Commit 62bafda3 authored by teerth@ti.com's avatar teerth@ti.com Committed by Tony Lindgren

mtd omap2 nand driver: extend to work with omap3 boards

Dirk Behme <dirk.behme@gmail.com>

Extend omap2 mtd nand driver to work with ARCH_OMAP3 boards
Signed-off-by: default avatarSteve Sakoman <steve@sakoman.com>
Signed-off-by: default avatarDirk Behme <dirk.behme@gmail.com>
Acked-by: Koen Kooi <koen at openembedded dot org>
Signed-off-by: default avatarTony Lindgren <tony@atomide.com>
parent 684bc296
......@@ -70,10 +70,10 @@ config MTD_NAND_AMS_DELTA
Support for NAND flash on Amstrad E3 (Delta).
config MTD_NAND_OMAP2
tristate "NAND Flash device on OMAP 2420H4/2430SDP boards"
depends on (ARM && ARCH_OMAP2 && MTD_NAND)
tristate "NAND Flash device on OMAP2 and OMAP3"
depends on ARM && MTD_NAND && (ARCH_OMAP2 || ARCH_OMAP3)
help
Support for NAND flash on Texas Instruments 2430SDP/2420H4 platforms.
Support for NAND flash on Texas Instruments OMAP2 and OMAP3 platforms.
config MTD_NAND_OMAP
tristate "NAND Flash device on OMAP H3/H2/P2 boards"
......
......@@ -111,15 +111,6 @@
static const char *part_probes[] = { "cmdlinepart", NULL };
#endif
static int hw_ecc = 1;
/* new oob placement block for use with hardware ecc generation */
static struct nand_ecclayout omap_hw_eccoob = {
.eccbytes = 12,
.eccpos = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13},
.oobfree = {{16, 32}, {33, 63} },
};
struct omap_nand_info {
struct nand_hw_control controller;
struct omap_nand_platform_data *pdata;
......@@ -133,6 +124,13 @@ struct omap_nand_info {
void __iomem *gpmc_cs_baseaddr;
void __iomem *gpmc_baseaddr;
};
/*
* omap_nand_wp - This function enable or disable the Write Protect feature on
* NAND device
* @mtd: MTD device structure
* @mode: WP ON/OFF
*/
static void omap_nand_wp(struct mtd_info *mtd, int mode)
{
struct omap_nand_info *info = container_of(mtd,
......@@ -189,11 +187,11 @@ static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
}
/*
* omap_read_buf - read data from NAND controller into buffer
* @mtd: MTD device structure
* @buf: buffer to store date
* @len: number of bytes to read
*/
* omap_read_buf - read data from NAND controller into buffer
* @mtd: MTD device structure
* @buf: buffer to store date
* @len: number of bytes to read
*/
static void omap_read_buf(struct mtd_info *mtd, u_char *buf, int len)
{
struct omap_nand_info *info = container_of(mtd,
......@@ -207,11 +205,11 @@ static void omap_read_buf(struct mtd_info *mtd, u_char *buf, int len)
}
/*
* omap_write_buf - write buffer to NAND controller
* @mtd: MTD device structure
* @buf: data buffer
* @len: number of bytes to write
*/
* omap_write_buf - write buffer to NAND controller
* @mtd: MTD device structure
* @buf: data buffer
* @len: number of bytes to write
*/
static void omap_write_buf(struct mtd_info *mtd, const u_char * buf, int len)
{
struct omap_nand_info *info = container_of(mtd,
......@@ -250,10 +248,16 @@ static int omap_verify_buf(struct mtd_info *mtd, const u_char * buf, int len)
return 0;
}
#ifdef CONFIG_MTD_NAND_OMAP_HWECC
/*
* omap_hwecc_init-Initialize the Hardware ECC for NAND flash in GPMC controller
* @mtd: MTD device structure
*/
static void omap_hwecc_init(struct mtd_info *mtd)
{
struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
mtd);
register struct nand_chip *chip = mtd->priv;
unsigned long val = 0x0;
/* Read from ECC Control Register */
......@@ -264,16 +268,15 @@ static void omap_hwecc_init(struct mtd_info *mtd)
/* Read from ECC Size Config Register */
val = __raw_readl(info->gpmc_baseaddr + GPMC_ECC_SIZE_CONFIG);
/* ECCSIZE1=512 | ECCSIZE0=8bytes | Select eccResultsize[0123] */
val = ((0x000000FF<<22) | (0x00000003<<12) | (0x0000000F));
/* ECCSIZE1=512 | Select eccResultsize[0-3] */
val = ((((chip->ecc.size >> 1) - 1) << 22) | (0x0000000F));
__raw_writel(val, info->gpmc_baseaddr + GPMC_ECC_SIZE_CONFIG);
}
/*
* This function will generate true ECC value, which can be used
* gen_true_ecc - This function will generate true ECC value, which can be used
* when correcting data read from NAND flash memory core
* @ecc_buf: buffer to store ecc code
*/
static void gen_true_ecc(u8 *ecc_buf)
{
......@@ -289,8 +292,12 @@ static void gen_true_ecc(u8 *ecc_buf)
}
/*
* This function compares two ECC's and indicates if there is an error.
* If the error can be corrected it will be corrected to the buffer
* omap_compare_ecc - This function compares two ECC's and indicates if there
* is an error. If the error can be corrected it will be corrected to the
* buffer
* @ecc_data1: ecc code from nand spare area
* @ecc_data2: ecc code from hardware register obtained from hardware ecc
* @page_data: page data
*/
static int omap_compare_ecc(u8 *ecc_data1, /* read from NAND memory */
u8 *ecc_data2, /* read from register */
......@@ -409,6 +416,14 @@ static int omap_compare_ecc(u8 *ecc_data1, /* read from NAND memory */
}
}
/*
* omap_correct_data - Compares the ecc read from nand spare area with ECC
* registers values and corrects one bit error if it has occured
* @mtd: MTD device structure
* @dat: page data
* @read_ecc: ecc read from nand flash
* @calc_ecc: ecc read from ECC registers
*/
static int omap_correct_data(struct mtd_info *mtd, u_char * dat,
u_char * read_ecc, u_char * calc_ecc)
{
......@@ -436,65 +451,64 @@ static int omap_correct_data(struct mtd_info *mtd, u_char * dat,
}
/*
** Generate non-inverted ECC bytes.
**
** Using noninverted ECC can be considered ugly since writing a blank
** page ie. padding will clear the ECC bytes. This is no problem as long
** nobody is trying to write data on the seemingly unused page.
**
** Reading an erased page will produce an ECC mismatch between
** generated and read ECC bytes that has to be dealt with separately.
*/
* omap_calcuate_ecc - Generate non-inverted ECC bytes.
* Using noninverted ECC can be considered ugly since writing a blank
* page ie. padding will clear the ECC bytes. This is no problem as long
* nobody is trying to write data on the seemingly unused page. Reading
* an erased page will produce an ECC mismatch between generated and read
* ECC bytes that has to be dealt with separately.
* @mtd: MTD device structure
* @dat: The pointer to data on which ecc is computed
* @ecc_code: The ecc_code buffer
*/
static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
u_char *ecc_code)
{
struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
mtd);
unsigned long val = 0x0;
unsigned long reg, n;
/* Ex NAND_ECC_HW12_2048 */
if ((info->nand.ecc.mode == NAND_ECC_HW) &&
(info->nand.ecc.size == 2048))
n = 4;
else
n = 1;
unsigned long reg;
/* Start Reading from HW ECC1_Result = 0x200 */
reg = (unsigned long)(info->gpmc_baseaddr + GPMC_ECC1_RESULT);
while (n--) {
val = __raw_readl(reg);
*ecc_code++ = val; /* P128e, ..., P1e */
*ecc_code++ = val >> 16; /* P128o, ..., P1o */
/* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */
*ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0);
reg += 4;
}
val = __raw_readl(reg);
*ecc_code++ = val; /* P128e, ..., P1e */
*ecc_code++ = val >> 16; /* P128o, ..., P1o */
/* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */
*ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0);
reg += 4;
return 0;
} /* omap_calculate_ecc */
}
/*
* omap_enable_hwecc - This function enables the hardware ecc functionality
* @mtd: MTD device structure
* @mode: Read/Write mode
*/
static void omap_enable_hwecc(struct mtd_info *mtd, int mode)
{
struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
mtd);
register struct nand_chip *chip = mtd->priv;
unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
unsigned long val = __raw_readl(info->gpmc_baseaddr + GPMC_ECC_CONFIG);
switch (mode) {
case NAND_ECC_READ :
__raw_writel(0x101, info->gpmc_baseaddr + GPMC_ECC_CONTROL);
/* ECC 16 bit col) | ( CS 0 ) | ECC Enable */
val = (1 << 7) | (0x0) | (0x1) ;
/* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */
val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1);
break;
case NAND_ECC_READSYN :
__raw_writel(0x100, info->gpmc_baseaddr + GPMC_ECC_CONTROL);
/* ECC 16 bit col) | ( CS 0 ) | ECC Enable */
val = (1 << 7) | (0x0) | (0x1) ;
__raw_writel(0x100, info->gpmc_baseaddr + GPMC_ECC_CONTROL);
/* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */
val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1);
break;
case NAND_ECC_WRITE :
__raw_writel(0x101, info->gpmc_baseaddr + GPMC_ECC_CONTROL);
/* ECC 16 bit col) | ( CS 0 ) | ECC Enable */
val = (1 << 7) | (0x0) | (0x1) ;
/* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */
val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1);
break;
default:
DEBUG(MTD_DEBUG_LEVEL0, "Error: Unrecognized Mode[%d]!\n",
......@@ -504,7 +518,38 @@ static void omap_enable_hwecc(struct mtd_info *mtd, int mode)
__raw_writel(val, info->gpmc_baseaddr + GPMC_ECC_CONFIG);
}
#endif
/*
* omap_wait - Wait function is called during Program and erase
* operations and the way it is called from MTD layer, we should wait
* till the NAND chip is ready after the programming/erase operation
* has completed.
* @mtd: MTD device structure
* @chip: NAND Chip structure
*/
static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip)
{
register struct nand_chip *this = mtd->priv;
struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
mtd);
int status = 0;
this->IO_ADDR_W = (void *) info->gpmc_cs_baseaddr +
GPMC_CS_NAND_COMMAND;
this->IO_ADDR_R = (void *) info->gpmc_cs_baseaddr + GPMC_CS_NAND_DATA;
while (!(status & 0x40)) {
__raw_writeb(NAND_CMD_STATUS & 0xFF, this->IO_ADDR_W);
status = __raw_readb(this->IO_ADDR_R);
}
return status;
}
/*
* omap_dev_ready - calls the platform specific dev_ready function
* @mtd: MTD device structure
*/
static int omap_dev_ready(struct mtd_info *mtd)
{
struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
......@@ -534,7 +579,7 @@ static int __devinit omap_nand_probe(struct platform_device *pdev)
struct omap_nand_info *info;
struct omap_nand_platform_data *pdata;
int err;
unsigned long val;
unsigned long val;
pdata = pdev->dev.platform_data;
......@@ -568,15 +613,20 @@ static int __devinit omap_nand_probe(struct platform_device *pdev)
}
/* Enable RD PIN Monitoring Reg */
val = gpmc_cs_read_reg(info->gpmc_cs, GPMC_CS_CONFIG1);
val |= WR_RD_PIN_MONITORING;
gpmc_cs_write_reg(info->gpmc_cs, GPMC_CS_CONFIG1, val);
if (pdata->dev_ready) {
val = gpmc_cs_read_reg(info->gpmc_cs, GPMC_CS_CONFIG1);
val |= WR_RD_PIN_MONITORING;
gpmc_cs_write_reg(info->gpmc_cs, GPMC_CS_CONFIG1, val);
}
val = gpmc_cs_read_reg(info->gpmc_cs, GPMC_CS_CONFIG7);
val &= ~(0xf << 8);
val |= (0xc & 0xf) << 8;
gpmc_cs_write_reg(info->gpmc_cs, GPMC_CS_CONFIG7, val);
/* NAND write protect off */
omap_nand_wp(&info->mtd, NAND_WP_OFF);
if (!request_mem_region(info->phys_base, NAND_IO_SIZE,
pdev->dev.driver->name)) {
err = -EBUSY;
......@@ -597,29 +647,39 @@ static int __devinit omap_nand_probe(struct platform_device *pdev)
info->nand.write_buf = omap_write_buf;
info->nand.verify_buf = omap_verify_buf;
info->nand.dev_ready = omap_dev_ready;
info->nand.chip_delay = 0;
/* Options */
info->nand.options = NAND_BUSWIDTH_16;
info->nand.options |= NAND_SKIP_BBTSCAN;
if (hw_ecc) {
/* init HW ECC */
omap_hwecc_init(&info->mtd);
info->nand.ecc.calculate = omap_calculate_ecc;
info->nand.ecc.hwctl = omap_enable_hwecc;
info->nand.ecc.correct = omap_correct_data;
info->nand.ecc.mode = NAND_ECC_HW;
info->nand.ecc.bytes = 12;
info->nand.ecc.size = 2048;
info->nand.ecc.layout = &omap_hw_eccoob;
/*
* If RDY/BSY line is connected to OMAP then use the omap ready funcrtion
* and the generic nand_wait function which reads the status register
* after monitoring the RDY/BSY line.Otherwise use a standard chip delay
* which is slightly more than tR (AC Timing) of the NAND device and read
* status register until you get a failure or success
*/
if (pdata->dev_ready) {
info->nand.dev_ready = omap_dev_ready;
info->nand.chip_delay = 0;
} else {
info->nand.ecc.mode = NAND_ECC_SOFT;
info->nand.waitfunc = omap_wait;
info->nand.chip_delay = 50;
}
info->nand.options |= NAND_SKIP_BBTSCAN;
if ((gpmc_cs_read_reg(info->gpmc_cs, GPMC_CS_CONFIG1) & 0x3000)
== 0x1000)
info->nand.options |= NAND_BUSWIDTH_16;
#ifdef CONFIG_MTD_NAND_OMAP_HWECC
info->nand.ecc.bytes = 3;
info->nand.ecc.size = 512;
info->nand.ecc.calculate = omap_calculate_ecc;
info->nand.ecc.hwctl = omap_enable_hwecc;
info->nand.ecc.correct = omap_correct_data;
info->nand.ecc.mode = NAND_ECC_HW;
/* init HW ECC */
omap_hwecc_init(&info->mtd);
#else
info->nand.ecc.mode = NAND_ECC_SOFT;
#endif
/* DIP switches on some boards change between 8 and 16 bit
* bus widths for flash. Try the other width if the first try fails.
......@@ -642,8 +702,6 @@ static int __devinit omap_nand_probe(struct platform_device *pdev)
#endif
add_mtd_device(&info->mtd);
omap_nand_wp(&info->mtd, NAND_WP_OFF);
platform_set_drvdata(pdev, &info->mtd);
return 0;
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment