpufreq: lindent acpi-cpufreq.c

Lindent acpi-cpufreq. Additional changes replacing "return (..)" by "return ..".
No functionality changes in this patch.
Signed-off-by: default avatarDenis Sadykov <denis.m.sadykov@intel.com>
Signed-off-by: default avatarVenkatesh Pallipadi <venkatesh.pallipadi@intel.com>
Signed-off-by: default avatarAlexey Starikovskiy <alexey.y.starikovskiy@intel.com>
Signed-off-by: default avatarDave Jones <davej@redhat.com>
parent 83d0515b
......@@ -51,7 +51,6 @@ MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
MODULE_DESCRIPTION("ACPI Processor P-States Driver");
MODULE_LICENSE("GPL");
enum {
UNDEFINED_CAPABLE = 0,
SYSTEM_INTEL_MSR_CAPABLE,
......@@ -61,36 +60,34 @@ enum {
#define INTEL_MSR_RANGE (0xffff)
struct acpi_cpufreq_data {
struct acpi_processor_performance *acpi_data;
struct cpufreq_frequency_table *freq_table;
unsigned int resume;
unsigned int cpu_feature;
struct acpi_processor_performance *acpi_data;
struct cpufreq_frequency_table *freq_table;
unsigned int resume;
unsigned int cpu_feature;
};
static struct acpi_cpufreq_data *drv_data[NR_CPUS];
static struct acpi_processor_performance *acpi_perf_data[NR_CPUS];
static struct acpi_cpufreq_data *drv_data[NR_CPUS];
static struct acpi_processor_performance *acpi_perf_data[NR_CPUS];
static struct cpufreq_driver acpi_cpufreq_driver;
static unsigned int acpi_pstate_strict;
static int check_est_cpu(unsigned int cpuid)
{
struct cpuinfo_x86 *cpu = &cpu_data[cpuid];
if (cpu->x86_vendor != X86_VENDOR_INTEL ||
!cpu_has(cpu, X86_FEATURE_EST))
!cpu_has(cpu, X86_FEATURE_EST))
return 0;
return 1;
}
static unsigned extract_io(u32 value, struct acpi_cpufreq_data *data)
{
struct acpi_processor_performance *perf;
int i;
struct acpi_processor_performance *perf;
int i;
perf = data->acpi_data;
......@@ -101,7 +98,6 @@ static unsigned extract_io(u32 value, struct acpi_cpufreq_data *data)
return 0;
}
static unsigned extract_msr(u32 msr, struct acpi_cpufreq_data *data)
{
int i;
......@@ -114,15 +110,14 @@ static unsigned extract_msr(u32 msr, struct acpi_cpufreq_data *data)
return data->freq_table[0].frequency;
}
static unsigned extract_freq(u32 val, struct acpi_cpufreq_data *data)
{
switch (data->cpu_feature) {
case SYSTEM_INTEL_MSR_CAPABLE:
case SYSTEM_INTEL_MSR_CAPABLE:
return extract_msr(val, data);
case SYSTEM_IO_CAPABLE:
case SYSTEM_IO_CAPABLE:
return extract_io(val, data);
default:
default:
return 0;
}
}
......@@ -138,7 +133,7 @@ static void wrport(u16 port, u8 bit_width, u32 value)
}
}
static void rdport(u16 port, u8 bit_width, u32 *ret)
static void rdport(u16 port, u8 bit_width, u32 * ret)
{
*ret = 0;
if (bit_width <= 8) {
......@@ -176,13 +171,13 @@ static void do_drv_read(struct drv_cmd *cmd)
u32 h;
switch (cmd->type) {
case SYSTEM_INTEL_MSR_CAPABLE:
case SYSTEM_INTEL_MSR_CAPABLE:
rdmsr(cmd->addr.msr.reg, cmd->val, h);
break;
case SYSTEM_IO_CAPABLE:
case SYSTEM_IO_CAPABLE:
rdport(cmd->addr.io.port, cmd->addr.io.bit_width, &cmd->val);
break;
default:
default:
break;
}
}
......@@ -192,20 +187,20 @@ static void do_drv_write(struct drv_cmd *cmd)
u32 h = 0;
switch (cmd->type) {
case SYSTEM_INTEL_MSR_CAPABLE:
case SYSTEM_INTEL_MSR_CAPABLE:
wrmsr(cmd->addr.msr.reg, cmd->val, h);
break;
case SYSTEM_IO_CAPABLE:
case SYSTEM_IO_CAPABLE:
wrport(cmd->addr.io.port, cmd->addr.io.bit_width, cmd->val);
break;
default:
default:
break;
}
}
static inline void drv_read(struct drv_cmd *cmd)
{
cpumask_t saved_mask = current->cpus_allowed;
cpumask_t saved_mask = current->cpus_allowed;
cmd->val = 0;
set_cpus_allowed(current, cmd->mask);
......@@ -216,8 +211,8 @@ static inline void drv_read(struct drv_cmd *cmd)
static void drv_write(struct drv_cmd *cmd)
{
cpumask_t saved_mask = current->cpus_allowed;
unsigned int i;
cpumask_t saved_mask = current->cpus_allowed;
unsigned int i;
for_each_cpu_mask(i, cmd->mask) {
set_cpus_allowed(current, cpumask_of_cpu(i));
......@@ -230,8 +225,8 @@ static void drv_write(struct drv_cmd *cmd)
static u32 get_cur_val(cpumask_t mask)
{
struct acpi_processor_performance *perf;
struct drv_cmd cmd;
struct acpi_processor_performance *perf;
struct drv_cmd cmd;
if (unlikely(cpus_empty(mask)))
return 0;
......@@ -262,14 +257,13 @@ static u32 get_cur_val(cpumask_t mask)
static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
{
struct acpi_cpufreq_data *data = drv_data[cpu];
unsigned int freq;
struct acpi_cpufreq_data *data = drv_data[cpu];
unsigned int freq;
dprintk("get_cur_freq_on_cpu (%d)\n", cpu);
if (unlikely(data == NULL ||
data->acpi_data == NULL ||
data->freq_table == NULL)) {
data->acpi_data == NULL || data->freq_table == NULL)) {
return 0;
}
......@@ -280,10 +274,10 @@ static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
}
static unsigned int check_freqs(cpumask_t mask, unsigned int freq,
struct acpi_cpufreq_data *data)
struct acpi_cpufreq_data *data)
{
unsigned int cur_freq;
unsigned int i;
unsigned int cur_freq;
unsigned int i;
for (i = 0; i < 100; i++) {
cur_freq = extract_freq(get_cur_val(mask), data);
......@@ -295,34 +289,31 @@ static unsigned int check_freqs(cpumask_t mask, unsigned int freq,
}
static int acpi_cpufreq_target(struct cpufreq_policy *policy,
unsigned int target_freq,
unsigned int relation)
unsigned int target_freq, unsigned int relation)
{
struct acpi_cpufreq_data *data = drv_data[policy->cpu];
struct acpi_processor_performance *perf;
struct cpufreq_freqs freqs;
cpumask_t online_policy_cpus;
struct drv_cmd cmd;
unsigned int msr;
unsigned int next_state = 0;
unsigned int next_perf_state = 0;
unsigned int i;
int result = 0;
struct acpi_cpufreq_data *data = drv_data[policy->cpu];
struct acpi_processor_performance *perf;
struct cpufreq_freqs freqs;
cpumask_t online_policy_cpus;
struct drv_cmd cmd;
unsigned int msr;
unsigned int next_state = 0;
unsigned int next_perf_state = 0;
unsigned int i;
int result = 0;
dprintk("acpi_cpufreq_target %d (%d)\n", target_freq, policy->cpu);
if (unlikely(data == NULL ||
data->acpi_data == NULL ||
data->freq_table == NULL)) {
data->acpi_data == NULL || data->freq_table == NULL)) {
return -ENODEV;
}
perf = data->acpi_data;
result = cpufreq_frequency_table_target(policy,
data->freq_table,
target_freq,
relation,
&next_state);
data->freq_table,
target_freq,
relation, &next_state);
if (unlikely(result))
return -ENODEV;
......@@ -339,30 +330,34 @@ static int acpi_cpufreq_target(struct cpufreq_policy *policy,
next_perf_state = data->freq_table[next_state].index;
if (freqs.new == freqs.old) {
if (unlikely(data->resume)) {
dprintk("Called after resume, resetting to P%d\n", next_perf_state);
dprintk("Called after resume, resetting to P%d\n",
next_perf_state);
data->resume = 0;
} else {
dprintk("Already at target state (P%d)\n", next_perf_state);
dprintk("Already at target state (P%d)\n",
next_perf_state);
return 0;
}
}
switch (data->cpu_feature) {
case SYSTEM_INTEL_MSR_CAPABLE:
cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
cmd.addr.msr.reg = MSR_IA32_PERF_CTL;
msr = (u32) perf->states[next_perf_state].control & INTEL_MSR_RANGE;
cmd.val = (cmd.val & ~INTEL_MSR_RANGE) | msr;
break;
case SYSTEM_IO_CAPABLE:
cmd.type = SYSTEM_IO_CAPABLE;
cmd.addr.io.port = perf->control_register.address;
cmd.addr.io.bit_width = perf->control_register.bit_width;
cmd.val = (u32) perf->states[next_perf_state].control;
break;
default:
return -ENODEV;
}
switch (data->cpu_feature) {
case SYSTEM_INTEL_MSR_CAPABLE:
cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
cmd.addr.msr.reg = MSR_IA32_PERF_CTL;
msr =
(u32) perf->states[next_perf_state].
control & INTEL_MSR_RANGE;
cmd.val = (cmd.val & ~INTEL_MSR_RANGE) | msr;
break;
case SYSTEM_IO_CAPABLE:
cmd.type = SYSTEM_IO_CAPABLE;
cmd.addr.io.port = perf->control_register.address;
cmd.addr.io.bit_width = perf->control_register.bit_width;
cmd.val = (u32) perf->states[next_perf_state].control;
break;
default:
return -ENODEV;
}
cpus_clear(cmd.mask);
......@@ -381,7 +376,7 @@ static int acpi_cpufreq_target(struct cpufreq_policy *policy,
if (acpi_pstate_strict) {
if (!check_freqs(cmd.mask, freqs.new, data)) {
dprintk("acpi_cpufreq_target failed (%d)\n",
policy->cpu);
policy->cpu);
return -EAGAIN;
}
}
......@@ -395,10 +390,7 @@ static int acpi_cpufreq_target(struct cpufreq_policy *policy,
return result;
}
static int
acpi_cpufreq_verify (
struct cpufreq_policy *policy)
static int acpi_cpufreq_verify(struct cpufreq_policy *policy)
{
struct acpi_cpufreq_data *data = drv_data[policy->cpu];
......@@ -407,13 +399,10 @@ acpi_cpufreq_verify (
return cpufreq_frequency_table_verify(policy, data->freq_table);
}
static unsigned long
acpi_cpufreq_guess_freq (
struct acpi_cpufreq_data *data,
unsigned int cpu)
acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
{
struct acpi_processor_performance *perf = data->acpi_data;
struct acpi_processor_performance *perf = data->acpi_data;
if (cpu_khz) {
/* search the closest match to cpu_khz */
......@@ -423,14 +412,14 @@ acpi_cpufreq_guess_freq (
for (i = 0; i < (perf->state_count - 1); i++) {
freq = freqn;
freqn = perf->states[i+1].core_frequency * 1000;
freqn = perf->states[i + 1].core_frequency * 1000;
if ((2 * cpu_khz) > (freqn + freq)) {
perf->state = i;
return (freq);
return freq;
}
}
perf->state = perf->state_count - 1;
return (freqn);
return freqn;
} else {
/* assume CPU is at P0... */
perf->state = 0;
......@@ -438,7 +427,6 @@ acpi_cpufreq_guess_freq (
}
}
/*
* acpi_cpufreq_early_init - initialize ACPI P-States library
*
......@@ -449,21 +437,21 @@ acpi_cpufreq_guess_freq (
*/
static int acpi_cpufreq_early_init(void)
{
struct acpi_processor_performance *data;
cpumask_t covered;
unsigned int i, j;
struct acpi_processor_performance *data;
cpumask_t covered;
unsigned int i, j;
dprintk("acpi_cpufreq_early_init\n");
for_each_possible_cpu(i) {
data = kzalloc(sizeof(struct acpi_processor_performance),
GFP_KERNEL);
data = kzalloc(sizeof(struct acpi_processor_performance),
GFP_KERNEL);
if (!data) {
for_each_cpu_mask(j, covered) {
kfree(acpi_perf_data[j]);
acpi_perf_data[j] = NULL;
}
return (-ENOMEM);
return -ENOMEM;
}
acpi_perf_data[i] = data;
cpu_set(i, covered);
......@@ -501,27 +489,25 @@ static struct dmi_system_id sw_any_bug_dmi_table[] = {
{ }
};
static int
acpi_cpufreq_cpu_init (
struct cpufreq_policy *policy)
static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
{
unsigned int i;
unsigned int valid_states = 0;
unsigned int cpu = policy->cpu;
struct acpi_cpufreq_data *data;
unsigned int l, h;
unsigned int result = 0;
struct cpuinfo_x86 *c = &cpu_data[policy->cpu];
struct acpi_processor_performance *perf;
unsigned int i;
unsigned int valid_states = 0;
unsigned int cpu = policy->cpu;
struct acpi_cpufreq_data *data;
unsigned int l, h;
unsigned int result = 0;
struct cpuinfo_x86 *c = &cpu_data[policy->cpu];
struct acpi_processor_performance *perf;
dprintk("acpi_cpufreq_cpu_init\n");
if (!acpi_perf_data[cpu])
return (-ENODEV);
return -ENODEV;
data = kzalloc(sizeof(struct acpi_cpufreq_data), GFP_KERNEL);
if (!data)
return (-ENOMEM);
return -ENOMEM;
data->acpi_data = acpi_perf_data[cpu];
drv_data[cpu] = data;
......@@ -566,11 +552,11 @@ acpi_cpufreq_cpu_init (
}
switch (perf->control_register.space_id) {
case ACPI_ADR_SPACE_SYSTEM_IO:
case ACPI_ADR_SPACE_SYSTEM_IO:
dprintk("SYSTEM IO addr space\n");
data->cpu_feature = SYSTEM_IO_CAPABLE;
break;
case ACPI_ADR_SPACE_FIXED_HARDWARE:
case ACPI_ADR_SPACE_FIXED_HARDWARE:
dprintk("HARDWARE addr space\n");
if (!check_est_cpu(cpu)) {
result = -ENODEV;
......@@ -578,14 +564,16 @@ acpi_cpufreq_cpu_init (
}
data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
break;
default:
default:
dprintk("Unknown addr space %d\n",
(u32) (perf->control_register.space_id));
(u32) (perf->control_register.space_id));
result = -ENODEV;
goto err_unreg;
}
data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) * (perf->state_count + 1), GFP_KERNEL);
data->freq_table =
kmalloc(sizeof(struct cpufreq_frequency_table) *
(perf->state_count + 1), GFP_KERNEL);
if (!data->freq_table) {
result = -ENOMEM;
goto err_unreg;
......@@ -593,22 +581,23 @@ acpi_cpufreq_cpu_init (
/* detect transition latency */
policy->cpuinfo.transition_latency = 0;
for (i=0; i<perf->state_count; i++) {
if ((perf->states[i].transition_latency * 1000) > policy->cpuinfo.transition_latency)
policy->cpuinfo.transition_latency = perf->states[i].transition_latency * 1000;
for (i = 0; i < perf->state_count; i++) {
if ((perf->states[i].transition_latency * 1000) >
policy->cpuinfo.transition_latency)
policy->cpuinfo.transition_latency =
perf->states[i].transition_latency * 1000;
}
policy->governor = CPUFREQ_DEFAULT_GOVERNOR;
/* table init */
for (i=0; i<perf->state_count; i++)
{
if ( i > 0 && perf->states[i].core_frequency ==
perf->states[i - 1].core_frequency)
for (i = 0; i < perf->state_count; i++) {
if (i > 0 && perf->states[i].core_frequency ==
perf->states[i - 1].core_frequency)
continue;
data->freq_table[valid_states].index = i;
data->freq_table[valid_states].frequency =
perf->states[i].core_frequency * 1000;
perf->states[i].core_frequency * 1000;
valid_states++;
}
data->freq_table[perf->state_count].frequency = CPUFREQ_TABLE_END;
......@@ -619,14 +608,14 @@ acpi_cpufreq_cpu_init (
}
switch (data->cpu_feature) {
case ACPI_ADR_SPACE_SYSTEM_IO:
case ACPI_ADR_SPACE_SYSTEM_IO:
/* Current speed is unknown and not detectable by IO port */
policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
break;
case ACPI_ADR_SPACE_FIXED_HARDWARE:
case ACPI_ADR_SPACE_FIXED_HARDWARE:
get_cur_freq_on_cpu(cpu);
break;
default:
default:
break;
}
......@@ -636,100 +625,89 @@ acpi_cpufreq_cpu_init (
dprintk("CPU%u - ACPI performance management activated.\n", cpu);
for (i = 0; i < perf->state_count; i++)
dprintk(" %cP%d: %d MHz, %d mW, %d uS\n",
(i == perf->state?'*':' '), i,
(i == perf->state ? '*' : ' '), i,
(u32) perf->states[i].core_frequency,
(u32) perf->states[i].power,
(u32) perf->states[i].transition_latency);
cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu);
/*
* the first call to ->target() should result in us actually
* writing something to the appropriate registers.
*/
data->resume = 1;
return result;
err_freqfree:
err_freqfree:
kfree(data->freq_table);
err_unreg:
err_unreg:
acpi_processor_unregister_performance(perf, cpu);
err_free:
err_free:
kfree(data);
drv_data[cpu] = NULL;
return (result);
return result;
}
static int
acpi_cpufreq_cpu_exit (
struct cpufreq_policy *policy)
static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
{
struct acpi_cpufreq_data *data = drv_data[policy->cpu];
dprintk("acpi_cpufreq_cpu_exit\n");
if (data) {
cpufreq_frequency_table_put_attr(policy->cpu);
drv_data[policy->cpu] = NULL;
acpi_processor_unregister_performance(data->acpi_data, policy->cpu);
acpi_processor_unregister_performance(data->acpi_data,
policy->cpu);
kfree(data);
}
return (0);
return 0;
}
static int
acpi_cpufreq_resume (
struct cpufreq_policy *policy)
static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
{
struct acpi_cpufreq_data *data = drv_data[policy->cpu];
dprintk("acpi_cpufreq_resume\n");
data->resume = 1;
return (0);
return 0;
}
static struct freq_attr* acpi_cpufreq_attr[] = {
static struct freq_attr *acpi_cpufreq_attr[] = {
&cpufreq_freq_attr_scaling_available_freqs,
NULL,
};
static struct cpufreq_driver acpi_cpufreq_driver = {
.verify = acpi_cpufreq_verify,
.target = acpi_cpufreq_target,
.get = get_cur_freq_on_cpu,
.init = acpi_cpufreq_cpu_init,
.exit = acpi_cpufreq_cpu_exit,
.resume = acpi_cpufreq_resume,
.name = "acpi-cpufreq",
.owner = THIS_MODULE,
.attr = acpi_cpufreq_attr,
.verify = acpi_cpufreq_verify,
.target = acpi_cpufreq_target,
.get = get_cur_freq_on_cpu,
.init = acpi_cpufreq_cpu_init,
.exit = acpi_cpufreq_cpu_exit,
.resume = acpi_cpufreq_resume,
.name = "acpi-cpufreq",
.owner = THIS_MODULE,
.attr = acpi_cpufreq_attr,
};
static int __init
acpi_cpufreq_init (void)
static int __init acpi_cpufreq_init(void)
{
dprintk("acpi_cpufreq_init\n");
acpi_cpufreq_early_init();
return cpufreq_register_driver(&acpi_cpufreq_driver);
return cpufreq_register_driver(&acpi_cpufreq_driver);
}
static void __exit
acpi_cpufreq_exit (void)
static void __exit acpi_cpufreq_exit(void)
{
unsigned int i;
unsigned int i;
dprintk("acpi_cpufreq_exit\n");
cpufreq_unregister_driver(&acpi_cpufreq_driver);
......@@ -742,7 +720,8 @@ acpi_cpufreq_exit (void)
}
module_param(acpi_pstate_strict, uint, 0644);
MODULE_PARM_DESC(acpi_pstate_strict, "value 0 or non-zero. non-zero -> strict ACPI checks are performed during frequency changes.");
MODULE_PARM_DESC(acpi_pstate_strict,
"value 0 or non-zero. non-zero -> strict ACPI checks are performed during frequency changes.");
late_initcall(acpi_cpufreq_init);
module_exit(acpi_cpufreq_exit);
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment