Commit 48257c4f authored by Pantelis Antoniou's avatar Pantelis Antoniou Committed by Jeff Garzik

Add fs_enet ethernet network driver, for several embedded platforms.

parent d8840ac9
......@@ -1775,6 +1775,7 @@ config NE_H8300
controller on the Renesas H8/300 processor.
source "drivers/net/fec_8xx/Kconfig"
source "drivers/net/fs_enet/Kconfig"
endmenu
......
......@@ -203,3 +203,6 @@ obj-$(CONFIG_IRDA) += irda/
obj-$(CONFIG_ETRAX_ETHERNET) += cris/
obj-$(CONFIG_NETCONSOLE) += netconsole.o
obj-$(CONFIG_FS_ENET) += fs_enet/
config FS_ENET
tristate "Freescale Ethernet Driver"
depends on NET_ETHERNET && (CPM1 || CPM2)
select MII
config FS_ENET_HAS_SCC
bool "Chip has an SCC usable for ethernet"
depends on FS_ENET && (CPM1 || CPM2)
default y
config FS_ENET_HAS_FCC
bool "Chip has an FCC usable for ethernet"
depends on FS_ENET && CPM2
default y
config FS_ENET_HAS_FEC
bool "Chip has an FEC usable for ethernet"
depends on FS_ENET && CPM1
default y
#
# Makefile for the Freescale Ethernet controllers
#
obj-$(CONFIG_FS_ENET) += fs_enet.o
obj-$(CONFIG_8xx) += mac-fec.o mac-scc.o
obj-$(CONFIG_8260) += mac-fcc.o
fs_enet-objs := fs_enet-main.o fs_enet-mii.o mii-bitbang.o mii-fixed.o
/*
* Combined Ethernet driver for Motorola MPC8xx and MPC82xx.
*
* Copyright (c) 2003 Intracom S.A.
* by Pantelis Antoniou <panto@intracom.gr>
*
* 2005 (c) MontaVista Software, Inc.
* Vitaly Bordug <vbordug@ru.mvista.com>
*
* Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
* and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
*
* This file is licensed under the terms of the GNU General Public License
* version 2. This program is licensed "as is" without any warranty of any
* kind, whether express or implied.
*/
#include <linux/config.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/sched.h>
#include <linux/string.h>
#include <linux/ptrace.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/spinlock.h>
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/bitops.h>
#include <linux/fs.h>
#include <linux/vmalloc.h>
#include <asm/pgtable.h>
#include <asm/pgtable.h>
#include <asm/irq.h>
#include <asm/uaccess.h>
#include "fs_enet.h"
/*************************************************/
static char version[] __devinitdata =
DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")" "\n";
MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>");
MODULE_DESCRIPTION("Freescale Ethernet Driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_MODULE_VERSION);
MODULE_PARM(fs_enet_debug, "i");
MODULE_PARM_DESC(fs_enet_debug,
"Freescale bitmapped debugging message enable value");
int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */
static void fs_set_multicast_list(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
(*fep->ops->set_multicast_list)(dev);
}
/* NAPI receive function */
static int fs_enet_rx_napi(struct net_device *dev, int *budget)
{
struct fs_enet_private *fep = netdev_priv(dev);
const struct fs_platform_info *fpi = fep->fpi;
cbd_t *bdp;
struct sk_buff *skb, *skbn, *skbt;
int received = 0;
u16 pkt_len, sc;
int curidx;
int rx_work_limit = 0; /* pacify gcc */
rx_work_limit = min(dev->quota, *budget);
if (!netif_running(dev))
return 0;
/*
* First, grab all of the stats for the incoming packet.
* These get messed up if we get called due to a busy condition.
*/
bdp = fep->cur_rx;
/* clear RX status bits for napi*/
(*fep->ops->napi_clear_rx_event)(dev);
while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
curidx = bdp - fep->rx_bd_base;
/*
* Since we have allocated space to hold a complete frame,
* the last indicator should be set.
*/
if ((sc & BD_ENET_RX_LAST) == 0)
printk(KERN_WARNING DRV_MODULE_NAME
": %s rcv is not +last\n",
dev->name);
/*
* Check for errors.
*/
if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
fep->stats.rx_errors++;
/* Frame too long or too short. */
if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
fep->stats.rx_length_errors++;
/* Frame alignment */
if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
fep->stats.rx_frame_errors++;
/* CRC Error */
if (sc & BD_ENET_RX_CR)
fep->stats.rx_crc_errors++;
/* FIFO overrun */
if (sc & BD_ENET_RX_OV)
fep->stats.rx_crc_errors++;
skb = fep->rx_skbuff[curidx];
dma_unmap_single(fep->dev, skb->data,
L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
DMA_FROM_DEVICE);
skbn = skb;
} else {
/* napi, got packet but no quota */
if (--rx_work_limit < 0)
break;
skb = fep->rx_skbuff[curidx];
dma_unmap_single(fep->dev, skb->data,
L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
DMA_FROM_DEVICE);
/*
* Process the incoming frame.
*/
fep->stats.rx_packets++;
pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
fep->stats.rx_bytes += pkt_len + 4;
if (pkt_len <= fpi->rx_copybreak) {
/* +2 to make IP header L1 cache aligned */
skbn = dev_alloc_skb(pkt_len + 2);
if (skbn != NULL) {
skb_reserve(skbn, 2); /* align IP header */
memcpy(skbn->data, skb->data, pkt_len);
/* swap */
skbt = skb;
skb = skbn;
skbn = skbt;
}
} else
skbn = dev_alloc_skb(ENET_RX_FRSIZE);
if (skbn != NULL) {
skb->dev = dev;
skb_put(skb, pkt_len); /* Make room */
skb->protocol = eth_type_trans(skb, dev);
received++;
netif_receive_skb(skb);
} else {
printk(KERN_WARNING DRV_MODULE_NAME
": %s Memory squeeze, dropping packet.\n",
dev->name);
fep->stats.rx_dropped++;
skbn = skb;
}
}
fep->rx_skbuff[curidx] = skbn;
CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
DMA_FROM_DEVICE));
CBDW_DATLEN(bdp, 0);
CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
/*
* Update BD pointer to next entry.
*/
if ((sc & BD_ENET_RX_WRAP) == 0)
bdp++;
else
bdp = fep->rx_bd_base;
(*fep->ops->rx_bd_done)(dev);
}
fep->cur_rx = bdp;
dev->quota -= received;
*budget -= received;
if (rx_work_limit < 0)
return 1; /* not done */
/* done */
netif_rx_complete(dev);
(*fep->ops->napi_enable_rx)(dev);
return 0;
}
/* non NAPI receive function */
static int fs_enet_rx_non_napi(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
const struct fs_platform_info *fpi = fep->fpi;
cbd_t *bdp;
struct sk_buff *skb, *skbn, *skbt;
int received = 0;
u16 pkt_len, sc;
int curidx;
/*
* First, grab all of the stats for the incoming packet.
* These get messed up if we get called due to a busy condition.
*/
bdp = fep->cur_rx;
while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
curidx = bdp - fep->rx_bd_base;
/*
* Since we have allocated space to hold a complete frame,
* the last indicator should be set.
*/
if ((sc & BD_ENET_RX_LAST) == 0)
printk(KERN_WARNING DRV_MODULE_NAME
": %s rcv is not +last\n",
dev->name);
/*
* Check for errors.
*/
if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
fep->stats.rx_errors++;
/* Frame too long or too short. */
if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
fep->stats.rx_length_errors++;
/* Frame alignment */
if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
fep->stats.rx_frame_errors++;
/* CRC Error */
if (sc & BD_ENET_RX_CR)
fep->stats.rx_crc_errors++;
/* FIFO overrun */
if (sc & BD_ENET_RX_OV)
fep->stats.rx_crc_errors++;
skb = fep->rx_skbuff[curidx];
dma_unmap_single(fep->dev, skb->data,
L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
DMA_FROM_DEVICE);
skbn = skb;
} else {
skb = fep->rx_skbuff[curidx];
dma_unmap_single(fep->dev, skb->data,
L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
DMA_FROM_DEVICE);
/*
* Process the incoming frame.
*/
fep->stats.rx_packets++;
pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
fep->stats.rx_bytes += pkt_len + 4;
if (pkt_len <= fpi->rx_copybreak) {
/* +2 to make IP header L1 cache aligned */
skbn = dev_alloc_skb(pkt_len + 2);
if (skbn != NULL) {
skb_reserve(skbn, 2); /* align IP header */
memcpy(skbn->data, skb->data, pkt_len);
/* swap */
skbt = skb;
skb = skbn;
skbn = skbt;
}
} else
skbn = dev_alloc_skb(ENET_RX_FRSIZE);
if (skbn != NULL) {
skb->dev = dev;
skb_put(skb, pkt_len); /* Make room */
skb->protocol = eth_type_trans(skb, dev);
received++;
netif_rx(skb);
} else {
printk(KERN_WARNING DRV_MODULE_NAME
": %s Memory squeeze, dropping packet.\n",
dev->name);
fep->stats.rx_dropped++;
skbn = skb;
}
}
fep->rx_skbuff[curidx] = skbn;
CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
DMA_FROM_DEVICE));
CBDW_DATLEN(bdp, 0);
CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
/*
* Update BD pointer to next entry.
*/
if ((sc & BD_ENET_RX_WRAP) == 0)
bdp++;
else
bdp = fep->rx_bd_base;
(*fep->ops->rx_bd_done)(dev);
}
fep->cur_rx = bdp;
return 0;
}
static void fs_enet_tx(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
cbd_t *bdp;
struct sk_buff *skb;
int dirtyidx, do_wake, do_restart;
u16 sc;
spin_lock(&fep->lock);
bdp = fep->dirty_tx;
do_wake = do_restart = 0;
while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0) {
dirtyidx = bdp - fep->tx_bd_base;
if (fep->tx_free == fep->tx_ring)
break;
skb = fep->tx_skbuff[dirtyidx];
/*
* Check for errors.
*/
if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) {
if (sc & BD_ENET_TX_HB) /* No heartbeat */
fep->stats.tx_heartbeat_errors++;
if (sc & BD_ENET_TX_LC) /* Late collision */
fep->stats.tx_window_errors++;
if (sc & BD_ENET_TX_RL) /* Retrans limit */
fep->stats.tx_aborted_errors++;
if (sc & BD_ENET_TX_UN) /* Underrun */
fep->stats.tx_fifo_errors++;
if (sc & BD_ENET_TX_CSL) /* Carrier lost */
fep->stats.tx_carrier_errors++;
if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
fep->stats.tx_errors++;
do_restart = 1;
}
} else
fep->stats.tx_packets++;
if (sc & BD_ENET_TX_READY)
printk(KERN_WARNING DRV_MODULE_NAME
": %s HEY! Enet xmit interrupt and TX_READY.\n",
dev->name);
/*
* Deferred means some collisions occurred during transmit,
* but we eventually sent the packet OK.
*/
if (sc & BD_ENET_TX_DEF)
fep->stats.collisions++;
/* unmap */
dma_unmap_single(fep->dev, skb->data, skb->len, DMA_TO_DEVICE);
/*
* Free the sk buffer associated with this last transmit.
*/
dev_kfree_skb_irq(skb);
fep->tx_skbuff[dirtyidx] = NULL;
/*
* Update pointer to next buffer descriptor to be transmitted.
*/
if ((sc & BD_ENET_TX_WRAP) == 0)
bdp++;
else
bdp = fep->tx_bd_base;
/*
* Since we have freed up a buffer, the ring is no longer
* full.
*/
if (!fep->tx_free++)
do_wake = 1;
}
fep->dirty_tx = bdp;
if (do_restart)
(*fep->ops->tx_restart)(dev);
spin_unlock(&fep->lock);
if (do_wake)
netif_wake_queue(dev);
}
/*
* The interrupt handler.
* This is called from the MPC core interrupt.
*/
static irqreturn_t
fs_enet_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
struct net_device *dev = dev_id;
struct fs_enet_private *fep;
const struct fs_platform_info *fpi;
u32 int_events;
u32 int_clr_events;
int nr, napi_ok;
int handled;
fep = netdev_priv(dev);
fpi = fep->fpi;
nr = 0;
while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) {
nr++;
int_clr_events = int_events;
if (fpi->use_napi)
int_clr_events &= ~fep->ev_napi_rx;
(*fep->ops->clear_int_events)(dev, int_clr_events);
if (int_events & fep->ev_err)
(*fep->ops->ev_error)(dev, int_events);
if (int_events & fep->ev_rx) {
if (!fpi->use_napi)
fs_enet_rx_non_napi(dev);
else {
napi_ok = netif_rx_schedule_prep(dev);
(*fep->ops->napi_disable_rx)(dev);
(*fep->ops->clear_int_events)(dev, fep->ev_napi_rx);
/* NOTE: it is possible for FCCs in NAPI mode */
/* to submit a spurious interrupt while in poll */
if (napi_ok)
__netif_rx_schedule(dev);
}
}
if (int_events & fep->ev_tx)
fs_enet_tx(dev);
}
handled = nr > 0;
return IRQ_RETVAL(handled);
}
void fs_init_bds(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
cbd_t *bdp;
struct sk_buff *skb;
int i;
fs_cleanup_bds(dev);
fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
fep->tx_free = fep->tx_ring;
fep->cur_rx = fep->rx_bd_base;
/*
* Initialize the receive buffer descriptors.
*/
for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
skb = dev_alloc_skb(ENET_RX_FRSIZE);
if (skb == NULL) {
printk(KERN_WARNING DRV_MODULE_NAME
": %s Memory squeeze, unable to allocate skb\n",
dev->name);
break;
}
fep->rx_skbuff[i] = skb;
skb->dev = dev;
CBDW_BUFADDR(bdp,
dma_map_single(fep->dev, skb->data,
L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
DMA_FROM_DEVICE));
CBDW_DATLEN(bdp, 0); /* zero */
CBDW_SC(bdp, BD_ENET_RX_EMPTY |
((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP));
}
/*
* if we failed, fillup remainder
*/
for (; i < fep->rx_ring; i++, bdp++) {
fep->rx_skbuff[i] = NULL;
CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP);
}
/*
* ...and the same for transmit.
*/
for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
fep->tx_skbuff[i] = NULL;
CBDW_BUFADDR(bdp, 0);
CBDW_DATLEN(bdp, 0);
CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP);
}
}
void fs_cleanup_bds(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
struct sk_buff *skb;
int i;
/*
* Reset SKB transmit buffers.
*/
for (i = 0; i < fep->tx_ring; i++) {
if ((skb = fep->tx_skbuff[i]) == NULL)
continue;
/* unmap */
dma_unmap_single(fep->dev, skb->data, skb->len, DMA_TO_DEVICE);
fep->tx_skbuff[i] = NULL;
dev_kfree_skb(skb);
}
/*
* Reset SKB receive buffers
*/
for (i = 0; i < fep->rx_ring; i++) {
if ((skb = fep->rx_skbuff[i]) == NULL)
continue;
/* unmap */
dma_unmap_single(fep->dev, skb->data,
L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
DMA_FROM_DEVICE);
fep->rx_skbuff[i] = NULL;
dev_kfree_skb(skb);
}
}
/**********************************************************************************/
static int fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
cbd_t *bdp;
int curidx;
u16 sc;
unsigned long flags;
spin_lock_irqsave(&fep->tx_lock, flags);
/*
* Fill in a Tx ring entry
*/
bdp = fep->cur_tx;
if (!fep->tx_free || (CBDR_SC(bdp) & BD_ENET_TX_READY)) {
netif_stop_queue(dev);
spin_unlock_irqrestore(&fep->tx_lock, flags);
/*
* Ooops. All transmit buffers are full. Bail out.
* This should not happen, since the tx queue should be stopped.
*/
printk(KERN_WARNING DRV_MODULE_NAME
": %s tx queue full!.\n", dev->name);
return NETDEV_TX_BUSY;
}
curidx = bdp - fep->tx_bd_base;
/*
* Clear all of the status flags.
*/
CBDC_SC(bdp, BD_ENET_TX_STATS);
/*
* Save skb pointer.
*/
fep->tx_skbuff[curidx] = skb;
fep->stats.tx_bytes += skb->len;
/*
* Push the data cache so the CPM does not get stale memory data.
*/
CBDW_BUFADDR(bdp, dma_map_single(fep->dev,
skb->data, skb->len, DMA_TO_DEVICE));
CBDW_DATLEN(bdp, skb->len);
dev->trans_start = jiffies;
/*
* If this was the last BD in the ring, start at the beginning again.
*/
if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
fep->cur_tx++;
else
fep->cur_tx = fep->tx_bd_base;
if (!--fep->tx_free)
netif_stop_queue(dev);
/* Trigger transmission start */
sc = BD_ENET_TX_READY | BD_ENET_TX_INTR |
BD_ENET_TX_LAST | BD_ENET_TX_TC;
/* note that while FEC does not have this bit
* it marks it as available for software use
* yay for hw reuse :) */
if (skb->len <= 60)
sc |= BD_ENET_TX_PAD;
CBDS_SC(bdp, sc);
(*fep->ops->tx_kickstart)(dev);
spin_unlock_irqrestore(&fep->tx_lock, flags);
return NETDEV_TX_OK;
}
static int fs_request_irq(struct net_device *dev, int irq, const char *name,
irqreturn_t (*irqf)(int irq, void *dev_id, struct pt_regs *regs))
{
struct fs_enet_private *fep = netdev_priv(dev);
(*fep->ops->pre_request_irq)(dev, irq);
return request_irq(irq, irqf, SA_SHIRQ, name, dev);
}
static void fs_free_irq(struct net_device *dev, int irq)
{
struct fs_enet_private *fep = netdev_priv(dev);
free_irq(irq, dev);
(*fep->ops->post_free_irq)(dev, irq);
}
/**********************************************************************************/
/* This interrupt occurs when the PHY detects a link change. */
static irqreturn_t
fs_mii_link_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
struct net_device *dev = dev_id;
struct fs_enet_private *fep;
const struct fs_platform_info *fpi;
fep = netdev_priv(dev);
fpi = fep->fpi;
/*
* Acknowledge the interrupt if possible. If we have not
* found the PHY yet we can't process or acknowledge the
* interrupt now. Instead we ignore this interrupt for now,
* which we can do since it is edge triggered. It will be
* acknowledged later by fs_enet_open().
*/
if (!fep->phy)
return IRQ_NONE;
fs_mii_ack_int(dev);
fs_mii_link_status_change_check(dev, 0);
return IRQ_HANDLED;
}
static void fs_timeout(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
unsigned long flags;
int wake = 0;
fep->stats.tx_errors++;
spin_lock_irqsave(&fep->lock, flags);
if (dev->flags & IFF_UP) {
(*fep->ops->stop)(dev);
(*fep->ops->restart)(dev);
}
wake = fep->tx_free && !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY);
spin_unlock_irqrestore(&fep->lock, flags);
if (wake)
netif_wake_queue(dev);
}
static int fs_enet_open(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
const struct fs_platform_info *fpi = fep->fpi;
int r;
/* Install our interrupt handler. */
r = fs_request_irq(dev, fep->interrupt, "fs_enet-mac", fs_enet_interrupt);
if (r != 0) {
printk(KERN_ERR DRV_MODULE_NAME
": %s Could not allocate FEC IRQ!", dev->name);
return -EINVAL;
}
/* Install our phy interrupt handler */
if (fpi->phy_irq != -1) {
r = fs_request_irq(dev, fpi->phy_irq, "fs_enet-phy", fs_mii_link_interrupt);
if (r != 0) {
printk(KERN_ERR DRV_MODULE_NAME
": %s Could not allocate PHY IRQ!", dev->name);
fs_free_irq(dev, fep->interrupt);
return -EINVAL;
}
}
fs_mii_startup(dev);
netif_carrier_off(dev);
fs_mii_link_status_change_check(dev, 1);
return 0;
}
static int fs_enet_close(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
const struct fs_platform_info *fpi = fep->fpi;
unsigned long flags;
netif_stop_queue(dev);
netif_carrier_off(dev);
fs_mii_shutdown(dev);
spin_lock_irqsave(&fep->lock, flags);
(*fep->ops->stop)(dev);
spin_unlock_irqrestore(&fep->lock, flags);
/* release any irqs */
if (fpi->phy_irq != -1)
fs_free_irq(dev, fpi->phy_irq);
fs_free_irq(dev, fep->interrupt);
return 0;
}
static struct net_device_stats *fs_enet_get_stats(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
return &fep->stats;
}
/*************************************************************************/
static void fs_get_drvinfo(struct net_device *dev,
struct ethtool_drvinfo *info)
{
strcpy(info->driver, DRV_MODULE_NAME);
strcpy(info->version, DRV_MODULE_VERSION);
}
static int fs_get_regs_len(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
return (*fep->ops->get_regs_len)(dev);
}
static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs,
void *p)
{
struct fs_enet_private *fep = netdev_priv(dev);
unsigned long flags;
int r, len;
len = regs->len;
spin_lock_irqsave(&fep->lock, flags);
r = (*fep->ops->get_regs)(dev, p, &len);
spin_unlock_irqrestore(&fep->lock, flags);
if (r == 0)
regs->version = 0;
}
static int fs_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct fs_enet_private *fep = netdev_priv(dev);
unsigned long flags;
int rc;
spin_lock_irqsave(&fep->lock, flags);
rc = mii_ethtool_gset(&fep->mii_if, cmd);
spin_unlock_irqrestore(&fep->lock, flags);
return rc;
}
static int fs_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct fs_enet_private *fep = netdev_priv(dev);
unsigned long flags;
int rc;
spin_lock_irqsave(&fep->lock, flags);
rc = mii_ethtool_sset(&fep->mii_if, cmd);
spin_unlock_irqrestore(&fep->lock, flags);
return rc;
}
static int fs_nway_reset(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
return mii_nway_restart(&fep->mii_if);
}
static u32 fs_get_msglevel(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
return fep->msg_enable;
}
static void fs_set_msglevel(struct net_device *dev, u32 value)
{
struct fs_enet_private *fep = netdev_priv(dev);
fep->msg_enable = value;
}
static struct ethtool_ops fs_ethtool_ops = {
.get_drvinfo = fs_get_drvinfo,
.get_regs_len = fs_get_regs_len,
.get_settings = fs_get_settings,
.set_settings = fs_set_settings,
.nway_reset = fs_nway_reset,
.get_link = ethtool_op_get_link,
.get_msglevel = fs_get_msglevel,
.set_msglevel = fs_set_msglevel,
.get_tx_csum = ethtool_op_get_tx_csum,
.set_tx_csum = ethtool_op_set_tx_csum, /* local! */
.get_sg = ethtool_op_get_sg,
.set_sg = ethtool_op_set_sg,
.get_regs = fs_get_regs,
};
static int fs_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
struct fs_enet_private *fep = netdev_priv(dev);
struct mii_ioctl_data *mii = (struct mii_ioctl_data *)&rq->ifr_data;
unsigned long flags;
int rc;
if (!netif_running(dev))
return -EINVAL;
spin_lock_irqsave(&fep->lock, flags);
rc = generic_mii_ioctl(&fep->mii_if, mii, cmd, NULL);
spin_unlock_irqrestore(&fep->lock, flags);
return rc;
}
extern int fs_mii_connect(struct net_device *dev);
extern void fs_mii_disconnect(struct net_device *dev);
static struct net_device *fs_init_instance(struct device *dev,
const struct fs_platform_info *fpi)
{
struct net_device *ndev = NULL;
struct fs_enet_private *fep = NULL;
int privsize, i, r, err = 0, registered = 0;
/* guard */
if ((unsigned int)fpi->fs_no >= FS_MAX_INDEX)
return ERR_PTR(-EINVAL);
privsize = sizeof(*fep) + (sizeof(struct sk_buff **) *
(fpi->rx_ring + fpi->tx_ring));
ndev = alloc_etherdev(privsize);
if (!ndev) {
err = -ENOMEM;
goto err;
}
SET_MODULE_OWNER(ndev);
fep = netdev_priv(ndev);
memset(fep, 0, privsize); /* clear everything */
fep->dev = dev;
dev_set_drvdata(dev, ndev);
fep->fpi = fpi;
if (fpi->init_ioports)
fpi->init_ioports();
#ifdef CONFIG_FS_ENET_HAS_FEC
if (fs_get_fec_index(fpi->fs_no) >= 0)
fep->ops = &fs_fec_ops;
#endif
#ifdef CONFIG_FS_ENET_HAS_SCC
if (fs_get_scc_index(fpi->fs_no) >=0 )
fep->ops = &fs_scc_ops;
#endif
#ifdef CONFIG_FS_ENET_HAS_FCC
if (fs_get_fcc_index(fpi->fs_no) >= 0)
fep->ops = &fs_fcc_ops;
#endif
if (fep->ops == NULL) {
printk(KERN_ERR DRV_MODULE_NAME
": %s No matching ops found (%d).\n",
ndev->name, fpi->fs_no);
err = -EINVAL;
goto err;
}
r = (*fep->ops->setup_data)(ndev);
if (r != 0) {
printk(KERN_ERR DRV_MODULE_NAME
": %s setup_data failed\n",
ndev->name);
err = r;
goto err;
}
/* point rx_skbuff, tx_skbuff */
fep->rx_skbuff = (struct sk_buff **)&fep[1];
fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
/* init locks */
spin_lock_init(&fep->lock);
spin_lock_init(&fep->tx_lock);
/*
* Set the Ethernet address.
*/
for (i = 0; i < 6; i++)
ndev->dev_addr[i] = fpi->macaddr[i];
r = (*fep->ops->allocate_bd)(ndev);
if (fep->ring_base == NULL) {
printk(KERN_ERR DRV_MODULE_NAME
": %s buffer descriptor alloc failed (%d).\n", ndev->name, r);
err = r;
goto err;
}
/*
* Set receive and transmit descriptor base.
*/
fep->rx_bd_base = fep->ring_base;
fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
/* initialize ring size variables */
fep->tx_ring = fpi->tx_ring;
fep->rx_ring = fpi->rx_ring;
/*
* The FEC Ethernet specific entries in the device structure.
*/
ndev->open = fs_enet_open;
ndev->hard_start_xmit = fs_enet_start_xmit;
ndev->tx_timeout = fs_timeout;
ndev->watchdog_timeo = 2 * HZ;
ndev->stop = fs_enet_close;
ndev->get_stats = fs_enet_get_stats;
ndev->set_multicast_list = fs_set_multicast_list;
if (fpi->use_napi) {
ndev->poll = fs_enet_rx_napi;
ndev->weight = fpi->napi_weight;
}
ndev->ethtool_ops = &fs_ethtool_ops;
ndev->do_ioctl = fs_ioctl;
init_timer(&fep->phy_timer_list);
netif_carrier_off(ndev);
err = register_netdev(ndev);
if (err != 0) {
printk(KERN_ERR DRV_MODULE_NAME
": %s register_netdev failed.\n", ndev->name);
goto err;
}
registered = 1;
err = fs_mii_connect(ndev);
if (err != 0) {
printk(KERN_ERR DRV_MODULE_NAME
": %s fs_mii_connect failed.\n", ndev->name);
goto err;
}
return ndev;
err:
if (ndev != NULL) {
if (registered)
unregister_netdev(ndev);
if (fep != NULL) {
(*fep->ops->free_bd)(ndev);
(*fep->ops->cleanup_data)(ndev);
}
free_netdev(ndev);
}
dev_set_drvdata(dev, NULL);
return ERR_PTR(err);
}
static int fs_cleanup_instance(struct net_device *ndev)
{
struct fs_enet_private *fep;
const struct fs_platform_info *fpi;
struct device *dev;
if (ndev == NULL)
return -EINVAL;
fep = netdev_priv(ndev);
if (fep == NULL)
return -EINVAL;
fpi = fep->fpi;
fs_mii_disconnect(ndev);
unregister_netdev(ndev);
dma_free_coherent(fep->dev, (fpi->tx_ring + fpi->rx_ring) * sizeof(cbd_t),
fep->ring_base, fep->ring_mem_addr);
/* reset it */
(*fep->ops->cleanup_data)(ndev);
dev = fep->dev;
if (dev != NULL) {
dev_set_drvdata(dev, NULL);
fep->dev = NULL;
}
free_netdev(ndev);
return 0;
}
/**************************************************************************************/
/* handy pointer to the immap */
void *fs_enet_immap = NULL;
static int setup_immap(void)
{
phys_addr_t paddr = 0;
unsigned long size = 0;
#ifdef CONFIG_CPM1
paddr = IMAP_ADDR;
size = 0x10000; /* map 64K */
#endif
#ifdef CONFIG_CPM2
paddr = CPM_MAP_ADDR;
size = 0x40000; /* map 256 K */
#endif
fs_enet_immap = ioremap(paddr, size);
if (fs_enet_immap == NULL)
return -EBADF; /* XXX ahem; maybe just BUG_ON? */
return 0;
}
static void cleanup_immap(void)
{
if (fs_enet_immap != NULL) {
iounmap(fs_enet_immap);
fs_enet_immap = NULL;
}
}
/**************************************************************************************/
static int __devinit fs_enet_probe(struct device *dev)
{
struct net_device *ndev;
/* no fixup - no device */
if (dev->platform_data == NULL) {
printk(KERN_INFO "fs_enet: "
"probe called with no platform data; "
"remove unused devices\n");
return -ENODEV;
}
ndev = fs_init_instance(dev, dev->platform_data);
if (IS_ERR(ndev))
return PTR_ERR(ndev);
return 0;
}
static int fs_enet_remove(struct device *dev)
{
return fs_cleanup_instance(dev_get_drvdata(dev));
}
static struct device_driver fs_enet_fec_driver = {
.name = "fsl-cpm-fec",
.bus = &platform_bus_type,
.probe = fs_enet_probe,
.remove = fs_enet_remove,
#ifdef CONFIG_PM
/* .suspend = fs_enet_suspend, TODO */
/* .resume = fs_enet_resume, TODO */
#endif
};
static struct device_driver fs_enet_scc_driver = {
.name = "fsl-cpm-scc",
.bus = &platform_bus_type,
.probe = fs_enet_probe,
.remove = fs_enet_remove,
#ifdef CONFIG_PM
/* .suspend = fs_enet_suspend, TODO */
/* .resume = fs_enet_resume, TODO */
#endif
};
static struct device_driver fs_enet_fcc_driver = {
.name = "fsl-cpm-fcc",
.bus = &platform_bus_type,
.probe = fs_enet_probe,
.remove = fs_enet_remove,
#ifdef CONFIG_PM
/* .suspend = fs_enet_suspend, TODO */
/* .resume = fs_enet_resume, TODO */
#endif
};
static int __init fs_init(void)
{
int r;
printk(KERN_INFO
"%s", version);
r = setup_immap();
if (r != 0)
return r;
r = driver_register(&fs_enet_fec_driver);
if (r != 0)
goto err;
r = driver_register(&fs_enet_fcc_driver);
if (r != 0)
goto err;
r = driver_register(&fs_enet_scc_driver);
if (r != 0)
goto err;
return 0;
err:
cleanup_immap();
return r;
}
static void __exit fs_cleanup(void)
{
driver_unregister(&fs_enet_fec_driver);
driver_unregister(&fs_enet_fcc_driver);
driver_unregister(&fs_enet_scc_driver);
cleanup_immap();
}
/**************************************************************************************/
module_init(fs_init);
module_exit(fs_cleanup);
/*
* Combined Ethernet driver for Motorola MPC8xx and MPC82xx.
*
* Copyright (c) 2003 Intracom S.A.
* by Pantelis Antoniou <panto@intracom.gr>
*
* 2005 (c) MontaVista Software, Inc.
* Vitaly Bordug <vbordug@ru.mvista.com>
*
* Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
* and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
*
* This file is licensed under the terms of the GNU General Public License
* version 2. This program is licensed "as is" without any warranty of any
* kind, whether express or implied.
*/
#include <linux/config.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/string.h>
#include <linux/ptrace.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/spinlock.h>
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/bitops.h>
#include <asm/pgtable.h>
#include <asm/irq.h>
#include <asm/uaccess.h>
#include "fs_enet.h"
/*************************************************/
/*
* Generic PHY support.
* Should work for all PHYs, but link change is detected by polling
*/
static void generic_timer_callback(unsigned long data)
{
struct net_device *dev = (struct net_device *)data;
struct fs_enet_private *fep = netdev_priv(dev);
fep->phy_timer_list.expires = jiffies + HZ / 2;
add_timer(&fep->phy_timer_list);
fs_mii_link_status_change_check(dev, 0);
}
static void generic_startup(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
fep->phy_timer_list.expires = jiffies + HZ / 2; /* every 500ms */
fep->phy_timer_list.data = (unsigned long)dev;
fep->phy_timer_list.function = generic_timer_callback;
add_timer(&fep->phy_timer_list);
}
static void generic_shutdown(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
del_timer_sync(&fep->phy_timer_list);
}
/* ------------------------------------------------------------------------- */
/* The Davicom DM9161 is used on the NETTA board */
/* register definitions */
#define MII_DM9161_ANAR 4 /* Aux. Config Register */
#define MII_DM9161_ACR 16 /* Aux. Config Register */
#define MII_DM9161_ACSR 17 /* Aux. Config/Status Register */
#define MII_DM9161_10TCSR 18 /* 10BaseT Config/Status Reg. */
#define MII_DM9161_INTR 21 /* Interrupt Register */
#define MII_DM9161_RECR 22 /* Receive Error Counter Reg. */
#define MII_DM9161_DISCR 23 /* Disconnect Counter Register */
static void dm9161_startup(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
fs_mii_write(dev, fep->mii_if.phy_id, MII_DM9161_INTR, 0x0000);
/* Start autonegotiation */
fs_mii_write(dev, fep->mii_if.phy_id, MII_BMCR, 0x1200);
set_current_state(TASK_UNINTERRUPTIBLE);
schedule_timeout(HZ*8);
}
static void dm9161_ack_int(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
fs_mii_read(dev, fep->mii_if.phy_id, MII_DM9161_INTR);
}
static void dm9161_shutdown(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
fs_mii_write(dev, fep->mii_if.phy_id, MII_DM9161_INTR, 0x0f00);
}
/**********************************************************************************/
static const struct phy_info phy_info[] = {
{
.id = 0x00181b88,
.name = "DM9161",
.startup = dm9161_startup,
.ack_int = dm9161_ack_int,
.shutdown = dm9161_shutdown,
}, {
.id = 0,
.name = "GENERIC",
.startup = generic_startup,
.shutdown = generic_shutdown,
},
};
/**********************************************************************************/
static int phy_id_detect(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
const struct fs_platform_info *fpi = fep->fpi;
struct fs_enet_mii_bus *bus = fep->mii_bus;
int i, r, start, end, phytype, physubtype;
const struct phy_info *phy;
int phy_hwid, phy_id;
phy_hwid = -1;
fep->phy = NULL;
/* auto-detect? */
if (fpi->phy_addr == -1) {
start = 1;
end = 32;
} else { /* direct */
start = fpi->phy_addr;
end = start + 1;
}
for (phy_id = start; phy_id < end; phy_id++) {
/* skip already used phy addresses on this bus */
if (bus->usage_map & (1 << phy_id))
continue;
r = fs_mii_read(dev, phy_id, MII_PHYSID1);
if (r == -1 || (phytype = (r & 0xffff)) == 0xffff)
continue;
r = fs_mii_read(dev, phy_id, MII_PHYSID2);
if (r == -1 || (physubtype = (r & 0xffff)) == 0xffff)
continue;
phy_hwid = (phytype << 16) | physubtype;
if (phy_hwid != -1)
break;
}
if (phy_hwid == -1) {
printk(KERN_ERR DRV_MODULE_NAME
": %s No PHY detected! range=0x%02x-0x%02x\n",
dev->name, start, end);
return -1;
}
for (i = 0, phy = phy_info; i < ARRAY_SIZE(phy_info); i++, phy++)
if (phy->id == (phy_hwid >> 4) || phy->id == 0)
break;
if (i >= ARRAY_SIZE(phy_info)) {
printk(KERN_ERR DRV_MODULE_NAME
": %s PHY id 0x%08x is not supported!\n",
dev->name, phy_hwid);
return -1;
}
fep->phy = phy;
/* mark this address as used */
bus->usage_map |= (1 << phy_id);
printk(KERN_INFO DRV_MODULE_NAME
": %s Phy @ 0x%x, type %s (0x%08x)%s\n",
dev->name, phy_id, fep->phy->name, phy_hwid,
fpi->phy_addr == -1 ? " (auto-detected)" : "");
return phy_id;
}
void fs_mii_startup(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
if (fep->phy->startup)
(*fep->phy->startup) (dev);
}
void fs_mii_shutdown(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
if (fep->phy->shutdown)
(*fep->phy->shutdown) (dev);
}
void fs_mii_ack_int(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
if (fep->phy->ack_int)
(*fep->phy->ack_int) (dev);
}
#define MII_LINK 0x0001
#define MII_HALF 0x0002
#define MII_FULL 0x0004
#define MII_BASE4 0x0008
#define MII_10M 0x0010
#define MII_100M 0x0020
#define MII_1G 0x0040
#define MII_10G 0x0080
/* return full mii info at one gulp, with a usable form */
static unsigned int mii_full_status(struct mii_if_info *mii)
{
unsigned int status;
int bmsr, adv, lpa, neg;
struct fs_enet_private* fep = netdev_priv(mii->dev);
/* first, a dummy read, needed to latch some MII phys */
(void)mii->mdio_read(mii->dev, mii->phy_id, MII_BMSR);
bmsr = mii->mdio_read(mii->dev, mii->phy_id, MII_BMSR);
/* no link */
if ((bmsr & BMSR_LSTATUS) == 0)
return 0;
status = MII_LINK;
/* Lets look what ANEG says if it's supported - otherwize we shall
take the right values from the platform info*/
if(!mii->force_media) {
/* autoneg not completed; don't bother */
if ((bmsr & BMSR_ANEGCOMPLETE) == 0)
return 0;
adv = (*mii->mdio_read)(mii->dev, mii->phy_id, MII_ADVERTISE);
lpa = (*mii->mdio_read)(mii->dev, mii->phy_id, MII_LPA);
neg = lpa & adv;
} else {
neg = fep->fpi->bus_info->lpa;
}
if (neg & LPA_100FULL)
status |= MII_FULL | MII_100M;
else if (neg & LPA_100BASE4)
status |= MII_FULL | MII_BASE4 | MII_100M;
else if (neg & LPA_100HALF)
status |= MII_HALF | MII_100M;
else if (neg & LPA_10FULL)
status |= MII_FULL | MII_10M;
else
status |= MII_HALF | MII_10M;
return status;
}
void fs_mii_link_status_change_check(struct net_device *dev, int init_media)
{
struct fs_enet_private *fep = netdev_priv(dev);
struct mii_if_info *mii = &fep->mii_if;
unsigned int mii_status;
int ok_to_print, link, duplex, speed;
unsigned long flags;
ok_to_print = netif_msg_link(fep);
mii_status = mii_full_status(mii);
if (!init_media && mii_status == fep->last_mii_status)
return;
fep->last_mii_status = mii_status;
link = !!(mii_status & MII_LINK);
duplex = !!(mii_status & MII_FULL);
speed = (mii_status & MII_100M) ? 100 : 10;
if (link == 0) {
netif_carrier_off(mii->dev);
netif_stop_queue(dev);
if (!init_media) {
spin_lock_irqsave(&fep->lock, flags);
(*fep->ops->stop)(dev);
spin_unlock_irqrestore(&fep->lock, flags);
}
if (ok_to_print)
printk(KERN_INFO "%s: link down\n", mii->dev->name);
} else {
mii->full_duplex = duplex;
netif_carrier_on(mii->dev);
spin_lock_irqsave(&fep->lock, flags);
fep->duplex = duplex;
fep->speed = speed;
(*fep->ops->restart)(dev);
spin_unlock_irqrestore(&fep->lock, flags);
netif_start_queue(dev);
if (ok_to_print)
printk(KERN_INFO "%s: link up, %dMbps, %s-duplex\n",
dev->name, speed, duplex ? "full" : "half");
}
}
/**********************************************************************************/
int fs_mii_read(struct net_device *dev, int phy_id, int location)
{
struct fs_enet_private *fep = netdev_priv(dev);
struct fs_enet_mii_bus *bus = fep->mii_bus;
unsigned long flags;
int ret;
spin_lock_irqsave(&bus->mii_lock, flags);
ret = (*bus->mii_read)(bus, phy_id, location);
spin_unlock_irqrestore(&bus->mii_lock, flags);
return ret;
}
void fs_mii_write(struct net_device *dev, int phy_id, int location, int value)
{
struct fs_enet_private *fep = netdev_priv(dev);
struct fs_enet_mii_bus *bus = fep->mii_bus;
unsigned long flags;
spin_lock_irqsave(&bus->mii_lock, flags);
(*bus->mii_write)(bus, phy_id, location, value);
spin_unlock_irqrestore(&bus->mii_lock, flags);
}
/*****************************************************************************/
/* list of all registered mii buses */
static LIST_HEAD(fs_mii_bus_list);
static struct fs_enet_mii_bus *lookup_bus(int method, int id)
{
struct list_head *ptr;
struct fs_enet_mii_bus *bus;
list_for_each(ptr, &fs_mii_bus_list) {
bus = list_entry(ptr, struct fs_enet_mii_bus, list);
if (bus->bus_info->method == method &&
bus->bus_info->id == id)
return bus;
}
return NULL;
}
static struct fs_enet_mii_bus *create_bus(const struct fs_mii_bus_info *bi)
{
struct fs_enet_mii_bus *bus;
int ret = 0;
bus = kmalloc(sizeof(*bus), GFP_KERNEL);
if (bus == NULL) {
ret = -ENOMEM;
goto err;
}
memset(bus, 0, sizeof(*bus));
spin_lock_init(&bus->mii_lock);
bus->bus_info = bi;
bus->refs = 0;
bus->usage_map = 0;
/* perform initialization */
switch (bi->method) {
case fsmii_fixed:
ret = fs_mii_fixed_init(bus);
if (ret != 0)
goto err;
break;
case fsmii_bitbang:
ret = fs_mii_bitbang_init(bus);
if (ret != 0)
goto err;
break;
#ifdef CONFIG_FS_ENET_HAS_FEC
case fsmii_fec:
ret = fs_mii_fec_init(bus);
if (ret != 0)
goto err;
break;
#endif
default:
ret = -EINVAL;
goto err;
}
list_add(&bus->list, &fs_mii_bus_list);
return bus;
err:
if (bus)
kfree(bus);
return ERR_PTR(ret);
}
static void destroy_bus(struct fs_enet_mii_bus *bus)
{
/* remove from bus list */
list_del(&bus->list);
/* nothing more needed */
kfree(bus);
}
int fs_mii_connect(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
const struct fs_platform_info *fpi = fep->fpi;
struct fs_enet_mii_bus *bus = NULL;
/* check method validity */
switch (fpi->bus_info->method) {
case fsmii_fixed:
case fsmii_bitbang:
break;
#ifdef CONFIG_FS_ENET_HAS_FEC
case fsmii_fec:
break;
#endif
default:
printk(KERN_ERR DRV_MODULE_NAME
": %s Unknown MII bus method (%d)!\n",
dev->name, fpi->bus_info->method);
return -EINVAL;
}
bus = lookup_bus(fpi->bus_info->method, fpi->bus_info->id);
/* if not found create new bus */
if (bus == NULL) {
bus = create_bus(fpi->bus_info);
if (IS_ERR(bus)) {
printk(KERN_ERR DRV_MODULE_NAME
": %s MII bus creation failure!\n", dev->name);
return PTR_ERR(bus);
}
}
bus->refs++;
fep->mii_bus = bus;
fep->mii_if.dev = dev;
fep->mii_if.phy_id_mask = 0x1f;
fep->mii_if.reg_num_mask = 0x1f;
fep->mii_if.mdio_read = fs_mii_read;
fep->mii_if.mdio_write = fs_mii_write;
fep->mii_if.force_media = fpi->bus_info->disable_aneg;
fep->mii_if.phy_id = phy_id_detect(dev);
return 0;
}
void fs_mii_disconnect(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
struct fs_enet_mii_bus *bus = NULL;
bus = fep->mii_bus;
fep->mii_bus = NULL;
if (--bus->refs <= 0)
destroy_bus(bus);
}
#ifndef FS_ENET_H
#define FS_ENET_H
#include <linux/mii.h>
#include <linux/netdevice.h>
#include <linux/types.h>
#include <linux/version.h>
#include <linux/list.h>
#include <linux/fs_enet_pd.h>
#include <asm/dma-mapping.h>
#ifdef CONFIG_CPM1
#include <asm/commproc.h>
#endif
#ifdef CONFIG_CPM2
#include <asm/cpm2.h>
#endif
/* hw driver ops */
struct fs_ops {
int (*setup_data)(struct net_device *dev);
int (*allocate_bd)(struct net_device *dev);
void (*free_bd)(struct net_device *dev);
void (*cleanup_data)(struct net_device *dev);
void (*set_multicast_list)(struct net_device *dev);
void (*restart)(struct net_device *dev);
void (*stop)(struct net_device *dev);
void (*pre_request_irq)(struct net_device *dev, int irq);
void (*post_free_irq)(struct net_device *dev, int irq);
void (*napi_clear_rx_event)(struct net_device *dev);
void (*napi_enable_rx)(struct net_device *dev);
void (*napi_disable_rx)(struct net_device *dev);
void (*rx_bd_done)(struct net_device *dev);
void (*tx_kickstart)(struct net_device *dev);
u32 (*get_int_events)(struct net_device *dev);
void (*clear_int_events)(struct net_device *dev, u32 int_events);
void (*ev_error)(struct net_device *dev, u32 int_events);
int (*get_regs)(struct net_device *dev, void *p, int *sizep);
int (*get_regs_len)(struct net_device *dev);
void (*tx_restart)(struct net_device *dev);
};
struct phy_info {
unsigned int id;
const char *name;
void (*startup) (struct net_device * dev);
void (*shutdown) (struct net_device * dev);
void (*ack_int) (struct net_device * dev);
};
/* The FEC stores dest/src/type, data, and checksum for receive packets.
*/
#define MAX_MTU 1508 /* Allow fullsized pppoe packets over VLAN */
#define MIN_MTU 46 /* this is data size */
#define CRC_LEN 4
#define PKT_MAXBUF_SIZE (MAX_MTU+ETH_HLEN+CRC_LEN)
#define PKT_MINBUF_SIZE (MIN_MTU+ETH_HLEN+CRC_LEN)
/* Must be a multiple of 32 (to cover both FEC & FCC) */
#define PKT_MAXBLR_SIZE ((PKT_MAXBUF_SIZE + 31) & ~31)
/* This is needed so that invalidate_xxx wont invalidate too much */
#define ENET_RX_FRSIZE L1_CACHE_ALIGN(PKT_MAXBUF_SIZE)
struct fs_enet_mii_bus {
struct list_head list;
spinlock_t mii_lock;
const struct fs_mii_bus_info *bus_info;
int refs;
u32 usage_map;
int (*mii_read)(struct fs_enet_mii_bus *bus,
int phy_id, int location);
void (*mii_write)(struct fs_enet_mii_bus *bus,
int phy_id, int location, int value);
union {
struct {
unsigned int mii_speed;
void *fecp;
} fec;
struct {
/* note that the actual port size may */
/* be different; cpm(s) handle it OK */
u8 mdio_msk;
u8 *mdio_dir;
u8 *mdio_dat;
u8 mdc_msk;
u8 *mdc_dir;
u8 *mdc_dat;
} bitbang;
struct {
u16 lpa;
} fixed;
};
};
int fs_mii_bitbang_init(struct fs_enet_mii_bus *bus);
int fs_mii_fixed_init(struct fs_enet_mii_bus *bus);
int fs_mii_fec_init(struct fs_enet_mii_bus *bus);
struct fs_enet_private {
struct device *dev; /* pointer back to the device (must be initialized first) */
spinlock_t lock; /* during all ops except TX pckt processing */
spinlock_t tx_lock; /* during fs_start_xmit and fs_tx */
const struct fs_platform_info *fpi;
const struct fs_ops *ops;
int rx_ring, tx_ring;
dma_addr_t ring_mem_addr;
void *ring_base;
struct sk_buff **rx_skbuff;
struct sk_buff **tx_skbuff;
cbd_t *rx_bd_base; /* Address of Rx and Tx buffers. */
cbd_t *tx_bd_base;
cbd_t *dirty_tx; /* ring entries to be free()ed. */
cbd_t *cur_rx;
cbd_t *cur_tx;
int tx_free;
struct net_device_stats stats;
struct timer_list phy_timer_list;
const struct phy_info *phy;
u32 msg_enable;
struct mii_if_info mii_if;
unsigned int last_mii_status;
struct fs_enet_mii_bus *mii_bus;
int interrupt;
int duplex, speed; /* current settings */
/* event masks */
u32 ev_napi_rx; /* mask of NAPI rx events */
u32 ev_rx; /* rx event mask */
u32 ev_tx; /* tx event mask */
u32 ev_err; /* error event mask */
u16 bd_rx_empty; /* mask of BD rx empty */
u16 bd_rx_err; /* mask of BD rx errors */
union {
struct {
int idx; /* FEC1 = 0, FEC2 = 1 */
void *fecp; /* hw registers */
u32 hthi, htlo; /* state for multicast */
} fec;
struct {
int idx; /* FCC1-3 = 0-2 */
void *fccp; /* hw registers */
void *ep; /* parameter ram */
void *fcccp; /* hw registers cont. */
void *mem; /* FCC DPRAM */
u32 gaddrh, gaddrl; /* group address */
} fcc;
struct {
int idx; /* FEC1 = 0, FEC2 = 1 */
void *sccp; /* hw registers */
void *ep; /* parameter ram */
u32 hthi, htlo; /* state for multicast */
} scc;
};
};
/***************************************************************************/
int fs_mii_read(struct net_device *dev, int phy_id, int location);
void fs_mii_write(struct net_device *dev, int phy_id, int location, int value);
void fs_mii_startup(struct net_device *dev);
void fs_mii_shutdown(struct net_device *dev);
void fs_mii_ack_int(struct net_device *dev);
void fs_mii_link_status_change_check(struct net_device *dev, int init_media);
void fs_init_bds(struct net_device *dev);
void fs_cleanup_bds(struct net_device *dev);
/***************************************************************************/
#define DRV_MODULE_NAME "fs_enet"
#define PFX DRV_MODULE_NAME ": "
#define DRV_MODULE_VERSION "1.0"
#define DRV_MODULE_RELDATE "Aug 8, 2005"
/***************************************************************************/
int fs_enet_platform_init(void);
void fs_enet_platform_cleanup(void);
/***************************************************************************/
/* buffer descriptor access macros */
/* access macros */
#if defined(CONFIG_CPM1)
/* for a a CPM1 __raw_xxx's are sufficient */
#define __cbd_out32(addr, x) __raw_writel(x, addr)
#define __cbd_out16(addr, x) __raw_writew(x, addr)
#define __cbd_in32(addr) __raw_readl(addr)
#define __cbd_in16(addr) __raw_readw(addr)
#else
/* for others play it safe */
#define __cbd_out32(addr, x) out_be32(addr, x)
#define __cbd_out16(addr, x) out_be16(addr, x)
#define __cbd_in32(addr) in_be32(addr)
#define __cbd_in16(addr) in_be16(addr)
#endif
/* write */
#define CBDW_SC(_cbd, _sc) __cbd_out16(&(_cbd)->cbd_sc, (_sc))
#define CBDW_DATLEN(_cbd, _datlen) __cbd_out16(&(_cbd)->cbd_datlen, (_datlen))
#define CBDW_BUFADDR(_cbd, _bufaddr) __cbd_out32(&(_cbd)->cbd_bufaddr, (_bufaddr))
/* read */
#define CBDR_SC(_cbd) __cbd_in16(&(_cbd)->cbd_sc)
#define CBDR_DATLEN(_cbd) __cbd_in16(&(_cbd)->cbd_datlen)
#define CBDR_BUFADDR(_cbd) __cbd_in32(&(_cbd)->cbd_bufaddr)
/* set bits */
#define CBDS_SC(_cbd, _sc) CBDW_SC(_cbd, CBDR_SC(_cbd) | (_sc))
/* clear bits */
#define CBDC_SC(_cbd, _sc) CBDW_SC(_cbd, CBDR_SC(_cbd) & ~(_sc))
/*******************************************************************/
extern const struct fs_ops fs_fec_ops;
extern const struct fs_ops fs_fcc_ops;
extern const struct fs_ops fs_scc_ops;
/*******************************************************************/
/* handy pointer to the immap */
extern void *fs_enet_immap;
/*******************************************************************/
#endif
/*
* FCC driver for Motorola MPC82xx (PQ2).
*
* Copyright (c) 2003 Intracom S.A.
* by Pantelis Antoniou <panto@intracom.gr>
*
* 2005 (c) MontaVista Software, Inc.
* Vitaly Bordug <vbordug@ru.mvista.com>
*
* This file is licensed under the terms of the GNU General Public License
* version 2. This program is licensed "as is" without any warranty of any
* kind, whether express or implied.
*/
#include <linux/config.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/sched.h>
#include <linux/string.h>
#include <linux/ptrace.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/spinlock.h>
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/bitops.h>
#include <linux/fs.h>
#include <asm/immap_cpm2.h>
#include <asm/mpc8260.h>
#include <asm/cpm2.h>
#include <asm/pgtable.h>
#include <asm/irq.h>
#include <asm/uaccess.h>
#include "fs_enet.h"
/*************************************************/
/* FCC access macros */
#define __fcc_out32(addr, x) out_be32((unsigned *)addr, x)
#define __fcc_out16(addr, x) out_be16((unsigned short *)addr, x)
#define __fcc_out8(addr, x) out_8((unsigned char *)addr, x)
#define __fcc_in32(addr) in_be32((unsigned *)addr)
#define __fcc_in16(addr) in_be16((unsigned short *)addr)
#define __fcc_in8(addr) in_8((unsigned char *)addr)
/* parameter space */
/* write, read, set bits, clear bits */
#define W32(_p, _m, _v) __fcc_out32(&(_p)->_m, (_v))
#define R32(_p, _m) __fcc_in32(&(_p)->_m)
#define S32(_p, _m, _v) W32(_p, _m, R32(_p, _m) | (_v))
#define C32(_p, _m, _v) W32(_p, _m, R32(_p, _m) & ~(_v))
#define W16(_p, _m, _v) __fcc_out16(&(_p)->_m, (_v))
#define R16(_p, _m) __fcc_in16(&(_p)->_m)
#define S16(_p, _m, _v) W16(_p, _m, R16(_p, _m) | (_v))
#define C16(_p, _m, _v) W16(_p, _m, R16(_p, _m) & ~(_v))
#define W8(_p, _m, _v) __fcc_out8(&(_p)->_m, (_v))
#define R8(_p, _m) __fcc_in8(&(_p)->_m)
#define S8(_p, _m, _v) W8(_p, _m, R8(_p, _m) | (_v))
#define C8(_p, _m, _v) W8(_p, _m, R8(_p, _m) & ~(_v))
/*************************************************/
#define FCC_MAX_MULTICAST_ADDRS 64
#define mk_mii_read(REG) (0x60020000 | ((REG & 0x1f) << 18))
#define mk_mii_write(REG, VAL) (0x50020000 | ((REG & 0x1f) << 18) | (VAL & 0xffff))
#define mk_mii_end 0
#define MAX_CR_CMD_LOOPS 10000
static inline int fcc_cr_cmd(struct fs_enet_private *fep, u32 mcn, u32 op)
{
const struct fs_platform_info *fpi = fep->fpi;
cpm2_map_t *immap = fs_enet_immap;
cpm_cpm2_t *cpmp = &immap->im_cpm;
u32 v;
int i;
/* Currently I don't know what feature call will look like. But
I guess there'd be something like do_cpm_cmd() which will require page & sblock */
v = mk_cr_cmd(fpi->cp_page, fpi->cp_block, mcn, op);
W32(cpmp, cp_cpcr, v | CPM_CR_FLG);
for (i = 0; i < MAX_CR_CMD_LOOPS; i++)
if ((R32(cpmp, cp_cpcr) & CPM_CR_FLG) == 0)
break;
if (i >= MAX_CR_CMD_LOOPS) {
printk(KERN_ERR "%s(): Not able to issue CPM command\n",
__FUNCTION__);
return 1;
}
return 0;
}
static int do_pd_setup(struct fs_enet_private *fep)
{
struct platform_device *pdev = to_platform_device(fep->dev);
struct resource *r;
/* Fill out IRQ field */
fep->interrupt = platform_get_irq(pdev, 0);
/* Attach the memory for the FCC Parameter RAM */
r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fcc_pram");
fep->fcc.ep = (void *)r->start;
if (fep->fcc.ep == NULL)
return -EINVAL;
r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fcc_regs");
fep->fcc.fccp = (void *)r->start;
if (fep->fcc.fccp == NULL)
return -EINVAL;
fep->fcc.fcccp = (void *)fep->fpi->fcc_regs_c;
if (fep->fcc.fcccp == NULL)
return -EINVAL;
return 0;
}
#define FCC_NAPI_RX_EVENT_MSK (FCC_ENET_RXF | FCC_ENET_RXB)
#define FCC_RX_EVENT (FCC_ENET_RXF)
#define FCC_TX_EVENT (FCC_ENET_TXB)
#define FCC_ERR_EVENT_MSK (FCC_ENET_TXE | FCC_ENET_BSY)
static int setup_data(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
const struct fs_platform_info *fpi = fep->fpi;
fep->fcc.idx = fs_get_fcc_index(fpi->fs_no);
if ((unsigned int)fep->fcc.idx >= 3) /* max 3 FCCs */
return -EINVAL;
fep->fcc.mem = (void *)fpi->mem_offset;
if (do_pd_setup(fep) != 0)
return -EINVAL;
fep->ev_napi_rx = FCC_NAPI_RX_EVENT_MSK;
fep->ev_rx = FCC_RX_EVENT;
fep->ev_tx = FCC_TX_EVENT;
fep->ev_err = FCC_ERR_EVENT_MSK;
return 0;
}
static int allocate_bd(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
const struct fs_platform_info *fpi = fep->fpi;
fep->ring_base = dma_alloc_coherent(fep->dev,
(fpi->tx_ring + fpi->rx_ring) *
sizeof(cbd_t), &fep->ring_mem_addr,
GFP_KERNEL);
if (fep->ring_base == NULL)
return -ENOMEM;
return 0;
}
static void free_bd(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
const struct fs_platform_info *fpi = fep->fpi;
if (fep->ring_base)
dma_free_coherent(fep->dev,
(fpi->tx_ring + fpi->rx_ring) * sizeof(cbd_t),
fep->ring_base, fep->ring_mem_addr);
}
static void cleanup_data(struct net_device *dev)
{
/* nothing */
}
static void set_promiscuous_mode(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
fcc_t *fccp = fep->fcc.fccp;
S32(fccp, fcc_fpsmr, FCC_PSMR_PRO);
}
static void set_multicast_start(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
fcc_enet_t *ep = fep->fcc.ep;
W32(ep, fen_gaddrh, 0);
W32(ep, fen_gaddrl, 0);
}
static void set_multicast_one(struct net_device *dev, const u8 *mac)
{
struct fs_enet_private *fep = netdev_priv(dev);
fcc_enet_t *ep = fep->fcc.ep;
u16 taddrh, taddrm, taddrl;
taddrh = ((u16)mac[5] << 8) | mac[4];
taddrm = ((u16)mac[3] << 8) | mac[2];
taddrl = ((u16)mac[1] << 8) | mac[0];
W16(ep, fen_taddrh, taddrh);
W16(ep, fen_taddrm, taddrm);
W16(ep, fen_taddrl, taddrl);
fcc_cr_cmd(fep, 0x0C, CPM_CR_SET_GADDR);
}
static void set_multicast_finish(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
fcc_t *fccp = fep->fcc.fccp;
fcc_enet_t *ep = fep->fcc.ep;
/* clear promiscuous always */
C32(fccp, fcc_fpsmr, FCC_PSMR_PRO);
/* if all multi or too many multicasts; just enable all */
if ((dev->flags & IFF_ALLMULTI) != 0 ||
dev->mc_count > FCC_MAX_MULTICAST_ADDRS) {
W32(ep, fen_gaddrh, 0xffffffff);
W32(ep, fen_gaddrl, 0xffffffff);
}
/* read back */
fep->fcc.gaddrh = R32(ep, fen_gaddrh);
fep->fcc.gaddrl = R32(ep, fen_gaddrl);
}
static void set_multicast_list(struct net_device *dev)
{
struct dev_mc_list *pmc;
if ((dev->flags & IFF_PROMISC) == 0) {
set_multicast_start(dev);
for (pmc = dev->mc_list; pmc != NULL; pmc = pmc->next)
set_multicast_one(dev, pmc->dmi_addr);
set_multicast_finish(dev);
} else
set_promiscuous_mode(dev);
}
static void restart(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
const struct fs_platform_info *fpi = fep->fpi;
fcc_t *fccp = fep->fcc.fccp;
fcc_c_t *fcccp = fep->fcc.fcccp;
fcc_enet_t *ep = fep->fcc.ep;
dma_addr_t rx_bd_base_phys, tx_bd_base_phys;
u16 paddrh, paddrm, paddrl;
u16 mem_addr;
const unsigned char *mac;
int i;
C32(fccp, fcc_gfmr, FCC_GFMR_ENR | FCC_GFMR_ENT);
/* clear everything (slow & steady does it) */
for (i = 0; i < sizeof(*ep); i++)
__fcc_out8((char *)ep + i, 0);
/* get physical address */
rx_bd_base_phys = fep->ring_mem_addr;
tx_bd_base_phys = rx_bd_base_phys + sizeof(cbd_t) * fpi->rx_ring;
/* point to bds */
W32(ep, fen_genfcc.fcc_rbase, rx_bd_base_phys);
W32(ep, fen_genfcc.fcc_tbase, tx_bd_base_phys);
/* Set maximum bytes per receive buffer.
* It must be a multiple of 32.
*/
W16(ep, fen_genfcc.fcc_mrblr, PKT_MAXBLR_SIZE);
W32(ep, fen_genfcc.fcc_rstate, (CPMFCR_GBL | CPMFCR_EB) << 24);
W32(ep, fen_genfcc.fcc_tstate, (CPMFCR_GBL | CPMFCR_EB) << 24);
/* Allocate space in the reserved FCC area of DPRAM for the
* internal buffers. No one uses this space (yet), so we
* can do this. Later, we will add resource management for
* this area.
*/
mem_addr = (u32) fep->fcc.mem; /* de-fixup dpram offset */
W16(ep, fen_genfcc.fcc_riptr, (mem_addr & 0xffff));
W16(ep, fen_genfcc.fcc_tiptr, ((mem_addr + 32) & 0xffff));
W16(ep, fen_padptr, mem_addr + 64);
/* fill with special symbol... */
memset(fep->fcc.mem + fpi->dpram_offset + 64, 0x88, 32);
W32(ep, fen_genfcc.fcc_rbptr, 0);
W32(ep, fen_genfcc.fcc_tbptr, 0);
W32(ep, fen_genfcc.fcc_rcrc, 0);
W32(ep, fen_genfcc.fcc_tcrc, 0);
W16(ep, fen_genfcc.fcc_res1, 0);
W32(ep, fen_genfcc.fcc_res2, 0);
/* no CAM */
W32(ep, fen_camptr, 0);
/* Set CRC preset and mask */
W32(ep, fen_cmask, 0xdebb20e3);
W32(ep, fen_cpres, 0xffffffff);
W32(ep, fen_crcec, 0); /* CRC Error counter */
W32(ep, fen_alec, 0); /* alignment error counter */
W32(ep, fen_disfc, 0); /* discard frame counter */
W16(ep, fen_retlim, 15); /* Retry limit threshold */
W16(ep, fen_pper, 0); /* Normal persistence */
/* set group address */
W32(ep, fen_gaddrh, fep->fcc.gaddrh);
W32(ep, fen_gaddrl, fep->fcc.gaddrh);
/* Clear hash filter tables */
W32(ep, fen_iaddrh, 0);
W32(ep, fen_iaddrl, 0);
/* Clear the Out-of-sequence TxBD */
W16(ep, fen_tfcstat, 0);
W16(ep, fen_tfclen, 0);
W32(ep, fen_tfcptr, 0);
W16(ep, fen_mflr, PKT_MAXBUF_SIZE); /* maximum frame length register */
W16(ep, fen_minflr, PKT_MINBUF_SIZE); /* minimum frame length register */
/* set address */
mac = dev->dev_addr;
paddrh = ((u16)mac[5] << 8) | mac[4];
paddrm = ((u16)mac[3] << 8) | mac[2];
paddrl = ((u16)mac[1] << 8) | mac[0];
W16(ep, fen_paddrh, paddrh);
W16(ep, fen_paddrm, paddrm);
W16(ep, fen_paddrl, paddrl);
W16(ep, fen_taddrh, 0);
W16(ep, fen_taddrm, 0);
W16(ep, fen_taddrl, 0);
W16(ep, fen_maxd1, 1520); /* maximum DMA1 length */
W16(ep, fen_maxd2, 1520); /* maximum DMA2 length */
/* Clear stat counters, in case we ever enable RMON */
W32(ep, fen_octc, 0);
W32(ep, fen_colc, 0);
W32(ep, fen_broc, 0);
W32(ep, fen_mulc, 0);
W32(ep, fen_uspc, 0);
W32(ep, fen_frgc, 0);
W32(ep, fen_ospc, 0);
W32(ep, fen_jbrc, 0);
W32(ep, fen_p64c, 0);
W32(ep, fen_p65c, 0);
W32(ep, fen_p128c, 0);
W32(ep, fen_p256c, 0);
W32(ep, fen_p512c, 0);
W32(ep, fen_p1024c, 0);
W16(ep, fen_rfthr, 0); /* Suggested by manual */
W16(ep, fen_rfcnt, 0);
W16(ep, fen_cftype, 0);
fs_init_bds(dev);
/* adjust to speed (for RMII mode) */
if (fpi->use_rmii) {
if (fep->speed == 100)
C8(fcccp, fcc_gfemr, 0x20);
else
S8(fcccp, fcc_gfemr, 0x20);
}
fcc_cr_cmd(fep, 0x0c, CPM_CR_INIT_TRX);
/* clear events */
W16(fccp, fcc_fcce, 0xffff);
/* Enable interrupts we wish to service */
W16(fccp, fcc_fccm, FCC_ENET_TXE | FCC_ENET_RXF | FCC_ENET_TXB);
/* Set GFMR to enable Ethernet operating mode */
W32(fccp, fcc_gfmr, FCC_GFMR_TCI | FCC_GFMR_MODE_ENET);
/* set sync/delimiters */
W16(fccp, fcc_fdsr, 0xd555);
W32(fccp, fcc_fpsmr, FCC_PSMR_ENCRC);
if (fpi->use_rmii)
S32(fccp, fcc_fpsmr, FCC_PSMR_RMII);
/* adjust to duplex mode */
if (fep->duplex)
S32(fccp, fcc_fpsmr, FCC_PSMR_FDE | FCC_PSMR_LPB);
else
C32(fccp, fcc_fpsmr, FCC_PSMR_FDE | FCC_PSMR_LPB);
S32(fccp, fcc_gfmr, FCC_GFMR_ENR | FCC_GFMR_ENT);
}
static void stop(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
fcc_t *fccp = fep->fcc.fccp;
/* stop ethernet */
C32(fccp, fcc_gfmr, FCC_GFMR_ENR | FCC_GFMR_ENT);
/* clear events */
W16(fccp, fcc_fcce, 0xffff);
/* clear interrupt mask */
W16(fccp, fcc_fccm, 0);
fs_cleanup_bds(dev);
}
static void pre_request_irq(struct net_device *dev, int irq)
{
/* nothing */
}
static void post_free_irq(struct net_device *dev, int irq)
{
/* nothing */
}
static void napi_clear_rx_event(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
fcc_t *fccp = fep->fcc.fccp;
W16(fccp, fcc_fcce, FCC_NAPI_RX_EVENT_MSK);
}
static void napi_enable_rx(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
fcc_t *fccp = fep->fcc.fccp;
S16(fccp, fcc_fccm, FCC_NAPI_RX_EVENT_MSK);
}
static void napi_disable_rx(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
fcc_t *fccp = fep->fcc.fccp;
C16(fccp, fcc_fccm, FCC_NAPI_RX_EVENT_MSK);
}
static void rx_bd_done(struct net_device *dev)
{
/* nothing */
}
static void tx_kickstart(struct net_device *dev)
{
/* nothing */
}
static u32 get_int_events(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
fcc_t *fccp = fep->fcc.fccp;
return (u32)R16(fccp, fcc_fcce);
}
static void clear_int_events(struct net_device *dev, u32 int_events)
{
struct fs_enet_private *fep = netdev_priv(dev);
fcc_t *fccp = fep->fcc.fccp;
W16(fccp, fcc_fcce, int_events & 0xffff);
}
static void ev_error(struct net_device *dev, u32 int_events)
{
printk(KERN_WARNING DRV_MODULE_NAME
": %s FS_ENET ERROR(s) 0x%x\n", dev->name, int_events);
}
int get_regs(struct net_device *dev, void *p, int *sizep)
{
struct fs_enet_private *fep = netdev_priv(dev);
if (*sizep < sizeof(fcc_t) + sizeof(fcc_c_t) + sizeof(fcc_enet_t))
return -EINVAL;
memcpy_fromio(p, fep->fcc.fccp, sizeof(fcc_t));
p = (char *)p + sizeof(fcc_t);
memcpy_fromio(p, fep->fcc.fcccp, sizeof(fcc_c_t));
p = (char *)p + sizeof(fcc_c_t);
memcpy_fromio(p, fep->fcc.ep, sizeof(fcc_enet_t));
return 0;
}
int get_regs_len(struct net_device *dev)
{
return sizeof(fcc_t) + sizeof(fcc_c_t) + sizeof(fcc_enet_t);
}
/* Some transmit errors cause the transmitter to shut
* down. We now issue a restart transmit. Since the
* errors close the BD and update the pointers, the restart
* _should_ pick up without having to reset any of our
* pointers either. Also, To workaround 8260 device erratum
* CPM37, we must disable and then re-enable the transmitter
* following a Late Collision, Underrun, or Retry Limit error.
*/
void tx_restart(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
fcc_t *fccp = fep->fcc.fccp;
C32(fccp, fcc_gfmr, FCC_GFMR_ENT);
udelay(10);
S32(fccp, fcc_gfmr, FCC_GFMR_ENT);
fcc_cr_cmd(fep, 0x0C, CPM_CR_RESTART_TX);
}
/*************************************************************************/
const struct fs_ops fs_fcc_ops = {
.setup_data = setup_data,
.cleanup_data = cleanup_data,
.set_multicast_list = set_multicast_list,
.restart = restart,
.stop = stop,
.pre_request_irq = pre_request_irq,
.post_free_irq = post_free_irq,
.napi_clear_rx_event = napi_clear_rx_event,
.napi_enable_rx = napi_enable_rx,
.napi_disable_rx = napi_disable_rx,
.rx_bd_done = rx_bd_done,
.tx_kickstart = tx_kickstart,
.get_int_events = get_int_events,
.clear_int_events = clear_int_events,
.ev_error = ev_error,
.get_regs = get_regs,
.get_regs_len = get_regs_len,
.tx_restart = tx_restart,
.allocate_bd = allocate_bd,
.free_bd = free_bd,
};
/*
* Freescale Ethernet controllers
*
* Copyright (c) 2005 Intracom S.A.
* by Pantelis Antoniou <panto@intracom.gr>
*
* 2005 (c) MontaVista Software, Inc.
* Vitaly Bordug <vbordug@ru.mvista.com>
*
* This file is licensed under the terms of the GNU General Public License
* version 2. This program is licensed "as is" without any warranty of any
* kind, whether express or implied.
*/
#include <linux/config.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/sched.h>
#include <linux/string.h>
#include <linux/ptrace.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/spinlock.h>
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/bitops.h>
#include <linux/fs.h>
#include <asm/irq.h>
#include <asm/uaccess.h>
#ifdef CONFIG_8xx
#include <asm/8xx_immap.h>
#include <asm/pgtable.h>
#include <asm/mpc8xx.h>
#include <asm/commproc.h>
#endif
#include "fs_enet.h"
/*************************************************/
#if defined(CONFIG_CPM1)
/* for a CPM1 __raw_xxx's are sufficient */
#define __fs_out32(addr, x) __raw_writel(x, addr)
#define __fs_out16(addr, x) __raw_writew(x, addr)
#define __fs_in32(addr) __raw_readl(addr)
#define __fs_in16(addr) __raw_readw(addr)
#else
/* for others play it safe */
#define __fs_out32(addr, x) out_be32(addr, x)
#define __fs_out16(addr, x) out_be16(addr, x)
#define __fs_in32(addr) in_be32(addr)
#define __fs_in16(addr) in_be16(addr)
#endif
/* write */
#define FW(_fecp, _reg, _v) __fs_out32(&(_fecp)->fec_ ## _reg, (_v))
/* read */
#define FR(_fecp, _reg) __fs_in32(&(_fecp)->fec_ ## _reg)
/* set bits */
#define FS(_fecp, _reg, _v) FW(_fecp, _reg, FR(_fecp, _reg) | (_v))
/* clear bits */
#define FC(_fecp, _reg, _v) FW(_fecp, _reg, FR(_fecp, _reg) & ~(_v))
/* CRC polynomium used by the FEC for the multicast group filtering */
#define FEC_CRC_POLY 0x04C11DB7
#define FEC_MAX_MULTICAST_ADDRS 64
/* Interrupt events/masks.
*/
#define FEC_ENET_HBERR 0x80000000U /* Heartbeat error */
#define FEC_ENET_BABR 0x40000000U /* Babbling receiver */
#define FEC_ENET_BABT 0x20000000U /* Babbling transmitter */
#define FEC_ENET_GRA 0x10000000U /* Graceful stop complete */
#define FEC_ENET_TXF 0x08000000U /* Full frame transmitted */
#define FEC_ENET_TXB 0x04000000U /* A buffer was transmitted */
#define FEC_ENET_RXF 0x02000000U /* Full frame received */
#define FEC_ENET_RXB 0x01000000U /* A buffer was received */
#define FEC_ENET_MII 0x00800000U /* MII interrupt */
#define FEC_ENET_EBERR 0x00400000U /* SDMA bus error */
#define FEC_ECNTRL_PINMUX 0x00000004
#define FEC_ECNTRL_ETHER_EN 0x00000002
#define FEC_ECNTRL_RESET 0x00000001
#define FEC_RCNTRL_BC_REJ 0x00000010
#define FEC_RCNTRL_PROM 0x00000008
#define FEC_RCNTRL_MII_MODE 0x00000004
#define FEC_RCNTRL_DRT 0x00000002
#define FEC_RCNTRL_LOOP 0x00000001
#define FEC_TCNTRL_FDEN 0x00000004
#define FEC_TCNTRL_HBC 0x00000002
#define FEC_TCNTRL_GTS 0x00000001
/* Make MII read/write commands for the FEC.
*/
#define mk_mii_read(REG) (0x60020000 | ((REG & 0x1f) << 18))
#define mk_mii_write(REG, VAL) (0x50020000 | ((REG & 0x1f) << 18) | (VAL & 0xffff))
#define mk_mii_end 0
#define FEC_MII_LOOPS 10000
/*
* Delay to wait for FEC reset command to complete (in us)
*/
#define FEC_RESET_DELAY 50
static int whack_reset(fec_t * fecp)
{
int i;
FW(fecp, ecntrl, FEC_ECNTRL_PINMUX | FEC_ECNTRL_RESET);
for (i = 0; i < FEC_RESET_DELAY; i++) {
if ((FR(fecp, ecntrl) & FEC_ECNTRL_RESET) == 0)
return 0; /* OK */
udelay(1);
}
return -1;
}
static int do_pd_setup(struct fs_enet_private *fep)
{
struct platform_device *pdev = to_platform_device(fep->dev);
struct resource *r;
/* Fill out IRQ field */
fep->interrupt = platform_get_irq_byname(pdev,"interrupt");
r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "regs");
fep->fec.fecp =(void*)r->start;
if(fep->fec.fecp == NULL)
return -EINVAL;
return 0;
}
#define FEC_NAPI_RX_EVENT_MSK (FEC_ENET_RXF | FEC_ENET_RXB)
#define FEC_RX_EVENT (FEC_ENET_RXF)
#define FEC_TX_EVENT (FEC_ENET_TXF)
#define FEC_ERR_EVENT_MSK (FEC_ENET_HBERR | FEC_ENET_BABR | \
FEC_ENET_BABT | FEC_ENET_EBERR)
static int setup_data(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
if (do_pd_setup(fep) != 0)
return -EINVAL;
fep->fec.hthi = 0;
fep->fec.htlo = 0;
fep->ev_napi_rx = FEC_NAPI_RX_EVENT_MSK;
fep->ev_rx = FEC_RX_EVENT;
fep->ev_tx = FEC_TX_EVENT;
fep->ev_err = FEC_ERR_EVENT_MSK;
return 0;
}
static int allocate_bd(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
const struct fs_platform_info *fpi = fep->fpi;
fep->ring_base = dma_alloc_coherent(fep->dev,
(fpi->tx_ring + fpi->rx_ring) *
sizeof(cbd_t), &fep->ring_mem_addr,
GFP_KERNEL);
if (fep->ring_base == NULL)
return -ENOMEM;
return 0;
}
static void free_bd(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
const struct fs_platform_info *fpi = fep->fpi;
if(fep->ring_base)
dma_free_coherent(fep->dev, (fpi->tx_ring + fpi->rx_ring)
* sizeof(cbd_t),
fep->ring_base,
fep->ring_mem_addr);
}
static void cleanup_data(struct net_device *dev)
{
/* nothing */
}
static void set_promiscuous_mode(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
fec_t *fecp = fep->fec.fecp;
FS(fecp, r_cntrl, FEC_RCNTRL_PROM);
}
static void set_multicast_start(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
fep->fec.hthi = 0;
fep->fec.htlo = 0;
}
static void set_multicast_one(struct net_device *dev, const u8 *mac)
{
struct fs_enet_private *fep = netdev_priv(dev);
int temp, hash_index, i, j;
u32 crc, csrVal;
u8 byte, msb;
crc = 0xffffffff;
for (i = 0; i < 6; i++) {
byte = mac[i];
for (j = 0; j < 8; j++) {
msb = crc >> 31;
crc <<= 1;
if (msb ^ (byte & 0x1))
crc ^= FEC_CRC_POLY;
byte >>= 1;
}
}
temp = (crc & 0x3f) >> 1;
hash_index = ((temp & 0x01) << 4) |
((temp & 0x02) << 2) |
((temp & 0x04)) |
((temp & 0x08) >> 2) |
((temp & 0x10) >> 4);
csrVal = 1 << hash_index;
if (crc & 1)
fep->fec.hthi |= csrVal;
else
fep->fec.htlo |= csrVal;
}
static void set_multicast_finish(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
fec_t *fecp = fep->fec.fecp;
/* if all multi or too many multicasts; just enable all */
if ((dev->flags & IFF_ALLMULTI) != 0 ||
dev->mc_count > FEC_MAX_MULTICAST_ADDRS) {
fep->fec.hthi = 0xffffffffU;
fep->fec.htlo = 0xffffffffU;
}
FC(fecp, r_cntrl, FEC_RCNTRL_PROM);
FW(fecp, hash_table_high, fep->fec.hthi);
FW(fecp, hash_table_low, fep->fec.htlo);
}
static void set_multicast_list(struct net_device *dev)
{
struct dev_mc_list *pmc;
if ((dev->flags & IFF_PROMISC) == 0) {
set_multicast_start(dev);
for (pmc = dev->mc_list; pmc != NULL; pmc = pmc->next)
set_multicast_one(dev, pmc->dmi_addr);
set_multicast_finish(dev);
} else
set_promiscuous_mode(dev);
}
static void restart(struct net_device *dev)
{
#ifdef CONFIG_DUET
immap_t *immap = fs_enet_immap;
u32 cptr;
#endif
struct fs_enet_private *fep = netdev_priv(dev);
fec_t *fecp = fep->fec.fecp;
const struct fs_platform_info *fpi = fep->fpi;
dma_addr_t rx_bd_base_phys, tx_bd_base_phys;
int r;
u32 addrhi, addrlo;
r = whack_reset(fep->fec.fecp);
if (r != 0)
printk(KERN_ERR DRV_MODULE_NAME
": %s FEC Reset FAILED!\n", dev->name);
/*
* Set station address.
*/
addrhi = ((u32) dev->dev_addr[0] << 24) |
((u32) dev->dev_addr[1] << 16) |
((u32) dev->dev_addr[2] << 8) |
(u32) dev->dev_addr[3];
addrlo = ((u32) dev->dev_addr[4] << 24) |
((u32) dev->dev_addr[5] << 16);
FW(fecp, addr_low, addrhi);
FW(fecp, addr_high, addrlo);
/*
* Reset all multicast.
*/
FW(fecp, hash_table_high, fep->fec.hthi);
FW(fecp, hash_table_low, fep->fec.htlo);
/*
* Set maximum receive buffer size.
*/
FW(fecp, r_buff_size, PKT_MAXBLR_SIZE);
FW(fecp, r_hash, PKT_MAXBUF_SIZE);
/* get physical address */
rx_bd_base_phys = fep->ring_mem_addr;
tx_bd_base_phys = rx_bd_base_phys + sizeof(cbd_t) * fpi->rx_ring;
/*
* Set receive and transmit descriptor base.
*/
FW(fecp, r_des_start, rx_bd_base_phys);
FW(fecp, x_des_start, tx_bd_base_phys);
fs_init_bds(dev);
/*
* Enable big endian and don't care about SDMA FC.
*/
FW(fecp, fun_code, 0x78000000);
/*
* Set MII speed.
*/
FW(fecp, mii_speed, fep->mii_bus->fec.mii_speed);
/*
* Clear any outstanding interrupt.
*/
FW(fecp, ievent, 0xffc0);
FW(fecp, ivec, (fep->interrupt / 2) << 29);
/*
* adjust to speed (only for DUET & RMII)
*/
#ifdef CONFIG_DUET
if (fpi->use_rmii) {
cptr = in_be32(&immap->im_cpm.cp_cptr);
switch (fs_get_fec_index(fpi->fs_no)) {
case 0:
cptr |= 0x100;
if (fep->speed == 10)
cptr |= 0x0000010;
else if (fep->speed == 100)
cptr &= ~0x0000010;
break;
case 1:
cptr |= 0x80;
if (fep->speed == 10)
cptr |= 0x0000008;
else if (fep->speed == 100)
cptr &= ~0x0000008;
break;
default:
BUG(); /* should never happen */
break;
}
out_be32(&immap->im_cpm.cp_cptr, cptr);
}
#endif
FW(fecp, r_cntrl, FEC_RCNTRL_MII_MODE); /* MII enable */
/*
* adjust to duplex mode
*/
if (fep->duplex) {
FC(fecp, r_cntrl, FEC_RCNTRL_DRT);
FS(fecp, x_cntrl, FEC_TCNTRL_FDEN); /* FD enable */
} else {
FS(fecp, r_cntrl, FEC_RCNTRL_DRT);
FC(fecp, x_cntrl, FEC_TCNTRL_FDEN); /* FD disable */
}
/*
* Enable interrupts we wish to service.
*/
FW(fecp, imask, FEC_ENET_TXF | FEC_ENET_TXB |
FEC_ENET_RXF | FEC_ENET_RXB);
/*
* And last, enable the transmit and receive processing.
*/
FW(fecp, ecntrl, FEC_ECNTRL_PINMUX | FEC_ECNTRL_ETHER_EN);
FW(fecp, r_des_active, 0x01000000);
}
static void stop(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
fec_t *fecp = fep->fec.fecp;
struct fs_enet_mii_bus *bus = fep->mii_bus;
const struct fs_mii_bus_info *bi = bus->bus_info;
int i;
if ((FR(fecp, ecntrl) & FEC_ECNTRL_ETHER_EN) == 0)
return; /* already down */
FW(fecp, x_cntrl, 0x01); /* Graceful transmit stop */
for (i = 0; ((FR(fecp, ievent) & 0x10000000) == 0) &&
i < FEC_RESET_DELAY; i++)
udelay(1);
if (i == FEC_RESET_DELAY)
printk(KERN_WARNING DRV_MODULE_NAME
": %s FEC timeout on graceful transmit stop\n",
dev->name);
/*
* Disable FEC. Let only MII interrupts.
*/
FW(fecp, imask, 0);
FC(fecp, ecntrl, FEC_ECNTRL_ETHER_EN);
fs_cleanup_bds(dev);
/* shut down FEC1? that's where the mii bus is */
if (fep->fec.idx == 0 && bus->refs > 1 && bi->method == fsmii_fec) {
FS(fecp, r_cntrl, FEC_RCNTRL_MII_MODE); /* MII enable */
FS(fecp, ecntrl, FEC_ECNTRL_PINMUX | FEC_ECNTRL_ETHER_EN);
FW(fecp, ievent, FEC_ENET_MII);
FW(fecp, mii_speed, bus->fec.mii_speed);
}
}
static void pre_request_irq(struct net_device *dev, int irq)
{
immap_t *immap = fs_enet_immap;
u32 siel;
/* SIU interrupt */
if (irq >= SIU_IRQ0 && irq < SIU_LEVEL7) {
siel = in_be32(&immap->im_siu_conf.sc_siel);
if ((irq & 1) == 0)
siel |= (0x80000000 >> irq);
else
siel &= ~(0x80000000 >> (irq & ~1));
out_be32(&immap->im_siu_conf.sc_siel, siel);
}
}
static void post_free_irq(struct net_device *dev, int irq)
{
/* nothing */
}
static void napi_clear_rx_event(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
fec_t *fecp = fep->fec.fecp;
FW(fecp, ievent, FEC_NAPI_RX_EVENT_MSK);
}
static void napi_enable_rx(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
fec_t *fecp = fep->fec.fecp;
FS(fecp, imask, FEC_NAPI_RX_EVENT_MSK);
}
static void napi_disable_rx(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
fec_t *fecp = fep->fec.fecp;
FC(fecp, imask, FEC_NAPI_RX_EVENT_MSK);
}
static void rx_bd_done(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
fec_t *fecp = fep->fec.fecp;
FW(fecp, r_des_active, 0x01000000);
}
static void tx_kickstart(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
fec_t *fecp = fep->fec.fecp;
FW(fecp, x_des_active, 0x01000000);
}
static u32 get_int_events(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
fec_t *fecp = fep->fec.fecp;
return FR(fecp, ievent) & FR(fecp, imask);
}
static void clear_int_events(struct net_device *dev, u32 int_events)
{
struct fs_enet_private *fep = netdev_priv(dev);
fec_t *fecp = fep->fec.fecp;
FW(fecp, ievent, int_events);
}
static void ev_error(struct net_device *dev, u32 int_events)
{
printk(KERN_WARNING DRV_MODULE_NAME
": %s FEC ERROR(s) 0x%x\n", dev->name, int_events);
}
int get_regs(struct net_device *dev, void *p, int *sizep)
{
struct fs_enet_private *fep = netdev_priv(dev);
if (*sizep < sizeof(fec_t))
return -EINVAL;
memcpy_fromio(p, fep->fec.fecp, sizeof(fec_t));
return 0;
}
int get_regs_len(struct net_device *dev)
{
return sizeof(fec_t);
}
void tx_restart(struct net_device *dev)
{
/* nothing */
}
/*************************************************************************/
const struct fs_ops fs_fec_ops = {
.setup_data = setup_data,
.cleanup_data = cleanup_data,
.set_multicast_list = set_multicast_list,
.restart = restart,
.stop = stop,
.pre_request_irq = pre_request_irq,
.post_free_irq = post_free_irq,
.napi_clear_rx_event = napi_clear_rx_event,
.napi_enable_rx = napi_enable_rx,
.napi_disable_rx = napi_disable_rx,
.rx_bd_done = rx_bd_done,
.tx_kickstart = tx_kickstart,
.get_int_events = get_int_events,
.clear_int_events = clear_int_events,
.ev_error = ev_error,
.get_regs = get_regs,
.get_regs_len = get_regs_len,
.tx_restart = tx_restart,
.allocate_bd = allocate_bd,
.free_bd = free_bd,
};
/***********************************************************************/
static int mii_read(struct fs_enet_mii_bus *bus, int phy_id, int location)
{
fec_t *fecp = bus->fec.fecp;
int i, ret = -1;
if ((FR(fecp, r_cntrl) & FEC_RCNTRL_MII_MODE) == 0)
BUG();
/* Add PHY address to register command. */
FW(fecp, mii_data, (phy_id << 23) | mk_mii_read(location));
for (i = 0; i < FEC_MII_LOOPS; i++)
if ((FR(fecp, ievent) & FEC_ENET_MII) != 0)
break;
if (i < FEC_MII_LOOPS) {
FW(fecp, ievent, FEC_ENET_MII);
ret = FR(fecp, mii_data) & 0xffff;
}
return ret;
}
static void mii_write(struct fs_enet_mii_bus *bus, int phy_id, int location, int value)
{
fec_t *fecp = bus->fec.fecp;
int i;
/* this must never happen */
if ((FR(fecp, r_cntrl) & FEC_RCNTRL_MII_MODE) == 0)
BUG();
/* Add PHY address to register command. */
FW(fecp, mii_data, (phy_id << 23) | mk_mii_write(location, value));
for (i = 0; i < FEC_MII_LOOPS; i++)
if ((FR(fecp, ievent) & FEC_ENET_MII) != 0)
break;
if (i < FEC_MII_LOOPS)
FW(fecp, ievent, FEC_ENET_MII);
}
int fs_mii_fec_init(struct fs_enet_mii_bus *bus)
{
bd_t *bd = (bd_t *)__res;
const struct fs_mii_bus_info *bi = bus->bus_info;
fec_t *fecp;
if (bi->id != 0)
return -1;
bus->fec.fecp = &((immap_t *)fs_enet_immap)->im_cpm.cp_fec;
bus->fec.mii_speed = ((((bd->bi_intfreq + 4999999) / 2500000) / 2)
& 0x3F) << 1;
fecp = bus->fec.fecp;
FS(fecp, r_cntrl, FEC_RCNTRL_MII_MODE); /* MII enable */
FS(fecp, ecntrl, FEC_ECNTRL_PINMUX | FEC_ECNTRL_ETHER_EN);
FW(fecp, ievent, FEC_ENET_MII);
FW(fecp, mii_speed, bus->fec.mii_speed);
bus->mii_read = mii_read;
bus->mii_write = mii_write;
return 0;
}
/*
* Ethernet on Serial Communications Controller (SCC) driver for Motorola MPC8xx and MPC82xx.
*
* Copyright (c) 2003 Intracom S.A.
* by Pantelis Antoniou <panto@intracom.gr>
*
* 2005 (c) MontaVista Software, Inc.
* Vitaly Bordug <vbordug@ru.mvista.com>
*
* This file is licensed under the terms of the GNU General Public License
* version 2. This program is licensed "as is" without any warranty of any
* kind, whether express or implied.
*/
#include <linux/config.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/sched.h>
#include <linux/string.h>
#include <linux/ptrace.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/spinlock.h>
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/bitops.h>
#include <linux/fs.h>
#include <asm/irq.h>
#include <asm/uaccess.h>
#ifdef CONFIG_8xx
#include <asm/8xx_immap.h>
#include <asm/pgtable.h>
#include <asm/mpc8xx.h>
#include <asm/commproc.h>
#endif
#include "fs_enet.h"
/*************************************************/
#if defined(CONFIG_CPM1)
/* for a 8xx __raw_xxx's are sufficient */
#define __fs_out32(addr, x) __raw_writel(x, addr)
#define __fs_out16(addr, x) __raw_writew(x, addr)
#define __fs_out8(addr, x) __raw_writeb(x, addr)
#define __fs_in32(addr) __raw_readl(addr)
#define __fs_in16(addr) __raw_readw(addr)
#define __fs_in8(addr) __raw_readb(addr)
#else
/* for others play it safe */
#define __fs_out32(addr, x) out_be32(addr, x)
#define __fs_out16(addr, x) out_be16(addr, x)
#define __fs_in32(addr) in_be32(addr)
#define __fs_in16(addr) in_be16(addr)
#endif
/* write, read, set bits, clear bits */
#define W32(_p, _m, _v) __fs_out32(&(_p)->_m, (_v))
#define R32(_p, _m) __fs_in32(&(_p)->_m)
#define S32(_p, _m, _v) W32(_p, _m, R32(_p, _m) | (_v))
#define C32(_p, _m, _v) W32(_p, _m, R32(_p, _m) & ~(_v))
#define W16(_p, _m, _v) __fs_out16(&(_p)->_m, (_v))
#define R16(_p, _m) __fs_in16(&(_p)->_m)
#define S16(_p, _m, _v) W16(_p, _m, R16(_p, _m) | (_v))
#define C16(_p, _m, _v) W16(_p, _m, R16(_p, _m) & ~(_v))
#define W8(_p, _m, _v) __fs_out8(&(_p)->_m, (_v))
#define R8(_p, _m) __fs_in8(&(_p)->_m)
#define S8(_p, _m, _v) W8(_p, _m, R8(_p, _m) | (_v))
#define C8(_p, _m, _v) W8(_p, _m, R8(_p, _m) & ~(_v))
#define SCC_MAX_MULTICAST_ADDRS 64
/*
* Delay to wait for SCC reset command to complete (in us)
*/
#define SCC_RESET_DELAY 50
#define MAX_CR_CMD_LOOPS 10000
static inline int scc_cr_cmd(struct fs_enet_private *fep, u32 op)
{
cpm8xx_t *cpmp = &((immap_t *)fs_enet_immap)->im_cpm;
u32 v, ch;
int i = 0;
ch = fep->scc.idx << 2;
v = mk_cr_cmd(ch, op);
W16(cpmp, cp_cpcr, v | CPM_CR_FLG);
for (i = 0; i < MAX_CR_CMD_LOOPS; i++)
if ((R16(cpmp, cp_cpcr) & CPM_CR_FLG) == 0)
break;
if (i >= MAX_CR_CMD_LOOPS) {
printk(KERN_ERR "%s(): Not able to issue CPM command\n",
__FUNCTION__);
return 1;
}
return 0;
}
static int do_pd_setup(struct fs_enet_private *fep)
{
struct platform_device *pdev = to_platform_device(fep->dev);
struct resource *r;
/* Fill out IRQ field */
fep->interrupt = platform_get_irq_byname(pdev, "interrupt");
r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "regs");
fep->scc.sccp = (void *)r->start;
if (fep->scc.sccp == NULL)
return -EINVAL;
r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "pram");
fep->scc.ep = (void *)r->start;
if (fep->scc.ep == NULL)
return -EINVAL;
return 0;
}
#define SCC_NAPI_RX_EVENT_MSK (SCCE_ENET_RXF | SCCE_ENET_RXB)
#define SCC_RX_EVENT (SCCE_ENET_RXF)
#define SCC_TX_EVENT (SCCE_ENET_TXB)
#define SCC_ERR_EVENT_MSK (SCCE_ENET_TXE | SCCE_ENET_BSY)
static int setup_data(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
const struct fs_platform_info *fpi = fep->fpi;
fep->scc.idx = fs_get_scc_index(fpi->fs_no);
if ((unsigned int)fep->fcc.idx > 4) /* max 4 SCCs */
return -EINVAL;
do_pd_setup(fep);
fep->scc.hthi = 0;
fep->scc.htlo = 0;
fep->ev_napi_rx = SCC_NAPI_RX_EVENT_MSK;
fep->ev_rx = SCC_RX_EVENT;
fep->ev_tx = SCC_TX_EVENT;
fep->ev_err = SCC_ERR_EVENT_MSK;
return 0;
}
static int allocate_bd(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
const struct fs_platform_info *fpi = fep->fpi;
fep->ring_mem_addr = cpm_dpalloc((fpi->tx_ring + fpi->rx_ring) *
sizeof(cbd_t), 8);
if (IS_DPERR(fep->ring_mem_addr))
return -ENOMEM;
fep->ring_base = cpm_dpram_addr(fep->ring_mem_addr);
return 0;
}
static void free_bd(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
if (fep->ring_base)
cpm_dpfree(fep->ring_mem_addr);
}
static void cleanup_data(struct net_device *dev)
{
/* nothing */
}
static void set_promiscuous_mode(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
scc_t *sccp = fep->scc.sccp;
S16(sccp, scc_psmr, SCC_PSMR_PRO);
}
static void set_multicast_start(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
scc_enet_t *ep = fep->scc.ep;
W16(ep, sen_gaddr1, 0);
W16(ep, sen_gaddr2, 0);
W16(ep, sen_gaddr3, 0);
W16(ep, sen_gaddr4, 0);
}
static void set_multicast_one(struct net_device *dev, const u8 * mac)
{
struct fs_enet_private *fep = netdev_priv(dev);
scc_enet_t *ep = fep->scc.ep;
u16 taddrh, taddrm, taddrl;
taddrh = ((u16) mac[5] << 8) | mac[4];
taddrm = ((u16) mac[3] << 8) | mac[2];
taddrl = ((u16) mac[1] << 8) | mac[0];
W16(ep, sen_taddrh, taddrh);
W16(ep, sen_taddrm, taddrm);
W16(ep, sen_taddrl, taddrl);
scc_cr_cmd(fep, CPM_CR_SET_GADDR);
}
static void set_multicast_finish(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
scc_t *sccp = fep->scc.sccp;
scc_enet_t *ep = fep->scc.ep;
/* clear promiscuous always */
C16(sccp, scc_psmr, SCC_PSMR_PRO);
/* if all multi or too many multicasts; just enable all */
if ((dev->flags & IFF_ALLMULTI) != 0 ||
dev->mc_count > SCC_MAX_MULTICAST_ADDRS) {
W16(ep, sen_gaddr1, 0xffff);
W16(ep, sen_gaddr2, 0xffff);
W16(ep, sen_gaddr3, 0xffff);
W16(ep, sen_gaddr4, 0xffff);
}
}
static void set_multicast_list(struct net_device *dev)
{
struct dev_mc_list *pmc;
if ((dev->flags & IFF_PROMISC) == 0) {
set_multicast_start(dev);
for (pmc = dev->mc_list; pmc != NULL; pmc = pmc->next)
set_multicast_one(dev, pmc->dmi_addr);
set_multicast_finish(dev);
} else
set_promiscuous_mode(dev);
}
/*
* This function is called to start or restart the FEC during a link
* change. This only happens when switching between half and full
* duplex.
*/
static void restart(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
scc_t *sccp = fep->scc.sccp;
scc_enet_t *ep = fep->scc.ep;
const struct fs_platform_info *fpi = fep->fpi;
u16 paddrh, paddrm, paddrl;
const unsigned char *mac;
int i;
C32(sccp, scc_gsmrl, SCC_GSMRL_ENR | SCC_GSMRL_ENT);
/* clear everything (slow & steady does it) */
for (i = 0; i < sizeof(*ep); i++)
__fs_out8((char *)ep + i, 0);
/* point to bds */
W16(ep, sen_genscc.scc_rbase, fep->ring_mem_addr);
W16(ep, sen_genscc.scc_tbase,
fep->ring_mem_addr + sizeof(cbd_t) * fpi->rx_ring);
/* Initialize function code registers for big-endian.
*/
W8(ep, sen_genscc.scc_rfcr, SCC_EB);
W8(ep, sen_genscc.scc_tfcr, SCC_EB);
/* Set maximum bytes per receive buffer.
* This appears to be an Ethernet frame size, not the buffer
* fragment size. It must be a multiple of four.
*/
W16(ep, sen_genscc.scc_mrblr, 0x5f0);
/* Set CRC preset and mask.
*/
W32(ep, sen_cpres, 0xffffffff);
W32(ep, sen_cmask, 0xdebb20e3);
W32(ep, sen_crcec, 0); /* CRC Error counter */
W32(ep, sen_alec, 0); /* alignment error counter */
W32(ep, sen_disfc, 0); /* discard frame counter */
W16(ep, sen_pads, 0x8888); /* Tx short frame pad character */
W16(ep, sen_retlim, 15); /* Retry limit threshold */
W16(ep, sen_maxflr, 0x5ee); /* maximum frame length register */
W16(ep, sen_minflr, PKT_MINBUF_SIZE); /* minimum frame length register */
W16(ep, sen_maxd1, 0x000005f0); /* maximum DMA1 length */
W16(ep, sen_maxd2, 0x000005f0); /* maximum DMA2 length */
/* Clear hash tables.
*/
W16(ep, sen_gaddr1, 0);
W16(ep, sen_gaddr2, 0);
W16(ep, sen_gaddr3, 0);
W16(ep, sen_gaddr4, 0);
W16(ep, sen_iaddr1, 0);
W16(ep, sen_iaddr2, 0);
W16(ep, sen_iaddr3, 0);
W16(ep, sen_iaddr4, 0);
/* set address
*/
mac = dev->dev_addr;
paddrh = ((u16) mac[5] << 8) | mac[4];
paddrm = ((u16) mac[3] << 8) | mac[2];
paddrl = ((u16) mac[1] << 8) | mac[0];
W16(ep, sen_paddrh, paddrh);
W16(ep, sen_paddrm, paddrm);
W16(ep, sen_paddrl, paddrl);
W16(ep, sen_pper, 0);
W16(ep, sen_taddrl, 0);
W16(ep, sen_taddrm, 0);
W16(ep, sen_taddrh, 0);
fs_init_bds(dev);
scc_cr_cmd(fep, CPM_CR_INIT_TRX);
W16(sccp, scc_scce, 0xffff);
/* Enable interrupts we wish to service.
*/
W16(sccp, scc_sccm, SCCE_ENET_TXE | SCCE_ENET_RXF | SCCE_ENET_TXB);
/* Set GSMR_H to enable all normal operating modes.
* Set GSMR_L to enable Ethernet to MC68160.
*/
W32(sccp, scc_gsmrh, 0);
W32(sccp, scc_gsmrl,
SCC_GSMRL_TCI | SCC_GSMRL_TPL_48 | SCC_GSMRL_TPP_10 |
SCC_GSMRL_MODE_ENET);
/* Set sync/delimiters.
*/
W16(sccp, scc_dsr, 0xd555);
/* Set processing mode. Use Ethernet CRC, catch broadcast, and
* start frame search 22 bit times after RENA.
*/
W16(sccp, scc_psmr, SCC_PSMR_ENCRC | SCC_PSMR_NIB22);
/* Set full duplex mode if needed */
if (fep->duplex)
S16(sccp, scc_psmr, SCC_PSMR_LPB | SCC_PSMR_FDE);
S32(sccp, scc_gsmrl, SCC_GSMRL_ENR | SCC_GSMRL_ENT);
}
static void stop(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
scc_t *sccp = fep->scc.sccp;
int i;
for (i = 0; (R16(sccp, scc_sccm) == 0) && i < SCC_RESET_DELAY; i++)
udelay(1);
if (i == SCC_RESET_DELAY)
printk(KERN_WARNING DRV_MODULE_NAME
": %s SCC timeout on graceful transmit stop\n",
dev->name);
W16(sccp, scc_sccm, 0);
C32(sccp, scc_gsmrl, SCC_GSMRL_ENR | SCC_GSMRL_ENT);
fs_cleanup_bds(dev);
}
static void pre_request_irq(struct net_device *dev, int irq)
{
immap_t *immap = fs_enet_immap;
u32 siel;
/* SIU interrupt */
if (irq >= SIU_IRQ0 && irq < SIU_LEVEL7) {
siel = in_be32(&immap->im_siu_conf.sc_siel);
if ((irq & 1) == 0)
siel |= (0x80000000 >> irq);
else
siel &= ~(0x80000000 >> (irq & ~1));
out_be32(&immap->im_siu_conf.sc_siel, siel);
}
}
static void post_free_irq(struct net_device *dev, int irq)
{
/* nothing */
}
static void napi_clear_rx_event(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
scc_t *sccp = fep->scc.sccp;
W16(sccp, scc_scce, SCC_NAPI_RX_EVENT_MSK);
}
static void napi_enable_rx(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
scc_t *sccp = fep->scc.sccp;
S16(sccp, scc_sccm, SCC_NAPI_RX_EVENT_MSK);
}
static void napi_disable_rx(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
scc_t *sccp = fep->scc.sccp;
C16(sccp, scc_sccm, SCC_NAPI_RX_EVENT_MSK);
}
static void rx_bd_done(struct net_device *dev)
{
/* nothing */
}
static void tx_kickstart(struct net_device *dev)
{
/* nothing */
}
static u32 get_int_events(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
scc_t *sccp = fep->scc.sccp;
return (u32) R16(sccp, scc_scce);
}
static void clear_int_events(struct net_device *dev, u32 int_events)
{
struct fs_enet_private *fep = netdev_priv(dev);
scc_t *sccp = fep->scc.sccp;
W16(sccp, scc_scce, int_events & 0xffff);
}
static void ev_error(struct net_device *dev, u32 int_events)
{
printk(KERN_WARNING DRV_MODULE_NAME
": %s SCC ERROR(s) 0x%x\n", dev->name, int_events);
}
static int get_regs(struct net_device *dev, void *p, int *sizep)
{
struct fs_enet_private *fep = netdev_priv(dev);
if (*sizep < sizeof(scc_t) + sizeof(scc_enet_t))
return -EINVAL;
memcpy_fromio(p, fep->scc.sccp, sizeof(scc_t));
p = (char *)p + sizeof(scc_t);
memcpy_fromio(p, fep->scc.ep, sizeof(scc_enet_t));
return 0;
}
static int get_regs_len(struct net_device *dev)
{
return sizeof(scc_t) + sizeof(scc_enet_t);
}
static void tx_restart(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
scc_cr_cmd(fep, CPM_CR_RESTART_TX);
}
/*************************************************************************/
const struct fs_ops fs_scc_ops = {
.setup_data = setup_data,
.cleanup_data = cleanup_data,
.set_multicast_list = set_multicast_list,
.restart = restart,
.stop = stop,
.pre_request_irq = pre_request_irq,
.post_free_irq = post_free_irq,
.napi_clear_rx_event = napi_clear_rx_event,
.napi_enable_rx = napi_enable_rx,
.napi_disable_rx = napi_disable_rx,
.rx_bd_done = rx_bd_done,
.tx_kickstart = tx_kickstart,
.get_int_events = get_int_events,
.clear_int_events = clear_int_events,
.ev_error = ev_error,
.get_regs = get_regs,
.get_regs_len = get_regs_len,
.tx_restart = tx_restart,
.allocate_bd = allocate_bd,
.free_bd = free_bd,
};
/*
* Combined Ethernet driver for Motorola MPC8xx and MPC82xx.
*
* Copyright (c) 2003 Intracom S.A.
* by Pantelis Antoniou <panto@intracom.gr>
*
* 2005 (c) MontaVista Software, Inc.
* Vitaly Bordug <vbordug@ru.mvista.com>
*
* This file is licensed under the terms of the GNU General Public License
* version 2. This program is licensed "as is" without any warranty of any
* kind, whether express or implied.
*/
#include <linux/config.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/string.h>
#include <linux/ptrace.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/spinlock.h>
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/bitops.h>
#include <asm/pgtable.h>
#include <asm/irq.h>
#include <asm/uaccess.h>
#include "fs_enet.h"
#ifdef CONFIG_8xx
static int bitbang_prep_bit(u8 **dirp, u8 **datp, u8 *mskp, int port, int bit)
{
immap_t *im = (immap_t *)fs_enet_immap;
void *dir, *dat, *ppar;
int adv;
u8 msk;
switch (port) {
case fsiop_porta:
dir = &im->im_ioport.iop_padir;
dat = &im->im_ioport.iop_padat;
ppar = &im->im_ioport.iop_papar;
break;
case fsiop_portb:
dir = &im->im_cpm.cp_pbdir;
dat = &im->im_cpm.cp_pbdat;
ppar = &im->im_cpm.cp_pbpar;
break;
case fsiop_portc:
dir = &im->im_ioport.iop_pcdir;
dat = &im->im_ioport.iop_pcdat;
ppar = &im->im_ioport.iop_pcpar;
break;
case fsiop_portd:
dir = &im->im_ioport.iop_pddir;
dat = &im->im_ioport.iop_pddat;
ppar = &im->im_ioport.iop_pdpar;
break;
case fsiop_porte:
dir = &im->im_cpm.cp_pedir;
dat = &im->im_cpm.cp_pedat;
ppar = &im->im_cpm.cp_pepar;
break;
default:
printk(KERN_ERR DRV_MODULE_NAME
"Illegal port value %d!\n", port);
return -EINVAL;
}
adv = bit >> 3;
dir = (char *)dir + adv;
dat = (char *)dat + adv;
ppar = (char *)ppar + adv;
msk = 1 << (7 - (bit & 7));
if ((in_8(ppar) & msk) != 0) {
printk(KERN_ERR DRV_MODULE_NAME
"pin %d on port %d is not general purpose!\n", bit, port);
return -EINVAL;
}
*dirp = dir;
*datp = dat;
*mskp = msk;
return 0;
}
#endif
#ifdef CONFIG_8260
static int bitbang_prep_bit(u8 **dirp, u8 **datp, u8 *mskp, int port, int bit)
{
iop_cpm2_t *io = &((cpm2_map_t *)fs_enet_immap)->im_ioport;
void *dir, *dat, *ppar;
int adv;
u8 msk;
switch (port) {
case fsiop_porta:
dir = &io->iop_pdira;
dat = &io->iop_pdata;
ppar = &io->iop_ppara;
break;
case fsiop_portb:
dir = &io->iop_pdirb;
dat = &io->iop_pdatb;
ppar = &io->iop_pparb;
break;
case fsiop_portc:
dir = &io->iop_pdirc;
dat = &io->iop_pdatc;
ppar = &io->iop_pparc;
break;
case fsiop_portd:
dir = &io->iop_pdird;
dat = &io->iop_pdatd;
ppar = &io->iop_ppard;
break;
default:
printk(KERN_ERR DRV_MODULE_NAME
"Illegal port value %d!\n", port);
return -EINVAL;
}
adv = bit >> 3;
dir = (char *)dir + adv;
dat = (char *)dat + adv;
ppar = (char *)ppar + adv;
msk = 1 << (7 - (bit & 7));
if ((in_8(ppar) & msk) != 0) {
printk(KERN_ERR DRV_MODULE_NAME
"pin %d on port %d is not general purpose!\n", bit, port);
return -EINVAL;
}
*dirp = dir;
*datp = dat;
*mskp = msk;
return 0;
}
#endif
static inline void bb_set(u8 *p, u8 m)
{
out_8(p, in_8(p) | m);
}
static inline void bb_clr(u8 *p, u8 m)
{
out_8(p, in_8(p) & ~m);
}
static inline int bb_read(u8 *p, u8 m)
{
return (in_8(p) & m) != 0;
}
static inline void mdio_active(struct fs_enet_mii_bus *bus)
{
bb_set(bus->bitbang.mdio_dir, bus->bitbang.mdio_msk);
}
static inline void mdio_tristate(struct fs_enet_mii_bus *bus)
{
bb_clr(bus->bitbang.mdio_dir, bus->bitbang.mdio_msk);
}
static inline int mdio_read(struct fs_enet_mii_bus *bus)
{
return bb_read(bus->bitbang.mdio_dat, bus->bitbang.mdio_msk);
}
static inline void mdio(struct fs_enet_mii_bus *bus, int what)
{
if (what)
bb_set(bus->bitbang.mdio_dat, bus->bitbang.mdio_msk);
else
bb_clr(bus->bitbang.mdio_dat, bus->bitbang.mdio_msk);
}
static inline void mdc(struct fs_enet_mii_bus *bus, int what)
{
if (what)
bb_set(bus->bitbang.mdc_dat, bus->bitbang.mdc_msk);
else
bb_clr(bus->bitbang.mdc_dat, bus->bitbang.mdc_msk);
}
static inline void mii_delay(struct fs_enet_mii_bus *bus)
{
udelay(bus->bus_info->i.bitbang.delay);
}
/* Utility to send the preamble, address, and register (common to read and write). */
static void bitbang_pre(struct fs_enet_mii_bus *bus, int read, u8 addr, u8 reg)
{
int j;
/*
* Send a 32 bit preamble ('1's) with an extra '1' bit for good measure.
* The IEEE spec says this is a PHY optional requirement. The AMD
* 79C874 requires one after power up and one after a MII communications
* error. This means that we are doing more preambles than we need,
* but it is safer and will be much more robust.
*/
mdio_active(bus);
mdio(bus, 1);
for (j = 0; j < 32; j++) {
mdc(bus, 0);
mii_delay(bus);
mdc(bus, 1);
mii_delay(bus);
}
/* send the start bit (01) and the read opcode (10) or write (10) */
mdc(bus, 0);
mdio(bus, 0);
mii_delay(bus);
mdc(bus, 1);
mii_delay(bus);
mdc(bus, 0);
mdio(bus, 1);
mii_delay(bus);
mdc(bus, 1);
mii_delay(bus);
mdc(bus, 0);
mdio(bus, read);
mii_delay(bus);
mdc(bus, 1);
mii_delay(bus);
mdc(bus, 0);
mdio(bus, !read);
mii_delay(bus);
mdc(bus, 1);
mii_delay(bus);
/* send the PHY address */
for (j = 0; j < 5; j++) {
mdc(bus, 0);
mdio(bus, (addr & 0x10) != 0);
mii_delay(bus);
mdc(bus, 1);
mii_delay(bus);
addr <<= 1;
}
/* send the register address */
for (j = 0; j < 5; j++) {
mdc(bus, 0);
mdio(bus, (reg & 0x10) != 0);
mii_delay(bus);
mdc(bus, 1);
mii_delay(bus);
reg <<= 1;
}
}
static int mii_read(struct fs_enet_mii_bus *bus, int phy_id, int location)
{
u16 rdreg;
int ret, j;
u8 addr = phy_id & 0xff;
u8 reg = location & 0xff;
bitbang_pre(bus, 1, addr, reg);
/* tri-state our MDIO I/O pin so we can read */
mdc(bus, 0);
mdio_tristate(bus);
mii_delay(bus);
mdc(bus, 1);
mii_delay(bus);
/* check the turnaround bit: the PHY should be driving it to zero */
if (mdio_read(bus) != 0) {
/* PHY didn't drive TA low */
for (j = 0; j < 32; j++) {
mdc(bus, 0);
mii_delay(bus);
mdc(bus, 1);
mii_delay(bus);
}
ret = -1;
goto out;
}
mdc(bus, 0);
mii_delay(bus);
/* read 16 bits of register data, MSB first */
rdreg = 0;
for (j = 0; j < 16; j++) {
mdc(bus, 1);
mii_delay(bus);
rdreg <<= 1;
rdreg |= mdio_read(bus);
mdc(bus, 0);
mii_delay(bus);
}
mdc(bus, 1);
mii_delay(bus);
mdc(bus, 0);
mii_delay(bus);
mdc(bus, 1);
mii_delay(bus);
ret = rdreg;
out:
return ret;
}
static void mii_write(struct fs_enet_mii_bus *bus, int phy_id, int location, int val)
{
int j;
u8 addr = phy_id & 0xff;
u8 reg = location & 0xff;
u16 value = val & 0xffff;
bitbang_pre(bus, 0, addr, reg);
/* send the turnaround (10) */
mdc(bus, 0);
mdio(bus, 1);
mii_delay(bus);
mdc(bus, 1);
mii_delay(bus);
mdc(bus, 0);
mdio(bus, 0);
mii_delay(bus);
mdc(bus, 1);
mii_delay(bus);
/* write 16 bits of register data, MSB first */
for (j = 0; j < 16; j++) {
mdc(bus, 0);
mdio(bus, (value & 0x8000) != 0);
mii_delay(bus);
mdc(bus, 1);
mii_delay(bus);
value <<= 1;
}
/*
* Tri-state the MDIO line.
*/
mdio_tristate(bus);
mdc(bus, 0);
mii_delay(bus);
mdc(bus, 1);
mii_delay(bus);
}
int fs_mii_bitbang_init(struct fs_enet_mii_bus *bus)
{
const struct fs_mii_bus_info *bi = bus->bus_info;
int r;
r = bitbang_prep_bit(&bus->bitbang.mdio_dir,
&bus->bitbang.mdio_dat,
&bus->bitbang.mdio_msk,
bi->i.bitbang.mdio_port,
bi->i.bitbang.mdio_bit);
if (r != 0)
return r;
r = bitbang_prep_bit(&bus->bitbang.mdc_dir,
&bus->bitbang.mdc_dat,
&bus->bitbang.mdc_msk,
bi->i.bitbang.mdc_port,
bi->i.bitbang.mdc_bit);
if (r != 0)
return r;
bus->mii_read = mii_read;
bus->mii_write = mii_write;
return 0;
}
/*
* Combined Ethernet driver for Motorola MPC8xx and MPC82xx.
*
* Copyright (c) 2003 Intracom S.A.
* by Pantelis Antoniou <panto@intracom.gr>
*
* 2005 (c) MontaVista Software, Inc.
* Vitaly Bordug <vbordug@ru.mvista.com>
*
* This file is licensed under the terms of the GNU General Public License
* version 2. This program is licensed "as is" without any warranty of any
* kind, whether express or implied.
*/
#include <linux/config.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/string.h>
#include <linux/ptrace.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/spinlock.h>
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/bitops.h>
#include <asm/pgtable.h>
#include <asm/irq.h>
#include <asm/uaccess.h>
#include "fs_enet.h"
static const u16 mii_regs[7] = {
0x3100,
0x786d,
0x0fff,
0x0fff,
0x01e1,
0x45e1,
0x0003,
};
static int mii_read(struct fs_enet_mii_bus *bus, int phy_id, int location)
{
int ret = 0;
if ((unsigned int)location >= ARRAY_SIZE(mii_regs))
return -1;
if (location != 5)
ret = mii_regs[location];
else
ret = bus->fixed.lpa;
return ret;
}
static void mii_write(struct fs_enet_mii_bus *bus, int phy_id, int location, int val)
{
/* do nothing */
}
int fs_mii_fixed_init(struct fs_enet_mii_bus *bus)
{
const struct fs_mii_bus_info *bi = bus->bus_info;
bus->fixed.lpa = 0x45e1; /* default 100Mb, full duplex */
/* if speed is fixed at 10Mb, remove 100Mb modes */
if (bi->i.fixed.speed == 10)
bus->fixed.lpa &= ~LPA_100;
/* if duplex is half, remove full duplex modes */
if (bi->i.fixed.duplex == 0)
bus->fixed.lpa &= ~LPA_DUPLEX;
bus->mii_read = mii_read;
bus->mii_write = mii_write;
return 0;
}
/*
* Platform information definitions for the
* universal Freescale Ethernet driver.
*
* Copyright (c) 2003 Intracom S.A.
* by Pantelis Antoniou <panto@intracom.gr>
*
* 2005 (c) MontaVista Software, Inc.
* Vitaly Bordug <vbordug@ru.mvista.com>
*
* This file is licensed under the terms of the GNU General Public License
* version 2. This program is licensed "as is" without any warranty of any
* kind, whether express or implied.
*/
#ifndef FS_ENET_PD_H
#define FS_ENET_PD_H
#include <linux/version.h>
#include <asm/types.h>
#define FS_ENET_NAME "fs_enet"
enum fs_id {
fsid_fec1,
fsid_fec2,
fsid_fcc1,
fsid_fcc2,
fsid_fcc3,
fsid_scc1,
fsid_scc2,
fsid_scc3,
fsid_scc4,
};
#define FS_MAX_INDEX 9
static inline int fs_get_fec_index(enum fs_id id)
{
if (id >= fsid_fec1 && id <= fsid_fec2)
return id - fsid_fec1;
return -1;
}
static inline int fs_get_fcc_index(enum fs_id id)
{
if (id >= fsid_fcc1 && id <= fsid_fcc3)
return id - fsid_fcc1;
return -1;
}
static inline int fs_get_scc_index(enum fs_id id)
{
if (id >= fsid_scc1 && id <= fsid_scc4)
return id - fsid_scc1;
return -1;
}
enum fs_mii_method {
fsmii_fixed,
fsmii_fec,
fsmii_bitbang,
};
enum fs_ioport {
fsiop_porta,
fsiop_portb,
fsiop_portc,
fsiop_portd,
fsiop_porte,
};
struct fs_mii_bus_info {
int method; /* mii method */
int id; /* the id of the mii_bus */
int disable_aneg; /* if the controller needs to negothiate speed & duplex */
int lpa; /* the default board-specific vallues will be applied otherwise */
union {
struct {
int duplex;
int speed;
} fixed;
struct {
/* nothing */
} fec;
struct {
/* nothing */
} scc;
struct {
int mdio_port; /* port & bit for MDIO */
int mdio_bit;
int mdc_port; /* port & bit for MDC */
int mdc_bit;
int delay; /* delay in us */
} bitbang;
} i;
};
struct fs_platform_info {
void(*init_ioports)(void);
/* device specific information */
int fs_no; /* controller index */
u32 cp_page; /* CPM page */
u32 cp_block; /* CPM sblock */
u32 clk_trx; /* some stuff for pins & mux configuration*/
u32 clk_route;
u32 clk_mask;
u32 mem_offset;
u32 dpram_offset;
u32 fcc_regs_c;
u32 device_flags;
int phy_addr; /* the phy address (-1 no phy) */
int phy_irq; /* the phy irq (if it exists) */
const struct fs_mii_bus_info *bus_info;
int rx_ring, tx_ring; /* number of buffers on rx */
__u8 macaddr[6]; /* mac address */
int rx_copybreak; /* limit we copy small frames */
int use_napi; /* use NAPI */
int napi_weight; /* NAPI weight */
int use_rmii; /* use RMII mode */
};
#endif
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment