Commit 4ce5f241 authored by Linus Torvalds's avatar Linus Torvalds

Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rric/oprofile

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rric/oprofile: (31 commits)
  powerpc/oprofile: fix whitespaces in op_model_cell.c
  powerpc/oprofile: IBM CELL: add SPU event profiling support
  powerpc/oprofile: fix cell/pr_util.h
  powerpc/oprofile: IBM CELL: cleanup and restructuring
  oprofile: make new cpu buffer functions part of the api
  oprofile: remove #ifdef CONFIG_OPROFILE_IBS in non-ibs code
  ring_buffer: fix ring_buffer_event_length()
  oprofile: use new data sample format for ibs
  oprofile: add op_cpu_buffer_get_data()
  oprofile: add op_cpu_buffer_add_data()
  oprofile: rework implementation of cpu buffer events
  oprofile: modify op_cpu_buffer_read_entry()
  oprofile: add op_cpu_buffer_write_reserve()
  oprofile: rename variables in add_ibs_begin()
  oprofile: rename add_sample() in cpu_buffer.c
  oprofile: rename variable ibs_allowed to has_ibs in op_model_amd.c
  oprofile: making add_sample_entry() inline
  oprofile: remove backtrace code for ibs
  oprofile: remove unused ibs macro
  oprofile: remove unused components in struct oprofile_cpu_buffer
  ...
parents 7c51d57e a076aa4f
......@@ -37,9 +37,11 @@
#define CBE_PM_STOP_AT_MAX 0x40000000
#define CBE_PM_TRACE_MODE_GET(pm_control) (((pm_control) >> 28) & 0x3)
#define CBE_PM_TRACE_MODE_SET(mode) (((mode) & 0x3) << 28)
#define CBE_PM_TRACE_BUF_OVFLW(bit) (((bit) & 0x1) << 17)
#define CBE_PM_COUNT_MODE_SET(count) (((count) & 0x3) << 18)
#define CBE_PM_FREEZE_ALL_CTRS 0x00100000
#define CBE_PM_ENABLE_EXT_TRACE 0x00008000
#define CBE_PM_SPU_ADDR_TRACE_SET(msk) (((msk) & 0x3) << 9)
/* Macros for the trace_address register. */
#define CBE_PM_TRACE_BUF_FULL 0x00000800
......
......@@ -32,6 +32,12 @@ struct op_system_config {
unsigned long mmcr0;
unsigned long mmcr1;
unsigned long mmcra;
#ifdef CONFIG_OPROFILE_CELL
/* Register for oprofile user tool to check cell kernel profiling
* suport.
*/
unsigned long cell_support;
#endif
#endif
unsigned long enable_kernel;
unsigned long enable_user;
......
......@@ -30,6 +30,10 @@
extern struct delayed_work spu_work;
extern int spu_prof_running;
#define TRACE_ARRAY_SIZE 1024
extern spinlock_t oprof_spu_smpl_arry_lck;
struct spu_overlay_info { /* map of sections within an SPU overlay */
unsigned int vma; /* SPU virtual memory address from elf */
unsigned int size; /* size of section from elf */
......@@ -89,10 +93,11 @@ void vma_map_free(struct vma_to_fileoffset_map *map);
* Entry point for SPU profiling.
* cycles_reset is the SPU_CYCLES count value specified by the user.
*/
int start_spu_profiling(unsigned int cycles_reset);
void stop_spu_profiling(void);
int start_spu_profiling_cycles(unsigned int cycles_reset);
void start_spu_profiling_events(void);
void stop_spu_profiling_cycles(void);
void stop_spu_profiling_events(void);
/* add the necessary profiling hooks */
int spu_sync_start(void);
......
......@@ -18,11 +18,21 @@
#include <asm/cell-pmu.h>
#include "pr_util.h"
#define TRACE_ARRAY_SIZE 1024
#define SCALE_SHIFT 14
static u32 *samples;
/* spu_prof_running is a flag used to indicate if spu profiling is enabled
* or not. It is set by the routines start_spu_profiling_cycles() and
* start_spu_profiling_events(). The flag is cleared by the routines
* stop_spu_profiling_cycles() and stop_spu_profiling_events(). These
* routines are called via global_start() and global_stop() which are called in
* op_powerpc_start() and op_powerpc_stop(). These routines are called once
* per system as a result of the user starting/stopping oprofile. Hence, only
* one CPU per user at a time will be changing the value of spu_prof_running.
* In general, OProfile does not protect against multiple users trying to run
* OProfile at a time.
*/
int spu_prof_running;
static unsigned int profiling_interval;
......@@ -31,8 +41,8 @@ static unsigned int profiling_interval;
#define SPU_PC_MASK 0xFFFF
static DEFINE_SPINLOCK(sample_array_lock);
unsigned long sample_array_lock_flags;
DEFINE_SPINLOCK(oprof_spu_smpl_arry_lck);
unsigned long oprof_spu_smpl_arry_lck_flags;
void set_spu_profiling_frequency(unsigned int freq_khz, unsigned int cycles_reset)
{
......@@ -145,13 +155,13 @@ static enum hrtimer_restart profile_spus(struct hrtimer *timer)
* sample array must be loaded and then processed for a given
* cpu. The sample array is not per cpu.
*/
spin_lock_irqsave(&sample_array_lock,
sample_array_lock_flags);
spin_lock_irqsave(&oprof_spu_smpl_arry_lck,
oprof_spu_smpl_arry_lck_flags);
num_samples = cell_spu_pc_collection(cpu);
if (num_samples == 0) {
spin_unlock_irqrestore(&sample_array_lock,
sample_array_lock_flags);
spin_unlock_irqrestore(&oprof_spu_smpl_arry_lck,
oprof_spu_smpl_arry_lck_flags);
continue;
}
......@@ -162,8 +172,8 @@ static enum hrtimer_restart profile_spus(struct hrtimer *timer)
num_samples);
}
spin_unlock_irqrestore(&sample_array_lock,
sample_array_lock_flags);
spin_unlock_irqrestore(&oprof_spu_smpl_arry_lck,
oprof_spu_smpl_arry_lck_flags);
}
smp_wmb(); /* insure spu event buffer updates are written */
......@@ -182,13 +192,13 @@ static enum hrtimer_restart profile_spus(struct hrtimer *timer)
static struct hrtimer timer;
/*
* Entry point for SPU profiling.
* Entry point for SPU cycle profiling.
* NOTE: SPU profiling is done system-wide, not per-CPU.
*
* cycles_reset is the count value specified by the user when
* setting up OProfile to count SPU_CYCLES.
*/
int start_spu_profiling(unsigned int cycles_reset)
int start_spu_profiling_cycles(unsigned int cycles_reset)
{
ktime_t kt;
......@@ -212,10 +222,30 @@ int start_spu_profiling(unsigned int cycles_reset)
return 0;
}
void stop_spu_profiling(void)
/*
* Entry point for SPU event profiling.
* NOTE: SPU profiling is done system-wide, not per-CPU.
*
* cycles_reset is the count value specified by the user when
* setting up OProfile to count SPU_CYCLES.
*/
void start_spu_profiling_events(void)
{
spu_prof_running = 1;
schedule_delayed_work(&spu_work, DEFAULT_TIMER_EXPIRE);
return;
}
void stop_spu_profiling_cycles(void)
{
spu_prof_running = 0;
hrtimer_cancel(&timer);
kfree(samples);
pr_debug("SPU_PROF: stop_spu_profiling issued\n");
pr_debug("SPU_PROF: stop_spu_profiling_cycles issued\n");
}
void stop_spu_profiling_events(void)
{
spu_prof_running = 0;
}
......@@ -132,6 +132,28 @@ static int op_powerpc_create_files(struct super_block *sb, struct dentry *root)
oprofilefs_create_ulong(sb, root, "mmcr0", &sys.mmcr0);
oprofilefs_create_ulong(sb, root, "mmcr1", &sys.mmcr1);
oprofilefs_create_ulong(sb, root, "mmcra", &sys.mmcra);
#ifdef CONFIG_OPROFILE_CELL
/* create a file the user tool can check to see what level of profiling
* support exits with this kernel. Initialize bit mask to indicate
* what support the kernel has:
* bit 0 - Supports SPU event profiling in addition to PPU
* event and cycles; and SPU cycle profiling
* bits 1-31 - Currently unused.
*
* If the file does not exist, then the kernel only supports SPU
* cycle profiling, PPU event and cycle profiling.
*/
oprofilefs_create_ulong(sb, root, "cell_support", &sys.cell_support);
sys.cell_support = 0x1; /* Note, the user OProfile tool must check
* that this bit is set before attempting to
* user SPU event profiling. Older kernels
* will not have this file, hence the user
* tool is not allowed to do SPU event
* profiling on older kernels. Older kernels
* will accept SPU events but collected data
* is garbage.
*/
#endif
#endif
for (i = 0; i < model->num_counters; ++i) {
......
......@@ -40,14 +40,15 @@
#include "../platforms/cell/interrupt.h"
#include "cell/pr_util.h"
static void cell_global_stop_spu(void);
#define PPU_PROFILING 0
#define SPU_PROFILING_CYCLES 1
#define SPU_PROFILING_EVENTS 2
/*
* spu_cycle_reset is the number of cycles between samples.
* This variable is used for SPU profiling and should ONLY be set
* at the beginning of cell_reg_setup; otherwise, it's read-only.
*/
static unsigned int spu_cycle_reset;
#define SPU_EVENT_NUM_START 4100
#define SPU_EVENT_NUM_STOP 4399
#define SPU_PROFILE_EVENT_ADDR 4363 /* spu, address trace, decimal */
#define SPU_PROFILE_EVENT_ADDR_MASK_A 0x146 /* sub unit set to zero */
#define SPU_PROFILE_EVENT_ADDR_MASK_B 0x186 /* sub unit set to zero */
#define NUM_SPUS_PER_NODE 8
#define SPU_CYCLES_EVENT_NUM 2 /* event number for SPU_CYCLES */
......@@ -66,6 +67,21 @@ static unsigned int spu_cycle_reset;
#define MAX_SPU_COUNT 0xFFFFFF /* maximum 24 bit LFSR value */
/* Minumum HW interval timer setting to send value to trace buffer is 10 cycle.
* To configure counter to send value every N cycles set counter to
* 2^32 - 1 - N.
*/
#define NUM_INTERVAL_CYC 0xFFFFFFFF - 10
/*
* spu_cycle_reset is the number of cycles between samples.
* This variable is used for SPU profiling and should ONLY be set
* at the beginning of cell_reg_setup; otherwise, it's read-only.
*/
static unsigned int spu_cycle_reset;
static unsigned int profiling_mode;
static int spu_evnt_phys_spu_indx;
struct pmc_cntrl_data {
unsigned long vcntr;
unsigned long evnts;
......@@ -105,6 +121,8 @@ struct pm_cntrl {
u16 trace_mode;
u16 freeze;
u16 count_mode;
u16 spu_addr_trace;
u8 trace_buf_ovflw;
};
static struct {
......@@ -122,7 +140,7 @@ static struct {
#define GET_INPUT_CONTROL(x) ((x & 0x00000004) >> 2)
static DEFINE_PER_CPU(unsigned long[NR_PHYS_CTRS], pmc_values);
static unsigned long spu_pm_cnt[MAX_NUMNODES * NUM_SPUS_PER_NODE];
static struct pmc_cntrl_data pmc_cntrl[NUM_THREADS][NR_PHYS_CTRS];
/*
......@@ -152,6 +170,7 @@ static u32 hdw_thread;
static u32 virt_cntr_inter_mask;
static struct timer_list timer_virt_cntr;
static struct timer_list timer_spu_event_swap;
/*
* pm_signal needs to be global since it is initialized in
......@@ -165,7 +184,7 @@ static int spu_rtas_token; /* token for SPU cycle profiling */
static u32 reset_value[NR_PHYS_CTRS];
static int num_counters;
static int oprofile_running;
static DEFINE_SPINLOCK(virt_cntr_lock);
static DEFINE_SPINLOCK(cntr_lock);
static u32 ctr_enabled;
......@@ -336,13 +355,13 @@ static void set_pm_event(u32 ctr, int event, u32 unit_mask)
for (i = 0; i < NUM_DEBUG_BUS_WORDS; i++) {
if (bus_word & (1 << i)) {
pm_regs.debug_bus_control |=
(bus_type << (30 - (2 * i)));
(bus_type << (30 - (2 * i)));
for (j = 0; j < NUM_INPUT_BUS_WORDS; j++) {
if (input_bus[j] == 0xff) {
input_bus[j] = i;
pm_regs.group_control |=
(i << (30 - (2 * j)));
(i << (30 - (2 * j)));
break;
}
......@@ -367,12 +386,16 @@ static void write_pm_cntrl(int cpu)
if (pm_regs.pm_cntrl.stop_at_max == 1)
val |= CBE_PM_STOP_AT_MAX;
if (pm_regs.pm_cntrl.trace_mode == 1)
if (pm_regs.pm_cntrl.trace_mode != 0)
val |= CBE_PM_TRACE_MODE_SET(pm_regs.pm_cntrl.trace_mode);
if (pm_regs.pm_cntrl.trace_buf_ovflw == 1)
val |= CBE_PM_TRACE_BUF_OVFLW(pm_regs.pm_cntrl.trace_buf_ovflw);
if (pm_regs.pm_cntrl.freeze == 1)
val |= CBE_PM_FREEZE_ALL_CTRS;
val |= CBE_PM_SPU_ADDR_TRACE_SET(pm_regs.pm_cntrl.spu_addr_trace);
/*
* Routine set_count_mode must be called previously to set
* the count mode based on the user selection of user and kernel.
......@@ -441,7 +464,7 @@ static void cell_virtual_cntr(unsigned long data)
* not both playing with the counters on the same node.
*/
spin_lock_irqsave(&virt_cntr_lock, flags);
spin_lock_irqsave(&cntr_lock, flags);
prev_hdw_thread = hdw_thread;
......@@ -480,7 +503,7 @@ static void cell_virtual_cntr(unsigned long data)
cbe_disable_pm_interrupts(cpu);
for (i = 0; i < num_counters; i++) {
per_cpu(pmc_values, cpu + prev_hdw_thread)[i]
= cbe_read_ctr(cpu, i);
= cbe_read_ctr(cpu, i);
if (per_cpu(pmc_values, cpu + next_hdw_thread)[i]
== 0xFFFFFFFF)
......@@ -527,7 +550,7 @@ static void cell_virtual_cntr(unsigned long data)
cbe_enable_pm(cpu);
}
spin_unlock_irqrestore(&virt_cntr_lock, flags);
spin_unlock_irqrestore(&cntr_lock, flags);
mod_timer(&timer_virt_cntr, jiffies + HZ / 10);
}
......@@ -541,38 +564,146 @@ static void start_virt_cntrs(void)
add_timer(&timer_virt_cntr);
}
/* This function is called once for all cpus combined */
static int cell_reg_setup(struct op_counter_config *ctr,
static int cell_reg_setup_spu_cycles(struct op_counter_config *ctr,
struct op_system_config *sys, int num_ctrs)
{
int i, j, cpu;
spu_cycle_reset = 0;
spu_cycle_reset = ctr[0].count;
if (ctr[0].event == SPU_CYCLES_EVENT_NUM) {
spu_cycle_reset = ctr[0].count;
/*
* Each node will need to make the rtas call to start
* and stop SPU profiling. Get the token once and store it.
*/
spu_rtas_token = rtas_token("ibm,cbe-spu-perftools");
if (unlikely(spu_rtas_token == RTAS_UNKNOWN_SERVICE)) {
printk(KERN_ERR
"%s: rtas token ibm,cbe-spu-perftools unknown\n",
__func__);
return -EIO;
}
return 0;
}
/* Unfortunately, the hardware will only support event profiling
* on one SPU per node at a time. Therefore, we must time slice
* the profiling across all SPUs in the node. Note, we do this
* in parallel for each node. The following routine is called
* periodically based on kernel timer to switch which SPU is
* being monitored in a round robbin fashion.
*/
static void spu_evnt_swap(unsigned long data)
{
int node;
int cur_phys_spu, nxt_phys_spu, cur_spu_evnt_phys_spu_indx;
unsigned long flags;
int cpu;
int ret;
u32 interrupt_mask;
/* enable interrupts on cntr 0 */
interrupt_mask = CBE_PM_CTR_OVERFLOW_INTR(0);
hdw_thread = 0;
/* Make sure spu event interrupt handler and spu event swap
* don't access the counters simultaneously.
*/
spin_lock_irqsave(&cntr_lock, flags);
cur_spu_evnt_phys_spu_indx = spu_evnt_phys_spu_indx;
if (++(spu_evnt_phys_spu_indx) == NUM_SPUS_PER_NODE)
spu_evnt_phys_spu_indx = 0;
pm_signal[0].sub_unit = spu_evnt_phys_spu_indx;
pm_signal[1].sub_unit = spu_evnt_phys_spu_indx;
pm_signal[2].sub_unit = spu_evnt_phys_spu_indx;
/* switch the SPU being profiled on each node */
for_each_online_cpu(cpu) {
if (cbe_get_hw_thread_id(cpu))
continue;
node = cbe_cpu_to_node(cpu);
cur_phys_spu = (node * NUM_SPUS_PER_NODE)
+ cur_spu_evnt_phys_spu_indx;
nxt_phys_spu = (node * NUM_SPUS_PER_NODE)
+ spu_evnt_phys_spu_indx;
/*
* Each node will need to make the rtas call to start
* and stop SPU profiling. Get the token once and store it.
* stop counters, save counter values, restore counts
* for previous physical SPU
*/
spu_rtas_token = rtas_token("ibm,cbe-spu-perftools");
cbe_disable_pm(cpu);
cbe_disable_pm_interrupts(cpu);
if (unlikely(spu_rtas_token == RTAS_UNKNOWN_SERVICE)) {
printk(KERN_ERR
"%s: rtas token ibm,cbe-spu-perftools unknown\n",
__func__);
return -EIO;
}
spu_pm_cnt[cur_phys_spu]
= cbe_read_ctr(cpu, 0);
/* restore previous count for the next spu to sample */
/* NOTE, hardware issue, counter will not start if the
* counter value is at max (0xFFFFFFFF).
*/
if (spu_pm_cnt[nxt_phys_spu] >= 0xFFFFFFFF)
cbe_write_ctr(cpu, 0, 0xFFFFFFF0);
else
cbe_write_ctr(cpu, 0, spu_pm_cnt[nxt_phys_spu]);
pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
/* setup the debug bus measure the one event and
* the two events to route the next SPU's PC on
* the debug bus
*/
ret = pm_rtas_activate_signals(cbe_cpu_to_node(cpu), 3);
if (ret)
printk(KERN_ERR "%s: pm_rtas_activate_signals failed, "
"SPU event swap\n", __func__);
/* clear the trace buffer, don't want to take PC for
* previous SPU*/
cbe_write_pm(cpu, trace_address, 0);
enable_ctr(cpu, 0, pm_regs.pm07_cntrl);
/* Enable interrupts on the CPU thread that is starting */
cbe_enable_pm_interrupts(cpu, hdw_thread,
interrupt_mask);
cbe_enable_pm(cpu);
}
pm_rtas_token = rtas_token("ibm,cbe-perftools");
spin_unlock_irqrestore(&cntr_lock, flags);
/* swap approximately every 0.1 seconds */
mod_timer(&timer_spu_event_swap, jiffies + HZ / 25);
}
static void start_spu_event_swap(void)
{
init_timer(&timer_spu_event_swap);
timer_spu_event_swap.function = spu_evnt_swap;
timer_spu_event_swap.data = 0UL;
timer_spu_event_swap.expires = jiffies + HZ / 25;
add_timer(&timer_spu_event_swap);
}
static int cell_reg_setup_spu_events(struct op_counter_config *ctr,
struct op_system_config *sys, int num_ctrs)
{
int i;
/* routine is called once for all nodes */
spu_evnt_phys_spu_indx = 0;
/*
* For all events excetp PPU CYCLEs, each node will need to make
* For all events except PPU CYCLEs, each node will need to make
* the rtas cbe-perftools call to setup and reset the debug bus.
* Make the token lookup call once and store it in the global
* variable pm_rtas_token.
*/
pm_rtas_token = rtas_token("ibm,cbe-perftools");
if (unlikely(pm_rtas_token == RTAS_UNKNOWN_SERVICE)) {
printk(KERN_ERR
"%s: rtas token ibm,cbe-perftools unknown\n",
......@@ -580,6 +711,58 @@ static int cell_reg_setup(struct op_counter_config *ctr,
return -EIO;
}
/* setup the pm_control register settings,
* settings will be written per node by the
* cell_cpu_setup() function.
*/
pm_regs.pm_cntrl.trace_buf_ovflw = 1;
/* Use the occurrence trace mode to have SPU PC saved
* to the trace buffer. Occurrence data in trace buffer
* is not used. Bit 2 must be set to store SPU addresses.
*/
pm_regs.pm_cntrl.trace_mode = 2;
pm_regs.pm_cntrl.spu_addr_trace = 0x1; /* using debug bus
event 2 & 3 */
/* setup the debug bus event array with the SPU PC routing events.
* Note, pm_signal[0] will be filled in by set_pm_event() call below.
*/
pm_signal[1].signal_group = SPU_PROFILE_EVENT_ADDR / 100;
pm_signal[1].bus_word = GET_BUS_WORD(SPU_PROFILE_EVENT_ADDR_MASK_A);
pm_signal[1].bit = SPU_PROFILE_EVENT_ADDR % 100;
pm_signal[1].sub_unit = spu_evnt_phys_spu_indx;
pm_signal[2].signal_group = SPU_PROFILE_EVENT_ADDR / 100;
pm_signal[2].bus_word = GET_BUS_WORD(SPU_PROFILE_EVENT_ADDR_MASK_B);
pm_signal[2].bit = SPU_PROFILE_EVENT_ADDR % 100;
pm_signal[2].sub_unit = spu_evnt_phys_spu_indx;
/* Set the user selected spu event to profile on,
* note, only one SPU profiling event is supported
*/
num_counters = 1; /* Only support one SPU event at a time */
set_pm_event(0, ctr[0].event, ctr[0].unit_mask);
reset_value[0] = 0xFFFFFFFF - ctr[0].count;
/* global, used by cell_cpu_setup */
ctr_enabled |= 1;
/* Initialize the count for each SPU to the reset value */
for (i=0; i < MAX_NUMNODES * NUM_SPUS_PER_NODE; i++)
spu_pm_cnt[i] = reset_value[0];
return 0;
}
static int cell_reg_setup_ppu(struct op_counter_config *ctr,
struct op_system_config *sys, int num_ctrs)
{
/* routine is called once for all nodes */
int i, j, cpu;
num_counters = num_ctrs;
if (unlikely(num_ctrs > NR_PHYS_CTRS)) {
......@@ -589,14 +772,6 @@ static int cell_reg_setup(struct op_counter_config *ctr,
__func__);
return -EIO;
}
pm_regs.group_control = 0;
pm_regs.debug_bus_control = 0;
/* setup the pm_control register */
memset(&pm_regs.pm_cntrl, 0, sizeof(struct pm_cntrl));
pm_regs.pm_cntrl.stop_at_max = 1;
pm_regs.pm_cntrl.trace_mode = 0;
pm_regs.pm_cntrl.freeze = 1;
set_count_mode(sys->enable_kernel, sys->enable_user);
......@@ -665,6 +840,63 @@ static int cell_reg_setup(struct op_counter_config *ctr,
}
/* This function is called once for all cpus combined */
static int cell_reg_setup(struct op_counter_config *ctr,
struct op_system_config *sys, int num_ctrs)
{
int ret=0;
spu_cycle_reset = 0;
/* initialize the spu_arr_trace value, will be reset if
* doing spu event profiling.
*/
pm_regs.group_control = 0;
pm_regs.debug_bus_control = 0;
pm_regs.pm_cntrl.stop_at_max = 1;
pm_regs.pm_cntrl.trace_mode = 0;
pm_regs.pm_cntrl.freeze = 1;
pm_regs.pm_cntrl.trace_buf_ovflw = 0;
pm_regs.pm_cntrl.spu_addr_trace = 0;
/*
* For all events except PPU CYCLEs, each node will need to make
* the rtas cbe-perftools call to setup and reset the debug bus.
* Make the token lookup call once and store it in the global
* variable pm_rtas_token.
*/
pm_rtas_token = rtas_token("ibm,cbe-perftools");
if (unlikely(pm_rtas_token == RTAS_UNKNOWN_SERVICE)) {
printk(KERN_ERR
"%s: rtas token ibm,cbe-perftools unknown\n",
__func__);
return -EIO;
}
if (ctr[0].event == SPU_CYCLES_EVENT_NUM) {
profiling_mode = SPU_PROFILING_CYCLES;
ret = cell_reg_setup_spu_cycles(ctr, sys, num_ctrs);
} else if ((ctr[0].event >= SPU_EVENT_NUM_START) &&
(ctr[0].event <= SPU_EVENT_NUM_STOP)) {
profiling_mode = SPU_PROFILING_EVENTS;
spu_cycle_reset = ctr[0].count;
/* for SPU event profiling, need to setup the
* pm_signal array with the events to route the
* SPU PC before making the FW call. Note, only
* one SPU event for profiling can be specified
* at a time.
*/
cell_reg_setup_spu_events(ctr, sys, num_ctrs);
} else {
profiling_mode = PPU_PROFILING;
ret = cell_reg_setup_ppu(ctr, sys, num_ctrs);
}
return ret;
}
/* This function is called once for each cpu */
static int cell_cpu_setup(struct op_counter_config *cntr)
......@@ -672,8 +904,13 @@ static int cell_cpu_setup(struct op_counter_config *cntr)
u32 cpu = smp_processor_id();
u32 num_enabled = 0;
int i;
int ret;
if (spu_cycle_reset)
/* Cycle based SPU profiling does not use the performance
* counters. The trace array is configured to collect
* the data.
*/
if (profiling_mode == SPU_PROFILING_CYCLES)
return 0;
/* There is one performance monitor per processor chip (i.e. node),
......@@ -686,7 +923,6 @@ static int cell_cpu_setup(struct op_counter_config *cntr)
cbe_disable_pm(cpu);
cbe_disable_pm_interrupts(cpu);
cbe_write_pm(cpu, pm_interval, 0);
cbe_write_pm(cpu, pm_start_stop, 0);
cbe_write_pm(cpu, group_control, pm_regs.group_control);
cbe_write_pm(cpu, debug_bus_control, pm_regs.debug_bus_control);
......@@ -703,7 +939,20 @@ static int cell_cpu_setup(struct op_counter_config *cntr)
* The pm_rtas_activate_signals will return -EIO if the FW
* call failed.
*/
return pm_rtas_activate_signals(cbe_cpu_to_node(cpu), num_enabled);
if (profiling_mode == SPU_PROFILING_EVENTS) {
/* For SPU event profiling also need to setup the
* pm interval timer
*/
ret = pm_rtas_activate_signals(cbe_cpu_to_node(cpu),
num_enabled+2);
/* store PC from debug bus to Trace buffer as often
* as possible (every 10 cycles)
*/
cbe_write_pm(cpu, pm_interval, NUM_INTERVAL_CYC);
return ret;
} else
return pm_rtas_activate_signals(cbe_cpu_to_node(cpu),
num_enabled);
}
#define ENTRIES 303
......@@ -885,7 +1134,122 @@ static struct notifier_block cpu_freq_notifier_block = {
};
#endif
static int cell_global_start_spu(struct op_counter_config *ctr)
/*
* Note the generic OProfile stop calls do not support returning
* an error on stop. Hence, will not return an error if the FW
* calls fail on stop. Failure to reset the debug bus is not an issue.
* Failure to disable the SPU profiling is not an issue. The FW calls
* to enable the performance counters and debug bus will work even if
* the hardware was not cleanly reset.
*/
static void cell_global_stop_spu_cycles(void)
{
int subfunc, rtn_value;
unsigned int lfsr_value;
int cpu;
oprofile_running = 0;
smp_wmb();
#ifdef CONFIG_CPU_FREQ
cpufreq_unregister_notifier(&cpu_freq_notifier_block,
CPUFREQ_TRANSITION_NOTIFIER);
#endif
for_each_online_cpu(cpu) {
if (cbe_get_hw_thread_id(cpu))
continue;
subfunc = 3; /*
* 2 - activate SPU tracing,
* 3 - deactivate
*/
lfsr_value = 0x8f100000;
rtn_value = rtas_call(spu_rtas_token, 3, 1, NULL,
subfunc, cbe_cpu_to_node(cpu),
lfsr_value);
if (unlikely(rtn_value != 0)) {
printk(KERN_ERR
"%s: rtas call ibm,cbe-spu-perftools " \
"failed, return = %d\n",
__func__, rtn_value);
}
/* Deactivate the signals */
pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
}
stop_spu_profiling_cycles();
}
static void cell_global_stop_spu_events(void)
{
int cpu;
oprofile_running = 0;
stop_spu_profiling_events();
smp_wmb();
for_each_online_cpu(cpu) {
if (cbe_get_hw_thread_id(cpu))
continue;
cbe_sync_irq(cbe_cpu_to_node(cpu));
/* Stop the counters */
cbe_disable_pm(cpu);
cbe_write_pm07_control(cpu, 0, 0);
/* Deactivate the signals */
pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
/* Deactivate interrupts */
cbe_disable_pm_interrupts(cpu);
}
del_timer_sync(&timer_spu_event_swap);
}
static void cell_global_stop_ppu(void)
{
int cpu;
/*
* This routine will be called once for the system.
* There is one performance monitor per node, so we
* only need to perform this function once per node.
*/
del_timer_sync(&timer_virt_cntr);
oprofile_running = 0;
smp_wmb();
for_each_online_cpu(cpu) {
if (cbe_get_hw_thread_id(cpu))
continue;
cbe_sync_irq(cbe_cpu_to_node(cpu));
/* Stop the counters */
cbe_disable_pm(cpu);
/* Deactivate the signals */
pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
/* Deactivate interrupts */
cbe_disable_pm_interrupts(cpu);
}
}
static void cell_global_stop(void)
{
if (profiling_mode == PPU_PROFILING)
cell_global_stop_ppu();
else if (profiling_mode == SPU_PROFILING_EVENTS)
cell_global_stop_spu_events();
else
cell_global_stop_spu_cycles();
}
static int cell_global_start_spu_cycles(struct op_counter_config *ctr)
{
int subfunc;
unsigned int lfsr_value;
......@@ -951,18 +1315,18 @@ static int cell_global_start_spu(struct op_counter_config *ctr)
/* start profiling */
ret = rtas_call(spu_rtas_token, 3, 1, NULL, subfunc,
cbe_cpu_to_node(cpu), lfsr_value);
cbe_cpu_to_node(cpu), lfsr_value);
if (unlikely(ret != 0)) {
printk(KERN_ERR
"%s: rtas call ibm,cbe-spu-perftools failed, return = %d\n",
__func__, ret);
"%s: rtas call ibm,cbe-spu-perftools failed, " \
"return = %d\n", __func__, ret);
rtas_error = -EIO;
goto out;
}
}
rtas_error = start_spu_profiling(spu_cycle_reset);
rtas_error = start_spu_profiling_cycles(spu_cycle_reset);
if (rtas_error)
goto out_stop;
......@@ -970,11 +1334,74 @@ static int cell_global_start_spu(struct op_counter_config *ctr)
return 0;
out_stop:
cell_global_stop_spu(); /* clean up the PMU/debug bus */
cell_global_stop_spu_cycles(); /* clean up the PMU/debug bus */
out:
return rtas_error;
}
static int cell_global_start_spu_events(struct op_counter_config *ctr)
{
int cpu;
u32 interrupt_mask = 0;
int rtn = 0;
hdw_thread = 0;
/* spu event profiling, uses the performance counters to generate
* an interrupt. The hardware is setup to store the SPU program
* counter into the trace array. The occurrence mode is used to
* enable storing data to the trace buffer. The bits are set
* to send/store the SPU address in the trace buffer. The debug
* bus must be setup to route the SPU program counter onto the
* debug bus. The occurrence data in the trace buffer is not used.
*/
/* This routine gets called once for the system.
* There is one performance monitor per node, so we
* only need to perform this function once per node.
*/
for_each_online_cpu(cpu) {
if (cbe_get_hw_thread_id(cpu))
continue;
/*
* Setup SPU event-based profiling.
* Set perf_mon_control bit 0 to a zero before
* enabling spu collection hardware.
*
* Only support one SPU event on one SPU per node.
*/
if (ctr_enabled & 1) {
cbe_write_ctr(cpu, 0, reset_value[0]);
enable_ctr(cpu, 0, pm_regs.pm07_cntrl);
interrupt_mask |=
CBE_PM_CTR_OVERFLOW_INTR(0);
} else {
/* Disable counter */
cbe_write_pm07_control(cpu, 0, 0);
}
cbe_get_and_clear_pm_interrupts(cpu);
cbe_enable_pm_interrupts(cpu, hdw_thread, interrupt_mask);
cbe_enable_pm(cpu);
/* clear the trace buffer */
cbe_write_pm(cpu, trace_address, 0);
}
/* Start the timer to time slice collecting the event profile
* on each of the SPUs. Note, can collect profile on one SPU
* per node at a time.
*/
start_spu_event_swap();
start_spu_profiling_events();
oprofile_running = 1;
smp_wmb();
return rtn;
}
static int cell_global_start_ppu(struct op_counter_config *ctr)
{
u32 cpu, i;
......@@ -994,8 +1421,7 @@ static int cell_global_start_ppu(struct op_counter_config *ctr)
if (ctr_enabled & (1 << i)) {
cbe_write_ctr(cpu, i, reset_value[i]);
enable_ctr(cpu, i, pm_regs.pm07_cntrl);
interrupt_mask |=
CBE_PM_CTR_OVERFLOW_INTR(i);
interrupt_mask |= CBE_PM_CTR_OVERFLOW_INTR(i);
} else {
/* Disable counter */
cbe_write_pm07_control(cpu, i, 0);
......@@ -1024,99 +1450,162 @@ static int cell_global_start_ppu(struct op_counter_config *ctr)
static int cell_global_start(struct op_counter_config *ctr)
{
if (spu_cycle_reset)
return cell_global_start_spu(ctr);
if (profiling_mode == SPU_PROFILING_CYCLES)
return cell_global_start_spu_cycles(ctr);
else if (profiling_mode == SPU_PROFILING_EVENTS)
return cell_global_start_spu_events(ctr);
else
return cell_global_start_ppu(ctr);
}
/*
* Note the generic OProfile stop calls do not support returning
* an error on stop. Hence, will not return an error if the FW
* calls fail on stop. Failure to reset the debug bus is not an issue.
* Failure to disable the SPU profiling is not an issue. The FW calls
* to enable the performance counters and debug bus will work even if
* the hardware was not cleanly reset.
/* The SPU interrupt handler
*
* SPU event profiling works as follows:
* The pm_signal[0] holds the one SPU event to be measured. It is routed on
* the debug bus using word 0 or 1. The value of pm_signal[1] and
* pm_signal[2] contain the necessary events to route the SPU program
* counter for the selected SPU onto the debug bus using words 2 and 3.
* The pm_interval register is setup to write the SPU PC value into the
* trace buffer at the maximum rate possible. The trace buffer is configured
* to store the PCs, wrapping when it is full. The performance counter is
* intialized to the max hardware count minus the number of events, N, between
* samples. Once the N events have occured, a HW counter overflow occurs
* causing the generation of a HW counter interrupt which also stops the
* writing of the SPU PC values to the trace buffer. Hence the last PC
* written to the trace buffer is the SPU PC that we want. Unfortunately,
* we have to read from the beginning of the trace buffer to get to the
* last value written. We just hope the PPU has nothing better to do then
* service this interrupt. The PC for the specific SPU being profiled is
* extracted from the trace buffer processed and stored. The trace buffer
* is cleared, interrupts are cleared, the counter is reset to max - N.
* A kernel timer is used to periodically call the routine spu_evnt_swap()
* to switch to the next physical SPU in the node to profile in round robbin
* order. This way data is collected for all SPUs on the node. It does mean
* that we need to use a relatively small value of N to ensure enough samples
* on each SPU are collected each SPU is being profiled 1/8 of the time.
* It may also be necessary to use a longer sample collection period.
*/
static void cell_global_stop_spu(void)
static void cell_handle_interrupt_spu(struct pt_regs *regs,
struct op_counter_config *ctr)
{
int subfunc, rtn_value;
unsigned int lfsr_value;
int cpu;
u32 cpu, cpu_tmp;
u64 trace_entry;
u32 interrupt_mask;
u64 trace_buffer[2];
u64 last_trace_buffer;
u32 sample;
u32 trace_addr;
unsigned long sample_array_lock_flags;
int spu_num;
unsigned long flags;
oprofile_running = 0;
/* Make sure spu event interrupt handler and spu event swap
* don't access the counters simultaneously.
*/
cpu = smp_processor_id();
spin_lock_irqsave(&cntr_lock, flags);
#ifdef CONFIG_CPU_FREQ
cpufreq_unregister_notifier(&cpu_freq_notifier_block,
CPUFREQ_TRANSITION_NOTIFIER);
#endif
cpu_tmp = cpu;
cbe_disable_pm(cpu);
for_each_online_cpu(cpu) {
if (cbe_get_hw_thread_id(cpu))
continue;
interrupt_mask = cbe_get_and_clear_pm_interrupts(cpu);
subfunc = 3; /*
* 2 - activate SPU tracing,
* 3 - deactivate
*/
lfsr_value = 0x8f100000;
sample = 0xABCDEF;
trace_entry = 0xfedcba;
last_trace_buffer = 0xdeadbeaf;
rtn_value = rtas_call(spu_rtas_token, 3, 1, NULL,
subfunc, cbe_cpu_to_node(cpu),
lfsr_value);
if ((oprofile_running == 1) && (interrupt_mask != 0)) {
/* disable writes to trace buff */
cbe_write_pm(cpu, pm_interval, 0);
if (unlikely(rtn_value != 0)) {
printk(KERN_ERR
"%s: rtas call ibm,cbe-spu-perftools failed, return = %d\n",
__func__, rtn_value);
/* only have one perf cntr being used, cntr 0 */
if ((interrupt_mask & CBE_PM_CTR_OVERFLOW_INTR(0))
&& ctr[0].enabled)
/* The SPU PC values will be read
* from the trace buffer, reset counter
*/
cbe_write_ctr(cpu, 0, reset_value[0]);
trace_addr = cbe_read_pm(cpu, trace_address);
while (!(trace_addr & CBE_PM_TRACE_BUF_EMPTY)) {
/* There is data in the trace buffer to process
* Read the buffer until you get to the last
* entry. This is the value we want.
*/
cbe_read_trace_buffer(cpu, trace_buffer);
trace_addr = cbe_read_pm(cpu, trace_address);
}
/* Deactivate the signals */
pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
}
/* SPU Address 16 bit count format for 128 bit
* HW trace buffer is used for the SPU PC storage
* HDR bits 0:15
* SPU Addr 0 bits 16:31
* SPU Addr 1 bits 32:47
* unused bits 48:127
*
* HDR: bit4 = 1 SPU Address 0 valid
* HDR: bit5 = 1 SPU Address 1 valid
* - unfortunately, the valid bits don't seem to work
*
* Note trace_buffer[0] holds bits 0:63 of the HW
* trace buffer, trace_buffer[1] holds bits 64:127
*/
stop_spu_profiling();
}
trace_entry = trace_buffer[0]
& 0x00000000FFFF0000;
static void cell_global_stop_ppu(void)
{
int cpu;
/* only top 16 of the 18 bit SPU PC address
* is stored in trace buffer, hence shift right
* by 16 -2 bits */
sample = trace_entry >> 14;
last_trace_buffer = trace_buffer[0];
/*
* This routine will be called once for the system.
* There is one performance monitor per node, so we
* only need to perform this function once per node.
*/
del_timer_sync(&timer_virt_cntr);
oprofile_running = 0;
smp_wmb();
spu_num = spu_evnt_phys_spu_indx
+ (cbe_cpu_to_node(cpu) * NUM_SPUS_PER_NODE);
for_each_online_cpu(cpu) {
if (cbe_get_hw_thread_id(cpu))
continue;
/* make sure only one process at a time is calling
* spu_sync_buffer()
*/
spin_lock_irqsave(&oprof_spu_smpl_arry_lck,
sample_array_lock_flags);
spu_sync_buffer(spu_num, &sample, 1);
spin_unlock_irqrestore(&oprof_spu_smpl_arry_lck,
sample_array_lock_flags);
cbe_sync_irq(cbe_cpu_to_node(cpu));
/* Stop the counters */
cbe_disable_pm(cpu);
smp_wmb(); /* insure spu event buffer updates are written
* don't want events intermingled... */
/* Deactivate the signals */
pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
/* The counters were frozen by the interrupt.
* Reenable the interrupt and restart the counters.
*/
cbe_write_pm(cpu, pm_interval, NUM_INTERVAL_CYC);
cbe_enable_pm_interrupts(cpu, hdw_thread,
virt_cntr_inter_mask);
/* Deactivate interrupts */
cbe_disable_pm_interrupts(cpu);
}
}
/* clear the trace buffer, re-enable writes to trace buff */
cbe_write_pm(cpu, trace_address, 0);
cbe_write_pm(cpu, pm_interval, NUM_INTERVAL_CYC);
static void cell_global_stop(void)
{
if (spu_cycle_reset)
cell_global_stop_spu();
else
cell_global_stop_ppu();
/* The writes to the various performance counters only writes
* to a latch. The new values (interrupt setting bits, reset
* counter value etc.) are not copied to the actual registers
* until the performance monitor is enabled. In order to get
* this to work as desired, the permormance monitor needs to
* be disabled while writing to the latches. This is a
* HW design issue.
*/
write_pm_cntrl(cpu);
cbe_enable_pm(cpu);
}
spin_unlock_irqrestore(&cntr_lock, flags);
}
static void cell_handle_interrupt(struct pt_regs *regs,
struct op_counter_config *ctr)
static void cell_handle_interrupt_ppu(struct pt_regs *regs,
struct op_counter_config *ctr)
{
u32 cpu;
u64 pc;
......@@ -1132,7 +1621,7 @@ static void cell_handle_interrupt(struct pt_regs *regs,
* routine are not running at the same time. See the
* cell_virtual_cntr() routine for additional comments.
*/
spin_lock_irqsave(&virt_cntr_lock, flags);
spin_lock_irqsave(&cntr_lock, flags);
/*
* Need to disable and reenable the performance counters
......@@ -1185,7 +1674,16 @@ static void cell_handle_interrupt(struct pt_regs *regs,
*/
cbe_enable_pm(cpu);
}
spin_unlock_irqrestore(&virt_cntr_lock, flags);
spin_unlock_irqrestore(&cntr_lock, flags);
}
static void cell_handle_interrupt(struct pt_regs *regs,
struct op_counter_config *ctr)
{
if (profiling_mode == PPU_PROFILING)
cell_handle_interrupt_ppu(regs, ctr);
else
cell_handle_interrupt_spu(regs, ctr);
}
/*
......@@ -1195,7 +1693,8 @@ static void cell_handle_interrupt(struct pt_regs *regs,
*/
static int cell_sync_start(void)
{
if (spu_cycle_reset)
if ((profiling_mode == SPU_PROFILING_CYCLES) ||
(profiling_mode == SPU_PROFILING_EVENTS))
return spu_sync_start();
else
return DO_GENERIC_SYNC;
......@@ -1203,7 +1702,8 @@ static int cell_sync_start(void)
static int cell_sync_stop(void)
{
if (spu_cycle_reset)
if ((profiling_mode == SPU_PROFILING_CYCLES) ||
(profiling_mode == SPU_PROFILING_EVENTS))
return spu_sync_stop();
else
return 1;
......
......@@ -2,7 +2,7 @@
* @file op_model_amd.c
* athlon / K7 / K8 / Family 10h model-specific MSR operations
*
* @remark Copyright 2002-2008 OProfile authors
* @remark Copyright 2002-2009 OProfile authors
* @remark Read the file COPYING
*
* @author John Levon
......@@ -10,7 +10,7 @@
* @author Graydon Hoare
* @author Robert Richter <robert.richter@amd.com>
* @author Barry Kasindorf
*/
*/
#include <linux/oprofile.h>
#include <linux/device.h>
......@@ -60,53 +60,10 @@ static unsigned long reset_value[NUM_COUNTERS];
#define IBS_OP_LOW_VALID_BIT (1ULL<<18) /* bit 18 */
#define IBS_OP_LOW_ENABLE (1ULL<<17) /* bit 17 */
/* Codes used in cpu_buffer.c */
/* This produces duplicate code, need to be fixed */
#define IBS_FETCH_BEGIN 3
#define IBS_OP_BEGIN 4
/*
* The function interface needs to be fixed, something like add
* data. Should then be added to linux/oprofile.h.
*/
extern void
oprofile_add_ibs_sample(struct pt_regs * const regs,
unsigned int * const ibs_sample, int ibs_code);
struct ibs_fetch_sample {
/* MSRC001_1031 IBS Fetch Linear Address Register */
unsigned int ibs_fetch_lin_addr_low;
unsigned int ibs_fetch_lin_addr_high;
/* MSRC001_1030 IBS Fetch Control Register */
unsigned int ibs_fetch_ctl_low;
unsigned int ibs_fetch_ctl_high;
/* MSRC001_1032 IBS Fetch Physical Address Register */
unsigned int ibs_fetch_phys_addr_low;
unsigned int ibs_fetch_phys_addr_high;
};
struct ibs_op_sample {
/* MSRC001_1034 IBS Op Logical Address Register (IbsRIP) */
unsigned int ibs_op_rip_low;
unsigned int ibs_op_rip_high;
/* MSRC001_1035 IBS Op Data Register */
unsigned int ibs_op_data1_low;
unsigned int ibs_op_data1_high;
/* MSRC001_1036 IBS Op Data 2 Register */
unsigned int ibs_op_data2_low;
unsigned int ibs_op_data2_high;
/* MSRC001_1037 IBS Op Data 3 Register */
unsigned int ibs_op_data3_low;
unsigned int ibs_op_data3_high;
/* MSRC001_1038 IBS DC Linear Address Register (IbsDcLinAd) */
unsigned int ibs_dc_linear_low;
unsigned int ibs_dc_linear_high;
/* MSRC001_1039 IBS DC Physical Address Register (IbsDcPhysAd) */
unsigned int ibs_dc_phys_low;
unsigned int ibs_dc_phys_high;
};
#define IBS_FETCH_SIZE 6
#define IBS_OP_SIZE 12
static int ibs_allowed; /* AMD Family10h and later */
static int has_ibs; /* AMD Family10h and later */
struct op_ibs_config {
unsigned long op_enabled;
......@@ -197,31 +154,29 @@ static inline int
op_amd_handle_ibs(struct pt_regs * const regs,
struct op_msrs const * const msrs)
{
unsigned int low, high;
struct ibs_fetch_sample ibs_fetch;
struct ibs_op_sample ibs_op;
u32 low, high;
u64 msr;
struct op_entry entry;
if (!ibs_allowed)
if (!has_ibs)
return 1;
if (ibs_config.fetch_enabled) {
rdmsr(MSR_AMD64_IBSFETCHCTL, low, high);
if (high & IBS_FETCH_HIGH_VALID_BIT) {
ibs_fetch.ibs_fetch_ctl_high = high;
ibs_fetch.ibs_fetch_ctl_low = low;
rdmsr(MSR_AMD64_IBSFETCHLINAD, low, high);
ibs_fetch.ibs_fetch_lin_addr_high = high;
ibs_fetch.ibs_fetch_lin_addr_low = low;
rdmsr(MSR_AMD64_IBSFETCHPHYSAD, low, high);
ibs_fetch.ibs_fetch_phys_addr_high = high;
ibs_fetch.ibs_fetch_phys_addr_low = low;
oprofile_add_ibs_sample(regs,
(unsigned int *)&ibs_fetch,
IBS_FETCH_BEGIN);
rdmsrl(MSR_AMD64_IBSFETCHLINAD, msr);
oprofile_write_reserve(&entry, regs, msr,
IBS_FETCH_CODE, IBS_FETCH_SIZE);
oprofile_add_data(&entry, (u32)msr);
oprofile_add_data(&entry, (u32)(msr >> 32));
oprofile_add_data(&entry, low);
oprofile_add_data(&entry, high);
rdmsrl(MSR_AMD64_IBSFETCHPHYSAD, msr);
oprofile_add_data(&entry, (u32)msr);
oprofile_add_data(&entry, (u32)(msr >> 32));
oprofile_write_commit(&entry);
/* reenable the IRQ */
rdmsr(MSR_AMD64_IBSFETCHCTL, low, high);
high &= ~IBS_FETCH_HIGH_VALID_BIT;
high |= IBS_FETCH_HIGH_ENABLE;
low &= IBS_FETCH_LOW_MAX_CNT_MASK;
......@@ -232,30 +187,29 @@ op_amd_handle_ibs(struct pt_regs * const regs,
if (ibs_config.op_enabled) {
rdmsr(MSR_AMD64_IBSOPCTL, low, high);
if (low & IBS_OP_LOW_VALID_BIT) {
rdmsr(MSR_AMD64_IBSOPRIP, low, high);
ibs_op.ibs_op_rip_low = low;
ibs_op.ibs_op_rip_high = high;
rdmsr(MSR_AMD64_IBSOPDATA, low, high);
ibs_op.ibs_op_data1_low = low;
ibs_op.ibs_op_data1_high = high;
rdmsr(MSR_AMD64_IBSOPDATA2, low, high);
ibs_op.ibs_op_data2_low = low;
ibs_op.ibs_op_data2_high = high;
rdmsr(MSR_AMD64_IBSOPDATA3, low, high);
ibs_op.ibs_op_data3_low = low;
ibs_op.ibs_op_data3_high = high;
rdmsr(MSR_AMD64_IBSDCLINAD, low, high);
ibs_op.ibs_dc_linear_low = low;
ibs_op.ibs_dc_linear_high = high;
rdmsr(MSR_AMD64_IBSDCPHYSAD, low, high);
ibs_op.ibs_dc_phys_low = low;
ibs_op.ibs_dc_phys_high = high;
rdmsrl(MSR_AMD64_IBSOPRIP, msr);
oprofile_write_reserve(&entry, regs, msr,
IBS_OP_CODE, IBS_OP_SIZE);
oprofile_add_data(&entry, (u32)msr);
oprofile_add_data(&entry, (u32)(msr >> 32));
rdmsrl(MSR_AMD64_IBSOPDATA, msr);
oprofile_add_data(&entry, (u32)msr);
oprofile_add_data(&entry, (u32)(msr >> 32));
rdmsrl(MSR_AMD64_IBSOPDATA2, msr);
oprofile_add_data(&entry, (u32)msr);
oprofile_add_data(&entry, (u32)(msr >> 32));
rdmsrl(MSR_AMD64_IBSOPDATA3, msr);
oprofile_add_data(&entry, (u32)msr);
oprofile_add_data(&entry, (u32)(msr >> 32));
rdmsrl(MSR_AMD64_IBSDCLINAD, msr);
oprofile_add_data(&entry, (u32)msr);
oprofile_add_data(&entry, (u32)(msr >> 32));
rdmsrl(MSR_AMD64_IBSDCPHYSAD, msr);
oprofile_add_data(&entry, (u32)msr);
oprofile_add_data(&entry, (u32)(msr >> 32));
oprofile_write_commit(&entry);
/* reenable the IRQ */
oprofile_add_ibs_sample(regs,
(unsigned int *)&ibs_op,
IBS_OP_BEGIN);
rdmsr(MSR_AMD64_IBSOPCTL, low, high);
high = 0;
low &= ~IBS_OP_LOW_VALID_BIT;
low |= IBS_OP_LOW_ENABLE;
......@@ -305,14 +259,14 @@ static void op_amd_start(struct op_msrs const * const msrs)
}
#ifdef CONFIG_OPROFILE_IBS
if (ibs_allowed && ibs_config.fetch_enabled) {
if (has_ibs && ibs_config.fetch_enabled) {
low = (ibs_config.max_cnt_fetch >> 4) & 0xFFFF;
high = ((ibs_config.rand_en & 0x1) << 25) /* bit 57 */
+ IBS_FETCH_HIGH_ENABLE;
wrmsr(MSR_AMD64_IBSFETCHCTL, low, high);
}
if (ibs_allowed && ibs_config.op_enabled) {
if (has_ibs && ibs_config.op_enabled) {
low = ((ibs_config.max_cnt_op >> 4) & 0xFFFF)
+ ((ibs_config.dispatched_ops & 0x1) << 19) /* bit 19 */
+ IBS_OP_LOW_ENABLE;
......@@ -341,14 +295,14 @@ static void op_amd_stop(struct op_msrs const * const msrs)
}
#ifdef CONFIG_OPROFILE_IBS
if (ibs_allowed && ibs_config.fetch_enabled) {
if (has_ibs && ibs_config.fetch_enabled) {
/* clear max count and enable */
low = 0;
high = 0;
wrmsr(MSR_AMD64_IBSFETCHCTL, low, high);
}
if (ibs_allowed && ibs_config.op_enabled) {
if (has_ibs && ibs_config.op_enabled) {
/* clear max count and enable */
low = 0;
high = 0;
......@@ -409,6 +363,7 @@ static int init_ibs_nmi(void)
| IBSCTL_LVTOFFSETVAL);
pci_read_config_dword(cpu_cfg, IBSCTL, &value);
if (value != (ibs_eilvt_off | IBSCTL_LVTOFFSETVAL)) {
pci_dev_put(cpu_cfg);
printk(KERN_DEBUG "Failed to setup IBS LVT offset, "
"IBSCTL = 0x%08x", value);
return 1;
......@@ -436,20 +391,20 @@ static int init_ibs_nmi(void)
/* uninitialize the APIC for the IBS interrupts if needed */
static void clear_ibs_nmi(void)
{
if (ibs_allowed)
if (has_ibs)
on_each_cpu(apic_clear_ibs_nmi_per_cpu, NULL, 1);
}
/* initialize the APIC for the IBS interrupts if available */
static void ibs_init(void)
{
ibs_allowed = boot_cpu_has(X86_FEATURE_IBS);
has_ibs = boot_cpu_has(X86_FEATURE_IBS);
if (!ibs_allowed)
if (!has_ibs)
return;
if (init_ibs_nmi()) {
ibs_allowed = 0;
has_ibs = 0;
return;
}
......@@ -458,7 +413,7 @@ static void ibs_init(void)
static void ibs_exit(void)
{
if (!ibs_allowed)
if (!has_ibs)
return;
clear_ibs_nmi();
......@@ -478,7 +433,7 @@ static int setup_ibs_files(struct super_block *sb, struct dentry *root)
if (ret)
return ret;
if (!ibs_allowed)
if (!has_ibs)
return ret;
/* model specific files */
......
/**
* @file buffer_sync.c
*
* @remark Copyright 2002 OProfile authors
* @remark Copyright 2002-2009 OProfile authors
* @remark Read the file COPYING
*
* @author John Levon <levon@movementarian.org>
* @author Barry Kasindorf
* @author Robert Richter <robert.richter@amd.com>
*
* This is the core of the buffer management. Each
* CPU buffer is processed and entered into the
......@@ -315,88 +316,73 @@ static void add_trace_begin(void)
add_event_entry(TRACE_BEGIN_CODE);
}
#ifdef CONFIG_OPROFILE_IBS
#define IBS_FETCH_CODE_SIZE 2
#define IBS_OP_CODE_SIZE 5
/*
* Add IBS fetch and op entries to event buffer
*/
static void add_ibs_begin(int cpu, int code, struct mm_struct *mm)
static void add_data(struct op_entry *entry, struct mm_struct *mm)
{
unsigned long rip;
int i, count;
unsigned long ibs_cookie = 0;
unsigned long code, pc, val;
unsigned long cookie;
off_t offset;
struct op_sample *sample;
sample = cpu_buffer_read_entry(cpu);
if (!sample)
goto Error;
rip = sample->eip;
#ifdef __LP64__
rip += sample->event << 32;
#endif
if (!op_cpu_buffer_get_data(entry, &code))
return;
if (!op_cpu_buffer_get_data(entry, &pc))
return;
if (!op_cpu_buffer_get_size(entry))
return;
if (mm) {
ibs_cookie = lookup_dcookie(mm, rip, &offset);
cookie = lookup_dcookie(mm, pc, &offset);
if (ibs_cookie == NO_COOKIE)
offset = rip;
if (ibs_cookie == INVALID_COOKIE) {
if (cookie == NO_COOKIE)
offset = pc;
if (cookie == INVALID_COOKIE) {
atomic_inc(&oprofile_stats.sample_lost_no_mapping);
offset = rip;
offset = pc;
}
if (ibs_cookie != last_cookie) {
add_cookie_switch(ibs_cookie);
last_cookie = ibs_cookie;
if (cookie != last_cookie) {
add_cookie_switch(cookie);
last_cookie = cookie;
}
} else
offset = rip;
offset = pc;
add_event_entry(ESCAPE_CODE);
add_event_entry(code);
add_event_entry(offset); /* Offset from Dcookie */
/* we send the Dcookie offset, but send the raw Linear Add also*/
add_event_entry(sample->eip);
add_event_entry(sample->event);
if (code == IBS_FETCH_CODE)
count = IBS_FETCH_CODE_SIZE; /*IBS FETCH is 2 int64s*/
else
count = IBS_OP_CODE_SIZE; /*IBS OP is 5 int64s*/
for (i = 0; i < count; i++) {
sample = cpu_buffer_read_entry(cpu);
if (!sample)
goto Error;
add_event_entry(sample->eip);
add_event_entry(sample->event);
}
return;
Error:
return;
while (op_cpu_buffer_get_data(entry, &val))
add_event_entry(val);
}
#endif
static void add_sample_entry(unsigned long offset, unsigned long event)
static inline void add_sample_entry(unsigned long offset, unsigned long event)
{
add_event_entry(offset);
add_event_entry(event);
}
static int add_us_sample(struct mm_struct *mm, struct op_sample *s)
/*
* Add a sample to the global event buffer. If possible the
* sample is converted into a persistent dentry/offset pair
* for later lookup from userspace. Return 0 on failure.
*/
static int
add_sample(struct mm_struct *mm, struct op_sample *s, int in_kernel)
{
unsigned long cookie;
off_t offset;
if (in_kernel) {
add_sample_entry(s->eip, s->event);
return 1;
}
/* add userspace sample */
if (!mm) {
atomic_inc(&oprofile_stats.sample_lost_no_mm);
return 0;
}
cookie = lookup_dcookie(mm, s->eip, &offset);
if (cookie == INVALID_COOKIE) {
......@@ -415,25 +401,6 @@ static int add_us_sample(struct mm_struct *mm, struct op_sample *s)
}
/* Add a sample to the global event buffer. If possible the
* sample is converted into a persistent dentry/offset pair
* for later lookup from userspace.
*/
static int
add_sample(struct mm_struct *mm, struct op_sample *s, int in_kernel)
{
if (in_kernel) {
add_sample_entry(s->eip, s->event);
return 1;
} else if (mm) {
return add_us_sample(mm, s);
} else {
atomic_inc(&oprofile_stats.sample_lost_no_mm);
}
return 0;
}
static void release_mm(struct mm_struct *mm)
{
if (!mm)
......@@ -526,66 +493,69 @@ void sync_buffer(int cpu)
{
struct mm_struct *mm = NULL;
struct mm_struct *oldmm;
unsigned long val;
struct task_struct *new;
unsigned long cookie = 0;
int in_kernel = 1;
sync_buffer_state state = sb_buffer_start;
unsigned int i;
unsigned long available;
unsigned long flags;
struct op_entry entry;
struct op_sample *sample;
mutex_lock(&buffer_mutex);
add_cpu_switch(cpu);
cpu_buffer_reset(cpu);
available = cpu_buffer_entries(cpu);
op_cpu_buffer_reset(cpu);
available = op_cpu_buffer_entries(cpu);
for (i = 0; i < available; ++i) {
struct op_sample *s = cpu_buffer_read_entry(cpu);
if (!s)
sample = op_cpu_buffer_read_entry(&entry, cpu);
if (!sample)
break;
if (is_code(s->eip)) {
switch (s->event) {
case 0:
case CPU_IS_KERNEL:
if (is_code(sample->eip)) {
flags = sample->event;
if (flags & TRACE_BEGIN) {
state = sb_bt_start;
add_trace_begin();
}
if (flags & KERNEL_CTX_SWITCH) {
/* kernel/userspace switch */
in_kernel = s->event;
in_kernel = flags & IS_KERNEL;
if (state == sb_buffer_start)
state = sb_sample_start;
add_kernel_ctx_switch(s->event);
break;
case CPU_TRACE_BEGIN:
state = sb_bt_start;
add_trace_begin();
break;
#ifdef CONFIG_OPROFILE_IBS
case IBS_FETCH_BEGIN:
state = sb_bt_start;
add_ibs_begin(cpu, IBS_FETCH_CODE, mm);
break;
case IBS_OP_BEGIN:
state = sb_bt_start;
add_ibs_begin(cpu, IBS_OP_CODE, mm);
break;
#endif
default:
add_kernel_ctx_switch(flags & IS_KERNEL);
}
if (flags & USER_CTX_SWITCH
&& op_cpu_buffer_get_data(&entry, &val)) {
/* userspace context switch */
new = (struct task_struct *)val;
oldmm = mm;
new = (struct task_struct *)s->event;
release_mm(oldmm);
mm = take_tasks_mm(new);
if (mm != oldmm)
cookie = get_exec_dcookie(mm);
add_user_ctx_switch(new, cookie);
break;
}
} else if (state >= sb_bt_start &&
!add_sample(mm, s, in_kernel)) {
if (state == sb_bt_start) {
state = sb_bt_ignore;
atomic_inc(&oprofile_stats.bt_lost_no_mapping);
}
if (op_cpu_buffer_get_size(&entry))
add_data(&entry, mm);
continue;
}
if (state < sb_bt_start)
/* ignore sample */
continue;
if (add_sample(mm, sample, in_kernel))
continue;
/* ignore backtraces if failed to add a sample */
if (state == sb_bt_start) {
state = sb_bt_ignore;
atomic_inc(&oprofile_stats.bt_lost_no_mapping);
}
}
release_mm(mm);
......
/**
* @file cpu_buffer.c
*
* @remark Copyright 2002 OProfile authors
* @remark Copyright 2002-2009 OProfile authors
* @remark Read the file COPYING
*
* @author John Levon <levon@movementarian.org>
* @author Barry Kasindorf <barry.kasindorf@amd.com>
* @author Robert Richter <robert.richter@amd.com>
*
* Each CPU has a local buffer that stores PC value/event
* pairs. We also log context switches when we notice them.
......@@ -45,8 +46,8 @@
* can be changed to a single buffer solution when the ring buffer
* access is implemented as non-locking atomic code.
*/
struct ring_buffer *op_ring_buffer_read;
struct ring_buffer *op_ring_buffer_write;
static struct ring_buffer *op_ring_buffer_read;
static struct ring_buffer *op_ring_buffer_write;
DEFINE_PER_CPU(struct oprofile_cpu_buffer, cpu_buffer);
static void wq_sync_buffer(struct work_struct *work);
......@@ -54,19 +55,9 @@ static void wq_sync_buffer(struct work_struct *work);
#define DEFAULT_TIMER_EXPIRE (HZ / 10)
static int work_enabled;
void free_cpu_buffers(void)
{
if (op_ring_buffer_read)
ring_buffer_free(op_ring_buffer_read);
op_ring_buffer_read = NULL;
if (op_ring_buffer_write)
ring_buffer_free(op_ring_buffer_write);
op_ring_buffer_write = NULL;
}
unsigned long oprofile_get_cpu_buffer_size(void)
{
return fs_cpu_buffer_size;
return oprofile_cpu_buffer_size;
}
void oprofile_cpu_buffer_inc_smpl_lost(void)
......@@ -77,11 +68,21 @@ void oprofile_cpu_buffer_inc_smpl_lost(void)
cpu_buf->sample_lost_overflow++;
}
void free_cpu_buffers(void)
{
if (op_ring_buffer_read)
ring_buffer_free(op_ring_buffer_read);
op_ring_buffer_read = NULL;
if (op_ring_buffer_write)
ring_buffer_free(op_ring_buffer_write);
op_ring_buffer_write = NULL;
}
int alloc_cpu_buffers(void)
{
int i;
unsigned long buffer_size = fs_cpu_buffer_size;
unsigned long buffer_size = oprofile_cpu_buffer_size;
op_ring_buffer_read = ring_buffer_alloc(buffer_size, OP_BUFFER_FLAGS);
if (!op_ring_buffer_read)
......@@ -97,8 +98,6 @@ int alloc_cpu_buffers(void)
b->last_is_kernel = -1;
b->tracing = 0;
b->buffer_size = buffer_size;
b->tail_pos = 0;
b->head_pos = 0;
b->sample_received = 0;
b->sample_lost_overflow = 0;
b->backtrace_aborted = 0;
......@@ -145,47 +144,156 @@ void end_cpu_work(void)
flush_scheduled_work();
}
static inline int
add_sample(struct oprofile_cpu_buffer *cpu_buf,
unsigned long pc, unsigned long event)
/*
* This function prepares the cpu buffer to write a sample.
*
* Struct op_entry is used during operations on the ring buffer while
* struct op_sample contains the data that is stored in the ring
* buffer. Struct entry can be uninitialized. The function reserves a
* data array that is specified by size. Use
* op_cpu_buffer_write_commit() after preparing the sample. In case of
* errors a null pointer is returned, otherwise the pointer to the
* sample.
*
*/
struct op_sample
*op_cpu_buffer_write_reserve(struct op_entry *entry, unsigned long size)
{
entry->event = ring_buffer_lock_reserve
(op_ring_buffer_write, sizeof(struct op_sample) +
size * sizeof(entry->sample->data[0]), &entry->irq_flags);
if (entry->event)
entry->sample = ring_buffer_event_data(entry->event);
else
entry->sample = NULL;
if (!entry->sample)
return NULL;
entry->size = size;
entry->data = entry->sample->data;
return entry->sample;
}
int op_cpu_buffer_write_commit(struct op_entry *entry)
{
return ring_buffer_unlock_commit(op_ring_buffer_write, entry->event,
entry->irq_flags);
}
struct op_sample *op_cpu_buffer_read_entry(struct op_entry *entry, int cpu)
{
struct ring_buffer_event *e;
e = ring_buffer_consume(op_ring_buffer_read, cpu, NULL);
if (e)
goto event;
if (ring_buffer_swap_cpu(op_ring_buffer_read,
op_ring_buffer_write,
cpu))
return NULL;
e = ring_buffer_consume(op_ring_buffer_read, cpu, NULL);
if (e)
goto event;
return NULL;
event:
entry->event = e;
entry->sample = ring_buffer_event_data(e);
entry->size = (ring_buffer_event_length(e) - sizeof(struct op_sample))
/ sizeof(entry->sample->data[0]);
entry->data = entry->sample->data;
return entry->sample;
}
unsigned long op_cpu_buffer_entries(int cpu)
{
return ring_buffer_entries_cpu(op_ring_buffer_read, cpu)
+ ring_buffer_entries_cpu(op_ring_buffer_write, cpu);
}
static int
op_add_code(struct oprofile_cpu_buffer *cpu_buf, unsigned long backtrace,
int is_kernel, struct task_struct *task)
{
struct op_entry entry;
int ret;
struct op_sample *sample;
unsigned long flags;
int size;
flags = 0;
if (backtrace)
flags |= TRACE_BEGIN;
/* notice a switch from user->kernel or vice versa */
is_kernel = !!is_kernel;
if (cpu_buf->last_is_kernel != is_kernel) {
cpu_buf->last_is_kernel = is_kernel;
flags |= KERNEL_CTX_SWITCH;
if (is_kernel)
flags |= IS_KERNEL;
}
/* notice a task switch */
if (cpu_buf->last_task != task) {
cpu_buf->last_task = task;
flags |= USER_CTX_SWITCH;
}
if (!flags)
/* nothing to do */
return 0;
if (flags & USER_CTX_SWITCH)
size = 1;
else
size = 0;
sample = op_cpu_buffer_write_reserve(&entry, size);
if (!sample)
return -ENOMEM;
ret = cpu_buffer_write_entry(&entry);
if (ret)
return ret;
sample->eip = ESCAPE_CODE;
sample->event = flags;
entry.sample->eip = pc;
entry.sample->event = event;
if (size)
op_cpu_buffer_add_data(&entry, (unsigned long)task);
ret = cpu_buffer_write_commit(&entry);
if (ret)
return ret;
op_cpu_buffer_write_commit(&entry);
return 0;
}
static inline int
add_code(struct oprofile_cpu_buffer *buffer, unsigned long value)
op_add_sample(struct oprofile_cpu_buffer *cpu_buf,
unsigned long pc, unsigned long event)
{
return add_sample(buffer, ESCAPE_CODE, value);
struct op_entry entry;
struct op_sample *sample;
sample = op_cpu_buffer_write_reserve(&entry, 0);
if (!sample)
return -ENOMEM;
sample->eip = pc;
sample->event = event;
return op_cpu_buffer_write_commit(&entry);
}
/* This must be safe from any context. It's safe writing here
* because of the head/tail separation of the writer and reader
* of the CPU buffer.
/*
* This must be safe from any context.
*
* is_kernel is needed because on some architectures you cannot
* tell if you are in kernel or user space simply by looking at
* pc. We tag this in the buffer by generating kernel enter/exit
* events whenever is_kernel changes
*/
static int log_sample(struct oprofile_cpu_buffer *cpu_buf, unsigned long pc,
int is_kernel, unsigned long event)
static int
log_sample(struct oprofile_cpu_buffer *cpu_buf, unsigned long pc,
unsigned long backtrace, int is_kernel, unsigned long event)
{
struct task_struct *task;
cpu_buf->sample_received++;
if (pc == ESCAPE_CODE) {
......@@ -193,25 +301,10 @@ static int log_sample(struct oprofile_cpu_buffer *cpu_buf, unsigned long pc,
return 0;
}
is_kernel = !!is_kernel;
task = current;
/* notice a switch from user->kernel or vice versa */
if (cpu_buf->last_is_kernel != is_kernel) {
cpu_buf->last_is_kernel = is_kernel;
if (add_code(cpu_buf, is_kernel))
goto fail;
}
/* notice a task switch */
if (cpu_buf->last_task != task) {
cpu_buf->last_task = task;
if (add_code(cpu_buf, (unsigned long)task))
goto fail;
}
if (op_add_code(cpu_buf, backtrace, is_kernel, current))
goto fail;
if (add_sample(cpu_buf, pc, event))
if (op_add_sample(cpu_buf, pc, event))
goto fail;
return 1;
......@@ -221,109 +314,102 @@ fail:
return 0;
}
static int oprofile_begin_trace(struct oprofile_cpu_buffer *cpu_buf)
static inline void oprofile_begin_trace(struct oprofile_cpu_buffer *cpu_buf)
{
add_code(cpu_buf, CPU_TRACE_BEGIN);
cpu_buf->tracing = 1;
return 1;
}
static void oprofile_end_trace(struct oprofile_cpu_buffer *cpu_buf)
static inline void oprofile_end_trace(struct oprofile_cpu_buffer *cpu_buf)
{
cpu_buf->tracing = 0;
}
void oprofile_add_ext_sample(unsigned long pc, struct pt_regs * const regs,
unsigned long event, int is_kernel)
static inline void
__oprofile_add_ext_sample(unsigned long pc, struct pt_regs * const regs,
unsigned long event, int is_kernel)
{
struct oprofile_cpu_buffer *cpu_buf = &__get_cpu_var(cpu_buffer);
if (!backtrace_depth) {
log_sample(cpu_buf, pc, is_kernel, event);
return;
}
if (!oprofile_begin_trace(cpu_buf))
return;
unsigned long backtrace = oprofile_backtrace_depth;
/*
* if log_sample() fail we can't backtrace since we lost the
* source of this event
*/
if (log_sample(cpu_buf, pc, is_kernel, event))
oprofile_ops.backtrace(regs, backtrace_depth);
if (!log_sample(cpu_buf, pc, backtrace, is_kernel, event))
/* failed */
return;
if (!backtrace)
return;
oprofile_begin_trace(cpu_buf);
oprofile_ops.backtrace(regs, backtrace);
oprofile_end_trace(cpu_buf);
}
void oprofile_add_ext_sample(unsigned long pc, struct pt_regs * const regs,
unsigned long event, int is_kernel)
{
__oprofile_add_ext_sample(pc, regs, event, is_kernel);
}
void oprofile_add_sample(struct pt_regs * const regs, unsigned long event)
{
int is_kernel = !user_mode(regs);
unsigned long pc = profile_pc(regs);
oprofile_add_ext_sample(pc, regs, event, is_kernel);
__oprofile_add_ext_sample(pc, regs, event, is_kernel);
}
#ifdef CONFIG_OPROFILE_IBS
#define MAX_IBS_SAMPLE_SIZE 14
void oprofile_add_ibs_sample(struct pt_regs * const regs,
unsigned int * const ibs_sample, int ibs_code)
/*
* Add samples with data to the ring buffer.
*
* Use oprofile_add_data(&entry, val) to add data and
* oprofile_write_commit(&entry) to commit the sample.
*/
void
oprofile_write_reserve(struct op_entry *entry, struct pt_regs * const regs,
unsigned long pc, int code, int size)
{
struct op_sample *sample;
int is_kernel = !user_mode(regs);
struct oprofile_cpu_buffer *cpu_buf = &__get_cpu_var(cpu_buffer);
struct task_struct *task;
int fail = 0;
cpu_buf->sample_received++;
/* notice a switch from user->kernel or vice versa */
if (cpu_buf->last_is_kernel != is_kernel) {
if (add_code(cpu_buf, is_kernel))
goto fail;
cpu_buf->last_is_kernel = is_kernel;
}
/* notice a task switch */
if (!is_kernel) {
task = current;
if (cpu_buf->last_task != task) {
if (add_code(cpu_buf, (unsigned long)task))
goto fail;
cpu_buf->last_task = task;
}
}
fail = fail || add_code(cpu_buf, ibs_code);
fail = fail || add_sample(cpu_buf, ibs_sample[0], ibs_sample[1]);
fail = fail || add_sample(cpu_buf, ibs_sample[2], ibs_sample[3]);
fail = fail || add_sample(cpu_buf, ibs_sample[4], ibs_sample[5]);
if (ibs_code == IBS_OP_BEGIN) {
fail = fail || add_sample(cpu_buf, ibs_sample[6], ibs_sample[7]);
fail = fail || add_sample(cpu_buf, ibs_sample[8], ibs_sample[9]);
fail = fail || add_sample(cpu_buf, ibs_sample[10], ibs_sample[11]);
}
/* no backtraces for samples with data */
if (op_add_code(cpu_buf, 0, is_kernel, current))
goto fail;
if (fail)
sample = op_cpu_buffer_write_reserve(entry, size + 2);
if (!sample)
goto fail;
sample->eip = ESCAPE_CODE;
sample->event = 0; /* no flags */
if (backtrace_depth)
oprofile_ops.backtrace(regs, backtrace_depth);
op_cpu_buffer_add_data(entry, code);
op_cpu_buffer_add_data(entry, pc);
return;
fail:
cpu_buf->sample_lost_overflow++;
return;
}
#endif
int oprofile_add_data(struct op_entry *entry, unsigned long val)
{
return op_cpu_buffer_add_data(entry, val);
}
int oprofile_write_commit(struct op_entry *entry)
{
return op_cpu_buffer_write_commit(entry);
}
void oprofile_add_pc(unsigned long pc, int is_kernel, unsigned long event)
{
struct oprofile_cpu_buffer *cpu_buf = &__get_cpu_var(cpu_buffer);
log_sample(cpu_buf, pc, is_kernel, event);
log_sample(cpu_buf, pc, 0, is_kernel, event);
}
void oprofile_add_trace(unsigned long pc)
......@@ -340,7 +426,7 @@ void oprofile_add_trace(unsigned long pc)
if (pc == ESCAPE_CODE)
goto fail;
if (add_sample(cpu_buf, pc, 0))
if (op_add_sample(cpu_buf, pc, 0))
goto fail;
return;
......
/**
* @file cpu_buffer.h
*
* @remark Copyright 2002 OProfile authors
* @remark Copyright 2002-2009 OProfile authors
* @remark Read the file COPYING
*
* @author John Levon <levon@movementarian.org>
* @author Robert Richter <robert.richter@amd.com>
*/
#ifndef OPROFILE_CPU_BUFFER_H
......@@ -31,17 +32,12 @@ void end_cpu_work(void);
struct op_sample {
unsigned long eip;
unsigned long event;
unsigned long data[0];
};
struct op_entry {
struct ring_buffer_event *event;
struct op_sample *sample;
unsigned long irq_flags;
};
struct op_entry;
struct oprofile_cpu_buffer {
volatile unsigned long head_pos;
volatile unsigned long tail_pos;
unsigned long buffer_size;
struct task_struct *last_task;
int last_is_kernel;
......@@ -54,8 +50,6 @@ struct oprofile_cpu_buffer {
struct delayed_work work;
};
extern struct ring_buffer *op_ring_buffer_read;
extern struct ring_buffer *op_ring_buffer_write;
DECLARE_PER_CPU(struct oprofile_cpu_buffer, cpu_buffer);
/*
......@@ -64,7 +58,7 @@ DECLARE_PER_CPU(struct oprofile_cpu_buffer, cpu_buffer);
* reset these to invalid values; the next sample collected will
* populate the buffer with proper values to initialize the buffer
*/
static inline void cpu_buffer_reset(int cpu)
static inline void op_cpu_buffer_reset(int cpu)
{
struct oprofile_cpu_buffer *cpu_buf = &per_cpu(cpu_buffer, cpu);
......@@ -72,55 +66,48 @@ static inline void cpu_buffer_reset(int cpu)
cpu_buf->last_task = NULL;
}
static inline int cpu_buffer_write_entry(struct op_entry *entry)
{
entry->event = ring_buffer_lock_reserve(op_ring_buffer_write,
sizeof(struct op_sample),
&entry->irq_flags);
if (entry->event)
entry->sample = ring_buffer_event_data(entry->event);
else
entry->sample = NULL;
if (!entry->sample)
return -ENOMEM;
return 0;
}
struct op_sample
*op_cpu_buffer_write_reserve(struct op_entry *entry, unsigned long size);
int op_cpu_buffer_write_commit(struct op_entry *entry);
struct op_sample *op_cpu_buffer_read_entry(struct op_entry *entry, int cpu);
unsigned long op_cpu_buffer_entries(int cpu);
static inline int cpu_buffer_write_commit(struct op_entry *entry)
/* returns the remaining free size of data in the entry */
static inline
int op_cpu_buffer_add_data(struct op_entry *entry, unsigned long val)
{
return ring_buffer_unlock_commit(op_ring_buffer_write, entry->event,
entry->irq_flags);
if (!entry->size)
return 0;
*entry->data = val;
entry->size--;
entry->data++;
return entry->size;
}
static inline struct op_sample *cpu_buffer_read_entry(int cpu)
/* returns the size of data in the entry */
static inline
int op_cpu_buffer_get_size(struct op_entry *entry)
{
struct ring_buffer_event *e;
e = ring_buffer_consume(op_ring_buffer_read, cpu, NULL);
if (e)
return ring_buffer_event_data(e);
if (ring_buffer_swap_cpu(op_ring_buffer_read,
op_ring_buffer_write,
cpu))
return NULL;
e = ring_buffer_consume(op_ring_buffer_read, cpu, NULL);
if (e)
return ring_buffer_event_data(e);
return NULL;
return entry->size;
}
/* "acquire" as many cpu buffer slots as we can */
static inline unsigned long cpu_buffer_entries(int cpu)
/* returns 0 if empty or the size of data including the current value */
static inline
int op_cpu_buffer_get_data(struct op_entry *entry, unsigned long *val)
{
return ring_buffer_entries_cpu(op_ring_buffer_read, cpu)
+ ring_buffer_entries_cpu(op_ring_buffer_write, cpu);
int size = entry->size;
if (!size)
return 0;
*val = *entry->data;
entry->size--;
entry->data++;
return size;
}
/* transient events for the CPU buffer -> event buffer */
#define CPU_IS_KERNEL 1
#define CPU_TRACE_BEGIN 2
#define IBS_FETCH_BEGIN 3
#define IBS_OP_BEGIN 4
/* extra data flags */
#define KERNEL_CTX_SWITCH (1UL << 0)
#define IS_KERNEL (1UL << 1)
#define TRACE_BEGIN (1UL << 2)
#define USER_CTX_SWITCH (1UL << 3)
#endif /* OPROFILE_CPU_BUFFER_H */
......@@ -73,8 +73,8 @@ int alloc_event_buffer(void)
unsigned long flags;
spin_lock_irqsave(&oprofilefs_lock, flags);
buffer_size = fs_buffer_size;
buffer_watershed = fs_buffer_watershed;
buffer_size = oprofile_buffer_size;
buffer_watershed = oprofile_buffer_watershed;
spin_unlock_irqrestore(&oprofilefs_lock, flags);
if (buffer_watershed >= buffer_size)
......
......@@ -23,7 +23,7 @@
struct oprofile_operations oprofile_ops;
unsigned long oprofile_started;
unsigned long backtrace_depth;
unsigned long oprofile_backtrace_depth;
static unsigned long is_setup;
static DEFINE_MUTEX(start_mutex);
......@@ -172,7 +172,7 @@ int oprofile_set_backtrace(unsigned long val)
goto out;
}
backtrace_depth = val;
oprofile_backtrace_depth = val;
out:
mutex_unlock(&start_mutex);
......
......@@ -21,12 +21,12 @@ void oprofile_stop(void);
struct oprofile_operations;
extern unsigned long fs_buffer_size;
extern unsigned long fs_cpu_buffer_size;
extern unsigned long fs_buffer_watershed;
extern unsigned long oprofile_buffer_size;
extern unsigned long oprofile_cpu_buffer_size;
extern unsigned long oprofile_buffer_watershed;
extern struct oprofile_operations oprofile_ops;
extern unsigned long oprofile_started;
extern unsigned long backtrace_depth;
extern unsigned long oprofile_backtrace_depth;
struct super_block;
struct dentry;
......
......@@ -14,17 +14,18 @@
#include "oprofile_stats.h"
#include "oprof.h"
#define FS_BUFFER_SIZE_DEFAULT 131072
#define FS_CPU_BUFFER_SIZE_DEFAULT 8192
#define FS_BUFFER_WATERSHED_DEFAULT 32768 /* FIXME: tune */
#define BUFFER_SIZE_DEFAULT 131072
#define CPU_BUFFER_SIZE_DEFAULT 8192
#define BUFFER_WATERSHED_DEFAULT 32768 /* FIXME: tune */
unsigned long fs_buffer_size;
unsigned long fs_cpu_buffer_size;
unsigned long fs_buffer_watershed;
unsigned long oprofile_buffer_size;
unsigned long oprofile_cpu_buffer_size;
unsigned long oprofile_buffer_watershed;
static ssize_t depth_read(struct file *file, char __user *buf, size_t count, loff_t *offset)
{
return oprofilefs_ulong_to_user(backtrace_depth, buf, count, offset);
return oprofilefs_ulong_to_user(oprofile_backtrace_depth, buf, count,
offset);
}
......@@ -125,16 +126,16 @@ static const struct file_operations dump_fops = {
void oprofile_create_files(struct super_block *sb, struct dentry *root)
{
/* reinitialize default values */
fs_buffer_size = FS_BUFFER_SIZE_DEFAULT;
fs_cpu_buffer_size = FS_CPU_BUFFER_SIZE_DEFAULT;
fs_buffer_watershed = FS_BUFFER_WATERSHED_DEFAULT;
oprofile_buffer_size = BUFFER_SIZE_DEFAULT;
oprofile_cpu_buffer_size = CPU_BUFFER_SIZE_DEFAULT;
oprofile_buffer_watershed = BUFFER_WATERSHED_DEFAULT;
oprofilefs_create_file(sb, root, "enable", &enable_fops);
oprofilefs_create_file_perm(sb, root, "dump", &dump_fops, 0666);
oprofilefs_create_file(sb, root, "buffer", &event_buffer_fops);
oprofilefs_create_ulong(sb, root, "buffer_size", &fs_buffer_size);
oprofilefs_create_ulong(sb, root, "buffer_watershed", &fs_buffer_watershed);
oprofilefs_create_ulong(sb, root, "cpu_buffer_size", &fs_cpu_buffer_size);
oprofilefs_create_ulong(sb, root, "buffer_size", &oprofile_buffer_size);
oprofilefs_create_ulong(sb, root, "buffer_watershed", &oprofile_buffer_watershed);
oprofilefs_create_ulong(sb, root, "cpu_buffer_size", &oprofile_cpu_buffer_size);
oprofilefs_create_file(sb, root, "cpu_type", &cpu_type_fops);
oprofilefs_create_file(sb, root, "backtrace_depth", &depth_fops);
oprofilefs_create_file(sb, root, "pointer_size", &pointer_size_fops);
......
......@@ -164,4 +164,22 @@ void oprofile_put_buff(unsigned long *buf, unsigned int start,
unsigned long oprofile_get_cpu_buffer_size(void);
void oprofile_cpu_buffer_inc_smpl_lost(void);
/* cpu buffer functions */
struct op_sample;
struct op_entry {
struct ring_buffer_event *event;
struct op_sample *sample;
unsigned long irq_flags;
unsigned long size;
unsigned long *data;
};
void oprofile_write_reserve(struct op_entry *entry,
struct pt_regs * const regs,
unsigned long pc, int code, int size);
int oprofile_add_data(struct op_entry *entry, unsigned long val);
int oprofile_write_commit(struct op_entry *entry);
#endif /* OPROFILE_H */
......@@ -168,7 +168,13 @@ rb_event_length(struct ring_buffer_event *event)
*/
unsigned ring_buffer_event_length(struct ring_buffer_event *event)
{
return rb_event_length(event);
unsigned length = rb_event_length(event);
if (event->type != RINGBUF_TYPE_DATA)
return length;
length -= RB_EVNT_HDR_SIZE;
if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
length -= sizeof(event->array[0]);
return length;
}
EXPORT_SYMBOL_GPL(ring_buffer_event_length);
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment