Commit 62d83681 authored by David S. Miller's avatar David S. Miller
parents 230f9bb7 e7fec0bb
......@@ -54,7 +54,7 @@
* i2400m_set_init_config()
* i2400m_cmd_get_state()
* i2400m_dev_shutdown() Called by i2400m_dev_stop()
* i2400m->bus_reset()
* i2400m_reset()
*
* i2400m_{cmd,get,set}_*()
* i2400m_msg_to_dev()
......@@ -82,6 +82,13 @@
#define D_SUBMODULE control
#include "debug-levels.h"
int i2400m_passive_mode; /* 0 (passive mode disabled) by default */
module_param_named(passive_mode, i2400m_passive_mode, int, 0644);
MODULE_PARM_DESC(passive_mode,
"If true, the driver will not do any device setup "
"and leave it up to user space, who must be properly "
"setup.");
/*
* Return if a TLV is of a give type and size
......@@ -263,7 +270,7 @@ int i2400m_msg_check_status(const struct i2400m_l3l4_hdr *l3l4_hdr,
if (status == 0)
return 0;
if (status > ARRAY_SIZE(ms_to_errno)) {
if (status >= ARRAY_SIZE(ms_to_errno)) {
str = "unknown status code";
result = -EBADR;
} else {
......@@ -336,7 +343,7 @@ void i2400m_report_tlv_system_state(struct i2400m *i2400m,
/* Huh? just in case, shut it down */
dev_err(dev, "HW BUG? unknown state %u: shutting down\n",
i2400m_state);
i2400m->bus_reset(i2400m, I2400M_RT_WARM);
i2400m_reset(i2400m, I2400M_RT_WARM);
break;
};
d_fnend(3, dev, "(i2400m %p ss %p [%u]) = void\n",
......@@ -1335,6 +1342,8 @@ int i2400m_dev_initialize(struct i2400m *i2400m)
unsigned argc = 0;
d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
if (i2400m_passive_mode)
goto out_passive;
/* Disable idle mode? (enabled by default) */
if (i2400m_idle_mode_disabled) {
if (i2400m_le_v1_3(i2400m)) {
......@@ -1377,6 +1386,7 @@ int i2400m_dev_initialize(struct i2400m *i2400m)
result = i2400m_set_init_config(i2400m, args, argc);
if (result < 0)
goto error;
out_passive:
/*
* Update state: Here it just calls a get state; parsing the
* result (System State TLV and RF Status TLV [done in the rx
......
......@@ -214,7 +214,7 @@ int debugfs_i2400m_reset_set(void *data, u64 val)
case I2400M_RT_WARM:
case I2400M_RT_COLD:
case I2400M_RT_BUS:
result = i2400m->bus_reset(i2400m, rt);
result = i2400m_reset(i2400m, rt);
if (result >= 0)
result = 0;
default:
......
......@@ -41,8 +41,10 @@
* __i2400m_dev_start()
*
* i2400m_setup()
* i2400m->bus_setup()
* i2400m_bootrom_init()
* register_netdev()
* wimax_dev_add()
* i2400m_dev_start()
* __i2400m_dev_start()
* i2400m_dev_bootstrap()
......@@ -50,15 +52,15 @@
* i2400m->bus_dev_start()
* i2400m_firmware_check()
* i2400m_check_mac_addr()
* wimax_dev_add()
*
* i2400m_release()
* wimax_dev_rm()
* i2400m_dev_stop()
* __i2400m_dev_stop()
* i2400m_dev_shutdown()
* i2400m->bus_dev_stop()
* i2400m_tx_release()
* i2400m->bus_release()
* wimax_dev_rm()
* unregister_netdev()
*/
#include "i2400m.h"
......@@ -66,6 +68,7 @@
#include <linux/wimax/i2400m.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/suspend.h>
#define D_SUBMODULE driver
#include "debug-levels.h"
......@@ -90,76 +93,39 @@ MODULE_PARM_DESC(power_save_disabled,
"False by default (so the device is told to do power "
"saving).");
/**
* i2400m_queue_work - schedule work on a i2400m's queue
*
* @i2400m: device descriptor
*
* @fn: function to run to execute work. It gets passed a 'struct
* work_struct' that is wrapped in a 'struct i2400m_work'. Once
* done, you have to (1) i2400m_put(i2400m_work->i2400m) and then
* (2) kfree(i2400m_work).
*
* @gfp_flags: GFP flags for memory allocation.
*
* @pl: pointer to a payload buffer that you want to pass to the _work
* function. Use this to pack (for example) a struct with extra
* arguments.
*
* @pl_size: size of the payload buffer.
*
* We do this quite often, so this just saves typing; allocate a
* wrapper for a i2400m, get a ref to it, pack arguments and launch
* the work.
*
* A usual workflow is:
*
* struct my_work_args {
* void *something;
* int whatever;
* };
* ...
*
* struct my_work_args my_args = {
* .something = FOO,
* .whaetever = BLAH
* };
* i2400m_queue_work(i2400m, 1, my_work_function, GFP_KERNEL,
* &args, sizeof(args))
*
* And now the work function can unpack the arguments and call the
* real function (or do the job itself):
*
* static
* void my_work_fn((struct work_struct *ws)
* {
* struct i2400m_work *iw =
* container_of(ws, struct i2400m_work, ws);
* struct my_work_args *my_args = (void *) iw->pl;
*
* my_work(iw->i2400m, my_args->something, my_args->whatevert);
* }
*/
int i2400m_queue_work(struct i2400m *i2400m,
void (*fn)(struct work_struct *), gfp_t gfp_flags,
const void *pl, size_t pl_size)
static char i2400m_debug_params[128];
module_param_string(debug, i2400m_debug_params, sizeof(i2400m_debug_params),
0644);
MODULE_PARM_DESC(debug,
"String of space-separated NAME:VALUE pairs, where NAMEs "
"are the different debug submodules and VALUE are the "
"initial debug value to set.");
static char i2400m_barkers_params[128];
module_param_string(barkers, i2400m_barkers_params,
sizeof(i2400m_barkers_params), 0644);
MODULE_PARM_DESC(barkers,
"String of comma-separated 32-bit values; each is "
"recognized as the value the device sends as a reboot "
"signal; values are appended to a list--setting one value "
"as zero cleans the existing list and starts a new one.");
static
struct i2400m_work *__i2400m_work_setup(
struct i2400m *i2400m, void (*fn)(struct work_struct *),
gfp_t gfp_flags, const void *pl, size_t pl_size)
{
int result;
struct i2400m_work *iw;
BUG_ON(i2400m->work_queue == NULL);
result = -ENOMEM;
iw = kzalloc(sizeof(*iw) + pl_size, gfp_flags);
if (iw == NULL)
goto error_kzalloc;
return NULL;
iw->i2400m = i2400m_get(i2400m);
iw->pl_size = pl_size;
memcpy(iw->pl, pl, pl_size);
INIT_WORK(&iw->ws, fn);
result = queue_work(i2400m->work_queue, &iw->ws);
error_kzalloc:
return result;
return iw;
}
EXPORT_SYMBOL_GPL(i2400m_queue_work);
/*
......@@ -175,21 +141,19 @@ EXPORT_SYMBOL_GPL(i2400m_queue_work);
* it should not happen.
*/
int i2400m_schedule_work(struct i2400m *i2400m,
void (*fn)(struct work_struct *), gfp_t gfp_flags)
void (*fn)(struct work_struct *), gfp_t gfp_flags,
const void *pl, size_t pl_size)
{
int result;
struct i2400m_work *iw;
result = -ENOMEM;
iw = kzalloc(sizeof(*iw), gfp_flags);
if (iw == NULL)
goto error_kzalloc;
iw->i2400m = i2400m_get(i2400m);
INIT_WORK(&iw->ws, fn);
iw = __i2400m_work_setup(i2400m, fn, gfp_flags, pl, pl_size);
if (iw != NULL) {
result = schedule_work(&iw->ws);
if (result == 0)
if (WARN_ON(result == 0))
result = -ENXIO;
error_kzalloc:
}
return result;
}
......@@ -291,7 +255,7 @@ int i2400m_op_reset(struct wimax_dev *wimax_dev)
mutex_lock(&i2400m->init_mutex);
i2400m->reset_ctx = &ctx;
mutex_unlock(&i2400m->init_mutex);
result = i2400m->bus_reset(i2400m, I2400M_RT_WARM);
result = i2400m_reset(i2400m, I2400M_RT_WARM);
if (result < 0)
goto out;
result = wait_for_completion_timeout(&ctx.completion, 4*HZ);
......@@ -420,9 +384,15 @@ retry:
dev_err(dev, "cannot create workqueue\n");
goto error_create_workqueue;
}
if (i2400m->bus_dev_start) {
result = i2400m->bus_dev_start(i2400m);
if (result < 0)
goto error_bus_dev_start;
}
i2400m->ready = 1;
wmb(); /* see i2400m->ready's documentation */
/* process pending reports from the device */
queue_work(i2400m->work_queue, &i2400m->rx_report_ws);
result = i2400m_firmware_check(i2400m); /* fw versions ok? */
if (result < 0)
goto error_fw_check;
......@@ -430,8 +400,6 @@ retry:
result = i2400m_check_mac_addr(i2400m);
if (result < 0)
goto error_check_mac_addr;
i2400m->ready = 1;
wimax_state_change(wimax_dev, WIMAX_ST_UNINITIALIZED);
result = i2400m_dev_initialize(i2400m);
if (result < 0)
goto error_dev_initialize;
......@@ -443,7 +411,11 @@ retry:
error_dev_initialize:
error_check_mac_addr:
i2400m->ready = 0;
wmb(); /* see i2400m->ready's documentation */
flush_workqueue(i2400m->work_queue);
error_fw_check:
if (i2400m->bus_dev_stop)
i2400m->bus_dev_stop(i2400m);
error_bus_dev_start:
destroy_workqueue(i2400m->work_queue);
......@@ -466,11 +438,15 @@ error_bootstrap:
static
int i2400m_dev_start(struct i2400m *i2400m, enum i2400m_bri bm_flags)
{
int result;
int result = 0;
mutex_lock(&i2400m->init_mutex); /* Well, start the device */
if (i2400m->updown == 0) {
result = __i2400m_dev_start(i2400m, bm_flags);
if (result >= 0)
if (result >= 0) {
i2400m->updown = 1;
wmb(); /* see i2400m->updown's documentation */
}
}
mutex_unlock(&i2400m->init_mutex);
return result;
}
......@@ -495,8 +471,19 @@ void __i2400m_dev_stop(struct i2400m *i2400m)
d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
wimax_state_change(wimax_dev, __WIMAX_ST_QUIESCING);
i2400m_msg_to_dev_cancel_wait(i2400m, -EL3RST);
complete(&i2400m->msg_completion);
i2400m_net_wake_stop(i2400m);
i2400m_dev_shutdown(i2400m);
i2400m->ready = 0;
/*
* Make sure no report hooks are running *before* we stop the
* communication infrastructure with the device.
*/
i2400m->ready = 0; /* nobody can queue work anymore */
wmb(); /* see i2400m->ready's documentation */
flush_workqueue(i2400m->work_queue);
if (i2400m->bus_dev_stop)
i2400m->bus_dev_stop(i2400m);
destroy_workqueue(i2400m->work_queue);
i2400m_rx_release(i2400m);
......@@ -518,11 +505,138 @@ void i2400m_dev_stop(struct i2400m *i2400m)
if (i2400m->updown) {
__i2400m_dev_stop(i2400m);
i2400m->updown = 0;
wmb(); /* see i2400m->updown's documentation */
}
mutex_unlock(&i2400m->init_mutex);
}
/*
* Listen to PM events to cache the firmware before suspend/hibernation
*
* When the device comes out of suspend, it might go into reset and
* firmware has to be uploaded again. At resume, most of the times, we
* can't load firmware images from disk, so we need to cache it.
*
* i2400m_fw_cache() will allocate a kobject and attach the firmware
* to it; that way we don't have to worry too much about the fw loader
* hitting a race condition.
*
* Note: modus operandi stolen from the Orinoco driver; thx.
*/
static
int i2400m_pm_notifier(struct notifier_block *notifier,
unsigned long pm_event,
void *unused)
{
struct i2400m *i2400m =
container_of(notifier, struct i2400m, pm_notifier);
struct device *dev = i2400m_dev(i2400m);
d_fnstart(3, dev, "(i2400m %p pm_event %lx)\n", i2400m, pm_event);
switch (pm_event) {
case PM_HIBERNATION_PREPARE:
case PM_SUSPEND_PREPARE:
i2400m_fw_cache(i2400m);
break;
case PM_POST_RESTORE:
/* Restore from hibernation failed. We need to clean
* up in exactly the same way, so fall through. */
case PM_POST_HIBERNATION:
case PM_POST_SUSPEND:
i2400m_fw_uncache(i2400m);
break;
case PM_RESTORE_PREPARE:
default:
break;
}
d_fnend(3, dev, "(i2400m %p pm_event %lx) = void\n", i2400m, pm_event);
return NOTIFY_DONE;
}
/*
* pre-reset is called before a device is going on reset
*
* This has to be followed by a call to i2400m_post_reset(), otherwise
* bad things might happen.
*/
int i2400m_pre_reset(struct i2400m *i2400m)
{
int result;
struct device *dev = i2400m_dev(i2400m);
d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
d_printf(1, dev, "pre-reset shut down\n");
result = 0;
mutex_lock(&i2400m->init_mutex);
if (i2400m->updown) {
netif_tx_disable(i2400m->wimax_dev.net_dev);
__i2400m_dev_stop(i2400m);
result = 0;
/* down't set updown to zero -- this way
* post_reset can restore properly */
}
mutex_unlock(&i2400m->init_mutex);
if (i2400m->bus_release)
i2400m->bus_release(i2400m);
d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result);
return result;
}
EXPORT_SYMBOL_GPL(i2400m_pre_reset);
/*
* Restore device state after a reset
*
* Do the work needed after a device reset to bring it up to the same
* state as it was before the reset.
*
* NOTE: this requires i2400m->init_mutex taken
*/
int i2400m_post_reset(struct i2400m *i2400m)
{
int result = 0;
struct device *dev = i2400m_dev(i2400m);
d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
d_printf(1, dev, "post-reset start\n");
if (i2400m->bus_setup) {
result = i2400m->bus_setup(i2400m);
if (result < 0) {
dev_err(dev, "bus-specific setup failed: %d\n",
result);
goto error_bus_setup;
}
}
mutex_lock(&i2400m->init_mutex);
if (i2400m->updown) {
result = __i2400m_dev_start(
i2400m, I2400M_BRI_SOFT | I2400M_BRI_MAC_REINIT);
if (result < 0)
goto error_dev_start;
}
mutex_unlock(&i2400m->init_mutex);
d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result);
return result;
error_dev_start:
if (i2400m->bus_release)
i2400m->bus_release(i2400m);
error_bus_setup:
/* even if the device was up, it could not be recovered, so we
* mark it as down. */
i2400m->updown = 0;
wmb(); /* see i2400m->updown's documentation */
mutex_unlock(&i2400m->init_mutex);
d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result);
return result;
}
EXPORT_SYMBOL_GPL(i2400m_post_reset);
/*
* The device has rebooted; fix up the device and the driver
*
......@@ -542,56 +656,69 @@ void i2400m_dev_stop(struct i2400m *i2400m)
* _stop()], don't do anything, let it fail and handle it.
*
* This function is ran always in a thread context
*
* This function gets passed, as payload to i2400m_work() a 'const
* char *' ptr with a "reason" why the reset happened (for messages).
*/
static
void __i2400m_dev_reset_handle(struct work_struct *ws)
{
int result;
struct i2400m_work *iw = container_of(ws, struct i2400m_work, ws);
const char *reason;
struct i2400m *i2400m = iw->i2400m;
struct device *dev = i2400m_dev(i2400m);
enum wimax_st wimax_state;
struct i2400m_reset_ctx *ctx = i2400m->reset_ctx;
d_fnstart(3, dev, "(ws %p i2400m %p)\n", ws, i2400m);
if (WARN_ON(iw->pl_size != sizeof(reason)))
reason = "SW BUG: reason n/a";
else
memcpy(&reason, iw->pl, sizeof(reason));
d_fnstart(3, dev, "(ws %p i2400m %p reason %s)\n", ws, i2400m, reason);
result = 0;
if (mutex_trylock(&i2400m->init_mutex) == 0) {
/* We are still in i2400m_dev_start() [let it fail] or
* i2400m_dev_stop() [we are shutting down anyway, so
* ignore it] or we are resetting somewhere else. */
dev_err(dev, "device rebooted\n");
dev_err(dev, "device rebooted somewhere else?\n");
i2400m_msg_to_dev_cancel_wait(i2400m, -EL3RST);
complete(&i2400m->msg_completion);
goto out;
}
wimax_state = wimax_state_get(&i2400m->wimax_dev);
if (wimax_state < WIMAX_ST_UNINITIALIZED) {
dev_info(dev, "device rebooted: it is down, ignoring\n");
goto out_unlock; /* ifconfig up/down wasn't called */
if (i2400m->updown == 0) {
dev_info(dev, "%s: device is down, doing nothing\n", reason);
goto out_unlock;
}
dev_err(dev, "device rebooted: reinitializing driver\n");
dev_err(dev, "%s: reinitializing driver\n", reason);
__i2400m_dev_stop(i2400m);
i2400m->updown = 0;
result = __i2400m_dev_start(i2400m,
I2400M_BRI_SOFT | I2400M_BRI_MAC_REINIT);
if (result < 0) {
dev_err(dev, "device reboot: cannot start the device: %d\n",
result);
result = i2400m->bus_reset(i2400m, I2400M_RT_BUS);
if (result >= 0)
result = -ENODEV;
} else
i2400m->updown = 1;
i2400m->updown = 0;
wmb(); /* see i2400m->updown's documentation */
dev_err(dev, "%s: cannot start the device: %d\n",
reason, result);
result = -EUCLEAN;
}
out_unlock:
if (i2400m->reset_ctx) {
ctx->result = result;
complete(&ctx->completion);
}
mutex_unlock(&i2400m->init_mutex);
if (result == -EUCLEAN) {
/* ops, need to clean up [w/ init_mutex not held] */
result = i2400m_reset(i2400m, I2400M_RT_BUS);
if (result >= 0)
result = -ENODEV;
}
out:
i2400m_put(i2400m);
kfree(iw);
d_fnend(3, dev, "(ws %p i2400m %p) = void\n", ws, i2400m);
d_fnend(3, dev, "(ws %p i2400m %p reason %s) = void\n",
ws, i2400m, reason);
return;
}
......@@ -608,16 +735,104 @@ out:
* reinitializing the driver to handle the reset, calling into the
* bus-specific functions ops as needed.
*/
int i2400m_dev_reset_handle(struct i2400m *i2400m)
int i2400m_dev_reset_handle(struct i2400m *i2400m, const char *reason)
{
i2400m->boot_mode = 1;
wmb(); /* Make sure i2400m_msg_to_dev() sees boot_mode */
return i2400m_schedule_work(i2400m, __i2400m_dev_reset_handle,
GFP_ATOMIC);
GFP_ATOMIC, &reason, sizeof(reason));
}
EXPORT_SYMBOL_GPL(i2400m_dev_reset_handle);
/*
* Alloc the command and ack buffers for boot mode
*
* Get the buffers needed to deal with boot mode messages. These
* buffers need to be allocated before the sdio recieve irq is setup.
*/
static
int i2400m_bm_buf_alloc(struct i2400m *i2400m)
{
int result;
result = -ENOMEM;
i2400m->bm_cmd_buf = kzalloc(I2400M_BM_CMD_BUF_SIZE, GFP_KERNEL);
if (i2400m->bm_cmd_buf == NULL)
goto error_bm_cmd_kzalloc;
i2400m->bm_ack_buf = kzalloc(I2400M_BM_ACK_BUF_SIZE, GFP_KERNEL);
if (i2400m->bm_ack_buf == NULL)
goto error_bm_ack_buf_kzalloc;
return 0;
error_bm_ack_buf_kzalloc:
kfree(i2400m->bm_cmd_buf);
error_bm_cmd_kzalloc:
return result;
}
/*
* Free boot mode command and ack buffers.
*/
static
void i2400m_bm_buf_free(struct i2400m *i2400m)
{
kfree(i2400m->bm_ack_buf);
kfree(i2400m->bm_cmd_buf);
}
/**
* i2400m_init - Initialize a 'struct i2400m' from all zeroes
*
* This is a bus-generic API call.
*/
void i2400m_init(struct i2400m *i2400m)
{
wimax_dev_init(&i2400m->wimax_dev);
i2400m->boot_mode = 1;
i2400m->rx_reorder = 1;
init_waitqueue_head(&i2400m->state_wq);
spin_lock_init(&i2400m->tx_lock);
i2400m->tx_pl_min = UINT_MAX;
i2400m->tx_size_min = UINT_MAX;
spin_lock_init(&i2400m->rx_lock);
i2400m->rx_pl_min = UINT_MAX;
i2400m->rx_size_min = UINT_MAX;
INIT_LIST_HEAD(&i2400m->rx_reports);
INIT_WORK(&i2400m->rx_report_ws, i2400m_report_hook_work);
mutex_init(&i2400m->msg_mutex);
init_completion(&i2400m->msg_completion);
mutex_init(&i2400m->init_mutex);
/* wake_tx_ws is initialized in i2400m_tx_setup() */
}
EXPORT_SYMBOL_GPL(i2400m_init);
int i2400m_reset(struct i2400m *i2400m, enum i2400m_reset_type rt)
{
struct net_device *net_dev = i2400m->wimax_dev.net_dev;
/*
* Make sure we stop TXs and down the carrier before
* resetting; this is needed to avoid things like
* i2400m_wake_tx() scheduling stuff in parallel.
*/
if (net_dev->reg_state == NETREG_REGISTERED) {
netif_tx_disable(net_dev);
netif_carrier_off(net_dev);
}
return i2400m->bus_reset(i2400m, rt);
}
EXPORT_SYMBOL_GPL(i2400m_reset);
/**
* i2400m_setup - bus-generic setup function for the i2400m device
*
......@@ -625,13 +840,9 @@ EXPORT_SYMBOL_GPL(i2400m_dev_reset_handle);
*
* Returns: 0 if ok, < 0 errno code on error.
*
* Initializes the bus-generic parts of the i2400m driver; the
* bus-specific parts have been initialized, function pointers filled
* out by the bus-specific probe function.
*
* As well, this registers the WiMAX and net device nodes. Once this
* function returns, the device is operative and has to be ready to
* receive and send network traffic and WiMAX control operations.
* Sets up basic device comunication infrastructure, boots the ROM to
* read the MAC address, registers with the WiMAX and network stacks
* and then brings up the device.
*/
int i2400m_setup(struct i2400m *i2400m, enum i2400m_bri bm_flags)
{
......@@ -645,16 +856,21 @@ int i2400m_setup(struct i2400m *i2400m, enum i2400m_bri bm_flags)
snprintf(wimax_dev->name, sizeof(wimax_dev->name),
"i2400m-%s:%s", dev->bus->name, dev_name(dev));
i2400m->bm_cmd_buf = kzalloc(I2400M_BM_CMD_BUF_SIZE, GFP_KERNEL);
if (i2400m->bm_cmd_buf == NULL) {
dev_err(dev, "cannot allocate USB command buffer\n");
goto error_bm_cmd_kzalloc;
result = i2400m_bm_buf_alloc(i2400m);
if (result < 0) {
dev_err(dev, "cannot allocate bootmode scratch buffers\n");
goto error_bm_buf_alloc;
}
if (i2400m->bus_setup) {
result = i2400m->bus_setup(i2400m);
if (result < 0) {
dev_err(dev, "bus-specific setup failed: %d\n",
result);
goto error_bus_setup;
}
i2400m->bm_ack_buf = kzalloc(I2400M_BM_ACK_BUF_SIZE, GFP_KERNEL);
if (i2400m->bm_ack_buf == NULL) {
dev_err(dev, "cannot allocate USB ack buffer\n");
goto error_bm_ack_buf_kzalloc;
}
result = i2400m_bootrom_init(i2400m, bm_flags);
if (result < 0) {
dev_err(dev, "read mac addr: bootrom init "
......@@ -666,6 +882,9 @@ int i2400m_setup(struct i2400m *i2400m, enum i2400m_bri bm_flags)
goto error_read_mac_addr;
random_ether_addr(i2400m->src_mac_addr);
i2400m->pm_notifier.notifier_call = i2400m_pm_notifier;
register_pm_notifier(&i2400m->pm_notifier);
result = register_netdev(net_dev); /* Okey dokey, bring it up */
if (result < 0) {
dev_err(dev, "cannot register i2400m network device: %d\n",
......@@ -674,18 +893,13 @@ int i2400m_setup(struct i2400m *i2400m, enum i2400m_bri bm_flags)
}
netif_carrier_off(net_dev);
result = i2400m_dev_start(i2400m, bm_flags);
if (result < 0)
goto error_dev_start;
i2400m->wimax_dev.op_msg_from_user = i2400m_op_msg_from_user;
i2400m->wimax_dev.op_rfkill_sw_toggle = i2400m_op_rfkill_sw_toggle;
i2400m->wimax_dev.op_reset = i2400m_op_reset;
result = wimax_dev_add(&i2400m->wimax_dev, net_dev);
if (result < 0)
goto error_wimax_dev_add;
/* User space needs to do some init stuff */
wimax_state_change(wimax_dev, WIMAX_ST_UNINITIALIZED);
/* Now setup all that requires a registered net and wimax device. */
result = sysfs_create_group(&net_dev->dev.kobj, &i2400m_dev_attr_group);
......@@ -693,30 +907,37 @@ int i2400m_setup(struct i2400m *i2400m, enum i2400m_bri bm_flags)
dev_err(dev, "cannot setup i2400m's sysfs: %d\n", result);
goto error_sysfs_setup;
}
result = i2400m_debugfs_add(i2400m);
if (result < 0) {
dev_err(dev, "cannot setup i2400m's debugfs: %d\n", result);
goto error_debugfs_setup;
}
result = i2400m_dev_start(i2400m, bm_flags);
if (result < 0)
goto error_dev_start;
d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result);
return result;
error_dev_start:
i2400m_debugfs_rm(i2400m);
error_debugfs_setup:
sysfs_remove_group(&i2400m->wimax_dev.net_dev->dev.kobj,
&i2400m_dev_attr_group);
error_sysfs_setup:
wimax_dev_rm(&i2400m->wimax_dev);
error_wimax_dev_add:
i2400m_dev_stop(i2400m);
error_dev_start:
unregister_netdev(net_dev);
error_register_netdev:
unregister_pm_notifier(&i2400m->pm_notifier);
error_read_mac_addr:
error_bootrom_init:
kfree(i2400m->bm_ack_buf);
error_bm_ack_buf_kzalloc:
kfree(i2400m->bm_cmd_buf);
error_bm_cmd_kzalloc:
if (i2400m->bus_release)
i2400m->bus_release(i2400m);
error_bus_setup:
i2400m_bm_buf_free(i2400m);
error_bm_buf_alloc:
d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result);
return result;
}
......@@ -735,14 +956,17 @@ void i2400m_release(struct i2400m *i2400m)
d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
netif_stop_queue(i2400m->wimax_dev.net_dev);
i2400m_dev_stop(i2400m);
i2400m_debugfs_rm(i2400m);
sysfs_remove_group(&i2400m->wimax_dev.net_dev->dev.kobj,
&i2400m_dev_attr_group);
wimax_dev_rm(&i2400m->wimax_dev);
i2400m_dev_stop(i2400m);
unregister_netdev(i2400m->wimax_dev.net_dev);
kfree(i2400m->bm_ack_buf);
kfree(i2400m->bm_cmd_buf);
unregister_pm_notifier(&i2400m->pm_notifier);
if (i2400m->bus_release)
i2400m->bus_release(i2400m);
i2400m_bm_buf_free(i2400m);
d_fnend(3, dev, "(i2400m %p) = void\n", i2400m);
}
EXPORT_SYMBOL_GPL(i2400m_release);
......@@ -759,6 +983,7 @@ struct d_level D_LEVEL[] = {
D_SUBMODULE_DEFINE(netdev),
D_SUBMODULE_DEFINE(rfkill),
D_SUBMODULE_DEFINE(rx),
D_SUBMODULE_DEFINE(sysfs),
D_SUBMODULE_DEFINE(tx),
};
size_t D_LEVEL_SIZE = ARRAY_SIZE(D_LEVEL);
......@@ -767,7 +992,9 @@ size_t D_LEVEL_SIZE = ARRAY_SIZE(D_LEVEL);
static
int __init i2400m_driver_init(void)
{
return 0;
d_parse_params(D_LEVEL, D_LEVEL_SIZE, i2400m_debug_params,
"i2400m.debug");
return i2400m_barker_db_init(i2400m_barkers_params);
}
module_init(i2400m_driver_init);
......@@ -776,6 +1003,7 @@ void __exit i2400m_driver_exit(void)
{
/* for scheds i2400m_dev_reset_handle() */
flush_scheduled_work();
i2400m_barker_db_exit();
return;
}
module_exit(i2400m_driver_exit);
......
......@@ -40,11 +40,9 @@
*
* THE PROCEDURE
*
* (this is decribed for USB, but for SDIO is similar)
*
* The 2400m works in two modes: boot-mode or normal mode. In boot
* mode we can execute only a handful of commands targeted at
* uploading the firmware and launching it.
* The 2400m and derived devices work in two modes: boot-mode or
* normal mode. In boot mode we can execute only a handful of commands
* targeted at uploading the firmware and launching it.
*
* The 2400m enters boot mode when it is first connected to the
* system, when it crashes and when you ask it to reboot. There are
......@@ -52,18 +50,26 @@
* firmwares signed with a certain private key, non-signed takes any
* firmware. Normal hardware takes only signed firmware.
*
* Upon entrance to boot mode, the device sends a few zero length
* packets (ZLPs) on the notification endpoint, then a reboot barker
* (4 le32 words with value I2400M_{S,N}BOOT_BARKER). We ack it by
* sending the same barker on the bulk out endpoint. The device acks
* with a reboot ack barker (4 le32 words with value 0xfeedbabe) and
* then the device is fully rebooted. At this point we can upload the
* firmware.
* On boot mode, in USB, we write to the device using the bulk out
* endpoint and read from it in the notification endpoint. In SDIO we
* talk to it via the write address and read from the read address.
*
* Upon entrance to boot mode, the device sends (preceeded with a few
* zero length packets (ZLPs) on the notification endpoint in USB) a
* reboot barker (4 le32 words with the same value). We ack it by
* sending the same barker to the device. The device acks with a
* reboot ack barker (4 le32 words with value I2400M_ACK_BARKER) and
* then is fully booted. At this point we can upload the firmware.
*
* Note that different iterations of the device and EEPROM
* configurations will send different [re]boot barkers; these are
* collected in i2400m_barker_db along with the firmware
* characteristics they require.
*
* This process is accomplished by the i2400m_bootrom_init()
* function. All the device interaction happens through the
* i2400m_bm_cmd() [boot mode command]. Special return values will
* indicate if the device resets.
* indicate if the device did reset during the process.
*
* After this, we read the MAC address and then (if needed)
* reinitialize the device. We need to read it ahead of time because
......@@ -72,11 +78,11 @@
*
* We can then upload the firmware file. The file is composed of a BCF
* header (basic data, keys and signatures) and a list of write
* commands and payloads. We first upload the header
* [i2400m_dnload_init()] and then pass the commands and payloads
* verbatim to the i2400m_bm_cmd() function
* [i2400m_dnload_bcf()]. Then we tell the device to jump to the new
* firmware [i2400m_dnload_finalize()].
* commands and payloads. Optionally more BCF headers might follow the
* main payload. We first upload the header [i2400m_dnload_init()] and
* then pass the commands and payloads verbatim to the i2400m_bm_cmd()
* function [i2400m_dnload_bcf()]. Then we tell the device to jump to
* the new firmware [i2400m_dnload_finalize()].
*
* Once firmware is uploaded, we are good to go :)
*
......@@ -99,18 +105,32 @@
* read an acknolwedgement from it (or an asynchronous notification)
* from it.
*
* FIRMWARE LOADING
*
* Note that in some cases, we can't just load a firmware file (for
* example, when resuming). For that, we might cache the firmware
* file. Thus, when doing the bootstrap, if there is a cache firmware
* file, it is used; if not, loading from disk is attempted.
*
* ROADMAP
*
* i2400m_barker_db_init Called by i2400m_driver_init()
* i2400m_barker_db_add
*
* i2400m_barker_db_exit Called by i2400m_driver_exit()
*
* i2400m_dev_bootstrap Called by __i2400m_dev_start()
* request_firmware
* i2400m_fw_bootstrap
* i2400m_fw_check
* i2400m_fw_hdr_check
* i2400m_fw_dnload
* release_firmware
*
* i2400m_fw_dnload
* i2400m_bootrom_init
* i2400m_bm_cmd
* i2400m->bus_reset
* i2400m_reset
* i2400m_dnload_init
* i2400m_dnload_init_signed
* i2400m_dnload_init_nonsigned
......@@ -125,9 +145,14 @@
* i2400m->bus_bm_cmd_send()
* i2400m->bus_bm_wait_for_ack
* __i2400m_bm_ack_verify
* i2400m_is_boot_barker
*
* i2400m_bm_cmd_prepare Used by bus-drivers to prep
* commands before sending
*
* i2400m_pm_notifier Called on Power Management events
* i2400m_fw_cache
* i2400m_fw_uncache
*/
#include <linux/firmware.h>
#include <linux/sched.h>
......@@ -174,6 +199,240 @@ void i2400m_bm_cmd_prepare(struct i2400m_bootrom_header *cmd)
EXPORT_SYMBOL_GPL(i2400m_bm_cmd_prepare);
/*
* Database of known barkers.
*
* A barker is what the device sends indicating he is ready to be
* bootloaded. Different versions of the device will send different
* barkers. Depending on the barker, it might mean the device wants
* some kind of firmware or the other.
*/
static struct i2400m_barker_db {
__le32 data[4];
} *i2400m_barker_db;
static size_t i2400m_barker_db_used, i2400m_barker_db_size;
static
int i2400m_zrealloc_2x(void **ptr, size_t *_count, size_t el_size,
gfp_t gfp_flags)
{
size_t old_count = *_count,
new_count = old_count ? 2 * old_count : 2,
old_size = el_size * old_count,
new_size = el_size * new_count;
void *nptr = krealloc(*ptr, new_size, gfp_flags);
if (nptr) {
/* zero the other half or the whole thing if old_count
* was zero */
if (old_size == 0)
memset(nptr, 0, new_size);
else
memset(nptr + old_size, 0, old_size);
*_count = new_count;
*ptr = nptr;
return 0;
} else
return -ENOMEM;
}
/*
* Add a barker to the database
*
* This cannot used outside of this module and only at at module_init
* time. This is to avoid the need to do locking.
*/
static
int i2400m_barker_db_add(u32 barker_id)
{
int result;
struct i2400m_barker_db *barker;
if (i2400m_barker_db_used >= i2400m_barker_db_size) {
result = i2400m_zrealloc_2x(
(void **) &i2400m_barker_db, &i2400m_barker_db_size,
sizeof(i2400m_barker_db[0]), GFP_KERNEL);
if (result < 0)
return result;
}
barker = i2400m_barker_db + i2400m_barker_db_used++;
barker->data[0] = le32_to_cpu(barker_id);
barker->data[1] = le32_to_cpu(barker_id);
barker->data[2] = le32_to_cpu(barker_id);
barker->data[3] = le32_to_cpu(barker_id);
return 0;
}
void i2400m_barker_db_exit(void)
{
kfree(i2400m_barker_db);
i2400m_barker_db = NULL;
i2400m_barker_db_size = 0;
i2400m_barker_db_used = 0;
}
/*
* Helper function to add all the known stable barkers to the barker
* database.
*/
static
int i2400m_barker_db_known_barkers(void)
{
int result;
result = i2400m_barker_db_add(I2400M_NBOOT_BARKER);
if (result < 0)
goto error_add;
result = i2400m_barker_db_add(I2400M_SBOOT_BARKER);
if (result < 0)
goto error_add;
result = i2400m_barker_db_add(I2400M_SBOOT_BARKER_6050);
if (result < 0)
goto error_add;
error_add:
return result;
}
/*
* Initialize the barker database
*
* This can only be used from the module_init function for this
* module; this is to avoid the need to do locking.
*
* @options: command line argument with extra barkers to
* recognize. This is a comma-separated list of 32-bit hex
* numbers. They are appended to the existing list. Setting 0
* cleans the existing list and starts a new one.
*/
int i2400m_barker_db_init(const char *_options)
{
int result;
char *options = NULL, *options_orig, *token;
i2400m_barker_db = NULL;
i2400m_barker_db_size = 0;
i2400m_barker_db_used = 0;
result = i2400m_barker_db_known_barkers();
if (result < 0)
goto error_add;
/* parse command line options from i2400m.barkers */
if (_options != NULL) {
unsigned barker;
options_orig = kstrdup(_options, GFP_KERNEL);
if (options_orig == NULL)
goto error_parse;
options = options_orig;
while ((token = strsep(&options, ",")) != NULL) {
if (*token == '\0') /* eat joint commas */
continue;
if (sscanf(token, "%x", &barker) != 1
|| barker > 0xffffffff) {
printk(KERN_ERR "%s: can't recognize "
"i2400m.barkers value '%s' as "
"a 32-bit number\n",
__func__, token);
result = -EINVAL;
goto error_parse;
}
if (barker == 0) {
/* clean list and start new */
i2400m_barker_db_exit();
continue;
}
result = i2400m_barker_db_add(barker);
if (result < 0)
goto error_add;
}
kfree(options_orig);
}
return 0;
error_parse:
error_add:
kfree(i2400m_barker_db);
return result;
}
/*
* Recognize a boot barker
*
* @buf: buffer where the boot barker.
* @buf_size: size of the buffer (has to be 16 bytes). It is passed
* here so the function can check it for the caller.
*
* Note that as a side effect, upon identifying the obtained boot
* barker, this function will set i2400m->barker to point to the right
* barker database entry. Subsequent calls to the function will result
* in verifying that the same type of boot barker is returned when the
* device [re]boots (as long as the same device instance is used).
*
* Return: 0 if @buf matches a known boot barker. -ENOENT if the
* buffer in @buf doesn't match any boot barker in the database or
* -EILSEQ if the buffer doesn't have the right size.
*/
int i2400m_is_boot_barker(struct i2400m *i2400m,
const void *buf, size_t buf_size)
{
int result;
struct device *dev = i2400m_dev(i2400m);
struct i2400m_barker_db *barker;
int i;
result = -ENOENT;
if (buf_size != sizeof(i2400m_barker_db[i].data))
return result;
/* Short circuit if we have already discovered the barker
* associated with the device. */
if (i2400m->barker
&& !memcmp(buf, i2400m->barker, sizeof(i2400m->barker->data))) {
unsigned index = (i2400m->barker - i2400m_barker_db)
/ sizeof(*i2400m->barker);
d_printf(2, dev, "boot barker cache-confirmed #%u/%08x\n",
index, le32_to_cpu(i2400m->barker->data[0]));
return 0;
}
for (i = 0; i < i2400m_barker_db_used; i++) {
barker = &i2400m_barker_db[i];
BUILD_BUG_ON(sizeof(barker->data) != 16);
if (memcmp(buf, barker->data, sizeof(barker->data)))
continue;
if (i2400m->barker == NULL) {
i2400m->barker = barker;
d_printf(1, dev, "boot barker set to #%u/%08x\n",
i, le32_to_cpu(barker->data[0]));
if (barker->data[0] == le32_to_cpu(I2400M_NBOOT_BARKER))
i2400m->sboot = 0;
else
i2400m->sboot = 1;
} else if (i2400m->barker != barker) {
dev_err(dev, "HW inconsistency: device "
"reports a different boot barker "
"than set (from %08x to %08x)\n",
le32_to_cpu(i2400m->barker->data[0]),
le32_to_cpu(barker->data[0]));
result = -EIO;
} else
d_printf(2, dev, "boot barker confirmed #%u/%08x\n",
i, le32_to_cpu(barker->data[0]));
result = 0;
break;
}
return result;
}
EXPORT_SYMBOL_GPL(i2400m_is_boot_barker);
/*
* Verify the ack data received
*
......@@ -204,20 +463,10 @@ ssize_t __i2400m_bm_ack_verify(struct i2400m *i2400m, int opcode,
opcode, ack_size, sizeof(*ack));
goto error_ack_short;
}
if (ack_size == sizeof(i2400m_NBOOT_BARKER)
&& memcmp(ack, i2400m_NBOOT_BARKER, sizeof(*ack)) == 0) {
result = i2400m_is_boot_barker(i2400m, ack, ack_size);
if (result >= 0) {
result = -ERESTARTSYS;
i2400m->sboot = 0;
d_printf(6, dev, "boot-mode cmd %d: "
"HW non-signed boot barker\n", opcode);
goto error_reboot;
}
if (ack_size == sizeof(i2400m_SBOOT_BARKER)
&& memcmp(ack, i2400m_SBOOT_BARKER, sizeof(*ack)) == 0) {
result = -ERESTARTSYS;
i2400m->sboot = 1;
d_printf(6, dev, "boot-mode cmd %d: HW signed reboot barker\n",
opcode);
d_printf(6, dev, "boot-mode cmd %d: HW boot barker\n", opcode);
goto error_reboot;
}
if (ack_size == sizeof(i2400m_ACK_BARKER)
......@@ -343,7 +592,6 @@ ssize_t i2400m_bm_cmd(struct i2400m *i2400m,
BUG_ON(i2400m->boot_mode == 0);
if (cmd != NULL) { /* send the command */
memcpy(i2400m->bm_cmd_buf, cmd, cmd_size);
result = i2400m->bus_bm_cmd_send(i2400m, cmd, cmd_size, flags);
if (result < 0)
goto error_cmd_send;
......@@ -432,8 +680,8 @@ static int i2400m_download_chunk(struct i2400m *i2400m, const void *chunk,
* Download a BCF file's sections to the device
*
* @i2400m: device descriptor
* @bcf: pointer to firmware data (followed by the payloads). Assumed
* verified and consistent.
* @bcf: pointer to firmware data (first header followed by the
* payloads). Assumed verified and consistent.
* @bcf_len: length (in bytes) of the @bcf buffer.
*
* Returns: < 0 errno code on error or the offset to the jump instruction.
......@@ -472,14 +720,17 @@ ssize_t i2400m_dnload_bcf(struct i2400m *i2400m,
"downloading section #%zu (@%zu %zu B) to 0x%08x\n",
section, offset, sizeof(*bh) + data_size,
le32_to_cpu(bh->target_addr));
if (i2400m_brh_get_opcode(bh) == I2400M_BRH_SIGNED_JUMP) {
/* Secure boot needs to stop here */
d_printf(5, dev, "signed jump found @%zu\n", offset);
/*
* We look for JUMP cmd from the bootmode header,
* either I2400M_BRH_SIGNED_JUMP for secure boot
* or I2400M_BRH_JUMP for unsecure boot, the last chunk
* should be the bootmode header with JUMP cmd.
*/
if (i2400m_brh_get_opcode(bh) == I2400M_BRH_SIGNED_JUMP ||
i2400m_brh_get_opcode(bh) == I2400M_BRH_JUMP) {
d_printf(5, dev, "jump found @%zu\n", offset);
break;
}
if (offset + section_size == bcf_len)
/* Non-secure boot stops here */
break;
if (offset + section_size > bcf_len) {
dev_err(dev, "fw %s: bad section #%zu, "
"end (@%zu) beyond EOF (@%zu)\n",
......@@ -509,14 +760,31 @@ error_send:
}
/*
* Indicate if the device emitted a reboot barker that indicates
* "signed boot"
*/
static
unsigned i2400m_boot_is_signed(struct i2400m *i2400m)
{
return likely(i2400m->sboot);
}
/*
* Do the final steps of uploading firmware
*
* @bcf_hdr: BCF header we are actually using
* @bcf: pointer to the firmware image (which matches the first header
* that is followed by the actual payloads).
* @offset: [byte] offset into @bcf for the command we need to send.
*
* Depending on the boot mode (signed vs non-signed), different
* actions need to be taken.
*/
static
int i2400m_dnload_finalize(struct i2400m *i2400m,
const struct i2400m_bcf_hdr *bcf_hdr,
const struct i2400m_bcf_hdr *bcf, size_t offset)
{
int ret = 0;
......@@ -530,10 +798,14 @@ int i2400m_dnload_finalize(struct i2400m *i2400m,
d_fnstart(3, dev, "offset %zu\n", offset);
cmd = (void *) bcf + offset;
if (i2400m->sboot == 0) {
if (i2400m_boot_is_signed(i2400m) == 0) {
struct i2400m_bootrom_header jump_ack;
d_printf(1, dev, "unsecure boot, jumping to 0x%08x\n",
le32_to_cpu(cmd->target_addr));
cmd_buf = i2400m->bm_cmd_buf;
memcpy(&cmd_buf->cmd, cmd, sizeof(*cmd));
cmd = &cmd_buf->cmd;
/* now cmd points to the actual bootrom_header in cmd_buf */
i2400m_brh_set_opcode(cmd, I2400M_BRH_JUMP);
cmd->data_size = 0;
ret = i2400m_bm_cmd(i2400m, cmd, sizeof(*cmd),
......@@ -544,12 +816,13 @@ int i2400m_dnload_finalize(struct i2400m *i2400m,
cmd_buf = i2400m->bm_cmd_buf;
memcpy(&cmd_buf->cmd, cmd, sizeof(*cmd));
signature_block_offset =
sizeof(*bcf)
+ le32_to_cpu(bcf->key_size) * sizeof(u32)
+ le32_to_cpu(bcf->exponent_size) * sizeof(u32);
sizeof(*bcf_hdr)
+ le32_to_cpu(bcf_hdr->key_size) * sizeof(u32)
+ le32_to_cpu(bcf_hdr->exponent_size) * sizeof(u32);
signature_block_size =
le32_to_cpu(bcf->modulus_size) * sizeof(u32);
memcpy(cmd_buf->cmd_pl, (void *) bcf + signature_block_offset,
le32_to_cpu(bcf_hdr->modulus_size) * sizeof(u32);
memcpy(cmd_buf->cmd_pl,
(void *) bcf_hdr + signature_block_offset,
signature_block_size);
ret = i2400m_bm_cmd(i2400m, &cmd_buf->cmd,
sizeof(cmd_buf->cmd) + signature_block_size,
......@@ -565,7 +838,7 @@ int i2400m_dnload_finalize(struct i2400m *i2400m,
*
* @i2400m: device descriptor
* @flags:
* I2400M_BRI_SOFT: a reboot notification has been seen
* I2400M_BRI_SOFT: a reboot barker has been seen
* already, so don't wait for it.
*
* I2400M_BRI_NO_REBOOT: Don't send a reboot command, but wait
......@@ -576,17 +849,15 @@ int i2400m_dnload_finalize(struct i2400m *i2400m,
*
* < 0 errno code on error, 0 if ok.
*
* i2400m->sboot set to 0 for unsecure boot process, 1 for secure
* boot process.
*
* Description:
*
* Tries hard enough to put the device in boot-mode. There are two
* main phases to this:
*
* a. (1) send a reboot command and (2) get a reboot barker
* b. (1) ack the reboot sending a reboot barker and (2) getting an
* ack barker in return
*
* b. (1) echo/ack the reboot sending the reboot barker back and (2)
* getting an ack barker in return
*
* We want to skip (a) in some cases [soft]. The state machine is
* horrible, but it is basically: on each phase, send what has to be
......@@ -594,6 +865,16 @@ int i2400m_dnload_finalize(struct i2400m *i2400m,
* have to backtrack and retry, so we keep a max tries counter for
* that.
*
* It sucks because we don't know ahead of time which is going to be
* the reboot barker (the device might send different ones depending
* on its EEPROM config) and once the device reboots and waits for the
* echo/ack reboot barker being sent back, it doesn't understand
* anything else. So we can be left at the point where we don't know
* what to send to it -- cold reset and bus reset seem to have little
* effect. So the function iterates (in this case) through all the
* known barkers and tries them all until an ACK is
* received. Otherwise, it gives up.
*
* If we get a timeout after sending a warm reset, we do it again.
*/
int i2400m_bootrom_init(struct i2400m *i2400m, enum i2400m_bri flags)
......@@ -602,10 +883,11 @@ int i2400m_bootrom_init(struct i2400m *i2400m, enum i2400m_bri flags)
struct device *dev = i2400m_dev(i2400m);
struct i2400m_bootrom_header *cmd;
struct i2400m_bootrom_header ack;
int count = I2400M_BOOT_RETRIES;
int count = i2400m->bus_bm_retries;
int ack_timeout_cnt = 1;
unsigned i;
BUILD_BUG_ON(sizeof(*cmd) != sizeof(i2400m_NBOOT_BARKER));
BUILD_BUG_ON(sizeof(*cmd) != sizeof(i2400m_barker_db[0].data));
BUILD_BUG_ON(sizeof(ack) != sizeof(i2400m_ACK_BARKER));
d_fnstart(4, dev, "(i2400m %p flags 0x%08x)\n", i2400m, flags);
......@@ -614,27 +896,59 @@ int i2400m_bootrom_init(struct i2400m *i2400m, enum i2400m_bri flags)
if (flags & I2400M_BRI_SOFT)
goto do_reboot_ack;
do_reboot:
ack_timeout_cnt = 1;
if (--count < 0)
goto error_timeout;
d_printf(4, dev, "device reboot: reboot command [%d # left]\n",
count);
if ((flags & I2400M_BRI_NO_REBOOT) == 0)
i2400m->bus_reset(i2400m, I2400M_RT_WARM);
i2400m_reset(i2400m, I2400M_RT_WARM);
result = i2400m_bm_cmd(i2400m, NULL, 0, &ack, sizeof(ack),
I2400M_BM_CMD_RAW);
flags &= ~I2400M_BRI_NO_REBOOT;
switch (result) {
case -ERESTARTSYS:
/*
* at this point, i2400m_bm_cmd(), through
* __i2400m_bm_ack_process(), has updated
* i2400m->barker and we are good to go.
*/
d_printf(4, dev, "device reboot: got reboot barker\n");
break;
case -EISCONN: /* we don't know how it got here...but we follow it */
d_printf(4, dev, "device reboot: got ack barker - whatever\n");
goto do_reboot;
case -ETIMEDOUT: /* device has timed out, we might be in boot
* mode already and expecting an ack, let's try
* that */
dev_info(dev, "warm reset timed out, trying an ack\n");
case -ETIMEDOUT:
/*
* Device has timed out, we might be in boot mode
* already and expecting an ack; if we don't know what
* the barker is, we just send them all. Cold reset
* and bus reset don't work. Beats me.
*/
if (i2400m->barker != NULL) {
dev_err(dev, "device boot: reboot barker timed out, "
"trying (set) %08x echo/ack\n",
le32_to_cpu(i2400m->barker->data[0]));
goto do_reboot_ack;
}
for (i = 0; i < i2400m_barker_db_used; i++) {
struct i2400m_barker_db *barker = &i2400m_barker_db[i];
memcpy(cmd, barker->data, sizeof(barker->data));
result = i2400m_bm_cmd(i2400m, cmd, sizeof(*cmd),
&ack, sizeof(ack),
I2400M_BM_CMD_RAW);
if (result == -EISCONN) {
dev_warn(dev, "device boot: got ack barker "
"after sending echo/ack barker "
"#%d/%08x; rebooting j.i.c.\n",
i, le32_to_cpu(barker->data[0]));
flags &= ~I2400M_BRI_NO_REBOOT;
goto do_reboot;
}
}
dev_err(dev, "device boot: tried all the echo/acks, could "
"not get device to respond; giving up");
result = -ESHUTDOWN;
case -EPROTO:
case -ESHUTDOWN: /* dev is gone */
case -EINTR: /* user cancelled */
......@@ -642,6 +956,7 @@ do_reboot:
default:
dev_err(dev, "device reboot: error %d while waiting "
"for reboot barker - rebooting\n", result);
d_dump(1, dev, &ack, result);
goto do_reboot;
}
/* At this point we ack back with 4 REBOOT barkers and expect
......@@ -650,12 +965,7 @@ do_reboot:
* notification and report it as -EISCONN. */
do_reboot_ack:
d_printf(4, dev, "device reboot ack: sending ack [%d # left]\n", count);
if (i2400m->sboot == 0)
memcpy(cmd, i2400m_NBOOT_BARKER,
sizeof(i2400m_NBOOT_BARKER));
else
memcpy(cmd, i2400m_SBOOT_BARKER,
sizeof(i2400m_SBOOT_BARKER));
memcpy(cmd, i2400m->barker->data, sizeof(i2400m->barker->data));
result = i2400m_bm_cmd(i2400m, cmd, sizeof(*cmd),
&ack, sizeof(ack), I2400M_BM_CMD_RAW);
switch (result) {
......@@ -668,10 +978,8 @@ do_reboot_ack:
d_printf(4, dev, "reboot ack: got ack barker - good\n");
break;
case -ETIMEDOUT: /* no response, maybe it is the other type? */
if (ack_timeout_cnt-- >= 0) {
d_printf(4, dev, "reboot ack timedout: "
"trying the other type?\n");
i2400m->sboot = !i2400m->sboot;
if (ack_timeout_cnt-- < 0) {
d_printf(4, dev, "reboot ack timedout: retrying\n");
goto do_reboot_ack;
} else {
dev_err(dev, "reboot ack timedout too long: "
......@@ -839,32 +1147,29 @@ int i2400m_dnload_init_signed(struct i2400m *i2400m,
* (signed or non-signed).
*/
static
int i2400m_dnload_init(struct i2400m *i2400m, const struct i2400m_bcf_hdr *bcf)
int i2400m_dnload_init(struct i2400m *i2400m,
const struct i2400m_bcf_hdr *bcf_hdr)
{
int result;
struct device *dev = i2400m_dev(i2400m);
u32 module_id = le32_to_cpu(bcf->module_id);
if (i2400m->sboot == 0
&& (module_id & I2400M_BCF_MOD_ID_POKES) == 0) {
/* non-signed boot process without pokes */
result = i2400m_dnload_init_nonsigned(i2400m);
if (i2400m_boot_is_signed(i2400m)) {
d_printf(1, dev, "signed boot\n");
result = i2400m_dnload_init_signed(i2400m, bcf_hdr);
if (result == -ERESTARTSYS)
return result;
if (result < 0)
dev_err(dev, "fw %s: non-signed download "
dev_err(dev, "firmware %s: signed boot download "
"initialization failed: %d\n",
i2400m->fw_name, result);
} else if (i2400m->sboot == 0
&& (module_id & I2400M_BCF_MOD_ID_POKES)) {
/* non-signed boot process with pokes, nothing to do */
result = 0;
} else { /* signed boot process */
result = i2400m_dnload_init_signed(i2400m, bcf);
} else {
/* non-signed boot process without pokes */
d_printf(1, dev, "non-signed boot\n");
result = i2400m_dnload_init_nonsigned(i2400m);
if (result == -ERESTARTSYS)
return result;
if (result < 0)
dev_err(dev, "fw %s: signed boot download "
dev_err(dev, "firmware %s: non-signed download "
"initialization failed: %d\n",
i2400m->fw_name, result);
}
......@@ -873,73 +1178,200 @@ int i2400m_dnload_init(struct i2400m *i2400m, const struct i2400m_bcf_hdr *bcf)
/*
* Run quick consistency tests on the firmware file
* Run consistency tests on the firmware file and load up headers
*
* Check for the firmware being made for the i2400m device,
* etc...These checks are mostly informative, as the device will make
* them too; but the driver's response is more informative on what
* went wrong.
*
* This will also look at all the headers present on the firmware
* file, and update i2400m->fw_bcf_hdr to point to them.
*/
static
int i2400m_fw_check(struct i2400m *i2400m,
const struct i2400m_bcf_hdr *bcf,
size_t bcf_size)
int i2400m_fw_hdr_check(struct i2400m *i2400m,
const struct i2400m_bcf_hdr *bcf_hdr,
size_t index, size_t offset)
{
int result;
struct device *dev = i2400m_dev(i2400m);
unsigned module_type, header_len, major_version, minor_version,
module_id, module_vendor, date, size;
/* Check hard errors */
result = -EINVAL;
if (bcf_size < sizeof(*bcf)) { /* big enough header? */
dev_err(dev, "firmware %s too short: "
"%zu B vs %zu (at least) expected\n",
i2400m->fw_name, bcf_size, sizeof(*bcf));
goto error;
module_type = bcf_hdr->module_type;
header_len = sizeof(u32) * le32_to_cpu(bcf_hdr->header_len);
major_version = (le32_to_cpu(bcf_hdr->header_version) & 0xffff0000)
>> 16;
minor_version = le32_to_cpu(bcf_hdr->header_version) & 0x0000ffff;
module_id = le32_to_cpu(bcf_hdr->module_id);
module_vendor = le32_to_cpu(bcf_hdr->module_vendor);
date = le32_to_cpu(bcf_hdr->date);
size = sizeof(u32) * le32_to_cpu(bcf_hdr->size);
d_printf(1, dev, "firmware %s #%zd@%08zx: BCF header "
"type:vendor:id 0x%x:%x:%x v%u.%u (%u/%u B) built %08x\n",
i2400m->fw_name, index, offset,
module_type, module_vendor, module_id,
major_version, minor_version, header_len, size, date);
/* Hard errors */
if (major_version != 1) {
dev_err(dev, "firmware %s #%zd@%08zx: major header version "
"v%u.%u not supported\n",
i2400m->fw_name, index, offset,
major_version, minor_version);
return -EBADF;
}
if (module_type != 6) { /* built for the right hardware? */
dev_err(dev, "firmware %s #%zd@%08zx: unexpected module "
"type 0x%x; aborting\n",
i2400m->fw_name, index, offset,
module_type);
return -EBADF;
}
module_type = bcf->module_type;
header_len = sizeof(u32) * le32_to_cpu(bcf->header_len);
major_version = le32_to_cpu(bcf->header_version) & 0xffff0000 >> 16;
minor_version = le32_to_cpu(bcf->header_version) & 0x0000ffff;
module_id = le32_to_cpu(bcf->module_id);
module_vendor = le32_to_cpu(bcf->module_vendor);
date = le32_to_cpu(bcf->date);
size = sizeof(u32) * le32_to_cpu(bcf->size);
if (bcf_size != size) { /* annoyingly paranoid */
dev_err(dev, "firmware %s: bad size, got "
"%zu B vs %u expected\n",
i2400m->fw_name, bcf_size, size);
goto error;
if (module_vendor != 0x8086) {
dev_err(dev, "firmware %s #%zd@%08zx: unexpected module "
"vendor 0x%x; aborting\n",
i2400m->fw_name, index, offset, module_vendor);
return -EBADF;
}
d_printf(2, dev, "type 0x%x id 0x%x vendor 0x%x; header v%u.%u (%zu B) "
"date %08x (%zu B)\n",
module_type, module_id, module_vendor,
major_version, minor_version, (size_t) header_len,
date, (size_t) size);
if (date < 0x20080300)
dev_warn(dev, "firmware %s #%zd@%08zx: build date %08x "
"too old; unsupported\n",
i2400m->fw_name, index, offset, date);
return 0;
}
if (module_type != 6) { /* built for the right hardware? */
dev_err(dev, "bad fw %s: unexpected module type 0x%x; "
"aborting\n", i2400m->fw_name, module_type);
goto error;
/*
* Run consistency tests on the firmware file and load up headers
*
* Check for the firmware being made for the i2400m device,
* etc...These checks are mostly informative, as the device will make
* them too; but the driver's response is more informative on what
* went wrong.
*
* This will also look at all the headers present on the firmware
* file, and update i2400m->fw_hdrs to point to them.
*/
static
int i2400m_fw_check(struct i2400m *i2400m, const void *bcf, size_t bcf_size)
{
int result;
struct device *dev = i2400m_dev(i2400m);
size_t headers = 0;
const struct i2400m_bcf_hdr *bcf_hdr;
const void *itr, *next, *top;
size_t slots = 0, used_slots = 0;
for (itr = bcf, top = itr + bcf_size;
itr < top;
headers++, itr = next) {
size_t leftover, offset, header_len, size;
leftover = top - itr;
offset = itr - (const void *) bcf;
if (leftover <= sizeof(*bcf_hdr)) {
dev_err(dev, "firmware %s: %zu B left at @%zx, "
"not enough for BCF header\n",
i2400m->fw_name, leftover, offset);
break;
}
bcf_hdr = itr;
/* Only the first header is supposed to be followed by
* payload */
header_len = sizeof(u32) * le32_to_cpu(bcf_hdr->header_len);
size = sizeof(u32) * le32_to_cpu(bcf_hdr->size);
if (headers == 0)
next = itr + size;
else
next = itr + header_len;
/* Check soft-er errors */
result = i2400m_fw_hdr_check(i2400m, bcf_hdr, headers, offset);
if (result < 0)
continue;
if (used_slots + 1 >= slots) {
/* +1 -> we need to account for the one we'll
* occupy and at least an extra one for
* always being NULL */
result = i2400m_zrealloc_2x(
(void **) &i2400m->fw_hdrs, &slots,
sizeof(i2400m->fw_hdrs[0]),
GFP_KERNEL);
if (result < 0)
goto error_zrealloc;
}
i2400m->fw_hdrs[used_slots] = bcf_hdr;
used_slots++;
}
if (headers == 0) {
dev_err(dev, "firmware %s: no usable headers found\n",
i2400m->fw_name);
result = -EBADF;
} else
result = 0;
if (module_vendor != 0x8086)
dev_err(dev, "bad fw %s? unexpected vendor 0x%04x\n",
i2400m->fw_name, module_vendor);
if (date < 0x20080300)
dev_err(dev, "bad fw %s? build date too old %08x\n",
i2400m->fw_name, date);
error:
error_zrealloc:
return result;
}
/*
* Match a barker to a BCF header module ID
*
* The device sends a barker which tells the firmware loader which
* header in the BCF file has to be used. This does the matching.
*/
static
unsigned i2400m_bcf_hdr_match(struct i2400m *i2400m,
const struct i2400m_bcf_hdr *bcf_hdr)
{
u32 barker = le32_to_cpu(i2400m->barker->data[0])
& 0x7fffffff;
u32 module_id = le32_to_cpu(bcf_hdr->module_id)
& 0x7fffffff; /* high bit used for something else */
/* special case for 5x50 */
if (barker == I2400M_SBOOT_BARKER && module_id == 0)
return 1;
if (module_id == barker)
return 1;
return 0;
}
static
const struct i2400m_bcf_hdr *i2400m_bcf_hdr_find(struct i2400m *i2400m)
{
struct device *dev = i2400m_dev(i2400m);
const struct i2400m_bcf_hdr **bcf_itr, *bcf_hdr;
unsigned i = 0;
u32 barker = le32_to_cpu(i2400m->barker->data[0]);
d_printf(2, dev, "finding BCF header for barker %08x\n", barker);
if (barker == I2400M_NBOOT_BARKER) {
bcf_hdr = i2400m->fw_hdrs[0];
d_printf(1, dev, "using BCF header #%u/%08x for non-signed "
"barker\n", 0, le32_to_cpu(bcf_hdr->module_id));
return bcf_hdr;
}
for (bcf_itr = i2400m->fw_hdrs; *bcf_itr != NULL; bcf_itr++, i++) {
bcf_hdr = *bcf_itr;
if (i2400m_bcf_hdr_match(i2400m, bcf_hdr)) {
d_printf(1, dev, "hit on BCF hdr #%u/%08x\n",
i, le32_to_cpu(bcf_hdr->module_id));
return bcf_hdr;
} else
d_printf(1, dev, "miss on BCF hdr #%u/%08x\n",
i, le32_to_cpu(bcf_hdr->module_id));
}
dev_err(dev, "cannot find a matching BCF header for barker %08x\n",
barker);
return NULL;
}
/*
* Download the firmware to the device
*
......@@ -956,14 +1388,16 @@ error:
*/
static
int i2400m_fw_dnload(struct i2400m *i2400m, const struct i2400m_bcf_hdr *bcf,
size_t bcf_size, enum i2400m_bri flags)
size_t fw_size, enum i2400m_bri flags)
{
int ret = 0;
struct device *dev = i2400m_dev(i2400m);
int count = i2400m->bus_bm_retries;
const struct i2400m_bcf_hdr *bcf_hdr;
size_t bcf_size;
d_fnstart(5, dev, "(i2400m %p bcf %p size %zu)\n",
i2400m, bcf, bcf_size);
d_fnstart(5, dev, "(i2400m %p bcf %p fw size %zu)\n",
i2400m, bcf, fw_size);
i2400m->boot_mode = 1;
wmb(); /* Make sure other readers see it */
hw_reboot:
......@@ -985,13 +1419,28 @@ hw_reboot:
* Initialize the download, push the bytes to the device and
* then jump to the new firmware. Note @ret is passed with the
* offset of the jump instruction to _dnload_finalize()
*
* Note we need to use the BCF header in the firmware image
* that matches the barker that the device sent when it
* rebooted, so it has to be passed along.
*/
ret = i2400m_dnload_init(i2400m, bcf); /* Init device's dnload */
ret = -EBADF;
bcf_hdr = i2400m_bcf_hdr_find(i2400m);
if (bcf_hdr == NULL)
goto error_bcf_hdr_find;
ret = i2400m_dnload_init(i2400m, bcf_hdr);
if (ret == -ERESTARTSYS)
goto error_dev_rebooted;
if (ret < 0)
goto error_dnload_init;
/*
* bcf_size refers to one header size plus the fw sections size
* indicated by the header,ie. if there are other extended headers
* at the tail, they are not counted
*/
bcf_size = sizeof(u32) * le32_to_cpu(bcf_hdr->size);
ret = i2400m_dnload_bcf(i2400m, bcf, bcf_size);
if (ret == -ERESTARTSYS)
goto error_dev_rebooted;
......@@ -1001,7 +1450,7 @@ hw_reboot:
goto error_dnload_bcf;
}
ret = i2400m_dnload_finalize(i2400m, bcf, ret);
ret = i2400m_dnload_finalize(i2400m, bcf_hdr, bcf, ret);
if (ret == -ERESTARTSYS)
goto error_dev_rebooted;
if (ret < 0) {
......@@ -1018,10 +1467,11 @@ hw_reboot:
error_dnload_finalize:
error_dnload_bcf:
error_dnload_init:
error_bcf_hdr_find:
error_bootrom_init:
error_too_many_reboots:
d_fnend(5, dev, "(i2400m %p bcf %p size %zu) = %d\n",
i2400m, bcf, bcf_size, ret);
i2400m, bcf, fw_size, ret);
return ret;
error_dev_rebooted:
......@@ -1031,6 +1481,61 @@ error_dev_rebooted:
goto hw_reboot;
}
static
int i2400m_fw_bootstrap(struct i2400m *i2400m, const struct firmware *fw,
enum i2400m_bri flags)
{
int ret;
struct device *dev = i2400m_dev(i2400m);
const struct i2400m_bcf_hdr *bcf; /* Firmware data */
d_fnstart(5, dev, "(i2400m %p)\n", i2400m);
bcf = (void *) fw->data;
ret = i2400m_fw_check(i2400m, bcf, fw->size);
if (ret >= 0)
ret = i2400m_fw_dnload(i2400m, bcf, fw->size, flags);
if (ret < 0)
dev_err(dev, "%s: cannot use: %d, skipping\n",
i2400m->fw_name, ret);
kfree(i2400m->fw_hdrs);
i2400m->fw_hdrs = NULL;
d_fnend(5, dev, "(i2400m %p) = %d\n", i2400m, ret);
return ret;
}
/* Refcounted container for firmware data */
struct i2400m_fw {
struct kref kref;
const struct firmware *fw;
};
static
void i2400m_fw_destroy(struct kref *kref)
{
struct i2400m_fw *i2400m_fw =
container_of(kref, struct i2400m_fw, kref);
release_firmware(i2400m_fw->fw);
kfree(i2400m_fw);
}
static
struct i2400m_fw *i2400m_fw_get(struct i2400m_fw *i2400m_fw)
{
if (i2400m_fw != NULL && i2400m_fw != (void *) ~0)
kref_get(&i2400m_fw->kref);
return i2400m_fw;
}
static
void i2400m_fw_put(struct i2400m_fw *i2400m_fw)
{
kref_put(&i2400m_fw->kref, i2400m_fw_destroy);
}
/**
* i2400m_dev_bootstrap - Bring the device to a known state and upload firmware
......@@ -1049,42 +1554,109 @@ error_dev_rebooted:
*/
int i2400m_dev_bootstrap(struct i2400m *i2400m, enum i2400m_bri flags)
{
int ret = 0, itr = 0;
int ret, itr;
struct device *dev = i2400m_dev(i2400m);
const struct firmware *fw;
struct i2400m_fw *i2400m_fw;
const struct i2400m_bcf_hdr *bcf; /* Firmware data */
const struct firmware *fw;
const char *fw_name;
d_fnstart(5, dev, "(i2400m %p)\n", i2400m);
ret = -ENODEV;
spin_lock(&i2400m->rx_lock);
i2400m_fw = i2400m_fw_get(i2400m->fw_cached);
spin_unlock(&i2400m->rx_lock);
if (i2400m_fw == (void *) ~0) {
dev_err(dev, "can't load firmware now!");
goto out;
} else if (i2400m_fw != NULL) {
dev_info(dev, "firmware %s: loading from cache\n",
i2400m->fw_name);
ret = i2400m_fw_bootstrap(i2400m, i2400m_fw->fw, flags);
i2400m_fw_put(i2400m_fw);
goto out;
}
/* Load firmware files to memory. */
itr = 0;
while(1) {
for (itr = 0, bcf = NULL, ret = -ENOENT; ; itr++) {
fw_name = i2400m->bus_fw_names[itr];
if (fw_name == NULL) {
dev_err(dev, "Could not find a usable firmware image\n");
ret = -ENOENT;
goto error_no_fw;
break;
}
d_printf(1, dev, "trying firmware %s (%d)\n", fw_name, itr);
ret = request_firmware(&fw, fw_name, dev);
if (ret == 0)
break; /* got it */
if (ret < 0)
if (ret < 0) {
dev_err(dev, "fw %s: cannot load file: %d\n",
fw_name, ret);
itr++;
continue;
}
bcf = (void *) fw->data;
i2400m->fw_name = fw_name;
ret = i2400m_fw_check(i2400m, bcf, fw->size);
if (ret < 0)
goto error_fw_bad;
ret = i2400m_fw_dnload(i2400m, bcf, fw->size, flags);
error_fw_bad:
ret = i2400m_fw_bootstrap(i2400m, fw, flags);
release_firmware(fw);
error_no_fw:
if (ret >= 0) /* firmware loaded succesfully */
break;
i2400m->fw_name = NULL;
}
out:
d_fnend(5, dev, "(i2400m %p) = %d\n", i2400m, ret);
return ret;
}
EXPORT_SYMBOL_GPL(i2400m_dev_bootstrap);
void i2400m_fw_cache(struct i2400m *i2400m)
{
int result;
struct i2400m_fw *i2400m_fw;
struct device *dev = i2400m_dev(i2400m);
/* if there is anything there, free it -- now, this'd be weird */
spin_lock(&i2400m->rx_lock);
i2400m_fw = i2400m->fw_cached;
spin_unlock(&i2400m->rx_lock);
if (i2400m_fw != NULL && i2400m_fw != (void *) ~0) {
i2400m_fw_put(i2400m_fw);
WARN(1, "%s:%u: still cached fw still present?\n",
__func__, __LINE__);
}
if (i2400m->fw_name == NULL) {
dev_err(dev, "firmware n/a: can't cache\n");
i2400m_fw = (void *) ~0;
goto out;
}
i2400m_fw = kzalloc(sizeof(*i2400m_fw), GFP_ATOMIC);
if (i2400m_fw == NULL)
goto out;
kref_init(&i2400m_fw->kref);
result = request_firmware(&i2400m_fw->fw, i2400m->fw_name, dev);
if (result < 0) {
dev_err(dev, "firmware %s: failed to cache: %d\n",
i2400m->fw_name, result);
kfree(i2400m_fw);
i2400m_fw = (void *) ~0;
} else
dev_info(dev, "firmware %s: cached\n", i2400m->fw_name);
out:
spin_lock(&i2400m->rx_lock);
i2400m->fw_cached = i2400m_fw;
spin_unlock(&i2400m->rx_lock);
}
void i2400m_fw_uncache(struct i2400m *i2400m)
{
struct i2400m_fw *i2400m_fw;
spin_lock(&i2400m->rx_lock);
i2400m_fw = i2400m->fw_cached;
i2400m->fw_cached = NULL;
spin_unlock(&i2400m->rx_lock);
if (i2400m_fw != NULL && i2400m_fw != (void *) ~0)
i2400m_fw_put(i2400m_fw);
}
......@@ -67,6 +67,7 @@
/* Host-Device interface for SDIO */
enum {
I2400M_SDIO_BOOT_RETRIES = 3,
I2400MS_BLK_SIZE = 256,
I2400MS_PL_SIZE_MAX = 0x3E00,
......@@ -77,9 +78,11 @@ enum {
I2400MS_INTR_GET_SIZE_ADDR = 0x2C,
/* The number of ticks to wait for the device to signal that
* it is ready */
I2400MS_INIT_SLEEP_INTERVAL = 10,
I2400MS_INIT_SLEEP_INTERVAL = 100,
/* How long to wait for the device to settle after reset */
I2400MS_SETTLE_TIME = 40,
/* The number of msec to wait for IOR after sending IOE */
IWMC3200_IOR_TIMEOUT = 10,
};
......@@ -97,6 +100,14 @@ enum {
* @tx_workqueue: workqeueue used for data TX; we don't use the
* system's workqueue as that might cause deadlocks with code in
* the bus-generic driver.
*
* @debugfs_dentry: dentry for the SDIO specific debugfs files
*
* Note this value is set to NULL upon destruction; this is
* because some routinges use it to determine if we are inside the
* probe() path or some other path. When debugfs is disabled,
* creation sets the dentry to '(void*) -ENODEV', which is valid
* for the test.
*/
struct i2400ms {
struct i2400m i2400m; /* FIRST! See doc */
......@@ -111,6 +122,9 @@ struct i2400ms {
wait_queue_head_t bm_wfa_wq;
int bm_wait_result;
size_t bm_ack_size;
/* Device is any of the iwmc3200 SKUs */
unsigned iwmc3200:1;
};
......
......@@ -88,6 +88,13 @@ struct edc {
u16 errorcount;
};
struct i2400m_endpoint_cfg {
unsigned char bulk_out;
unsigned char notification;
unsigned char reset_cold;
unsigned char bulk_in;
};
static inline void edc_init(struct edc *edc)
{
edc->timestart = jiffies;
......@@ -137,15 +144,13 @@ static inline int edc_inc(struct edc *edc, u16 max_err, u16 timeframe)
/* Host-Device interface for USB */
enum {
I2400M_USB_BOOT_RETRIES = 3,
I2400MU_MAX_NOTIFICATION_LEN = 256,
I2400MU_BLK_SIZE = 16,
I2400MU_PL_SIZE_MAX = 0x3EFF,
/* Endpoints */
I2400MU_EP_BULK_OUT = 0,
I2400MU_EP_NOTIFICATION,
I2400MU_EP_RESET_COLD,
I2400MU_EP_BULK_IN,
/* Device IDs */
USB_DEVICE_ID_I6050 = 0x0186,
};
......@@ -215,6 +220,7 @@ struct i2400mu {
struct usb_device *usb_dev;
struct usb_interface *usb_iface;
struct edc urb_edc; /* Error density counter */
struct i2400m_endpoint_cfg endpoint_cfg;
struct urb *notif_urb;
struct task_struct *tx_kthread;
......
......@@ -117,16 +117,30 @@
* well as i2400m->wimax_dev.net_dev and call i2400m_setup(). The
* i2400m driver will only register with the WiMAX and network stacks;
* the only access done to the device is to read the MAC address so we
* can register a network device. This calls i2400m_dev_start() to
* load firmware, setup communication with the device and configure it
* for operation.
* can register a network device.
*
* At this point, control and data communications are possible.
* The high-level call flow is:
*
* bus_probe()
* i2400m_setup()
* i2400m->bus_setup()
* boot rom initialization / read mac addr
* network / WiMAX stacks registration
* i2400m_dev_start()
* i2400m->bus_dev_start()
* i2400m_dev_initialize()
*
* On disconnect/driver unload, the bus-specific disconnect function
* calls i2400m_release() to undo i2400m_setup(). i2400m_dev_stop()
* shuts the firmware down and releases resources uses to communicate
* with the device.
* The reverse applies for a disconnect() call:
*
* bus_disconnect()
* i2400m_release()
* i2400m_dev_stop()
* i2400m_dev_shutdown()
* i2400m->bus_dev_stop()
* network / WiMAX stack unregistration
* i2400m->bus_release()
*
* At this point, control and data communications are possible.
*
* While the device is up, it might reset. The bus-specific driver has
* to catch that situation and call i2400m_dev_reset_handle() to deal
......@@ -148,9 +162,6 @@
/* Misc constants */
enum {
/* Firmware uploading */
I2400M_BOOT_RETRIES = 3,
I3200_BOOT_RETRIES = 3,
/* Size of the Boot Mode Command buffer */
I2400M_BM_CMD_BUF_SIZE = 16 * 1024,
I2400M_BM_ACK_BUF_SIZE = 256,
......@@ -197,6 +208,7 @@ enum i2400m_reset_type {
struct i2400m_reset_ctx;
struct i2400m_roq;
struct i2400m_barker_db;
/**
* struct i2400m - descriptor for an Intel 2400m
......@@ -204,22 +216,45 @@ struct i2400m_roq;
* Members marked with [fill] must be filled out/initialized before
* calling i2400m_setup().
*
* Note the @bus_setup/@bus_release, @bus_dev_start/@bus_dev_release
* call pairs are very much doing almost the same, and depending on
* the underlying bus, some stuff has to be put in one or the
* other. The idea of setup/release is that they setup the minimal
* amount needed for loading firmware, where us dev_start/stop setup
* the rest needed to do full data/control traffic.
*
* @bus_tx_block_size: [fill] SDIO imposes a 256 block size, USB 16,
* so we have a tx_blk_size variable that the bus layer sets to
* tell the engine how much of that we need.
*
* @bus_pl_size_max: [fill] Maximum payload size.
*
* @bus_dev_start: [fill] Function called by the bus-generic code
* [i2400m_dev_start()] to setup the bus-specific communications
* to the the device. See LIFE CYCLE above.
* @bus_setup: [optional fill] Function called by the bus-generic code
* [i2400m_setup()] to setup the basic bus-specific communications
* to the the device needed to load firmware. See LIFE CYCLE above.
*
* NOTE: Doesn't need to upload the firmware, as that is taken
* care of by the bus-generic code.
*
* @bus_dev_stop: [fill] Function called by the bus-generic code
* [i2400m_dev_stop()] to shutdown the bus-specific communications
* to the the device. See LIFE CYCLE above.
* @bus_release: [optional fill] Function called by the bus-generic
* code [i2400m_release()] to shutdown the basic bus-specific
* communications to the the device needed to load firmware. See
* LIFE CYCLE above.
*
* This function does not need to reset the device, just tear down
* all the host resources created to handle communication with
* the device.
*
* @bus_dev_start: [optional fill] Function called by the bus-generic
* code [i2400m_dev_start()] to do things needed to start the
* device. See LIFE CYCLE above.
*
* NOTE: Doesn't need to upload the firmware, as that is taken
* care of by the bus-generic code.
*
* @bus_dev_stop: [optional fill] Function called by the bus-generic
* code [i2400m_dev_stop()] to do things needed for stopping the
* device. See LIFE CYCLE above.
*
* This function does not need to reset the device, just tear down
* all the host resources created to handle communication with
......@@ -246,6 +281,9 @@ struct i2400m_roq;
* process, so it cannot rely on common infrastructure being laid
* out.
*
* IMPORTANT: don't call reset on RT_BUS with i2400m->init_mutex
* held, as the .pre/.post reset handlers will deadlock.
*
* @bus_bm_retries: [fill] How many times shall a firmware upload /
* device initialization be retried? Different models of the same
* device might need different values, hence it is set by the
......@@ -297,6 +335,27 @@ struct i2400m_roq;
* force this to be the first field so that we can get from
* netdev_priv() the right pointer.
*
* @updown: the device is up and ready for transmitting control and
* data packets. This implies @ready (communication infrastructure
* with the device is ready) and the device's firmware has been
* loaded and the device initialized.
*
* Write to it only inside a i2400m->init_mutex protected area
* followed with a wmb(); rmb() before accesing (unless locked
* inside i2400m->init_mutex). Read access can be loose like that
* [just using rmb()] because the paths that use this also do
* other error checks later on.
*
* @ready: Communication infrastructure with the device is ready, data
* frames can start to be passed around (this is lighter than
* using the WiMAX state for certain hot paths).
*
* Write to it only inside a i2400m->init_mutex protected area
* followed with a wmb(); rmb() before accesing (unless locked
* inside i2400m->init_mutex). Read access can be loose like that
* [just using rmb()] because the paths that use this also do
* other error checks later on.
*
* @rx_reorder: 1 if RX reordering is enabled; this can only be
* set at probe time.
*
......@@ -362,6 +421,13 @@ struct i2400m_roq;
* delivered. Then the driver can release them to the host. See
* drivers/net/i2400m/rx.c for details.
*
* @rx_reports: reports received from the device that couldn't be
* processed because the driver wasn't still ready; when ready,
* they are pulled from here and chewed.
*
* @rx_reports_ws: Work struct used to kick a scan of the RX reports
* list and to process each.
*
* @src_mac_addr: MAC address used to make ethernet packets be coming
* from. This is generated at i2400m_setup() time and used during
* the life cycle of the instance. See i2400m_fake_eth_header().
......@@ -422,6 +488,25 @@ struct i2400m_roq;
*
* @fw_version: version of the firmware interface, Major.minor,
* encoded in the high word and low word (major << 16 | minor).
*
* @fw_hdrs: NULL terminated array of pointers to the firmware
* headers. This is only available during firmware load time.
*
* @fw_cached: Used to cache firmware when the system goes to
* suspend/standby/hibernation (as on resume we can't read it). If
* NULL, no firmware was cached, read it. If ~0, you can't read
* any firmware files (the system still didn't come out of suspend
* and failed to cache one), so abort; otherwise, a valid cached
* firmware to be used. Access to this variable is protected by
* the spinlock i2400m->rx_lock.
*
* @barker: barker type that the device uses; this is initialized by
* i2400m_is_boot_barker() the first time it is called. Then it
* won't change during the life cycle of the device and everytime
* a boot barker is received, it is just verified for it being the
* same.
*
* @pm_notifier: used to register for PM events
*/
struct i2400m {
struct wimax_dev wimax_dev; /* FIRST! See doc */
......@@ -429,7 +514,7 @@ struct i2400m {
unsigned updown:1; /* Network device is up or down */
unsigned boot_mode:1; /* is the device in boot mode? */
unsigned sboot:1; /* signed or unsigned fw boot */
unsigned ready:1; /* all probing steps done */
unsigned ready:1; /* Device comm infrastructure ready */
unsigned rx_reorder:1; /* RX reorder is enabled */
u8 trace_msg_from_user; /* echo rx msgs to 'trace' pipe */
/* typed u8 so /sys/kernel/debug/u8 can tweak */
......@@ -440,8 +525,10 @@ struct i2400m {
size_t bus_pl_size_max;
unsigned bus_bm_retries;
int (*bus_setup)(struct i2400m *);
int (*bus_dev_start)(struct i2400m *);
void (*bus_dev_stop)(struct i2400m *);
void (*bus_release)(struct i2400m *);
void (*bus_tx_kick)(struct i2400m *);
int (*bus_reset)(struct i2400m *, enum i2400m_reset_type);
ssize_t (*bus_bm_cmd_send)(struct i2400m *,
......@@ -468,6 +555,8 @@ struct i2400m {
rx_num, rx_size_acc, rx_size_min, rx_size_max;
struct i2400m_roq *rx_roq; /* not under rx_lock! */
u8 src_mac_addr[ETH_HLEN];
struct list_head rx_reports; /* under rx_lock! */
struct work_struct rx_report_ws;
struct mutex msg_mutex; /* serialize command execution */
struct completion msg_completion;
......@@ -487,37 +576,12 @@ struct i2400m {
struct dentry *debugfs_dentry;
const char *fw_name; /* name of the current firmware image */
unsigned long fw_version; /* version of the firmware interface */
};
const struct i2400m_bcf_hdr **fw_hdrs;
struct i2400m_fw *fw_cached; /* protected by rx_lock */
struct i2400m_barker_db *barker;
/*
* Initialize a 'struct i2400m' from all zeroes
*
* This is a bus-generic API call.
*/
static inline
void i2400m_init(struct i2400m *i2400m)
{
wimax_dev_init(&i2400m->wimax_dev);
i2400m->boot_mode = 1;
i2400m->rx_reorder = 1;
init_waitqueue_head(&i2400m->state_wq);
spin_lock_init(&i2400m->tx_lock);
i2400m->tx_pl_min = UINT_MAX;
i2400m->tx_size_min = UINT_MAX;
spin_lock_init(&i2400m->rx_lock);
i2400m->rx_pl_min = UINT_MAX;
i2400m->rx_size_min = UINT_MAX;
mutex_init(&i2400m->msg_mutex);
init_completion(&i2400m->msg_completion);
mutex_init(&i2400m->init_mutex);
/* wake_tx_ws is initialized in i2400m_tx_setup() */
}
struct notifier_block pm_notifier;
};
/*
......@@ -577,6 +641,14 @@ extern void i2400m_bm_cmd_prepare(struct i2400m_bootrom_header *);
extern int i2400m_dev_bootstrap(struct i2400m *, enum i2400m_bri);
extern int i2400m_read_mac_addr(struct i2400m *);
extern int i2400m_bootrom_init(struct i2400m *, enum i2400m_bri);
extern int i2400m_is_boot_barker(struct i2400m *, const void *, size_t);
static inline
int i2400m_is_d2h_barker(const void *buf)
{
const __le32 *barker = buf;
return le32_to_cpu(*barker) == I2400M_D2H_MSG_BARKER;
}
extern void i2400m_unknown_barker(struct i2400m *, const void *, size_t);
/* Make/grok boot-rom header commands */
......@@ -644,6 +716,8 @@ unsigned i2400m_brh_get_signature(const struct i2400m_bootrom_header *hdr)
/*
* Driver / device setup and internal functions
*/
extern void i2400m_init(struct i2400m *);
extern int i2400m_reset(struct i2400m *, enum i2400m_reset_type);
extern void i2400m_netdev_setup(struct net_device *net_dev);
extern int i2400m_sysfs_setup(struct device_driver *);
extern void i2400m_sysfs_release(struct device_driver *);
......@@ -654,10 +728,14 @@ extern void i2400m_tx_release(struct i2400m *);
extern int i2400m_rx_setup(struct i2400m *);
extern void i2400m_rx_release(struct i2400m *);
extern void i2400m_fw_cache(struct i2400m *);
extern void i2400m_fw_uncache(struct i2400m *);
extern void i2400m_net_rx(struct i2400m *, struct sk_buff *, unsigned,
const void *, int);
extern void i2400m_net_erx(struct i2400m *, struct sk_buff *,
enum i2400m_cs);
extern void i2400m_net_wake_stop(struct i2400m *);
enum i2400m_pt;
extern int i2400m_tx(struct i2400m *, const void *, size_t, enum i2400m_pt);
......@@ -672,14 +750,12 @@ static inline int i2400m_debugfs_add(struct i2400m *i2400m)
static inline void i2400m_debugfs_rm(struct i2400m *i2400m) {}
#endif
/* Called by _dev_start()/_dev_stop() to initialize the device itself */
/* Initialize/shutdown the device */
extern int i2400m_dev_initialize(struct i2400m *);
extern void i2400m_dev_shutdown(struct i2400m *);
extern struct attribute_group i2400m_dev_attr_group;
extern int i2400m_schedule_work(struct i2400m *,
void (*)(struct work_struct *), gfp_t);
/* HDI message's payload description handling */
......@@ -724,7 +800,9 @@ void i2400m_put(struct i2400m *i2400m)
dev_put(i2400m->wimax_dev.net_dev);
}
extern int i2400m_dev_reset_handle(struct i2400m *);
extern int i2400m_dev_reset_handle(struct i2400m *, const char *);
extern int i2400m_pre_reset(struct i2400m *);
extern int i2400m_post_reset(struct i2400m *);
/*
* _setup()/_release() are called by the probe/disconnect functions of
......@@ -737,20 +815,6 @@ extern int i2400m_rx(struct i2400m *, struct sk_buff *);
extern struct i2400m_msg_hdr *i2400m_tx_msg_get(struct i2400m *, size_t *);
extern void i2400m_tx_msg_sent(struct i2400m *);
static const __le32 i2400m_NBOOT_BARKER[4] = {
cpu_to_le32(I2400M_NBOOT_BARKER),
cpu_to_le32(I2400M_NBOOT_BARKER),
cpu_to_le32(I2400M_NBOOT_BARKER),
cpu_to_le32(I2400M_NBOOT_BARKER)
};
static const __le32 i2400m_SBOOT_BARKER[4] = {
cpu_to_le32(I2400M_SBOOT_BARKER),
cpu_to_le32(I2400M_SBOOT_BARKER),
cpu_to_le32(I2400M_SBOOT_BARKER),
cpu_to_le32(I2400M_SBOOT_BARKER)
};
extern int i2400m_power_save_disabled;
/*
......@@ -773,9 +837,11 @@ struct device *i2400m_dev(struct i2400m *i2400m)
struct i2400m_work {
struct work_struct ws;
struct i2400m *i2400m;
size_t pl_size;
u8 pl[0];
};
extern int i2400m_queue_work(struct i2400m *,
extern int i2400m_schedule_work(struct i2400m *,
void (*)(struct work_struct *), gfp_t,
const void *, size_t);
......@@ -789,6 +855,7 @@ extern void i2400m_msg_ack_hook(struct i2400m *,
const struct i2400m_l3l4_hdr *, size_t);
extern void i2400m_report_hook(struct i2400m *,
const struct i2400m_l3l4_hdr *, size_t);
extern void i2400m_report_hook_work(struct work_struct *);
extern int i2400m_cmd_enter_powersave(struct i2400m *);
extern int i2400m_cmd_get_state(struct i2400m *);
extern int i2400m_cmd_exit_idle(struct i2400m *);
......@@ -849,6 +916,12 @@ void __i2400m_msleep(unsigned ms)
#endif
}
/* module initialization helpers */
extern int i2400m_barker_db_init(const char *);
extern void i2400m_barker_db_exit(void);
/* Module parameters */
extern int i2400m_idle_mode_disabled;
......
......@@ -74,6 +74,7 @@
*/
#include <linux/if_arp.h>
#include <linux/netdevice.h>
#include <linux/ethtool.h>
#include "i2400m.h"
......@@ -88,7 +89,10 @@ enum {
* The MTU is 1400 or less
*/
I2400M_MAX_MTU = 1400,
I2400M_TX_TIMEOUT = HZ,
/* 20 secs? yep, this is the maximum timeout that the device
* might take to get out of IDLE / negotiate it with the base
* station. We add 1sec for good measure. */
I2400M_TX_TIMEOUT = 21 * HZ,
I2400M_TX_QLEN = 5,
};
......@@ -101,22 +105,19 @@ int i2400m_open(struct net_device *net_dev)
struct device *dev = i2400m_dev(i2400m);
d_fnstart(3, dev, "(net_dev %p [i2400m %p])\n", net_dev, i2400m);
if (i2400m->ready == 0) {
dev_err(dev, "Device is still initializing\n");
result = -EBUSY;
} else
/* Make sure we wait until init is complete... */
mutex_lock(&i2400m->init_mutex);
if (i2400m->updown)
result = 0;
else
result = -EBUSY;
mutex_unlock(&i2400m->init_mutex);
d_fnend(3, dev, "(net_dev %p [i2400m %p]) = %d\n",
net_dev, i2400m, result);
return result;
}
/*
*
* On kernel versions where cancel_work_sync() didn't return anything,
* we rely on wake_tx_skb() being non-NULL.
*/
static
int i2400m_stop(struct net_device *net_dev)
{
......@@ -124,21 +125,7 @@ int i2400m_stop(struct net_device *net_dev)
struct device *dev = i2400m_dev(i2400m);
d_fnstart(3, dev, "(net_dev %p [i2400m %p])\n", net_dev, i2400m);
/* See i2400m_hard_start_xmit(), references are taken there
* and here we release them if the work was still
* pending. Note we can't differentiate work not pending vs
* never scheduled, so the NULL check does that. */
if (cancel_work_sync(&i2400m->wake_tx_ws) == 0
&& i2400m->wake_tx_skb != NULL) {
unsigned long flags;
struct sk_buff *wake_tx_skb;
spin_lock_irqsave(&i2400m->tx_lock, flags);
wake_tx_skb = i2400m->wake_tx_skb; /* compat help */
i2400m->wake_tx_skb = NULL; /* compat help */
spin_unlock_irqrestore(&i2400m->tx_lock, flags);
i2400m_put(i2400m);
kfree_skb(wake_tx_skb);
}
i2400m_net_wake_stop(i2400m);
d_fnend(3, dev, "(net_dev %p [i2400m %p]) = 0\n", net_dev, i2400m);
return 0;
}
......@@ -167,6 +154,7 @@ void i2400m_wake_tx_work(struct work_struct *ws)
{
int result;
struct i2400m *i2400m = container_of(ws, struct i2400m, wake_tx_ws);
struct net_device *net_dev = i2400m->wimax_dev.net_dev;
struct device *dev = i2400m_dev(i2400m);
struct sk_buff *skb = i2400m->wake_tx_skb;
unsigned long flags;
......@@ -182,27 +170,36 @@ void i2400m_wake_tx_work(struct work_struct *ws)
dev_err(dev, "WAKE&TX: skb dissapeared!\n");
goto out_put;
}
/* If we have, somehow, lost the connection after this was
* queued, don't do anything; this might be the device got
* reset or just disconnected. */
if (unlikely(!netif_carrier_ok(net_dev)))
goto out_kfree;
result = i2400m_cmd_exit_idle(i2400m);
if (result == -EILSEQ)
result = 0;
if (result < 0) {
dev_err(dev, "WAKE&TX: device didn't get out of idle: "
"%d\n", result);
"%d - resetting\n", result);
i2400m_reset(i2400m, I2400M_RT_BUS);
goto error;
}
result = wait_event_timeout(i2400m->state_wq,
i2400m->state != I2400M_SS_IDLE, 5 * HZ);
i2400m->state != I2400M_SS_IDLE,
net_dev->watchdog_timeo - HZ/2);
if (result == 0)
result = -ETIMEDOUT;
if (result < 0) {
dev_err(dev, "WAKE&TX: error waiting for device to exit IDLE: "
"%d\n", result);
"%d - resetting\n", result);
i2400m_reset(i2400m, I2400M_RT_BUS);
goto error;
}
msleep(20); /* device still needs some time or it drops it */
result = i2400m_tx(i2400m, skb->data, skb->len, I2400M_PT_DATA);
netif_wake_queue(i2400m->wimax_dev.net_dev);
error:
netif_wake_queue(net_dev);
out_kfree:
kfree_skb(skb); /* refcount transferred by _hard_start_xmit() */
out_put:
i2400m_put(i2400m);
......@@ -229,6 +226,38 @@ void i2400m_tx_prep_header(struct sk_buff *skb)
}
/*
* Cleanup resources acquired during i2400m_net_wake_tx()
*
* This is called by __i2400m_dev_stop and means we have to make sure
* the workqueue is flushed from any pending work.
*/
void i2400m_net_wake_stop(struct i2400m *i2400m)
{
struct device *dev = i2400m_dev(i2400m);
d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
/* See i2400m_hard_start_xmit(), references are taken there
* and here we release them if the work was still
* pending. Note we can't differentiate work not pending vs
* never scheduled, so the NULL check does that. */
if (cancel_work_sync(&i2400m->wake_tx_ws) == 0
&& i2400m->wake_tx_skb != NULL) {
unsigned long flags;
struct sk_buff *wake_tx_skb;
spin_lock_irqsave(&i2400m->tx_lock, flags);
wake_tx_skb = i2400m->wake_tx_skb; /* compat help */
i2400m->wake_tx_skb = NULL; /* compat help */
spin_unlock_irqrestore(&i2400m->tx_lock, flags);
i2400m_put(i2400m);
kfree_skb(wake_tx_skb);
}
d_fnend(3, dev, "(i2400m %p) = void\n", i2400m);
return;
}
/*
* TX an skb to an idle device
*
......@@ -342,6 +371,20 @@ netdev_tx_t i2400m_hard_start_xmit(struct sk_buff *skb,
int result;
d_fnstart(3, dev, "(skb %p net_dev %p)\n", skb, net_dev);
if (skb_header_cloned(skb)) {
/*
* Make tcpdump/wireshark happy -- if they are
* running, the skb is cloned and we will overwrite
* the mac fields in i2400m_tx_prep_header. Expand
* seems to fix this...
*/
result = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
if (result) {
result = NETDEV_TX_BUSY;
goto error_expand;
}
}
if (i2400m->state == I2400M_SS_IDLE)
result = i2400m_net_wake_tx(i2400m, net_dev, skb);
else
......@@ -352,10 +395,11 @@ netdev_tx_t i2400m_hard_start_xmit(struct sk_buff *skb,
net_dev->stats.tx_packets++;
net_dev->stats.tx_bytes += skb->len;
}
result = NETDEV_TX_OK;
error_expand:
kfree_skb(skb);
d_fnend(3, dev, "(skb %p net_dev %p)\n", skb, net_dev);
return NETDEV_TX_OK;
d_fnend(3, dev, "(skb %p net_dev %p) = %d\n", skb, net_dev, result);
return result;
}
......@@ -559,6 +603,22 @@ static const struct net_device_ops i2400m_netdev_ops = {
.ndo_change_mtu = i2400m_change_mtu,
};
static void i2400m_get_drvinfo(struct net_device *net_dev,
struct ethtool_drvinfo *info)
{
struct i2400m *i2400m = net_dev_to_i2400m(net_dev);
strncpy(info->driver, KBUILD_MODNAME, sizeof(info->driver) - 1);
strncpy(info->fw_version, i2400m->fw_name, sizeof(info->fw_version) - 1);
if (net_dev->dev.parent)
strncpy(info->bus_info, dev_name(net_dev->dev.parent),
sizeof(info->bus_info) - 1);
}
static const struct ethtool_ops i2400m_ethtool_ops = {
.get_drvinfo = i2400m_get_drvinfo,
.get_link = ethtool_op_get_link,
};
/**
* i2400m_netdev_setup - Setup setup @net_dev's i2400m private data
......@@ -580,6 +640,7 @@ void i2400m_netdev_setup(struct net_device *net_dev)
& ~IFF_MULTICAST);
net_dev->watchdog_timeo = I2400M_TX_TIMEOUT;
net_dev->netdev_ops = &i2400m_netdev_ops;
net_dev->ethtool_ops = &i2400m_ethtool_ops;
d_fnend(3, NULL, "(net_dev %p) = void\n", net_dev);
}
EXPORT_SYMBOL_GPL(i2400m_netdev_setup);
......
......@@ -158,30 +158,104 @@ struct i2400m_report_hook_args {
struct sk_buff *skb_rx;
const struct i2400m_l3l4_hdr *l3l4_hdr;
size_t size;
struct list_head list_node;
};
/*
* Execute i2400m_report_hook in a workqueue
*
* Unpacks arguments from the deferred call, executes it and then
* drops the references.
* Goes over the list of queued reports in i2400m->rx_reports and
* processes them.
*
* Obvious NOTE: References are needed because we are a separate
* thread; otherwise the buffer changes under us because it is
* released by the original caller.
* NOTE: refcounts on i2400m are not needed because we flush the
* workqueue this runs on (i2400m->work_queue) before destroying
* i2400m.
*/
static
void i2400m_report_hook_work(struct work_struct *ws)
{
struct i2400m_work *iw =
container_of(ws, struct i2400m_work, ws);
struct i2400m_report_hook_args *args = (void *) iw->pl;
if (iw->i2400m->ready)
i2400m_report_hook(iw->i2400m, args->l3l4_hdr, args->size);
struct i2400m *i2400m = container_of(ws, struct i2400m, rx_report_ws);
struct device *dev = i2400m_dev(i2400m);
struct i2400m_report_hook_args *args, *args_next;
LIST_HEAD(list);
unsigned long flags;
while (1) {
spin_lock_irqsave(&i2400m->rx_lock, flags);
list_splice_init(&i2400m->rx_reports, &list);
spin_unlock_irqrestore(&i2400m->rx_lock, flags);
if (list_empty(&list))
break;
else
d_printf(1, dev, "processing queued reports\n");
list_for_each_entry_safe(args, args_next, &list, list_node) {
d_printf(2, dev, "processing queued report %p\n", args);
i2400m_report_hook(i2400m, args->l3l4_hdr, args->size);
kfree_skb(args->skb_rx);
list_del(&args->list_node);
kfree(args);
}
}
}
/*
* Flush the list of queued reports
*/
static
void i2400m_report_hook_flush(struct i2400m *i2400m)
{
struct device *dev = i2400m_dev(i2400m);
struct i2400m_report_hook_args *args, *args_next;
LIST_HEAD(list);
unsigned long flags;
d_printf(1, dev, "flushing queued reports\n");
spin_lock_irqsave(&i2400m->rx_lock, flags);
list_splice_init(&i2400m->rx_reports, &list);
spin_unlock_irqrestore(&i2400m->rx_lock, flags);
list_for_each_entry_safe(args, args_next, &list, list_node) {
d_printf(2, dev, "flushing queued report %p\n", args);
kfree_skb(args->skb_rx);
i2400m_put(iw->i2400m);
kfree(iw);
list_del(&args->list_node);
kfree(args);
}
}
/*
* Queue a report for later processing
*
* @i2400m: device descriptor
* @skb_rx: skb that contains the payload (for reference counting)
* @l3l4_hdr: pointer to the control
* @size: size of the message
*/
static
void i2400m_report_hook_queue(struct i2400m *i2400m, struct sk_buff *skb_rx,
const void *l3l4_hdr, size_t size)
{
struct device *dev = i2400m_dev(i2400m);
unsigned long flags;
struct i2400m_report_hook_args *args;
args = kzalloc(sizeof(*args), GFP_NOIO);
if (args) {
args->skb_rx = skb_get(skb_rx);
args->l3l4_hdr = l3l4_hdr;
args->size = size;
spin_lock_irqsave(&i2400m->rx_lock, flags);
list_add_tail(&args->list_node, &i2400m->rx_reports);
spin_unlock_irqrestore(&i2400m->rx_lock, flags);
d_printf(2, dev, "queued report %p\n", args);
rmb(); /* see i2400m->ready's documentation */
if (likely(i2400m->ready)) /* only send if up */
queue_work(i2400m->work_queue, &i2400m->rx_report_ws);
} else {
if (printk_ratelimit())
dev_err(dev, "%s:%u: Can't allocate %zu B\n",
__func__, __LINE__, sizeof(*args));
}
}
......@@ -295,21 +369,29 @@ void i2400m_rx_ctl(struct i2400m *i2400m, struct sk_buff *skb_rx,
msg_type, size);
d_dump(2, dev, l3l4_hdr, size);
if (msg_type & I2400M_MT_REPORT_MASK) {
/* These hooks have to be ran serialized; as well, the
* handling might force the execution of commands, and
* that might cause reentrancy issues with
* bus-specific subdrivers and workqueues. So we run
* it in a separate workqueue. */
struct i2400m_report_hook_args args = {
.skb_rx = skb_rx,
.l3l4_hdr = l3l4_hdr,
.size = size
};
if (unlikely(i2400m->ready == 0)) /* only send if up */
return;
skb_get(skb_rx);
i2400m_queue_work(i2400m, i2400m_report_hook_work,
GFP_KERNEL, &args, sizeof(args));
/*
* Process each report
*
* - has to be ran serialized as well
*
* - the handling might force the execution of
* commands. That might cause reentrancy issues with
* bus-specific subdrivers and workqueues, so the we
* run it in a separate workqueue.
*
* - when the driver is not yet ready to handle them,
* they are queued and at some point the queue is
* restarted [NOTE: we can't queue SKBs directly, as
* this might be a piece of a SKB, not the whole
* thing, and this is cheaper than cloning the
* SKB].
*
* Note we don't do refcounting for the device
* structure; this is because before destroying
* 'i2400m', we make sure to flush the
* i2400m->work_queue, so there are no issues.
*/
i2400m_report_hook_queue(i2400m, skb_rx, l3l4_hdr, size);
if (unlikely(i2400m->trace_msg_from_user))
wimax_msg(&i2400m->wimax_dev, "echo",
l3l4_hdr, size, GFP_KERNEL);
......@@ -363,8 +445,6 @@ void i2400m_rx_trace(struct i2400m *i2400m,
msg_type & I2400M_MT_REPORT_MASK ? "REPORT" : "CMD/SET/GET",
msg_type, size);
d_dump(2, dev, l3l4_hdr, size);
if (unlikely(i2400m->ready == 0)) /* only send if up */
return;
result = wimax_msg(wimax_dev, "trace", l3l4_hdr, size, GFP_KERNEL);
if (result < 0)
dev_err(dev, "error sending trace to userspace: %d\n",
......@@ -748,7 +828,7 @@ void i2400m_roq_queue(struct i2400m *i2400m, struct i2400m_roq *roq,
dev_err(dev, "SW BUG? queue nsn %d (lbn %u ws %u)\n",
nsn, lbn, roq->ws);
i2400m_roq_log_dump(i2400m, roq);
i2400m->bus_reset(i2400m, I2400M_RT_WARM);
i2400m_reset(i2400m, I2400M_RT_WARM);
} else {
__i2400m_roq_queue(i2400m, roq, skb, lbn, nsn);
i2400m_roq_log_add(i2400m, roq, I2400M_RO_TYPE_PACKET,
......@@ -814,7 +894,7 @@ void i2400m_roq_queue_update_ws(struct i2400m *i2400m, struct i2400m_roq *roq,
dev_err(dev, "SW BUG? queue_update_ws nsn %u (sn %u ws %u)\n",
nsn, sn, roq->ws);
i2400m_roq_log_dump(i2400m, roq);
i2400m->bus_reset(i2400m, I2400M_RT_WARM);
i2400m_reset(i2400m, I2400M_RT_WARM);
} else {
/* if the queue is empty, don't bother as we'd queue
* it and inmediately unqueue it -- just deliver it */
......@@ -1194,6 +1274,28 @@ error_msg_hdr_check:
EXPORT_SYMBOL_GPL(i2400m_rx);
void i2400m_unknown_barker(struct i2400m *i2400m,
const void *buf, size_t size)
{
struct device *dev = i2400m_dev(i2400m);
char prefix[64];
const __le32 *barker = buf;
dev_err(dev, "RX: HW BUG? unknown barker %08x, "
"dropping %zu bytes\n", le32_to_cpu(*barker), size);
snprintf(prefix, sizeof(prefix), "%s %s: ",
dev_driver_string(dev), dev_name(dev));
if (size > 64) {
print_hex_dump(KERN_ERR, prefix, DUMP_PREFIX_OFFSET,
8, 4, buf, 64, 0);
printk(KERN_ERR "%s... (only first 64 bytes "
"dumped)\n", prefix);
} else
print_hex_dump(KERN_ERR, prefix, DUMP_PREFIX_OFFSET,
8, 4, buf, size, 0);
}
EXPORT_SYMBOL(i2400m_unknown_barker);
/*
* Initialize the RX queue and infrastructure
*
......@@ -1261,4 +1363,6 @@ void i2400m_rx_release(struct i2400m *i2400m)
kfree(i2400m->rx_roq[0].log);
kfree(i2400m->rx_roq);
}
/* at this point, nothing can be received... */
i2400m_report_hook_flush(i2400m);
}
......@@ -118,7 +118,8 @@ ssize_t i2400ms_bus_bm_cmd_send(struct i2400m *i2400m,
if (cmd_size > I2400M_BM_CMD_BUF_SIZE)
goto error_too_big;
memcpy(i2400m->bm_cmd_buf, _cmd, cmd_size); /* Prep command */
if (_cmd != i2400m->bm_cmd_buf)
memmove(i2400m->bm_cmd_buf, _cmd, cmd_size);
cmd = i2400m->bm_cmd_buf;
if (cmd_size_a > cmd_size) /* Zero pad space */
memset(i2400m->bm_cmd_buf + cmd_size, 0, cmd_size_a - cmd_size);
......@@ -177,10 +178,6 @@ ssize_t i2400ms_bus_bm_wait_for_ack(struct i2400m *i2400m,
d_fnstart(5, dev, "(i2400m %p ack %p size %zu)\n",
i2400m, ack, ack_size);
spin_lock(&i2400m->rx_lock);
i2400ms->bm_ack_size = -EINPROGRESS;
spin_unlock(&i2400m->rx_lock);
result = wait_event_timeout(i2400ms->bm_wfa_wq,
i2400ms->bm_ack_size != -EINPROGRESS,
2 * HZ);
......@@ -199,6 +196,10 @@ ssize_t i2400ms_bus_bm_wait_for_ack(struct i2400m *i2400m,
size = min(ack_size, i2400ms->bm_ack_size);
memcpy(ack, i2400m->bm_ack_buf, size);
}
/*
* Remember always to clear the bm_ack_size to -EINPROGRESS
* after the RX data is processed
*/
i2400ms->bm_ack_size = -EINPROGRESS;
spin_unlock(&i2400m->rx_lock);
......
......@@ -53,6 +53,7 @@
* i2400ms_irq()
* i2400ms_rx()
* __i2400ms_rx_get_size()
* i2400m_is_boot_barker()
* i2400m_rx()
*
* i2400ms_rx_setup()
......@@ -138,6 +139,11 @@ void i2400ms_rx(struct i2400ms *i2400ms)
ret = rx_size;
goto error_get_size;
}
/*
* Hardware quirk: make sure to clear the INTR status register
* AFTER getting the data transfer size.
*/
sdio_writeb(func, 1, I2400MS_INTR_CLEAR_ADDR, &ret);
ret = -ENOMEM;
skb = alloc_skb(rx_size, GFP_ATOMIC);
......@@ -153,25 +159,34 @@ void i2400ms_rx(struct i2400ms *i2400ms)
}
rmb(); /* make sure we get boot_mode from dev_reset_handle */
if (i2400m->boot_mode == 1) {
if (unlikely(i2400m->boot_mode == 1)) {
spin_lock(&i2400m->rx_lock);
i2400ms->bm_ack_size = rx_size;
spin_unlock(&i2400m->rx_lock);
memcpy(i2400m->bm_ack_buf, skb->data, rx_size);
wake_up(&i2400ms->bm_wfa_wq);
dev_err(dev, "RX: SDIO boot mode message\n");
d_printf(5, dev, "RX: SDIO boot mode message\n");
kfree_skb(skb);
} else if (unlikely(!memcmp(skb->data, i2400m_NBOOT_BARKER,
sizeof(i2400m_NBOOT_BARKER))
|| !memcmp(skb->data, i2400m_SBOOT_BARKER,
sizeof(i2400m_SBOOT_BARKER)))) {
ret = i2400m_dev_reset_handle(i2400m);
goto out;
}
ret = -EIO;
if (unlikely(rx_size < sizeof(__le32))) {
dev_err(dev, "HW BUG? only %zu bytes received\n", rx_size);
goto error_bad_size;
}
if (likely(i2400m_is_d2h_barker(skb->data))) {
skb_put(skb, rx_size);
i2400m_rx(i2400m, skb);
} else if (unlikely(i2400m_is_boot_barker(i2400m,
skb->data, rx_size))) {
ret = i2400m_dev_reset_handle(i2400m, "device rebooted");
dev_err(dev, "RX: SDIO reboot barker\n");
kfree_skb(skb);
} else {
skb_put(skb, rx_size);
i2400m_rx(i2400m, skb);
i2400m_unknown_barker(i2400m, skb->data, rx_size);
kfree_skb(skb);
}
out:
d_fnend(7, dev, "(i2400ms %p) = void\n", i2400ms);
return;
......@@ -179,6 +194,7 @@ error_memcpy_fromio:
kfree_skb(skb);
error_alloc_skb:
error_get_size:
error_bad_size:
d_fnend(7, dev, "(i2400ms %p) = %d\n", i2400ms, ret);
return;
}
......@@ -209,7 +225,6 @@ void i2400ms_irq(struct sdio_func *func)
dev_err(dev, "RX: BUG? got IRQ but no interrupt ready?\n");
goto error_no_irq;
}
sdio_writeb(func, 1, I2400MS_INTR_CLEAR_ADDR, &ret);
i2400ms_rx(i2400ms);
error_no_irq:
d_fnend(6, dev, "(i2400ms %p) = void\n", i2400ms);
......@@ -234,6 +249,13 @@ int i2400ms_rx_setup(struct i2400ms *i2400ms)
init_waitqueue_head(&i2400ms->bm_wfa_wq);
spin_lock(&i2400m->rx_lock);
i2400ms->bm_wait_result = -EINPROGRESS;
/*
* Before we are about to enable the RX interrupt, make sure
* bm_ack_size is cleared to -EINPROGRESS which indicates
* no RX interrupt happened yet or the previous interrupt
* has been handled, we are ready to take the new interrupt
*/
i2400ms->bm_ack_size = -EINPROGRESS;
spin_unlock(&i2400m->rx_lock);
sdio_claim_host(func);
......
......@@ -149,5 +149,8 @@ int i2400ms_tx_setup(struct i2400ms *i2400ms)
void i2400ms_tx_release(struct i2400ms *i2400ms)
{
if (i2400ms->tx_workqueue) {
destroy_workqueue(i2400ms->tx_workqueue);
i2400ms->tx_workqueue = NULL;
}
}
......@@ -43,18 +43,9 @@
* i2400m_release()
* free_netdev(net_dev)
*
* i2400ms_bus_reset() Called by i2400m->bus_reset
* i2400ms_bus_reset() Called by i2400m_reset
* __i2400ms_reset()
* __i2400ms_send_barker()
*
* i2400ms_bus_dev_start() Called by i2400m_dev_start() [who is
* i2400ms_tx_setup() called by i2400m_setup()]
* i2400ms_rx_setup()
*
* i2400ms_bus_dev_stop() Called by i2400m_dev_stop() [who is
* i2400ms_rx_release() is called by i2400m_release()]
* i2400ms_tx_release()
*
*/
#include <linux/debugfs.h>
......@@ -71,6 +62,14 @@
static int ioe_timeout = 2;
module_param(ioe_timeout, int, 0);
static char i2400ms_debug_params[128];
module_param_string(debug, i2400ms_debug_params, sizeof(i2400ms_debug_params),
0644);
MODULE_PARM_DESC(debug,
"String of space-separated NAME:VALUE pairs, where NAMEs "
"are the different debug submodules and VALUE are the "
"initial debug value to set.");
/* Our firmware file name list */
static const char *i2400ms_bus_fw_names[] = {
#define I2400MS_FW_FILE_NAME "i2400m-fw-sdio-1.3.sbcf"
......@@ -95,17 +94,24 @@ static const struct i2400m_poke_table i2400ms_pokes[] = {
* when we ask it to explicitly doing). Tries until a timeout is
* reached.
*
* The @maxtries argument indicates how many times (at most) it should
* be tried to enable the function. 0 means forever. This acts along
* with the timeout (ie: it'll stop trying as soon as the maximum
* number of tries is reached _or_ as soon as the timeout is reached).
*
* The reverse of this is...sdio_disable_function()
*
* Returns: 0 if the SDIO function was enabled, < 0 errno code on
* error (-ENODEV when it was unable to enable the function).
*/
static
int i2400ms_enable_function(struct sdio_func *func)
int i2400ms_enable_function(struct i2400ms *i2400ms, unsigned maxtries)
{
struct sdio_func *func = i2400ms->func;
u64 timeout;
int err;
struct device *dev = &func->dev;
unsigned tries = 0;
d_fnstart(3, dev, "(func %p)\n", func);
/* Setup timeout (FIXME: This needs to read the CIS table to
......@@ -115,6 +121,14 @@ int i2400ms_enable_function(struct sdio_func *func)
err = -ENODEV;
while (err != 0 && time_before64(get_jiffies_64(), timeout)) {
sdio_claim_host(func);
/*
* There is a sillicon bug on the IWMC3200, where the
* IOE timeout will cause problems on Moorestown
* platforms (system hang). We explicitly overwrite
* func->enable_timeout here to work around the issue.
*/
if (i2400ms->iwmc3200)
func->enable_timeout = IWMC3200_IOR_TIMEOUT;
err = sdio_enable_func(func);
if (0 == err) {
sdio_release_host(func);
......@@ -122,8 +136,11 @@ int i2400ms_enable_function(struct sdio_func *func)
goto function_enabled;
}
d_printf(2, dev, "SDIO function failed to enable: %d\n", err);
sdio_disable_func(func);
sdio_release_host(func);
if (maxtries > 0 && ++tries >= maxtries) {
err = -ETIME;
break;
}
msleep(I2400MS_INIT_SLEEP_INTERVAL);
}
/* If timed out, device is not there yet -- get -ENODEV so
......@@ -140,46 +157,99 @@ function_enabled:
/*
* Setup driver resources needed to communicate with the device
* Setup minimal device communication infrastructure needed to at
* least be able to update the firmware.
*
* The fw needs some time to settle, and it was just uploaded,
* so give it a break first. I'd prefer to just wait for the device to
* send something, but seems the poking we do to enable SDIO stuff
* interferes with it, so just give it a break before starting...
* Note the ugly trick: if we are in the probe path
* (i2400ms->debugfs_dentry == NULL), we only retry function
* enablement one, to avoid racing with the iwmc3200 top controller.
*/
static
int i2400ms_bus_dev_start(struct i2400m *i2400m)
int i2400ms_bus_setup(struct i2400m *i2400m)
{
int result;
struct i2400ms *i2400ms = container_of(i2400m, struct i2400ms, i2400m);
struct i2400ms *i2400ms =
container_of(i2400m, struct i2400ms, i2400m);
struct device *dev = i2400m_dev(i2400m);
struct sdio_func *func = i2400ms->func;
struct device *dev = &func->dev;
int retries;
sdio_claim_host(func);
result = sdio_set_block_size(func, I2400MS_BLK_SIZE);
sdio_release_host(func);
if (result < 0) {
dev_err(dev, "Failed to set block size: %d\n", result);
goto error_set_blk_size;
}
if (i2400ms->iwmc3200 && i2400ms->debugfs_dentry == NULL)
retries = 1;
else
retries = 0;
result = i2400ms_enable_function(i2400ms, retries);
if (result < 0) {
dev_err(dev, "Cannot enable SDIO function: %d\n", result);
goto error_func_enable;
}
d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
msleep(200);
result = i2400ms_tx_setup(i2400ms);
if (result < 0)
goto error_tx_setup;
d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result);
return result;
result = i2400ms_rx_setup(i2400ms);
if (result < 0)
goto error_rx_setup;
return 0;
error_tx_setup:
error_rx_setup:
i2400ms_tx_release(i2400ms);
d_fnend(3, dev, "(i2400m %p) = void\n", i2400m);
error_tx_setup:
sdio_claim_host(func);
sdio_disable_func(func);
sdio_release_host(func);
error_func_enable:
error_set_blk_size:
return result;
}
/*
* Tear down minimal device communication infrastructure needed to at
* least be able to update the firmware.
*/
static
void i2400ms_bus_release(struct i2400m *i2400m)
{
struct i2400ms *i2400ms =
container_of(i2400m, struct i2400ms, i2400m);
struct sdio_func *func = i2400ms->func;
i2400ms_rx_release(i2400ms);
i2400ms_tx_release(i2400ms);
sdio_claim_host(func);
sdio_disable_func(func);
sdio_release_host(func);
}
/*
* Setup driver resources needed to communicate with the device
*
* The fw needs some time to settle, and it was just uploaded,
* so give it a break first. I'd prefer to just wait for the device to
* send something, but seems the poking we do to enable SDIO stuff
* interferes with it, so just give it a break before starting...
*/
static
void i2400ms_bus_dev_stop(struct i2400m *i2400m)
int i2400ms_bus_dev_start(struct i2400m *i2400m)
{
struct i2400ms *i2400ms = container_of(i2400m, struct i2400ms, i2400m);
struct sdio_func *func = i2400ms->func;
struct device *dev = &func->dev;
d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
i2400ms_tx_release(i2400ms);
d_fnend(3, dev, "(i2400m %p) = void\n", i2400m);
msleep(200);
d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, 0);
return 0;
}
......@@ -233,18 +303,17 @@ error_kzalloc:
* Warm reset:
*
* The device will be fully reset internally, but won't be
* disconnected from the USB bus (so no reenumeration will
* disconnected from the bus (so no reenumeration will
* happen). Firmware upload will be neccessary.
*
* The device will send a reboot barker in the notification endpoint
* that will trigger the driver to reinitialize the state
* automatically from notif.c:i2400m_notification_grok() into
* i2400m_dev_bootstrap_delayed().
* The device will send a reboot barker that will trigger the driver
* to reinitialize the state via __i2400m_dev_reset_handle.
*
*
* Cold and bus (USB) reset:
* Cold and bus reset:
*
* The device will be fully reset internally, disconnected from the
* USB bus an a reenumeration will happen. Firmware upload will be
* bus an a reenumeration will happen. Firmware upload will be
* neccessary. Thus, we don't do any locking or struct
* reinitialization, as we are going to be fully disconnected and
* reenumerated.
......@@ -283,25 +352,13 @@ int i2400ms_bus_reset(struct i2400m *i2400m, enum i2400m_reset_type rt)
sizeof(i2400m_COLD_BOOT_BARKER));
else if (rt == I2400M_RT_BUS) {
do_bus_reset:
/* call netif_tx_disable() before sending IOE disable,
* so that all the tx from network layer are stopped
* while IOE is being reset. Make sure it is called
* only after register_netdev() was issued.
*/
if (i2400m->wimax_dev.net_dev->reg_state == NETREG_REGISTERED)
netif_tx_disable(i2400m->wimax_dev.net_dev);
i2400ms_rx_release(i2400ms);
sdio_claim_host(i2400ms->func);
sdio_disable_func(i2400ms->func);
sdio_release_host(i2400ms->func);
i2400ms_bus_release(i2400m);
/* Wait for the device to settle */
msleep(40);
result = i2400ms_enable_function(i2400ms->func);
if (result >= 0)
i2400ms_rx_setup(i2400ms);
result = i2400ms_bus_setup(i2400m);
} else
BUG();
if (result < 0 && rt != I2400M_RT_BUS) {
......@@ -350,7 +407,7 @@ int i2400ms_debugfs_add(struct i2400ms *i2400ms)
int result;
struct dentry *dentry = i2400ms->i2400m.wimax_dev.debugfs_dentry;
dentry = debugfs_create_dir("i2400m-usb", dentry);
dentry = debugfs_create_dir("i2400m-sdio", dentry);
result = PTR_ERR(dentry);
if (IS_ERR(dentry)) {
if (result == -ENODEV)
......@@ -367,6 +424,7 @@ int i2400ms_debugfs_add(struct i2400ms *i2400ms)
error:
debugfs_remove_recursive(i2400ms->debugfs_dentry);
i2400ms->debugfs_dentry = NULL;
return result;
}
......@@ -425,37 +483,30 @@ int i2400ms_probe(struct sdio_func *func,
i2400m->bus_tx_block_size = I2400MS_BLK_SIZE;
i2400m->bus_pl_size_max = I2400MS_PL_SIZE_MAX;
i2400m->bus_setup = i2400ms_bus_setup;
i2400m->bus_dev_start = i2400ms_bus_dev_start;
i2400m->bus_dev_stop = i2400ms_bus_dev_stop;
i2400m->bus_dev_stop = NULL;
i2400m->bus_release = i2400ms_bus_release;
i2400m->bus_tx_kick = i2400ms_bus_tx_kick;
i2400m->bus_reset = i2400ms_bus_reset;
/* The iwmc3200-wimax sometimes requires the driver to try
* hard when we paint it into a corner. */
i2400m->bus_bm_retries = I3200_BOOT_RETRIES;
i2400m->bus_bm_retries = I2400M_SDIO_BOOT_RETRIES;
i2400m->bus_bm_cmd_send = i2400ms_bus_bm_cmd_send;
i2400m->bus_bm_wait_for_ack = i2400ms_bus_bm_wait_for_ack;
i2400m->bus_fw_names = i2400ms_bus_fw_names;
i2400m->bus_bm_mac_addr_impaired = 1;
i2400m->bus_bm_pokes_table = &i2400ms_pokes[0];
sdio_claim_host(func);
result = sdio_set_block_size(func, I2400MS_BLK_SIZE);
sdio_release_host(func);
if (result < 0) {
dev_err(dev, "Failed to set block size: %d\n", result);
goto error_set_blk_size;
switch (func->device) {
case SDIO_DEVICE_ID_INTEL_IWMC3200WIMAX:
case SDIO_DEVICE_ID_INTEL_IWMC3200WIMAX_2G5:
i2400ms->iwmc3200 = 1;
break;
default:
i2400ms->iwmc3200 = 0;
}
result = i2400ms_enable_function(i2400ms->func);
if (result < 0) {
dev_err(dev, "Cannot enable SDIO function: %d\n", result);
goto error_func_enable;
}
result = i2400ms_rx_setup(i2400ms);
if (result < 0)
goto error_rx_setup;
result = i2400m_setup(i2400m, I2400M_BRI_NO_REBOOT);
if (result < 0) {
dev_err(dev, "cannot setup device: %d\n", result);
......@@ -473,13 +524,6 @@ int i2400ms_probe(struct sdio_func *func,
error_debugfs_add:
i2400m_release(i2400m);
error_setup:
i2400ms_rx_release(i2400ms);
error_rx_setup:
sdio_claim_host(func);
sdio_disable_func(func);
sdio_release_host(func);
error_func_enable:
error_set_blk_size:
sdio_set_drvdata(func, NULL);
free_netdev(net_dev);
error_alloc_netdev:
......@@ -497,12 +541,9 @@ void i2400ms_remove(struct sdio_func *func)
d_fnstart(3, dev, "SDIO func %p\n", func);
debugfs_remove_recursive(i2400ms->debugfs_dentry);
i2400ms_rx_release(i2400ms);
i2400ms->debugfs_dentry = NULL;
i2400m_release(i2400m);
sdio_set_drvdata(func, NULL);
sdio_claim_host(func);
sdio_disable_func(func);
sdio_release_host(func);
free_netdev(net_dev);
d_fnend(3, dev, "SDIO func %p\n", func);
}
......@@ -512,6 +553,8 @@ const struct sdio_device_id i2400ms_sdio_ids[] = {
/* Intel: i2400m WiMAX (iwmc3200) over SDIO */
{ SDIO_DEVICE(SDIO_VENDOR_ID_INTEL,
SDIO_DEVICE_ID_INTEL_IWMC3200WIMAX) },
{ SDIO_DEVICE(SDIO_VENDOR_ID_INTEL,
SDIO_DEVICE_ID_INTEL_IWMC3200WIMAX_2G5) },
{ /* end: all zeroes */ },
};
MODULE_DEVICE_TABLE(sdio, i2400ms_sdio_ids);
......@@ -529,6 +572,8 @@ struct sdio_driver i2400m_sdio_driver = {
static
int __init i2400ms_driver_init(void)
{
d_parse_params(D_LEVEL, D_LEVEL_SIZE, i2400ms_debug_params,
"i2400m_sdio.debug");
return sdio_register_driver(&i2400m_sdio_driver);
}
module_init(i2400ms_driver_init);
......
......@@ -310,7 +310,7 @@ size_t __i2400m_tx_tail_room(struct i2400m *i2400m)
size_t tail_room;
size_t tx_in;
if (unlikely(i2400m->tx_in) == 0)
if (unlikely(i2400m->tx_in == 0))
return I2400M_TX_BUF_SIZE;
tx_in = i2400m->tx_in % I2400M_TX_BUF_SIZE;
tail_room = I2400M_TX_BUF_SIZE - tx_in;
......@@ -642,6 +642,9 @@ int i2400m_tx(struct i2400m *i2400m, const void *buf, size_t buf_len,
* current one is out of payload slots or we have a singleton,
* close it and start a new one */
spin_lock_irqsave(&i2400m->tx_lock, flags);
result = -ESHUTDOWN;
if (i2400m->tx_buf == NULL)
goto error_tx_new;
try_new:
if (unlikely(i2400m->tx_msg == NULL))
i2400m_tx_new(i2400m);
......@@ -697,7 +700,10 @@ try_new:
}
error_tx_new:
spin_unlock_irqrestore(&i2400m->tx_lock, flags);
i2400m->bus_tx_kick(i2400m); /* always kick, might free up space */
/* kick in most cases, except when the TX subsys is down, as
* it might free space */
if (likely(result != -ESHUTDOWN))
i2400m->bus_tx_kick(i2400m);
d_fnend(3, dev, "(i2400m %p skb %p [%zu bytes] pt %u) = %d\n",
i2400m, buf, buf_len, pl_type, result);
return result;
......@@ -740,6 +746,9 @@ struct i2400m_msg_hdr *i2400m_tx_msg_get(struct i2400m *i2400m,
d_fnstart(3, dev, "(i2400m %p bus_size %p)\n", i2400m, bus_size);
spin_lock_irqsave(&i2400m->tx_lock, flags);
tx_msg_moved = NULL;
if (i2400m->tx_buf == NULL)
goto out_unlock;
skip:
tx_msg_moved = NULL;
if (i2400m->tx_in == i2400m->tx_out) { /* Empty FIFO? */
......@@ -829,6 +838,8 @@ void i2400m_tx_msg_sent(struct i2400m *i2400m)
d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
spin_lock_irqsave(&i2400m->tx_lock, flags);
if (i2400m->tx_buf == NULL)
goto out_unlock;
i2400m->tx_out += i2400m->tx_msg_size;
d_printf(2, dev, "TX: sent %zu b\n", (size_t) i2400m->tx_msg_size);
i2400m->tx_msg_size = 0;
......@@ -837,6 +848,7 @@ void i2400m_tx_msg_sent(struct i2400m *i2400m)
n = i2400m->tx_out / I2400M_TX_BUF_SIZE;
i2400m->tx_out %= I2400M_TX_BUF_SIZE;
i2400m->tx_in -= n * I2400M_TX_BUF_SIZE;
out_unlock:
spin_unlock_irqrestore(&i2400m->tx_lock, flags);
d_fnend(3, dev, "(i2400m %p) = void\n", i2400m);
}
......@@ -876,5 +888,9 @@ int i2400m_tx_setup(struct i2400m *i2400m)
*/
void i2400m_tx_release(struct i2400m *i2400m)
{
unsigned long flags;
spin_lock_irqsave(&i2400m->tx_lock, flags);
kfree(i2400m->tx_buf);
i2400m->tx_buf = NULL;
spin_unlock_irqrestore(&i2400m->tx_lock, flags);
}
......@@ -99,10 +99,10 @@ ssize_t i2400mu_tx_bulk_out(struct i2400mu *i2400mu, void *buf, size_t buf_size)
dev_err(dev, "BM-CMD: can't get autopm: %d\n", result);
do_autopm = 0;
}
epd = usb_get_epd(i2400mu->usb_iface, I2400MU_EP_BULK_OUT);
epd = usb_get_epd(i2400mu->usb_iface, i2400mu->endpoint_cfg.bulk_out);
pipe = usb_sndbulkpipe(i2400mu->usb_dev, epd->bEndpointAddress);
retry:
result = usb_bulk_msg(i2400mu->usb_dev, pipe, buf, buf_size, &len, HZ);
result = usb_bulk_msg(i2400mu->usb_dev, pipe, buf, buf_size, &len, 200);
switch (result) {
case 0:
if (len != buf_size) {
......@@ -113,6 +113,28 @@ retry:
}
result = len;
break;
case -EPIPE:
/*
* Stall -- maybe the device is choking with our
* requests. Clear it and give it some time. If they
* happen to often, it might be another symptom, so we
* reset.
*
* No error handling for usb_clear_halt(0; if it
* works, the retry works; if it fails, this switch
* does the error handling for us.
*/
if (edc_inc(&i2400mu->urb_edc,
10 * EDC_MAX_ERRORS, EDC_ERROR_TIMEFRAME)) {
dev_err(dev, "BM-CMD: too many stalls in "
"URB; resetting device\n");
usb_queue_reset_device(i2400mu->usb_iface);
/* fallthrough */
} else {
usb_clear_halt(i2400mu->usb_dev, pipe);
msleep(10); /* give the device some time */
goto retry;
}
case -EINVAL: /* while removing driver */
case -ENODEV: /* dev disconnect ... */
case -ENOENT: /* just ignore it */
......@@ -135,7 +157,6 @@ retry:
result);
goto retry;
}
result = len;
if (do_autopm)
usb_autopm_put_interface(i2400mu->usb_iface);
return result;
......@@ -172,7 +193,8 @@ ssize_t i2400mu_bus_bm_cmd_send(struct i2400m *i2400m,
result = -E2BIG;
if (cmd_size > I2400M_BM_CMD_BUF_SIZE)
goto error_too_big;
memcpy(i2400m->bm_cmd_buf, _cmd, cmd_size);
if (_cmd != i2400m->bm_cmd_buf)
memmove(i2400m->bm_cmd_buf, _cmd, cmd_size);
cmd = i2400m->bm_cmd_buf;
if (cmd_size_a > cmd_size) /* Zero pad space */
memset(i2400m->bm_cmd_buf + cmd_size, 0, cmd_size_a - cmd_size);
......@@ -226,7 +248,8 @@ int i2400mu_notif_submit(struct i2400mu *i2400mu, struct urb *urb,
struct usb_endpoint_descriptor *epd;
int pipe;
epd = usb_get_epd(i2400mu->usb_iface, I2400MU_EP_NOTIFICATION);
epd = usb_get_epd(i2400mu->usb_iface,
i2400mu->endpoint_cfg.notification);
pipe = usb_rcvintpipe(i2400mu->usb_dev, epd->bEndpointAddress);
usb_fill_int_urb(urb, i2400mu->usb_dev, pipe,
i2400m->bm_ack_buf, I2400M_BM_ACK_BUF_SIZE,
......@@ -328,8 +351,8 @@ error_dev_gone:
out:
if (do_autopm)
usb_autopm_put_interface(i2400mu->usb_iface);
d_fnend(8, dev, "(i2400m %p ack %p size %zu) = %zd\n",
i2400m, ack, ack_size, result);
d_fnend(8, dev, "(i2400m %p ack %p size %zu) = %ld\n",
i2400m, ack, ack_size, (long) result);
return result;
error_exceeded:
......
......@@ -51,6 +51,7 @@
*
* i2400mu_usb_notification_cb() Called when a URB is ready
* i2400mu_notif_grok()
* i2400m_is_boot_barker()
* i2400m_dev_reset_handle()
* i2400mu_rx_kick()
*/
......@@ -87,32 +88,21 @@ int i2400mu_notification_grok(struct i2400mu *i2400mu, const void *buf,
d_fnstart(4, dev, "(i2400m %p buf %p buf_len %zu)\n",
i2400mu, buf, buf_len);
ret = -EIO;
if (buf_len < sizeof(i2400m_NBOOT_BARKER))
if (buf_len < sizeof(i2400m_ZERO_BARKER))
/* Not a bug, just ignore */
goto error_bad_size;
if (!memcmp(i2400m_NBOOT_BARKER, buf, sizeof(i2400m_NBOOT_BARKER))
|| !memcmp(i2400m_SBOOT_BARKER, buf, sizeof(i2400m_SBOOT_BARKER)))
ret = i2400m_dev_reset_handle(i2400m);
else if (!memcmp(i2400m_ZERO_BARKER, buf, sizeof(i2400m_ZERO_BARKER))) {
i2400mu_rx_kick(i2400mu);
ret = 0;
} else { /* Unknown or unexpected data in the notif message */
char prefix[64];
ret = -EIO;
dev_err(dev, "HW BUG? Unknown/unexpected data in notification "
"message (%zu bytes)\n", buf_len);
snprintf(prefix, sizeof(prefix), "%s %s: ",
dev_driver_string(dev), dev_name(dev));
if (buf_len > 64) {
print_hex_dump(KERN_ERR, prefix, DUMP_PREFIX_OFFSET,
8, 4, buf, 64, 0);
printk(KERN_ERR "%s... (only first 64 bytes "
"dumped)\n", prefix);
} else
print_hex_dump(KERN_ERR, prefix, DUMP_PREFIX_OFFSET,
8, 4, buf, buf_len, 0);
if (!memcmp(i2400m_ZERO_BARKER, buf, sizeof(i2400m_ZERO_BARKER))) {
i2400mu_rx_kick(i2400mu);
goto out;
}
ret = i2400m_is_boot_barker(i2400m, buf, buf_len);
if (unlikely(ret >= 0))
ret = i2400m_dev_reset_handle(i2400m, "device rebooted");
else /* Unknown or unexpected data in the notif message */
i2400m_unknown_barker(i2400m, buf, buf_len);
error_bad_size:
out:
d_fnend(4, dev, "(i2400m %p buf %p buf_len %zu) = %d\n",
i2400mu, buf, buf_len, ret);
return ret;
......@@ -220,7 +210,8 @@ int i2400mu_notification_setup(struct i2400mu *i2400mu)
dev_err(dev, "notification: cannot allocate URB\n");
goto error_alloc_urb;
}
epd = usb_get_epd(i2400mu->usb_iface, I2400MU_EP_NOTIFICATION);
epd = usb_get_epd(i2400mu->usb_iface,
i2400mu->endpoint_cfg.notification);
usb_pipe = usb_rcvintpipe(i2400mu->usb_dev, epd->bEndpointAddress);
usb_fill_int_urb(i2400mu->notif_urb, i2400mu->usb_dev, usb_pipe,
buf, I2400MU_MAX_NOTIFICATION_LEN,
......
......@@ -204,7 +204,7 @@ struct sk_buff *i2400mu_rx(struct i2400mu *i2400mu, struct sk_buff *rx_skb)
dev_err(dev, "RX: can't get autopm: %d\n", result);
do_autopm = 0;
}
epd = usb_get_epd(i2400mu->usb_iface, I2400MU_EP_BULK_IN);
epd = usb_get_epd(i2400mu->usb_iface, i2400mu->endpoint_cfg.bulk_in);
usb_pipe = usb_rcvbulkpipe(i2400mu->usb_dev, epd->bEndpointAddress);
retry:
rx_size = skb_end_pointer(rx_skb) - rx_skb->data - rx_skb->len;
......@@ -214,7 +214,7 @@ retry:
}
result = usb_bulk_msg(
i2400mu->usb_dev, usb_pipe, rx_skb->data + rx_skb->len,
rx_size, &read_size, HZ);
rx_size, &read_size, 200);
usb_mark_last_busy(i2400mu->usb_dev);
switch (result) {
case 0:
......@@ -222,6 +222,26 @@ retry:
goto retry; /* ZLP, just resubmit */
skb_put(rx_skb, read_size);
break;
case -EPIPE:
/*
* Stall -- maybe the device is choking with our
* requests. Clear it and give it some time. If they
* happen to often, it might be another symptom, so we
* reset.
*
* No error handling for usb_clear_halt(0; if it
* works, the retry works; if it fails, this switch
* does the error handling for us.
*/
if (edc_inc(&i2400mu->urb_edc,
10 * EDC_MAX_ERRORS, EDC_ERROR_TIMEFRAME)) {
dev_err(dev, "BM-CMD: too many stalls in "
"URB; resetting device\n");
goto do_reset;
}
usb_clear_halt(i2400mu->usb_dev, usb_pipe);
msleep(10); /* give the device some time */
goto retry;
case -EINVAL: /* while removing driver */
case -ENODEV: /* dev disconnect ... */
case -ENOENT: /* just ignore it */
......@@ -283,6 +303,7 @@ out:
error_reset:
dev_err(dev, "RX: maximum errors in URB exceeded; "
"resetting device\n");
do_reset:
usb_queue_reset_device(i2400mu->usb_iface);
rx_skb = ERR_PTR(result);
goto out;
......@@ -316,10 +337,15 @@ int i2400mu_rxd(void *_i2400mu)
size_t pending;
int rx_size;
struct sk_buff *rx_skb;
unsigned long flags;
d_fnstart(4, dev, "(i2400mu %p)\n", i2400mu);
spin_lock_irqsave(&i2400m->rx_lock, flags);
BUG_ON(i2400mu->rx_kthread != NULL);
i2400mu->rx_kthread = current;
spin_unlock_irqrestore(&i2400m->rx_lock, flags);
while (1) {
d_printf(2, dev, "TX: waiting for messages\n");
d_printf(2, dev, "RX: waiting for messages\n");
pending = 0;
wait_event_interruptible(
i2400mu->rx_wq,
......@@ -367,6 +393,9 @@ int i2400mu_rxd(void *_i2400mu)
}
result = 0;
out:
spin_lock_irqsave(&i2400m->rx_lock, flags);
i2400mu->rx_kthread = NULL;
spin_unlock_irqrestore(&i2400m->rx_lock, flags);
d_fnend(4, dev, "(i2400mu %p) = %d\n", i2400mu, result);
return result;
......@@ -403,18 +432,33 @@ int i2400mu_rx_setup(struct i2400mu *i2400mu)
struct i2400m *i2400m = &i2400mu->i2400m;
struct device *dev = &i2400mu->usb_iface->dev;
struct wimax_dev *wimax_dev = &i2400m->wimax_dev;
struct task_struct *kthread;
i2400mu->rx_kthread = kthread_run(i2400mu_rxd, i2400mu, "%s-rx",
kthread = kthread_run(i2400mu_rxd, i2400mu, "%s-rx",
wimax_dev->name);
if (IS_ERR(i2400mu->rx_kthread)) {
result = PTR_ERR(i2400mu->rx_kthread);
/* the kthread function sets i2400mu->rx_thread */
if (IS_ERR(kthread)) {
result = PTR_ERR(kthread);
dev_err(dev, "RX: cannot start thread: %d\n", result);
}
return result;
}
void i2400mu_rx_release(struct i2400mu *i2400mu)
{
kthread_stop(i2400mu->rx_kthread);
unsigned long flags;
struct i2400m *i2400m = &i2400mu->i2400m;
struct device *dev = i2400m_dev(i2400m);
struct task_struct *kthread;
spin_lock_irqsave(&i2400m->rx_lock, flags);
kthread = i2400mu->rx_kthread;
i2400mu->rx_kthread = NULL;
spin_unlock_irqrestore(&i2400m->rx_lock, flags);
if (kthread)
kthread_stop(kthread);
else
d_printf(1, dev, "RX: kthread had already exited\n");
}
......@@ -101,11 +101,11 @@ int i2400mu_tx(struct i2400mu *i2400mu, struct i2400m_msg_hdr *tx_msg,
dev_err(dev, "TX: can't get autopm: %d\n", result);
do_autopm = 0;
}
epd = usb_get_epd(i2400mu->usb_iface, I2400MU_EP_BULK_OUT);
epd = usb_get_epd(i2400mu->usb_iface, i2400mu->endpoint_cfg.bulk_out);
usb_pipe = usb_sndbulkpipe(i2400mu->usb_dev, epd->bEndpointAddress);
retry:
result = usb_bulk_msg(i2400mu->usb_dev, usb_pipe,
tx_msg, tx_msg_size, &sent_size, HZ);
tx_msg, tx_msg_size, &sent_size, 200);
usb_mark_last_busy(i2400mu->usb_dev);
switch (result) {
case 0:
......@@ -115,6 +115,28 @@ retry:
result = -EIO;
}
break;
case -EPIPE:
/*
* Stall -- maybe the device is choking with our
* requests. Clear it and give it some time. If they
* happen to often, it might be another symptom, so we
* reset.
*
* No error handling for usb_clear_halt(0; if it
* works, the retry works; if it fails, this switch
* does the error handling for us.
*/
if (edc_inc(&i2400mu->urb_edc,
10 * EDC_MAX_ERRORS, EDC_ERROR_TIMEFRAME)) {
dev_err(dev, "BM-CMD: too many stalls in "
"URB; resetting device\n");
usb_queue_reset_device(i2400mu->usb_iface);
/* fallthrough */
} else {
usb_clear_halt(i2400mu->usb_dev, usb_pipe);
msleep(10); /* give the device some time */
goto retry;
}
case -EINVAL: /* while removing driver */
case -ENODEV: /* dev disconnect ... */
case -ENOENT: /* just ignore it */
......@@ -161,9 +183,15 @@ int i2400mu_txd(void *_i2400mu)
struct device *dev = &i2400mu->usb_iface->dev;
struct i2400m_msg_hdr *tx_msg;
size_t tx_msg_size;
unsigned long flags;
d_fnstart(4, dev, "(i2400mu %p)\n", i2400mu);
spin_lock_irqsave(&i2400m->tx_lock, flags);
BUG_ON(i2400mu->tx_kthread != NULL);
i2400mu->tx_kthread = current;
spin_unlock_irqrestore(&i2400m->tx_lock, flags);
while (1) {
d_printf(2, dev, "TX: waiting for messages\n");
tx_msg = NULL;
......@@ -183,6 +211,11 @@ int i2400mu_txd(void *_i2400mu)
if (result < 0)
break;
}
spin_lock_irqsave(&i2400m->tx_lock, flags);
i2400mu->tx_kthread = NULL;
spin_unlock_irqrestore(&i2400m->tx_lock, flags);
d_fnend(4, dev, "(i2400mu %p) = %d\n", i2400mu, result);
return result;
}
......@@ -213,11 +246,13 @@ int i2400mu_tx_setup(struct i2400mu *i2400mu)
struct i2400m *i2400m = &i2400mu->i2400m;
struct device *dev = &i2400mu->usb_iface->dev;
struct wimax_dev *wimax_dev = &i2400m->wimax_dev;
struct task_struct *kthread;
i2400mu->tx_kthread = kthread_run(i2400mu_txd, i2400mu, "%s-tx",
kthread = kthread_run(i2400mu_txd, i2400mu, "%s-tx",
wimax_dev->name);
if (IS_ERR(i2400mu->tx_kthread)) {
result = PTR_ERR(i2400mu->tx_kthread);
/* the kthread function sets i2400mu->tx_thread */
if (IS_ERR(kthread)) {
result = PTR_ERR(kthread);
dev_err(dev, "TX: cannot start thread: %d\n", result);
}
return result;
......@@ -225,5 +260,17 @@ int i2400mu_tx_setup(struct i2400mu *i2400mu)
void i2400mu_tx_release(struct i2400mu *i2400mu)
{
kthread_stop(i2400mu->tx_kthread);
unsigned long flags;
struct i2400m *i2400m = &i2400mu->i2400m;
struct device *dev = i2400m_dev(i2400m);
struct task_struct *kthread;
spin_lock_irqsave(&i2400m->tx_lock, flags);
kthread = i2400mu->tx_kthread;
i2400mu->tx_kthread = NULL;
spin_unlock_irqrestore(&i2400m->tx_lock, flags);
if (kthread)
kthread_stop(kthread);
else
d_printf(1, dev, "TX: kthread had already exited\n");
}
......@@ -58,7 +58,7 @@
* i2400mu_rx_release()
* i2400mu_tx_release()
*
* i2400mu_bus_reset() Called by i2400m->bus_reset
* i2400mu_bus_reset() Called by i2400m_reset
* __i2400mu_reset()
* __i2400mu_send_barker()
* usb_reset_device()
......@@ -71,13 +71,25 @@
#define D_SUBMODULE usb
#include "usb-debug-levels.h"
static char i2400mu_debug_params[128];
module_param_string(debug, i2400mu_debug_params, sizeof(i2400mu_debug_params),
0644);
MODULE_PARM_DESC(debug,
"String of space-separated NAME:VALUE pairs, where NAMEs "
"are the different debug submodules and VALUE are the "
"initial debug value to set.");
/* Our firmware file name */
static const char *i2400mu_bus_fw_names[] = {
static const char *i2400mu_bus_fw_names_5x50[] = {
#define I2400MU_FW_FILE_NAME_v1_4 "i2400m-fw-usb-1.4.sbcf"
I2400MU_FW_FILE_NAME_v1_4,
#define I2400MU_FW_FILE_NAME_v1_3 "i2400m-fw-usb-1.3.sbcf"
I2400MU_FW_FILE_NAME_v1_3,
NULL,
};
static const char *i2400mu_bus_fw_names_6050[] = {
#define I6050U_FW_FILE_NAME_v1_5 "i6050-fw-usb-1.5.sbcf"
I6050U_FW_FILE_NAME_v1_5,
NULL,
};
......@@ -160,15 +172,60 @@ int __i2400mu_send_barker(struct i2400mu *i2400mu,
epd = usb_get_epd(i2400mu->usb_iface, endpoint);
pipe = usb_sndbulkpipe(i2400mu->usb_dev, epd->bEndpointAddress);
memcpy(buffer, barker, barker_size);
retry:
ret = usb_bulk_msg(i2400mu->usb_dev, pipe, buffer, barker_size,
&actual_len, HZ);
if (ret < 0) {
if (ret != -EINVAL)
dev_err(dev, "E: barker error: %d\n", ret);
} else if (actual_len != barker_size) {
dev_err(dev, "E: only %d bytes transmitted\n", actual_len);
&actual_len, 200);
switch (ret) {
case 0:
if (actual_len != barker_size) { /* Too short? drop it */
dev_err(dev, "E: %s: short write (%d B vs %zu "
"expected)\n",
__func__, actual_len, barker_size);
ret = -EIO;
}
break;
case -EPIPE:
/*
* Stall -- maybe the device is choking with our
* requests. Clear it and give it some time. If they
* happen to often, it might be another symptom, so we
* reset.
*
* No error handling for usb_clear_halt(0; if it
* works, the retry works; if it fails, this switch
* does the error handling for us.
*/
if (edc_inc(&i2400mu->urb_edc,
10 * EDC_MAX_ERRORS, EDC_ERROR_TIMEFRAME)) {
dev_err(dev, "E: %s: too many stalls in "
"URB; resetting device\n", __func__);
usb_queue_reset_device(i2400mu->usb_iface);
/* fallthrough */
} else {
usb_clear_halt(i2400mu->usb_dev, pipe);
msleep(10); /* give the device some time */
goto retry;
}
case -EINVAL: /* while removing driver */
case -ENODEV: /* dev disconnect ... */
case -ENOENT: /* just ignore it */
case -ESHUTDOWN: /* and exit */
case -ECONNRESET:
ret = -ESHUTDOWN;
break;
default: /* Some error? */
if (edc_inc(&i2400mu->urb_edc,
EDC_MAX_ERRORS, EDC_ERROR_TIMEFRAME)) {
dev_err(dev, "E: %s: maximum errors in URB "
"exceeded; resetting device\n",
__func__);
usb_queue_reset_device(i2400mu->usb_iface);
} else {
dev_warn(dev, "W: %s: cannot send URB: %d\n",
__func__, ret);
goto retry;
}
}
kfree(buffer);
error_kzalloc:
if (do_autopm)
......@@ -232,15 +289,16 @@ int i2400mu_bus_reset(struct i2400m *i2400m, enum i2400m_reset_type rt)
d_fnstart(3, dev, "(i2400m %p rt %u)\n", i2400m, rt);
if (rt == I2400M_RT_WARM)
result = __i2400mu_send_barker(i2400mu, i2400m_WARM_BOOT_BARKER,
result = __i2400mu_send_barker(
i2400mu, i2400m_WARM_BOOT_BARKER,
sizeof(i2400m_WARM_BOOT_BARKER),
I2400MU_EP_BULK_OUT);
i2400mu->endpoint_cfg.bulk_out);
else if (rt == I2400M_RT_COLD)
result = __i2400mu_send_barker(i2400mu, i2400m_COLD_BOOT_BARKER,
result = __i2400mu_send_barker(
i2400mu, i2400m_COLD_BOOT_BARKER,
sizeof(i2400m_COLD_BOOT_BARKER),
I2400MU_EP_RESET_COLD);
i2400mu->endpoint_cfg.reset_cold);
else if (rt == I2400M_RT_BUS) {
do_bus_reset:
result = usb_reset_device(i2400mu->usb_dev);
switch (result) {
case 0:
......@@ -248,7 +306,7 @@ do_bus_reset:
case -ENODEV:
case -ENOENT:
case -ESHUTDOWN:
result = rt == I2400M_RT_WARM ? -ENODEV : 0;
result = 0;
break; /* We assume the device is disconnected */
default:
dev_err(dev, "USB reset failed (%d), giving up!\n",
......@@ -261,10 +319,17 @@ do_bus_reset:
if (result < 0
&& result != -EINVAL /* device is gone */
&& rt != I2400M_RT_BUS) {
/*
* Things failed -- resort to lower level reset, that
* we queue in another context; the reason for this is
* that the pre and post reset functionality requires
* the i2400m->init_mutex; RT_WARM and RT_COLD can
* come from areas where i2400m->init_mutex is taken.
*/
dev_err(dev, "%s reset failed (%d); trying USB reset\n",
rt == I2400M_RT_WARM ? "warm" : "cold", result);
rt = I2400M_RT_BUS;
goto do_bus_reset;
usb_queue_reset_device(i2400mu->usb_iface);
result = -ENODEV;
}
d_fnend(3, dev, "(i2400m %p rt %u) = %d\n", i2400m, rt, result);
return result;
......@@ -402,20 +467,33 @@ int i2400mu_probe(struct usb_interface *iface,
i2400m->bus_tx_block_size = I2400MU_BLK_SIZE;
i2400m->bus_pl_size_max = I2400MU_PL_SIZE_MAX;
i2400m->bus_setup = NULL;
i2400m->bus_dev_start = i2400mu_bus_dev_start;
i2400m->bus_dev_stop = i2400mu_bus_dev_stop;
i2400m->bus_release = NULL;
i2400m->bus_tx_kick = i2400mu_bus_tx_kick;
i2400m->bus_reset = i2400mu_bus_reset;
i2400m->bus_bm_retries = I2400M_BOOT_RETRIES;
i2400m->bus_bm_retries = I2400M_USB_BOOT_RETRIES;
i2400m->bus_bm_cmd_send = i2400mu_bus_bm_cmd_send;
i2400m->bus_bm_wait_for_ack = i2400mu_bus_bm_wait_for_ack;
i2400m->bus_fw_names = i2400mu_bus_fw_names;
i2400m->bus_bm_mac_addr_impaired = 0;
if (id->idProduct == USB_DEVICE_ID_I6050) {
i2400m->bus_fw_names = i2400mu_bus_fw_names_6050;
i2400mu->endpoint_cfg.bulk_out = 0;
i2400mu->endpoint_cfg.notification = 3;
i2400mu->endpoint_cfg.reset_cold = 2;
i2400mu->endpoint_cfg.bulk_in = 1;
} else {
i2400m->bus_fw_names = i2400mu_bus_fw_names_5x50;
i2400mu->endpoint_cfg.bulk_out = 0;
i2400mu->endpoint_cfg.notification = 1;
i2400mu->endpoint_cfg.reset_cold = 2;
i2400mu->endpoint_cfg.bulk_in = 3;
}
#ifdef CONFIG_PM
iface->needs_remote_wakeup = 1; /* autosuspend (15s delay) */
device_init_wakeup(dev, 1);
usb_autopm_enable(i2400mu->usb_iface);
usb_dev->autosuspend_delay = 15 * HZ;
usb_dev->autosuspend_disabled = 0;
#endif
......@@ -483,7 +561,10 @@ void i2400mu_disconnect(struct usb_interface *iface)
* So at the end, the three cases require common handling.
*
* If at the time of this call the device's firmware is not loaded,
* nothing has to be done.
* nothing has to be done. Note we can be "loose" about not reading
* i2400m->updown under i2400m->init_mutex. If it happens to change
* inmediately, other parts of the call flow will fail and effectively
* catch it.
*
* If the firmware is loaded, we need to:
*
......@@ -522,6 +603,7 @@ int i2400mu_suspend(struct usb_interface *iface, pm_message_t pm_msg)
#endif
d_fnstart(3, dev, "(iface %p pm_msg %u)\n", iface, pm_msg.event);
rmb(); /* see i2400m->updown's documentation */
if (i2400m->updown == 0)
goto no_firmware;
if (i2400m->state == I2400M_SS_DATA_PATH_CONNECTED && is_autosuspend) {
......@@ -575,6 +657,7 @@ int i2400mu_resume(struct usb_interface *iface)
struct i2400m *i2400m = &i2400mu->i2400m;
d_fnstart(3, dev, "(iface %p)\n", iface);
rmb(); /* see i2400m->updown's documentation */
if (i2400m->updown == 0) {
d_printf(1, dev, "fw was down, no resume neeed\n");
goto out;
......@@ -590,8 +673,55 @@ out:
}
static
int i2400mu_reset_resume(struct usb_interface *iface)
{
int result;
struct device *dev = &iface->dev;
struct i2400mu *i2400mu = usb_get_intfdata(iface);
struct i2400m *i2400m = &i2400mu->i2400m;
d_fnstart(3, dev, "(iface %p)\n", iface);
result = i2400m_dev_reset_handle(i2400m, "device reset on resume");
d_fnend(3, dev, "(iface %p) = %d\n", iface, result);
return result < 0 ? result : 0;
}
/*
* Another driver or user space is triggering a reset on the device
* which contains the interface passed as an argument. Cease IO and
* save any device state you need to restore.
*
* If you need to allocate memory here, use GFP_NOIO or GFP_ATOMIC, if
* you are in atomic context.
*/
static
int i2400mu_pre_reset(struct usb_interface *iface)
{
struct i2400mu *i2400mu = usb_get_intfdata(iface);
return i2400m_pre_reset(&i2400mu->i2400m);
}
/*
* The reset has completed. Restore any saved device state and begin
* using the device again.
*
* If you need to allocate memory here, use GFP_NOIO or GFP_ATOMIC, if
* you are in atomic context.
*/
static
int i2400mu_post_reset(struct usb_interface *iface)
{
struct i2400mu *i2400mu = usb_get_intfdata(iface);
return i2400m_post_reset(&i2400mu->i2400m);
}
static
struct usb_device_id i2400mu_id_table[] = {
{ USB_DEVICE(0x8086, USB_DEVICE_ID_I6050) },
{ USB_DEVICE(0x8086, 0x0181) },
{ USB_DEVICE(0x8086, 0x1403) },
{ USB_DEVICE(0x8086, 0x1405) },
......@@ -609,8 +739,11 @@ struct usb_driver i2400mu_driver = {
.name = KBUILD_MODNAME,
.suspend = i2400mu_suspend,
.resume = i2400mu_resume,
.reset_resume = i2400mu_reset_resume,
.probe = i2400mu_probe,
.disconnect = i2400mu_disconnect,
.pre_reset = i2400mu_pre_reset,
.post_reset = i2400mu_post_reset,
.id_table = i2400mu_id_table,
.supports_autosuspend = 1,
};
......@@ -618,6 +751,8 @@ struct usb_driver i2400mu_driver = {
static
int __init i2400mu_driver_init(void)
{
d_parse_params(D_LEVEL, D_LEVEL_SIZE, i2400mu_debug_params,
"i2400m_usb.debug");
return usb_register(&i2400mu_driver);
}
module_init(i2400mu_driver_init);
......@@ -632,7 +767,7 @@ void __exit i2400mu_driver_exit(void)
module_exit(i2400mu_driver_exit);
MODULE_AUTHOR("Intel Corporation <linux-wimax@intel.com>");
MODULE_DESCRIPTION("Intel 2400M WiMAX networking for USB");
MODULE_DESCRIPTION("Driver for USB based Intel Wireless WiMAX Connection 2400M "
"(5x50 & 6050)");
MODULE_LICENSE("GPL");
MODULE_FIRMWARE(I2400MU_FW_FILE_NAME_v1_4);
MODULE_FIRMWARE(I2400MU_FW_FILE_NAME_v1_3);
......@@ -28,6 +28,7 @@
#define SDIO_DEVICE_ID_INTEL_IWMC3200TOP 0x1404
#define SDIO_DEVICE_ID_INTEL_IWMC3200GPS 0x1405
#define SDIO_DEVICE_ID_INTEL_IWMC3200BT 0x1406
#define SDIO_DEVICE_ID_INTEL_IWMC3200WIMAX_2G5 0x1407
#define SDIO_VENDOR_ID_MARVELL 0x02df
#define SDIO_DEVICE_ID_MARVELL_LIBERTAS 0x9103
......
......@@ -450,4 +450,76 @@ do { \
})
static inline
void d_submodule_set(struct d_level *d_level, size_t d_level_size,
const char *submodule, u8 level, const char *tag)
{
struct d_level *itr, *top;
int index = -1;
for (itr = d_level, top = itr + d_level_size; itr < top; itr++) {
index++;
if (itr->name == NULL) {
printk(KERN_ERR "%s: itr->name NULL?? (%p, #%d)\n",
tag, itr, index);
continue;
}
if (!strcmp(itr->name, submodule)) {
itr->level = level;
return;
}
}
printk(KERN_ERR "%s: unknown submodule %s\n", tag, submodule);
}
/**
* d_parse_params - Parse a string with debug parameters from the
* command line
*
* @d_level: level structure (D_LEVEL)
* @d_level_size: number of items in the level structure
* (D_LEVEL_SIZE).
* @_params: string with the parameters; this is a space (not tab!)
* separated list of NAME:VALUE, where value is the debug level
* and NAME is the name of the submodule.
* @tag: string for error messages (example: MODULE.ARGNAME).
*/
static inline
void d_parse_params(struct d_level *d_level, size_t d_level_size,
const char *_params, const char *tag)
{
char submodule[130], *params, *params_orig, *token, *colon;
unsigned level, tokens;
if (_params == NULL)
return;
params_orig = kstrdup(_params, GFP_KERNEL);
params = params_orig;
while (1) {
token = strsep(&params, " ");
if (token == NULL)
break;
if (*token == '\0') /* eat joint spaces */
continue;
/* kernel's sscanf %s eats until whitespace, so we
* replace : by \n so it doesn't get eaten later by
* strsep */
colon = strchr(token, ':');
if (colon != NULL)
*colon = '\n';
tokens = sscanf(token, "%s\n%u", submodule, &level);
if (colon != NULL)
*colon = ':'; /* set back, for error messages */
if (tokens == 2)
d_submodule_set(d_level, d_level_size,
submodule, level, tag);
else
printk(KERN_ERR "%s: can't parse '%s' as a "
"SUBMODULE:LEVEL (%d tokens)\n",
tag, token, tokens);
}
kfree(params_orig);
}
#endif /* #ifndef __debug__h__ */
......@@ -138,7 +138,7 @@ struct i2400m_bcf_hdr {
__le32 module_id;
__le32 module_vendor;
__le32 date; /* BCD YYYMMDD */
__le32 size;
__le32 size; /* in dwords */
__le32 key_size; /* in dwords */
__le32 modulus_size; /* in dwords */
__le32 exponent_size; /* in dwords */
......@@ -168,16 +168,6 @@ enum i2400m_brh {
};
/* Constants for bcf->module_id */
enum i2400m_bcf_mod_id {
/* Firmware file carries its own pokes -- pokes are a set of
* magical values that have to be written in certain memory
* addresses to get the device up and ready for firmware
* download when it is in non-signed boot mode. */
I2400M_BCF_MOD_ID_POKES = 0x000000001,
};
/**
* i2400m_bootrom_header - Header for a boot-mode command
*
......@@ -276,6 +266,7 @@ enum {
I2400M_WARM_RESET_BARKER = 0x50f750f7,
I2400M_NBOOT_BARKER = 0xdeadbeef,
I2400M_SBOOT_BARKER = 0x0ff1c1a1,
I2400M_SBOOT_BARKER_6050 = 0x80000001,
I2400M_ACK_BARKER = 0xfeedbabe,
I2400M_D2H_MSG_BARKER = 0xbeefbabe,
};
......
......@@ -195,6 +195,12 @@
* defining the `struct nla_policy` for each message, it has to have
* an array size of WIMAX_GNL_ATTR_MAX+1.
*
* The op_*() function pointers will not be called if the wimax_dev is
* in a state <= %WIMAX_ST_UNINITIALIZED. The exception is:
*
* - op_reset: can be called at any time after wimax_dev_add() has
* been called.
*
* THE PIPE INTERFACE:
*
* This interface is kept intentionally simple. The driver can send
......
......@@ -388,6 +388,8 @@ int wimax_gnl_doit_msg_from_user(struct sk_buff *skb, struct genl_info *info)
}
mutex_lock(&wimax_dev->mutex);
result = wimax_dev_is_ready(wimax_dev);
if (result == -ENOMEDIUM)
result = 0;
if (result < 0)
goto error_not_ready;
result = -ENOSYS;
......
......@@ -305,8 +305,15 @@ int wimax_rfkill(struct wimax_dev *wimax_dev, enum wimax_rf_state state)
d_fnstart(3, dev, "(wimax_dev %p state %u)\n", wimax_dev, state);
mutex_lock(&wimax_dev->mutex);
result = wimax_dev_is_ready(wimax_dev);
if (result < 0)
if (result < 0) {
/* While initializing, < 1.4.3 wimax-tools versions use
* this call to check if the device is a valid WiMAX
* device; so we allow it to proceed always,
* considering the radios are all off. */
if (result == -ENOMEDIUM && state == WIMAX_RF_QUERY)
result = WIMAX_RF_OFF << 1 | WIMAX_RF_OFF;
goto error_not_ready;
}
switch (state) {
case WIMAX_RF_ON:
case WIMAX_RF_OFF:
......@@ -355,6 +362,7 @@ int wimax_rfkill_add(struct wimax_dev *wimax_dev)
wimax_dev->rfkill = rfkill;
rfkill_init_sw_state(rfkill, 1);
result = rfkill_register(wimax_dev->rfkill);
if (result < 0)
goto error_rfkill_register;
......
......@@ -60,6 +60,14 @@
#define D_SUBMODULE stack
#include "debug-levels.h"
static char wimax_debug_params[128];
module_param_string(debug, wimax_debug_params, sizeof(wimax_debug_params),
0644);
MODULE_PARM_DESC(debug,
"String of space-separated NAME:VALUE pairs, where NAMEs "
"are the different debug submodules and VALUE are the "
"initial debug value to set.");
/*
* Authoritative source for the RE_STATE_CHANGE attribute policy
*
......@@ -562,6 +570,9 @@ int __init wimax_subsys_init(void)
int result, cnt;
d_fnstart(4, NULL, "()\n");
d_parse_params(D_LEVEL, D_LEVEL_SIZE, wimax_debug_params,
"wimax.debug");
snprintf(wimax_gnl_family.name, sizeof(wimax_gnl_family.name),
"WiMAX");
result = genl_register_family(&wimax_gnl_family);
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment