Commit 452c1ce2 authored by Chris Snook's avatar Chris Snook Committed by Jeff Garzik

atl2: add atl2 driver

Driver for Atheros L2 10/100 network device. Includes necessary
changes for Kconfig, Makefile, and pci_ids.h.
Signed-off-by: default avatarChris Snook <csnook@redhat.com>
Signed-off-by: default avatarJay Cliburn <jacliburn@bellsouth.net>
Signed-off-by: default avatarJeff Garzik <jgarzik@redhat.com>
parent 63f2c046
......@@ -1840,6 +1840,17 @@ config NE_H8300
Say Y here if you want to use the NE2000 compatible
controller on the Renesas H8/300 processor.
config ATL2
tristate "Atheros L2 Fast Ethernet support"
depends on PCI
select CRC32
select MII
help
This driver supports the Atheros L2 fast ethernet adapter.
To compile this driver as a module, choose M here. The module
will be called atl2.
source "drivers/net/fs_enet/Kconfig"
endif # NET_ETHERNET
......
......@@ -15,6 +15,7 @@ obj-$(CONFIG_EHEA) += ehea/
obj-$(CONFIG_CAN) += can/
obj-$(CONFIG_BONDING) += bonding/
obj-$(CONFIG_ATL1) += atlx/
obj-$(CONFIG_ATL2) += atlx/
obj-$(CONFIG_ATL1E) += atl1e/
obj-$(CONFIG_GIANFAR) += gianfar_driver.o
obj-$(CONFIG_TEHUTI) += tehuti.o
......
obj-$(CONFIG_ATL1) += atl1.o
obj-$(CONFIG_ATL2) += atl2.o
/*
* Copyright(c) 2006 - 2007 Atheros Corporation. All rights reserved.
* Copyright(c) 2007 - 2008 Chris Snook <csnook@redhat.com>
*
* Derived from Intel e1000 driver
* Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc., 59
* Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include <asm/atomic.h>
#include <linux/crc32.h>
#include <linux/dma-mapping.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/hardirq.h>
#include <linux/if_vlan.h>
#include <linux/in.h>
#include <linux/interrupt.h>
#include <linux/ip.h>
#include <linux/irqflags.h>
#include <linux/irqreturn.h>
#include <linux/mii.h>
#include <linux/net.h>
#include <linux/netdevice.h>
#include <linux/pci.h>
#include <linux/pci_ids.h>
#include <linux/pm.h>
#include <linux/skbuff.h>
#include <linux/spinlock.h>
#include <linux/string.h>
#include <linux/tcp.h>
#include <linux/timer.h>
#include <linux/types.h>
#include <linux/workqueue.h>
#include "atl2.h"
#define ATL2_DRV_VERSION "2.2.3"
static char atl2_driver_name[] = "atl2";
static const char atl2_driver_string[] = "Atheros(R) L2 Ethernet Driver";
static char atl2_copyright[] = "Copyright (c) 2007 Atheros Corporation.";
static char atl2_driver_version[] = ATL2_DRV_VERSION;
MODULE_AUTHOR("Atheros Corporation <xiong.huang@atheros.com>, Chris Snook <csnook@redhat.com>");
MODULE_DESCRIPTION("Atheros Fast Ethernet Network Driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(ATL2_DRV_VERSION);
/*
* atl2_pci_tbl - PCI Device ID Table
*/
static struct pci_device_id atl2_pci_tbl[] = {
{PCI_DEVICE(PCI_VENDOR_ID_ATTANSIC, PCI_DEVICE_ID_ATTANSIC_L2)},
/* required last entry */
{0,}
};
MODULE_DEVICE_TABLE(pci, atl2_pci_tbl);
static void atl2_set_ethtool_ops(struct net_device *netdev);
static void atl2_check_options(struct atl2_adapter *adapter);
/*
* atl2_sw_init - Initialize general software structures (struct atl2_adapter)
* @adapter: board private structure to initialize
*
* atl2_sw_init initializes the Adapter private data structure.
* Fields are initialized based on PCI device information and
* OS network device settings (MTU size).
*/
static int __devinit atl2_sw_init(struct atl2_adapter *adapter)
{
struct atl2_hw *hw = &adapter->hw;
struct pci_dev *pdev = adapter->pdev;
/* PCI config space info */
hw->vendor_id = pdev->vendor;
hw->device_id = pdev->device;
hw->subsystem_vendor_id = pdev->subsystem_vendor;
hw->subsystem_id = pdev->subsystem_device;
pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
adapter->wol = 0;
adapter->ict = 50000; /* ~100ms */
adapter->link_speed = SPEED_0; /* hardware init */
adapter->link_duplex = FULL_DUPLEX;
hw->phy_configured = false;
hw->preamble_len = 7;
hw->ipgt = 0x60;
hw->min_ifg = 0x50;
hw->ipgr1 = 0x40;
hw->ipgr2 = 0x60;
hw->retry_buf = 2;
hw->max_retry = 0xf;
hw->lcol = 0x37;
hw->jam_ipg = 7;
hw->fc_rxd_hi = 0;
hw->fc_rxd_lo = 0;
hw->max_frame_size = adapter->netdev->mtu;
spin_lock_init(&adapter->stats_lock);
spin_lock_init(&adapter->tx_lock);
set_bit(__ATL2_DOWN, &adapter->flags);
return 0;
}
/*
* atl2_set_multi - Multicast and Promiscuous mode set
* @netdev: network interface device structure
*
* The set_multi entry point is called whenever the multicast address
* list or the network interface flags are updated. This routine is
* responsible for configuring the hardware for proper multicast,
* promiscuous mode, and all-multi behavior.
*/
static void atl2_set_multi(struct net_device *netdev)
{
struct atl2_adapter *adapter = netdev_priv(netdev);
struct atl2_hw *hw = &adapter->hw;
struct dev_mc_list *mc_ptr;
u32 rctl;
u32 hash_value;
/* Check for Promiscuous and All Multicast modes */
rctl = ATL2_READ_REG(hw, REG_MAC_CTRL);
if (netdev->flags & IFF_PROMISC) {
rctl |= MAC_CTRL_PROMIS_EN;
} else if (netdev->flags & IFF_ALLMULTI) {
rctl |= MAC_CTRL_MC_ALL_EN;
rctl &= ~MAC_CTRL_PROMIS_EN;
} else
rctl &= ~(MAC_CTRL_PROMIS_EN | MAC_CTRL_MC_ALL_EN);
ATL2_WRITE_REG(hw, REG_MAC_CTRL, rctl);
/* clear the old settings from the multicast hash table */
ATL2_WRITE_REG(hw, REG_RX_HASH_TABLE, 0);
ATL2_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, 1, 0);
/* comoute mc addresses' hash value ,and put it into hash table */
for (mc_ptr = netdev->mc_list; mc_ptr; mc_ptr = mc_ptr->next) {
hash_value = atl2_hash_mc_addr(hw, mc_ptr->dmi_addr);
atl2_hash_set(hw, hash_value);
}
}
static void init_ring_ptrs(struct atl2_adapter *adapter)
{
/* Read / Write Ptr Initialize: */
adapter->txd_write_ptr = 0;
atomic_set(&adapter->txd_read_ptr, 0);
adapter->rxd_read_ptr = 0;
adapter->rxd_write_ptr = 0;
atomic_set(&adapter->txs_write_ptr, 0);
adapter->txs_next_clear = 0;
}
/*
* atl2_configure - Configure Transmit&Receive Unit after Reset
* @adapter: board private structure
*
* Configure the Tx /Rx unit of the MAC after a reset.
*/
static int atl2_configure(struct atl2_adapter *adapter)
{
struct atl2_hw *hw = &adapter->hw;
u32 value;
/* clear interrupt status */
ATL2_WRITE_REG(&adapter->hw, REG_ISR, 0xffffffff);
/* set MAC Address */
value = (((u32)hw->mac_addr[2]) << 24) |
(((u32)hw->mac_addr[3]) << 16) |
(((u32)hw->mac_addr[4]) << 8) |
(((u32)hw->mac_addr[5]));
ATL2_WRITE_REG(hw, REG_MAC_STA_ADDR, value);
value = (((u32)hw->mac_addr[0]) << 8) |
(((u32)hw->mac_addr[1]));
ATL2_WRITE_REG(hw, (REG_MAC_STA_ADDR+4), value);
/* HI base address */
ATL2_WRITE_REG(hw, REG_DESC_BASE_ADDR_HI,
(u32)((adapter->ring_dma & 0xffffffff00000000ULL) >> 32));
/* LO base address */
ATL2_WRITE_REG(hw, REG_TXD_BASE_ADDR_LO,
(u32)(adapter->txd_dma & 0x00000000ffffffffULL));
ATL2_WRITE_REG(hw, REG_TXS_BASE_ADDR_LO,
(u32)(adapter->txs_dma & 0x00000000ffffffffULL));
ATL2_WRITE_REG(hw, REG_RXD_BASE_ADDR_LO,
(u32)(adapter->rxd_dma & 0x00000000ffffffffULL));
/* element count */
ATL2_WRITE_REGW(hw, REG_TXD_MEM_SIZE, (u16)(adapter->txd_ring_size/4));
ATL2_WRITE_REGW(hw, REG_TXS_MEM_SIZE, (u16)adapter->txs_ring_size);
ATL2_WRITE_REGW(hw, REG_RXD_BUF_NUM, (u16)adapter->rxd_ring_size);
/* config Internal SRAM */
/*
ATL2_WRITE_REGW(hw, REG_SRAM_TXRAM_END, sram_tx_end);
ATL2_WRITE_REGW(hw, REG_SRAM_TXRAM_END, sram_rx_end);
*/
/* config IPG/IFG */
value = (((u32)hw->ipgt & MAC_IPG_IFG_IPGT_MASK) <<
MAC_IPG_IFG_IPGT_SHIFT) |
(((u32)hw->min_ifg & MAC_IPG_IFG_MIFG_MASK) <<
MAC_IPG_IFG_MIFG_SHIFT) |
(((u32)hw->ipgr1 & MAC_IPG_IFG_IPGR1_MASK) <<
MAC_IPG_IFG_IPGR1_SHIFT)|
(((u32)hw->ipgr2 & MAC_IPG_IFG_IPGR2_MASK) <<
MAC_IPG_IFG_IPGR2_SHIFT);
ATL2_WRITE_REG(hw, REG_MAC_IPG_IFG, value);
/* config Half-Duplex Control */
value = ((u32)hw->lcol & MAC_HALF_DUPLX_CTRL_LCOL_MASK) |
(((u32)hw->max_retry & MAC_HALF_DUPLX_CTRL_RETRY_MASK) <<
MAC_HALF_DUPLX_CTRL_RETRY_SHIFT) |
MAC_HALF_DUPLX_CTRL_EXC_DEF_EN |
(0xa << MAC_HALF_DUPLX_CTRL_ABEBT_SHIFT) |
(((u32)hw->jam_ipg & MAC_HALF_DUPLX_CTRL_JAMIPG_MASK) <<
MAC_HALF_DUPLX_CTRL_JAMIPG_SHIFT);
ATL2_WRITE_REG(hw, REG_MAC_HALF_DUPLX_CTRL, value);
/* set Interrupt Moderator Timer */
ATL2_WRITE_REGW(hw, REG_IRQ_MODU_TIMER_INIT, adapter->imt);
ATL2_WRITE_REG(hw, REG_MASTER_CTRL, MASTER_CTRL_ITIMER_EN);
/* set Interrupt Clear Timer */
ATL2_WRITE_REGW(hw, REG_CMBDISDMA_TIMER, adapter->ict);
/* set MTU */
ATL2_WRITE_REG(hw, REG_MTU, adapter->netdev->mtu +
ENET_HEADER_SIZE + VLAN_SIZE + ETHERNET_FCS_SIZE);
/* 1590 */
ATL2_WRITE_REG(hw, REG_TX_CUT_THRESH, 0x177);
/* flow control */
ATL2_WRITE_REGW(hw, REG_PAUSE_ON_TH, hw->fc_rxd_hi);
ATL2_WRITE_REGW(hw, REG_PAUSE_OFF_TH, hw->fc_rxd_lo);
/* Init mailbox */
ATL2_WRITE_REGW(hw, REG_MB_TXD_WR_IDX, (u16)adapter->txd_write_ptr);
ATL2_WRITE_REGW(hw, REG_MB_RXD_RD_IDX, (u16)adapter->rxd_read_ptr);
/* enable DMA read/write */
ATL2_WRITE_REGB(hw, REG_DMAR, DMAR_EN);
ATL2_WRITE_REGB(hw, REG_DMAW, DMAW_EN);
value = ATL2_READ_REG(&adapter->hw, REG_ISR);
if ((value & ISR_PHY_LINKDOWN) != 0)
value = 1; /* config failed */
else
value = 0;
/* clear all interrupt status */
ATL2_WRITE_REG(&adapter->hw, REG_ISR, 0x3fffffff);
ATL2_WRITE_REG(&adapter->hw, REG_ISR, 0);
return value;
}
/*
* atl2_setup_ring_resources - allocate Tx / RX descriptor resources
* @adapter: board private structure
*
* Return 0 on success, negative on failure
*/
static s32 atl2_setup_ring_resources(struct atl2_adapter *adapter)
{
struct pci_dev *pdev = adapter->pdev;
int size;
u8 offset = 0;
/* real ring DMA buffer */
adapter->ring_size = size =
adapter->txd_ring_size * 1 + 7 + /* dword align */
adapter->txs_ring_size * 4 + 7 + /* dword align */
adapter->rxd_ring_size * 1536 + 127; /* 128bytes align */
adapter->ring_vir_addr = pci_alloc_consistent(pdev, size,
&adapter->ring_dma);
if (!adapter->ring_vir_addr)
return -ENOMEM;
memset(adapter->ring_vir_addr, 0, adapter->ring_size);
/* Init TXD Ring */
adapter->txd_dma = adapter->ring_dma ;
offset = (adapter->txd_dma & 0x7) ? (8 - (adapter->txd_dma & 0x7)) : 0;
adapter->txd_dma += offset;
adapter->txd_ring = (struct tx_pkt_header *) (adapter->ring_vir_addr +
offset);
/* Init TXS Ring */
adapter->txs_dma = adapter->txd_dma + adapter->txd_ring_size;
offset = (adapter->txs_dma & 0x7) ? (8 - (adapter->txs_dma & 0x7)) : 0;
adapter->txs_dma += offset;
adapter->txs_ring = (struct tx_pkt_status *)
(((u8 *)adapter->txd_ring) + (adapter->txd_ring_size + offset));
/* Init RXD Ring */
adapter->rxd_dma = adapter->txs_dma + adapter->txs_ring_size * 4;
offset = (adapter->rxd_dma & 127) ?
(128 - (adapter->rxd_dma & 127)) : 0;
if (offset > 7)
offset -= 8;
else
offset += (128 - 8);
adapter->rxd_dma += offset;
adapter->rxd_ring = (struct rx_desc *) (((u8 *)adapter->txs_ring) +
(adapter->txs_ring_size * 4 + offset));
/*
* Read / Write Ptr Initialize:
* init_ring_ptrs(adapter);
*/
return 0;
}
/*
* atl2_irq_enable - Enable default interrupt generation settings
* @adapter: board private structure
*/
static inline void atl2_irq_enable(struct atl2_adapter *adapter)
{
ATL2_WRITE_REG(&adapter->hw, REG_IMR, IMR_NORMAL_MASK);
ATL2_WRITE_FLUSH(&adapter->hw);
}
/*
* atl2_irq_disable - Mask off interrupt generation on the NIC
* @adapter: board private structure
*/
static inline void atl2_irq_disable(struct atl2_adapter *adapter)
{
ATL2_WRITE_REG(&adapter->hw, REG_IMR, 0);
ATL2_WRITE_FLUSH(&adapter->hw);
synchronize_irq(adapter->pdev->irq);
}
#ifdef NETIF_F_HW_VLAN_TX
static void atl2_vlan_rx_register(struct net_device *netdev,
struct vlan_group *grp)
{
struct atl2_adapter *adapter = netdev_priv(netdev);
u32 ctrl;
atl2_irq_disable(adapter);
adapter->vlgrp = grp;
if (grp) {
/* enable VLAN tag insert/strip */
ctrl = ATL2_READ_REG(&adapter->hw, REG_MAC_CTRL);
ctrl |= MAC_CTRL_RMV_VLAN;
ATL2_WRITE_REG(&adapter->hw, REG_MAC_CTRL, ctrl);
} else {
/* disable VLAN tag insert/strip */
ctrl = ATL2_READ_REG(&adapter->hw, REG_MAC_CTRL);
ctrl &= ~MAC_CTRL_RMV_VLAN;
ATL2_WRITE_REG(&adapter->hw, REG_MAC_CTRL, ctrl);
}
atl2_irq_enable(adapter);
}
static void atl2_restore_vlan(struct atl2_adapter *adapter)
{
atl2_vlan_rx_register(adapter->netdev, adapter->vlgrp);
}
#endif
static void atl2_intr_rx(struct atl2_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
struct rx_desc *rxd;
struct sk_buff *skb;
do {
rxd = adapter->rxd_ring+adapter->rxd_write_ptr;
if (!rxd->status.update)
break; /* end of tx */
/* clear this flag at once */
rxd->status.update = 0;
if (rxd->status.ok && rxd->status.pkt_size >= 60) {
int rx_size = (int)(rxd->status.pkt_size - 4);
/* alloc new buffer */
skb = netdev_alloc_skb(netdev, rx_size + NET_IP_ALIGN);
if (NULL == skb) {
printk(KERN_WARNING
"%s: Mem squeeze, deferring packet.\n",
netdev->name);
/*
* Check that some rx space is free. If not,
* free one and mark stats->rx_dropped++.
*/
adapter->net_stats.rx_dropped++;
break;
}
skb_reserve(skb, NET_IP_ALIGN);
skb->dev = netdev;
memcpy(skb->data, rxd->packet, rx_size);
skb_put(skb, rx_size);
skb->protocol = eth_type_trans(skb, netdev);
#ifdef NETIF_F_HW_VLAN_TX
if (adapter->vlgrp && (rxd->status.vlan)) {
u16 vlan_tag = (rxd->status.vtag>>4) |
((rxd->status.vtag&7) << 13) |
((rxd->status.vtag&8) << 9);
vlan_hwaccel_rx(skb, adapter->vlgrp, vlan_tag);
} else
#endif
netif_rx(skb);
adapter->net_stats.rx_bytes += rx_size;
adapter->net_stats.rx_packets++;
netdev->last_rx = jiffies;
} else {
adapter->net_stats.rx_errors++;
if (rxd->status.ok && rxd->status.pkt_size <= 60)
adapter->net_stats.rx_length_errors++;
if (rxd->status.mcast)
adapter->net_stats.multicast++;
if (rxd->status.crc)
adapter->net_stats.rx_crc_errors++;
if (rxd->status.align)
adapter->net_stats.rx_frame_errors++;
}
/* advance write ptr */
if (++adapter->rxd_write_ptr == adapter->rxd_ring_size)
adapter->rxd_write_ptr = 0;
} while (1);
/* update mailbox? */
adapter->rxd_read_ptr = adapter->rxd_write_ptr;
ATL2_WRITE_REGW(&adapter->hw, REG_MB_RXD_RD_IDX, adapter->rxd_read_ptr);
}
static void atl2_intr_tx(struct atl2_adapter *adapter)
{
u32 txd_read_ptr;
u32 txs_write_ptr;
struct tx_pkt_status *txs;
struct tx_pkt_header *txph;
int free_hole = 0;
do {
txs_write_ptr = (u32) atomic_read(&adapter->txs_write_ptr);
txs = adapter->txs_ring + txs_write_ptr;
if (!txs->update)
break; /* tx stop here */
free_hole = 1;
txs->update = 0;
if (++txs_write_ptr == adapter->txs_ring_size)
txs_write_ptr = 0;
atomic_set(&adapter->txs_write_ptr, (int)txs_write_ptr);
txd_read_ptr = (u32) atomic_read(&adapter->txd_read_ptr);
txph = (struct tx_pkt_header *)
(((u8 *)adapter->txd_ring) + txd_read_ptr);
if (txph->pkt_size != txs->pkt_size) {
struct tx_pkt_status *old_txs = txs;
printk(KERN_WARNING
"%s: txs packet size not consistent with txd"
" txd_:0x%08x, txs_:0x%08x!\n",
adapter->netdev->name,
*(u32 *)txph, *(u32 *)txs);
printk(KERN_WARNING
"txd read ptr: 0x%x\n",
txd_read_ptr);
txs = adapter->txs_ring + txs_write_ptr;
printk(KERN_WARNING
"txs-behind:0x%08x\n",
*(u32 *)txs);
if (txs_write_ptr < 2) {
txs = adapter->txs_ring +
(adapter->txs_ring_size +
txs_write_ptr - 2);
} else {
txs = adapter->txs_ring + (txs_write_ptr - 2);
}
printk(KERN_WARNING
"txs-before:0x%08x\n",
*(u32 *)txs);
txs = old_txs;
}
/* 4for TPH */
txd_read_ptr += (((u32)(txph->pkt_size) + 7) & ~3);
if (txd_read_ptr >= adapter->txd_ring_size)
txd_read_ptr -= adapter->txd_ring_size;
atomic_set(&adapter->txd_read_ptr, (int)txd_read_ptr);
/* tx statistics: */
if (txs->ok)
adapter->net_stats.tx_packets++;
else
adapter->net_stats.tx_errors++;
if (txs->defer)
adapter->net_stats.collisions++;
if (txs->abort_col)
adapter->net_stats.tx_aborted_errors++;
if (txs->late_col)
adapter->net_stats.tx_window_errors++;
if (txs->underun)
adapter->net_stats.tx_fifo_errors++;
} while (1);
if (free_hole) {
if (netif_queue_stopped(adapter->netdev) &&
netif_carrier_ok(adapter->netdev))
netif_wake_queue(adapter->netdev);
}
}
static void atl2_check_for_link(struct atl2_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
u16 phy_data = 0;
spin_lock(&adapter->stats_lock);
atl2_read_phy_reg(&adapter->hw, MII_BMSR, &phy_data);
atl2_read_phy_reg(&adapter->hw, MII_BMSR, &phy_data);
spin_unlock(&adapter->stats_lock);
/* notify upper layer link down ASAP */
if (!(phy_data & BMSR_LSTATUS)) { /* Link Down */
if (netif_carrier_ok(netdev)) { /* old link state: Up */
printk(KERN_INFO "%s: %s NIC Link is Down\n",
atl2_driver_name, netdev->name);
adapter->link_speed = SPEED_0;
netif_carrier_off(netdev);
netif_stop_queue(netdev);
}
}
schedule_work(&adapter->link_chg_task);
}
static inline void atl2_clear_phy_int(struct atl2_adapter *adapter)
{
u16 phy_data;
spin_lock(&adapter->stats_lock);
atl2_read_phy_reg(&adapter->hw, 19, &phy_data);
spin_unlock(&adapter->stats_lock);
}
/*
* atl2_intr - Interrupt Handler
* @irq: interrupt number
* @data: pointer to a network interface device structure
* @pt_regs: CPU registers structure
*/
static irqreturn_t atl2_intr(int irq, void *data)
{
struct atl2_adapter *adapter = netdev_priv(data);
struct atl2_hw *hw = &adapter->hw;
u32 status;
status = ATL2_READ_REG(hw, REG_ISR);
if (0 == status)
return IRQ_NONE;
/* link event */
if (status & ISR_PHY)
atl2_clear_phy_int(adapter);
/* clear ISR status, and Enable CMB DMA/Disable Interrupt */
ATL2_WRITE_REG(hw, REG_ISR, status | ISR_DIS_INT);
/* check if PCIE PHY Link down */
if (status & ISR_PHY_LINKDOWN) {
if (netif_running(adapter->netdev)) { /* reset MAC */
ATL2_WRITE_REG(hw, REG_ISR, 0);
ATL2_WRITE_REG(hw, REG_IMR, 0);
ATL2_WRITE_FLUSH(hw);
schedule_work(&adapter->reset_task);
return IRQ_HANDLED;
}
}
/* check if DMA read/write error? */
if (status & (ISR_DMAR_TO_RST | ISR_DMAW_TO_RST)) {
ATL2_WRITE_REG(hw, REG_ISR, 0);
ATL2_WRITE_REG(hw, REG_IMR, 0);
ATL2_WRITE_FLUSH(hw);
schedule_work(&adapter->reset_task);
return IRQ_HANDLED;
}
/* link event */
if (status & (ISR_PHY | ISR_MANUAL)) {
adapter->net_stats.tx_carrier_errors++;
atl2_check_for_link(adapter);
}
/* transmit event */
if (status & ISR_TX_EVENT)
atl2_intr_tx(adapter);
/* rx exception */
if (status & ISR_RX_EVENT)
atl2_intr_rx(adapter);
/* re-enable Interrupt */
ATL2_WRITE_REG(&adapter->hw, REG_ISR, 0);
return IRQ_HANDLED;
}
static int atl2_request_irq(struct atl2_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
int flags, err = 0;
flags = IRQF_SHARED;
#ifdef CONFIG_PCI_MSI
adapter->have_msi = true;
err = pci_enable_msi(adapter->pdev);
if (err)
adapter->have_msi = false;
if (adapter->have_msi)
flags &= ~IRQF_SHARED;
#endif
return request_irq(adapter->pdev->irq, &atl2_intr, flags, netdev->name,
netdev);
}
/*
* atl2_free_ring_resources - Free Tx / RX descriptor Resources
* @adapter: board private structure
*
* Free all transmit software resources
*/
static void atl2_free_ring_resources(struct atl2_adapter *adapter)
{
struct pci_dev *pdev = adapter->pdev;
pci_free_consistent(pdev, adapter->ring_size, adapter->ring_vir_addr,
adapter->ring_dma);
}
/*
* atl2_open - Called when a network interface is made active
* @netdev: network interface device structure
*
* Returns 0 on success, negative value on failure
*
* The open entry point is called when a network interface is made
* active by the system (IFF_UP). At this point all resources needed
* for transmit and receive operations are allocated, the interrupt
* handler is registered with the OS, the watchdog timer is started,
* and the stack is notified that the interface is ready.
*/
static int atl2_open(struct net_device *netdev)
{
struct atl2_adapter *adapter = netdev_priv(netdev);
int err;
u32 val;
/* disallow open during test */
if (test_bit(__ATL2_TESTING, &adapter->flags))
return -EBUSY;
/* allocate transmit descriptors */
err = atl2_setup_ring_resources(adapter);
if (err)
return err;
err = atl2_init_hw(&adapter->hw);
if (err) {
err = -EIO;
goto err_init_hw;
}
/* hardware has been reset, we need to reload some things */
atl2_set_multi(netdev);
init_ring_ptrs(adapter);
#ifdef NETIF_F_HW_VLAN_TX
atl2_restore_vlan(adapter);
#endif
if (atl2_configure(adapter)) {
err = -EIO;
goto err_config;
}
err = atl2_request_irq(adapter);
if (err)
goto err_req_irq;
clear_bit(__ATL2_DOWN, &adapter->flags);
mod_timer(&adapter->watchdog_timer, jiffies + 4*HZ);
val = ATL2_READ_REG(&adapter->hw, REG_MASTER_CTRL);
ATL2_WRITE_REG(&adapter->hw, REG_MASTER_CTRL,
val | MASTER_CTRL_MANUAL_INT);
atl2_irq_enable(adapter);
return 0;
err_init_hw:
err_req_irq:
err_config:
atl2_free_ring_resources(adapter);
atl2_reset_hw(&adapter->hw);
return err;
}
static void atl2_down(struct atl2_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
/* signal that we're down so the interrupt handler does not
* reschedule our watchdog timer */
set_bit(__ATL2_DOWN, &adapter->flags);
#ifdef NETIF_F_LLTX
netif_stop_queue(netdev);
#else
netif_tx_disable(netdev);
#endif
/* reset MAC to disable all RX/TX */
atl2_reset_hw(&adapter->hw);
msleep(1);
atl2_irq_disable(adapter);
del_timer_sync(&adapter->watchdog_timer);
del_timer_sync(&adapter->phy_config_timer);
clear_bit(0, &adapter->cfg_phy);
netif_carrier_off(netdev);
adapter->link_speed = SPEED_0;
adapter->link_duplex = -1;
}
static void atl2_free_irq(struct atl2_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
free_irq(adapter->pdev->irq, netdev);
#ifdef CONFIG_PCI_MSI
if (adapter->have_msi)
pci_disable_msi(adapter->pdev);
#endif
}
/*
* atl2_close - Disables a network interface
* @netdev: network interface device structure
*
* Returns 0, this is not allowed to fail
*
* The close entry point is called when an interface is de-activated
* by the OS. The hardware is still under the drivers control, but
* needs to be disabled. A global MAC reset is issued to stop the
* hardware, and all transmit and receive resources are freed.
*/
static int atl2_close(struct net_device *netdev)
{
struct atl2_adapter *adapter = netdev_priv(netdev);
WARN_ON(test_bit(__ATL2_RESETTING, &adapter->flags));
atl2_down(adapter);
atl2_free_irq(adapter);
atl2_free_ring_resources(adapter);
return 0;
}
static inline int TxsFreeUnit(struct atl2_adapter *adapter)
{
u32 txs_write_ptr = (u32) atomic_read(&adapter->txs_write_ptr);
return (adapter->txs_next_clear >= txs_write_ptr) ?
(int) (adapter->txs_ring_size - adapter->txs_next_clear +
txs_write_ptr - 1) :
(int) (txs_write_ptr - adapter->txs_next_clear - 1);
}
static inline int TxdFreeBytes(struct atl2_adapter *adapter)
{
u32 txd_read_ptr = (u32)atomic_read(&adapter->txd_read_ptr);
return (adapter->txd_write_ptr >= txd_read_ptr) ?
(int) (adapter->txd_ring_size - adapter->txd_write_ptr +
txd_read_ptr - 1) :
(int) (txd_read_ptr - adapter->txd_write_ptr - 1);
}
static int atl2_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
{
struct atl2_adapter *adapter = netdev_priv(netdev);
unsigned long flags;
struct tx_pkt_header *txph;
u32 offset, copy_len;
int txs_unused;
int txbuf_unused;
if (test_bit(__ATL2_DOWN, &adapter->flags)) {
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
if (unlikely(skb->len <= 0)) {
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
#ifdef NETIF_F_LLTX
local_irq_save(flags);
if (!spin_trylock(&adapter->tx_lock)) {
/* Collision - tell upper layer to requeue */
local_irq_restore(flags);
return NETDEV_TX_LOCKED;
}
#else
spin_lock_irqsave(&adapter->tx_lock, flags);
#endif
txs_unused = TxsFreeUnit(adapter);
txbuf_unused = TxdFreeBytes(adapter);
if (skb->len + sizeof(struct tx_pkt_header) + 4 > txbuf_unused ||
txs_unused < 1) {
/* not enough resources */
netif_stop_queue(netdev);
spin_unlock_irqrestore(&adapter->tx_lock, flags);
return NETDEV_TX_BUSY;
}
offset = adapter->txd_write_ptr;
txph = (struct tx_pkt_header *) (((u8 *)adapter->txd_ring) + offset);
*(u32 *)txph = 0;
txph->pkt_size = skb->len;
offset += 4;
if (offset >= adapter->txd_ring_size)
offset -= adapter->txd_ring_size;
copy_len = adapter->txd_ring_size - offset;
if (copy_len >= skb->len) {
memcpy(((u8 *)adapter->txd_ring) + offset, skb->data, skb->len);
offset += ((u32)(skb->len + 3) & ~3);
} else {
memcpy(((u8 *)adapter->txd_ring)+offset, skb->data, copy_len);
memcpy((u8 *)adapter->txd_ring, skb->data+copy_len,
skb->len-copy_len);
offset = ((u32)(skb->len-copy_len + 3) & ~3);
}
#ifdef NETIF_F_HW_VLAN_TX
if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
u16 vlan_tag = vlan_tx_tag_get(skb);
vlan_tag = (vlan_tag << 4) |
(vlan_tag >> 13) |
((vlan_tag >> 9) & 0x8);
txph->ins_vlan = 1;
txph->vlan = vlan_tag;
}
#endif
if (offset >= adapter->txd_ring_size)
offset -= adapter->txd_ring_size;
adapter->txd_write_ptr = offset;
/* clear txs before send */
adapter->txs_ring[adapter->txs_next_clear].update = 0;
if (++adapter->txs_next_clear == adapter->txs_ring_size)
adapter->txs_next_clear = 0;
ATL2_WRITE_REGW(&adapter->hw, REG_MB_TXD_WR_IDX,
(adapter->txd_write_ptr >> 2));
spin_unlock_irqrestore(&adapter->tx_lock, flags);
netdev->trans_start = jiffies;
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
/*
* atl2_get_stats - Get System Network Statistics
* @netdev: network interface device structure
*
* Returns the address of the device statistics structure.
* The statistics are actually updated from the timer callback.
*/
static struct net_device_stats *atl2_get_stats(struct net_device *netdev)
{
struct atl2_adapter *adapter = netdev_priv(netdev);
return &adapter->net_stats;
}
/*
* atl2_change_mtu - Change the Maximum Transfer Unit
* @netdev: network interface device structure
* @new_mtu: new value for maximum frame size
*
* Returns 0 on success, negative on failure
*/
static int atl2_change_mtu(struct net_device *netdev, int new_mtu)
{
struct atl2_adapter *adapter = netdev_priv(netdev);
struct atl2_hw *hw = &adapter->hw;
if ((new_mtu < 40) || (new_mtu > (ETH_DATA_LEN + VLAN_SIZE)))
return -EINVAL;
/* set MTU */
if (hw->max_frame_size != new_mtu) {
netdev->mtu = new_mtu;
ATL2_WRITE_REG(hw, REG_MTU, new_mtu + ENET_HEADER_SIZE +
VLAN_SIZE + ETHERNET_FCS_SIZE);
}
return 0;
}
/*
* atl2_set_mac - Change the Ethernet Address of the NIC
* @netdev: network interface device structure
* @p: pointer to an address structure
*
* Returns 0 on success, negative on failure
*/
static int atl2_set_mac(struct net_device *netdev, void *p)
{
struct atl2_adapter *adapter = netdev_priv(netdev);
struct sockaddr *addr = p;
if (!is_valid_ether_addr(addr->sa_data))
return -EADDRNOTAVAIL;
if (netif_running(netdev))
return -EBUSY;
memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
atl2_set_mac_addr(&adapter->hw);
return 0;
}
/*
* atl2_mii_ioctl -
* @netdev:
* @ifreq:
* @cmd:
*/
static int atl2_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
struct atl2_adapter *adapter = netdev_priv(netdev);
struct mii_ioctl_data *data = if_mii(ifr);
unsigned long flags;
switch (cmd) {
case SIOCGMIIPHY:
data->phy_id = 0;
break;
case SIOCGMIIREG:
if (!capable(CAP_NET_ADMIN))
return -EPERM;
spin_lock_irqsave(&adapter->stats_lock, flags);
if (atl2_read_phy_reg(&adapter->hw,
data->reg_num & 0x1F, &data->val_out)) {
spin_unlock_irqrestore(&adapter->stats_lock, flags);
return -EIO;
}
spin_unlock_irqrestore(&adapter->stats_lock, flags);
break;
case SIOCSMIIREG:
if (!capable(CAP_NET_ADMIN))
return -EPERM;
if (data->reg_num & ~(0x1F))
return -EFAULT;
spin_lock_irqsave(&adapter->stats_lock, flags);
if (atl2_write_phy_reg(&adapter->hw, data->reg_num,
data->val_in)) {
spin_unlock_irqrestore(&adapter->stats_lock, flags);
return -EIO;
}
spin_unlock_irqrestore(&adapter->stats_lock, flags);
break;
default:
return -EOPNOTSUPP;
}
return 0;
}
/*
* atl2_ioctl -
* @netdev:
* @ifreq:
* @cmd:
*/
static int atl2_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
switch (cmd) {
case SIOCGMIIPHY:
case SIOCGMIIREG:
case SIOCSMIIREG:
return atl2_mii_ioctl(netdev, ifr, cmd);
#ifdef ETHTOOL_OPS_COMPAT
case SIOCETHTOOL:
return ethtool_ioctl(ifr);
#endif
default:
return -EOPNOTSUPP;
}
}
/*
* atl2_tx_timeout - Respond to a Tx Hang
* @netdev: network interface device structure
*/
static void atl2_tx_timeout(struct net_device *netdev)
{
struct atl2_adapter *adapter = netdev_priv(netdev);
/* Do the reset outside of interrupt context */
schedule_work(&adapter->reset_task);
}
/*
* atl2_watchdog - Timer Call-back
* @data: pointer to netdev cast into an unsigned long
*/
static void atl2_watchdog(unsigned long data)
{
struct atl2_adapter *adapter = (struct atl2_adapter *) data;
u32 drop_rxd, drop_rxs;
unsigned long flags;
if (!test_bit(__ATL2_DOWN, &adapter->flags)) {
spin_lock_irqsave(&adapter->stats_lock, flags);
drop_rxd = ATL2_READ_REG(&adapter->hw, REG_STS_RXD_OV);
drop_rxs = ATL2_READ_REG(&adapter->hw, REG_STS_RXS_OV);
adapter->net_stats.rx_over_errors += (drop_rxd+drop_rxs);
spin_unlock_irqrestore(&adapter->stats_lock, flags);
/* Reset the timer */
mod_timer(&adapter->watchdog_timer, jiffies + 4 * HZ);
}
}
/*
* atl2_phy_config - Timer Call-back
* @data: pointer to netdev cast into an unsigned long
*/
static void atl2_phy_config(unsigned long data)
{
struct atl2_adapter *adapter = (struct atl2_adapter *) data;
struct atl2_hw *hw = &adapter->hw;
unsigned long flags;
spin_lock_irqsave(&adapter->stats_lock, flags);
atl2_write_phy_reg(hw, MII_ADVERTISE, hw->mii_autoneg_adv_reg);
atl2_write_phy_reg(hw, MII_BMCR, MII_CR_RESET | MII_CR_AUTO_NEG_EN |
MII_CR_RESTART_AUTO_NEG);
spin_unlock_irqrestore(&adapter->stats_lock, flags);
clear_bit(0, &adapter->cfg_phy);
}
static int atl2_up(struct atl2_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
int err = 0;
u32 val;
/* hardware has been reset, we need to reload some things */
err = atl2_init_hw(&adapter->hw);
if (err) {
err = -EIO;
return err;
}
atl2_set_multi(netdev);
init_ring_ptrs(adapter);
#ifdef NETIF_F_HW_VLAN_TX
atl2_restore_vlan(adapter);
#endif
if (atl2_configure(adapter)) {
err = -EIO;
goto err_up;
}
clear_bit(__ATL2_DOWN, &adapter->flags);
val = ATL2_READ_REG(&adapter->hw, REG_MASTER_CTRL);
ATL2_WRITE_REG(&adapter->hw, REG_MASTER_CTRL, val |
MASTER_CTRL_MANUAL_INT);
atl2_irq_enable(adapter);
err_up:
return err;
}
static void atl2_reinit_locked(struct atl2_adapter *adapter)
{
WARN_ON(in_interrupt());
while (test_and_set_bit(__ATL2_RESETTING, &adapter->flags))
msleep(1);
atl2_down(adapter);
atl2_up(adapter);
clear_bit(__ATL2_RESETTING, &adapter->flags);
}
static void atl2_reset_task(struct work_struct *work)
{
struct atl2_adapter *adapter;
adapter = container_of(work, struct atl2_adapter, reset_task);
atl2_reinit_locked(adapter);
}
static void atl2_setup_mac_ctrl(struct atl2_adapter *adapter)
{
u32 value;
struct atl2_hw *hw = &adapter->hw;
struct net_device *netdev = adapter->netdev;
/* Config MAC CTRL Register */
value = MAC_CTRL_TX_EN | MAC_CTRL_RX_EN | MAC_CTRL_MACLP_CLK_PHY;
/* duplex */
if (FULL_DUPLEX == adapter->link_duplex)
value |= MAC_CTRL_DUPLX;
/* flow control */
value |= (MAC_CTRL_TX_FLOW | MAC_CTRL_RX_FLOW);
/* PAD & CRC */
value |= (MAC_CTRL_ADD_CRC | MAC_CTRL_PAD);
/* preamble length */
value |= (((u32)adapter->hw.preamble_len & MAC_CTRL_PRMLEN_MASK) <<
MAC_CTRL_PRMLEN_SHIFT);
/* vlan */
if (adapter->vlgrp)
value |= MAC_CTRL_RMV_VLAN;
/* filter mode */
value |= MAC_CTRL_BC_EN;
if (netdev->flags & IFF_PROMISC)
value |= MAC_CTRL_PROMIS_EN;
else if (netdev->flags & IFF_ALLMULTI)
value |= MAC_CTRL_MC_ALL_EN;
/* half retry buffer */
value |= (((u32)(adapter->hw.retry_buf &
MAC_CTRL_HALF_LEFT_BUF_MASK)) << MAC_CTRL_HALF_LEFT_BUF_SHIFT);
ATL2_WRITE_REG(hw, REG_MAC_CTRL, value);
}
static int atl2_check_link(struct atl2_adapter *adapter)
{
struct atl2_hw *hw = &adapter->hw;
struct net_device *netdev = adapter->netdev;
int ret_val;
u16 speed, duplex, phy_data;
int reconfig = 0;
/* MII_BMSR must read twise */
atl2_read_phy_reg(hw, MII_BMSR, &phy_data);
atl2_read_phy_reg(hw, MII_BMSR, &phy_data);
if (!(phy_data&BMSR_LSTATUS)) { /* link down */
if (netif_carrier_ok(netdev)) { /* old link state: Up */
u32 value;
/* disable rx */
value = ATL2_READ_REG(hw, REG_MAC_CTRL);
value &= ~MAC_CTRL_RX_EN;
ATL2_WRITE_REG(hw, REG_MAC_CTRL, value);
adapter->link_speed = SPEED_0;
netif_carrier_off(netdev);
netif_stop_queue(netdev);
}
return 0;
}
/* Link Up */
ret_val = atl2_get_speed_and_duplex(hw, &speed, &duplex);
if (ret_val)
return ret_val;
switch (hw->MediaType) {
case MEDIA_TYPE_100M_FULL:
if (speed != SPEED_100 || duplex != FULL_DUPLEX)
reconfig = 1;
break;
case MEDIA_TYPE_100M_HALF:
if (speed != SPEED_100 || duplex != HALF_DUPLEX)
reconfig = 1;
break;
case MEDIA_TYPE_10M_FULL:
if (speed != SPEED_10 || duplex != FULL_DUPLEX)
reconfig = 1;
break;
case MEDIA_TYPE_10M_HALF:
if (speed != SPEED_10 || duplex != HALF_DUPLEX)
reconfig = 1;
break;
}
/* link result is our setting */
if (reconfig == 0) {
if (adapter->link_speed != speed ||
adapter->link_duplex != duplex) {
adapter->link_speed = speed;
adapter->link_duplex = duplex;
atl2_setup_mac_ctrl(adapter);
printk(KERN_INFO "%s: %s NIC Link is Up<%d Mbps %s>\n",
atl2_driver_name, netdev->name,
adapter->link_speed,
adapter->link_duplex == FULL_DUPLEX ?
"Full Duplex" : "Half Duplex");
}
if (!netif_carrier_ok(netdev)) { /* Link down -> Up */
netif_carrier_on(netdev);
netif_wake_queue(netdev);
}
return 0;
}
/* change original link status */
if (netif_carrier_ok(netdev)) {
u32 value;
/* disable rx */
value = ATL2_READ_REG(hw, REG_MAC_CTRL);
value &= ~MAC_CTRL_RX_EN;
ATL2_WRITE_REG(hw, REG_MAC_CTRL, value);
adapter->link_speed = SPEED_0;
netif_carrier_off(netdev);
netif_stop_queue(netdev);
}
/* auto-neg, insert timer to re-config phy
* (if interval smaller than 5 seconds, something strange) */
if (!test_bit(__ATL2_DOWN, &adapter->flags)) {
if (!test_and_set_bit(0, &adapter->cfg_phy))
mod_timer(&adapter->phy_config_timer, jiffies + 5 * HZ);
}
return 0;
}
/*
* atl2_link_chg_task - deal with link change event Out of interrupt context
* @netdev: network interface device structure
*/
static void atl2_link_chg_task(struct work_struct *work)
{
struct atl2_adapter *adapter;
unsigned long flags;
adapter = container_of(work, struct atl2_adapter, link_chg_task);
spin_lock_irqsave(&adapter->stats_lock, flags);
atl2_check_link(adapter);
spin_unlock_irqrestore(&adapter->stats_lock, flags);
}
static void atl2_setup_pcicmd(struct pci_dev *pdev)
{
u16 cmd;
pci_read_config_word(pdev, PCI_COMMAND, &cmd);
if (cmd & PCI_COMMAND_INTX_DISABLE)
cmd &= ~PCI_COMMAND_INTX_DISABLE;
if (cmd & PCI_COMMAND_IO)
cmd &= ~PCI_COMMAND_IO;
if (0 == (cmd & PCI_COMMAND_MEMORY))
cmd |= PCI_COMMAND_MEMORY;
if (0 == (cmd & PCI_COMMAND_MASTER))
cmd |= PCI_COMMAND_MASTER;
pci_write_config_word(pdev, PCI_COMMAND, cmd);
/*
* some motherboards BIOS(PXE/EFI) driver may set PME
* while they transfer control to OS (Windows/Linux)
* so we should clear this bit before NIC work normally
*/
pci_write_config_dword(pdev, REG_PM_CTRLSTAT, 0);
}
/*
* atl2_probe - Device Initialization Routine
* @pdev: PCI device information struct
* @ent: entry in atl2_pci_tbl
*
* Returns 0 on success, negative on failure
*
* atl2_probe initializes an adapter identified by a pci_dev structure.
* The OS initialization, configuring of the adapter private structure,
* and a hardware reset occur.
*/
static int __devinit atl2_probe(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
struct net_device *netdev;
struct atl2_adapter *adapter;
static int cards_found;
unsigned long mmio_start;
int mmio_len;
int err;
cards_found = 0;
err = pci_enable_device(pdev);
if (err)
return err;
/*
* atl2 is a shared-high-32-bit device, so we're stuck with 32-bit DMA
* until the kernel has the proper infrastructure to support 64-bit DMA
* on these devices.
*/
if (pci_set_dma_mask(pdev, DMA_32BIT_MASK) &&
pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK)) {
printk(KERN_ERR "atl2: No usable DMA configuration, aborting\n");
goto err_dma;
}
/* Mark all PCI regions associated with PCI device
* pdev as being reserved by owner atl2_driver_name */
err = pci_request_regions(pdev, atl2_driver_name);
if (err)
goto err_pci_reg;
/* Enables bus-mastering on the device and calls
* pcibios_set_master to do the needed arch specific settings */
pci_set_master(pdev);
err = -ENOMEM;
netdev = alloc_etherdev(sizeof(struct atl2_adapter));
if (!netdev)
goto err_alloc_etherdev;
SET_NETDEV_DEV(netdev, &pdev->dev);
pci_set_drvdata(pdev, netdev);
adapter = netdev_priv(netdev);
adapter->netdev = netdev;
adapter->pdev = pdev;
adapter->hw.back = adapter;
mmio_start = pci_resource_start(pdev, 0x0);
mmio_len = pci_resource_len(pdev, 0x0);
adapter->hw.mem_rang = (u32)mmio_len;
adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
if (!adapter->hw.hw_addr) {
err = -EIO;
goto err_ioremap;
}
atl2_setup_pcicmd(pdev);
netdev->open = &atl2_open;
netdev->stop = &atl2_close;
netdev->hard_start_xmit = &atl2_xmit_frame;
netdev->get_stats = &atl2_get_stats;
netdev->set_multicast_list = &atl2_set_multi;
netdev->set_mac_address = &atl2_set_mac;
netdev->change_mtu = &atl2_change_mtu;
netdev->do_ioctl = &atl2_ioctl;
atl2_set_ethtool_ops(netdev);
#ifdef HAVE_TX_TIMEOUT
netdev->tx_timeout = &atl2_tx_timeout;
netdev->watchdog_timeo = 5 * HZ;
#endif
#ifdef NETIF_F_HW_VLAN_TX
netdev->vlan_rx_register = atl2_vlan_rx_register;
#endif
strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
netdev->mem_start = mmio_start;
netdev->mem_end = mmio_start + mmio_len;
adapter->bd_number = cards_found;
adapter->pci_using_64 = false;
/* setup the private structure */
err = atl2_sw_init(adapter);
if (err)
goto err_sw_init;
err = -EIO;
#ifdef NETIF_F_HW_VLAN_TX
netdev->features |= (NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX);
#endif
#ifdef NETIF_F_LLTX
netdev->features |= NETIF_F_LLTX;
#endif
/* Init PHY as early as possible due to power saving issue */
atl2_phy_init(&adapter->hw);
/* reset the controller to
* put the device in a known good starting state */
if (atl2_reset_hw(&adapter->hw)) {
err = -EIO;
goto err_reset;
}
/* copy the MAC address out of the EEPROM */
atl2_read_mac_addr(&adapter->hw);
memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
/* FIXME: do we still need this? */
#ifdef ETHTOOL_GPERMADDR
memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
if (!is_valid_ether_addr(netdev->perm_addr)) {
#else
if (!is_valid_ether_addr(netdev->dev_addr)) {
#endif
err = -EIO;
goto err_eeprom;
}
atl2_check_options(adapter);
init_timer(&adapter->watchdog_timer);
adapter->watchdog_timer.function = &atl2_watchdog;
adapter->watchdog_timer.data = (unsigned long) adapter;
init_timer(&adapter->phy_config_timer);
adapter->phy_config_timer.function = &atl2_phy_config;
adapter->phy_config_timer.data = (unsigned long) adapter;
INIT_WORK(&adapter->reset_task, atl2_reset_task);
INIT_WORK(&adapter->link_chg_task, atl2_link_chg_task);
strcpy(netdev->name, "eth%d"); /* ?? */
err = register_netdev(netdev);
if (err)
goto err_register;
/* assume we have no link for now */
netif_carrier_off(netdev);
netif_stop_queue(netdev);
cards_found++;
return 0;
err_reset:
err_register:
err_sw_init:
err_eeprom:
iounmap(adapter->hw.hw_addr);
err_ioremap:
free_netdev(netdev);
err_alloc_etherdev:
pci_release_regions(pdev);
err_pci_reg:
err_dma:
pci_disable_device(pdev);
return err;
}
/*
* atl2_remove - Device Removal Routine
* @pdev: PCI device information struct
*
* atl2_remove is called by the PCI subsystem to alert the driver
* that it should release a PCI device. The could be caused by a
* Hot-Plug event, or because the driver is going to be removed from
* memory.
*/
/* FIXME: write the original MAC address back in case it was changed from a
* BIOS-set value, as in atl1 -- CHS */
static void __devexit atl2_remove(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct atl2_adapter *adapter = netdev_priv(netdev);
/* flush_scheduled work may reschedule our watchdog task, so
* explicitly disable watchdog tasks from being rescheduled */
set_bit(__ATL2_DOWN, &adapter->flags);
del_timer_sync(&adapter->watchdog_timer);
del_timer_sync(&adapter->phy_config_timer);
flush_scheduled_work();
unregister_netdev(netdev);
atl2_force_ps(&adapter->hw);
iounmap(adapter->hw.hw_addr);
pci_release_regions(pdev);
free_netdev(netdev);
pci_disable_device(pdev);
}
static int atl2_suspend(struct pci_dev *pdev, pm_message_t state)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct atl2_adapter *adapter = netdev_priv(netdev);
struct atl2_hw *hw = &adapter->hw;
u16 speed, duplex;
u32 ctrl = 0;
u32 wufc = adapter->wol;
#ifdef CONFIG_PM
int retval = 0;
#endif
netif_device_detach(netdev);
if (netif_running(netdev)) {
WARN_ON(test_bit(__ATL2_RESETTING, &adapter->flags));
atl2_down(adapter);
}
#ifdef CONFIG_PM
retval = pci_save_state(pdev);
if (retval)
return retval;
#endif
atl2_read_phy_reg(hw, MII_BMSR, (u16 *)&ctrl);
atl2_read_phy_reg(hw, MII_BMSR, (u16 *)&ctrl);
if (ctrl & BMSR_LSTATUS)
wufc &= ~ATLX_WUFC_LNKC;
if (0 != (ctrl & BMSR_LSTATUS) && 0 != wufc) {
u32 ret_val;
/* get current link speed & duplex */
ret_val = atl2_get_speed_and_duplex(hw, &speed, &duplex);
if (ret_val) {
printk(KERN_DEBUG
"%s: get speed&duplex error while suspend\n",
atl2_driver_name);
goto wol_dis;
}
ctrl = 0;
/* turn on magic packet wol */
if (wufc & ATLX_WUFC_MAG)
ctrl |= (WOL_MAGIC_EN | WOL_MAGIC_PME_EN);
/* ignore Link Chg event when Link is up */
ATL2_WRITE_REG(hw, REG_WOL_CTRL, ctrl);
/* Config MAC CTRL Register */
ctrl = MAC_CTRL_RX_EN | MAC_CTRL_MACLP_CLK_PHY;
if (FULL_DUPLEX == adapter->link_duplex)
ctrl |= MAC_CTRL_DUPLX;
ctrl |= (MAC_CTRL_ADD_CRC | MAC_CTRL_PAD);
ctrl |= (((u32)adapter->hw.preamble_len &
MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT);
ctrl |= (((u32)(adapter->hw.retry_buf &
MAC_CTRL_HALF_LEFT_BUF_MASK)) <<
MAC_CTRL_HALF_LEFT_BUF_SHIFT);
if (wufc & ATLX_WUFC_MAG) {
/* magic packet maybe Broadcast&multicast&Unicast */
ctrl |= MAC_CTRL_BC_EN;
}
ATL2_WRITE_REG(hw, REG_MAC_CTRL, ctrl);
/* pcie patch */
ctrl = ATL2_READ_REG(hw, REG_PCIE_PHYMISC);
ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
ATL2_WRITE_REG(hw, REG_PCIE_PHYMISC, ctrl);
ctrl = ATL2_READ_REG(hw, REG_PCIE_DLL_TX_CTRL1);
ctrl |= PCIE_DLL_TX_CTRL1_SEL_NOR_CLK;
ATL2_WRITE_REG(hw, REG_PCIE_DLL_TX_CTRL1, ctrl);
pci_enable_wake(pdev, pci_choose_state(pdev, state), 1);
goto suspend_exit;
}
if (0 == (ctrl&BMSR_LSTATUS) && 0 != (wufc&ATLX_WUFC_LNKC)) {
/* link is down, so only LINK CHG WOL event enable */
ctrl |= (WOL_LINK_CHG_EN | WOL_LINK_CHG_PME_EN);
ATL2_WRITE_REG(hw, REG_WOL_CTRL, ctrl);
ATL2_WRITE_REG(hw, REG_MAC_CTRL, 0);
/* pcie patch */
ctrl = ATL2_READ_REG(hw, REG_PCIE_PHYMISC);
ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
ATL2_WRITE_REG(hw, REG_PCIE_PHYMISC, ctrl);
ctrl = ATL2_READ_REG(hw, REG_PCIE_DLL_TX_CTRL1);
ctrl |= PCIE_DLL_TX_CTRL1_SEL_NOR_CLK;
ATL2_WRITE_REG(hw, REG_PCIE_DLL_TX_CTRL1, ctrl);
hw->phy_configured = false; /* re-init PHY when resume */
pci_enable_wake(pdev, pci_choose_state(pdev, state), 1);
goto suspend_exit;
}
wol_dis:
/* WOL disabled */
ATL2_WRITE_REG(hw, REG_WOL_CTRL, 0);
/* pcie patch */
ctrl = ATL2_READ_REG(hw, REG_PCIE_PHYMISC);
ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
ATL2_WRITE_REG(hw, REG_PCIE_PHYMISC, ctrl);
ctrl = ATL2_READ_REG(hw, REG_PCIE_DLL_TX_CTRL1);
ctrl |= PCIE_DLL_TX_CTRL1_SEL_NOR_CLK;
ATL2_WRITE_REG(hw, REG_PCIE_DLL_TX_CTRL1, ctrl);
atl2_force_ps(hw);
hw->phy_configured = false; /* re-init PHY when resume */
pci_enable_wake(pdev, pci_choose_state(pdev, state), 0);
suspend_exit:
if (netif_running(netdev))
atl2_free_irq(adapter);
pci_disable_device(pdev);
pci_set_power_state(pdev, pci_choose_state(pdev, state));
return 0;
}
#ifdef CONFIG_PM
static int atl2_resume(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct atl2_adapter *adapter = netdev_priv(netdev);
u32 err;
pci_set_power_state(pdev, PCI_D0);
pci_restore_state(pdev);
err = pci_enable_device(pdev);
if (err) {
printk(KERN_ERR
"atl2: Cannot enable PCI device from suspend\n");
return err;
}
pci_set_master(pdev);
ATL2_READ_REG(&adapter->hw, REG_WOL_CTRL); /* clear WOL status */
pci_enable_wake(pdev, PCI_D3hot, 0);
pci_enable_wake(pdev, PCI_D3cold, 0);
ATL2_WRITE_REG(&adapter->hw, REG_WOL_CTRL, 0);
err = atl2_request_irq(adapter);
if (netif_running(netdev) && err)
return err;
atl2_reset_hw(&adapter->hw);
if (netif_running(netdev))
atl2_up(adapter);
netif_device_attach(netdev);
return 0;
}
#endif
static void atl2_shutdown(struct pci_dev *pdev)
{
atl2_suspend(pdev, PMSG_SUSPEND);
}
static struct pci_driver atl2_driver = {
.name = atl2_driver_name,
.id_table = atl2_pci_tbl,
.probe = atl2_probe,
.remove = __devexit_p(atl2_remove),
/* Power Managment Hooks */
.suspend = atl2_suspend,
#ifdef CONFIG_PM
.resume = atl2_resume,
#endif
.shutdown = atl2_shutdown,
};
/*
* atl2_init_module - Driver Registration Routine
*
* atl2_init_module is the first routine called when the driver is
* loaded. All it does is register with the PCI subsystem.
*/
static int __init atl2_init_module(void)
{
printk(KERN_INFO "%s - version %s\n", atl2_driver_string,
atl2_driver_version);
printk(KERN_INFO "%s\n", atl2_copyright);
return pci_register_driver(&atl2_driver);
}
module_init(atl2_init_module);
/*
* atl2_exit_module - Driver Exit Cleanup Routine
*
* atl2_exit_module is called just before the driver is removed
* from memory.
*/
static void __exit atl2_exit_module(void)
{
pci_unregister_driver(&atl2_driver);
}
module_exit(atl2_exit_module);
static void atl2_read_pci_cfg(struct atl2_hw *hw, u32 reg, u16 *value)
{
struct atl2_adapter *adapter = hw->back;
pci_read_config_word(adapter->pdev, reg, value);
}
static void atl2_write_pci_cfg(struct atl2_hw *hw, u32 reg, u16 *value)
{
struct atl2_adapter *adapter = hw->back;
pci_write_config_word(adapter->pdev, reg, *value);
}
static int atl2_get_settings(struct net_device *netdev,
struct ethtool_cmd *ecmd)
{
struct atl2_adapter *adapter = netdev_priv(netdev);
struct atl2_hw *hw = &adapter->hw;
ecmd->supported = (SUPPORTED_10baseT_Half |
SUPPORTED_10baseT_Full |
SUPPORTED_100baseT_Half |
SUPPORTED_100baseT_Full |
SUPPORTED_Autoneg |
SUPPORTED_TP);
ecmd->advertising = ADVERTISED_TP;
ecmd->advertising |= ADVERTISED_Autoneg;
ecmd->advertising |= hw->autoneg_advertised;
ecmd->port = PORT_TP;
ecmd->phy_address = 0;
ecmd->transceiver = XCVR_INTERNAL;
if (adapter->link_speed != SPEED_0) {
ecmd->speed = adapter->link_speed;
if (adapter->link_duplex == FULL_DUPLEX)
ecmd->duplex = DUPLEX_FULL;
else
ecmd->duplex = DUPLEX_HALF;
} else {
ecmd->speed = -1;
ecmd->duplex = -1;
}
ecmd->autoneg = AUTONEG_ENABLE;
return 0;
}
static int atl2_set_settings(struct net_device *netdev,
struct ethtool_cmd *ecmd)
{
struct atl2_adapter *adapter = netdev_priv(netdev);
struct atl2_hw *hw = &adapter->hw;
while (test_and_set_bit(__ATL2_RESETTING, &adapter->flags))
msleep(1);
if (ecmd->autoneg == AUTONEG_ENABLE) {
#define MY_ADV_MASK (ADVERTISE_10_HALF | \
ADVERTISE_10_FULL | \
ADVERTISE_100_HALF| \
ADVERTISE_100_FULL)
if ((ecmd->advertising & MY_ADV_MASK) == MY_ADV_MASK) {
hw->MediaType = MEDIA_TYPE_AUTO_SENSOR;
hw->autoneg_advertised = MY_ADV_MASK;
} else if ((ecmd->advertising & MY_ADV_MASK) ==
ADVERTISE_100_FULL) {
hw->MediaType = MEDIA_TYPE_100M_FULL;
hw->autoneg_advertised = ADVERTISE_100_FULL;
} else if ((ecmd->advertising & MY_ADV_MASK) ==
ADVERTISE_100_HALF) {
hw->MediaType = MEDIA_TYPE_100M_HALF;
hw->autoneg_advertised = ADVERTISE_100_HALF;
} else if ((ecmd->advertising & MY_ADV_MASK) ==
ADVERTISE_10_FULL) {
hw->MediaType = MEDIA_TYPE_10M_FULL;
hw->autoneg_advertised = ADVERTISE_10_FULL;
} else if ((ecmd->advertising & MY_ADV_MASK) ==
ADVERTISE_10_HALF) {
hw->MediaType = MEDIA_TYPE_10M_HALF;
hw->autoneg_advertised = ADVERTISE_10_HALF;
} else {
clear_bit(__ATL2_RESETTING, &adapter->flags);
return -EINVAL;
}
ecmd->advertising = hw->autoneg_advertised |
ADVERTISED_TP | ADVERTISED_Autoneg;
} else {
clear_bit(__ATL2_RESETTING, &adapter->flags);
return -EINVAL;
}
/* reset the link */
if (netif_running(adapter->netdev)) {
atl2_down(adapter);
atl2_up(adapter);
} else
atl2_reset_hw(&adapter->hw);
clear_bit(__ATL2_RESETTING, &adapter->flags);
return 0;
}
static u32 atl2_get_tx_csum(struct net_device *netdev)
{
return (netdev->features & NETIF_F_HW_CSUM) != 0;
}
static u32 atl2_get_msglevel(struct net_device *netdev)
{
return 0;
}
/*
* It's sane for this to be empty, but we might want to take advantage of this.
*/
static void atl2_set_msglevel(struct net_device *netdev, u32 data)
{
}
static int atl2_get_regs_len(struct net_device *netdev)
{
#define ATL2_REGS_LEN 42
return sizeof(u32) * ATL2_REGS_LEN;
}
static void atl2_get_regs(struct net_device *netdev,
struct ethtool_regs *regs, void *p)
{
struct atl2_adapter *adapter = netdev_priv(netdev);
struct atl2_hw *hw = &adapter->hw;
u32 *regs_buff = p;
u16 phy_data;
memset(p, 0, sizeof(u32) * ATL2_REGS_LEN);
regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
regs_buff[0] = ATL2_READ_REG(hw, REG_VPD_CAP);
regs_buff[1] = ATL2_READ_REG(hw, REG_SPI_FLASH_CTRL);
regs_buff[2] = ATL2_READ_REG(hw, REG_SPI_FLASH_CONFIG);
regs_buff[3] = ATL2_READ_REG(hw, REG_TWSI_CTRL);
regs_buff[4] = ATL2_READ_REG(hw, REG_PCIE_DEV_MISC_CTRL);
regs_buff[5] = ATL2_READ_REG(hw, REG_MASTER_CTRL);
regs_buff[6] = ATL2_READ_REG(hw, REG_MANUAL_TIMER_INIT);
regs_buff[7] = ATL2_READ_REG(hw, REG_IRQ_MODU_TIMER_INIT);
regs_buff[8] = ATL2_READ_REG(hw, REG_PHY_ENABLE);
regs_buff[9] = ATL2_READ_REG(hw, REG_CMBDISDMA_TIMER);
regs_buff[10] = ATL2_READ_REG(hw, REG_IDLE_STATUS);
regs_buff[11] = ATL2_READ_REG(hw, REG_MDIO_CTRL);
regs_buff[12] = ATL2_READ_REG(hw, REG_SERDES_LOCK);
regs_buff[13] = ATL2_READ_REG(hw, REG_MAC_CTRL);
regs_buff[14] = ATL2_READ_REG(hw, REG_MAC_IPG_IFG);
regs_buff[15] = ATL2_READ_REG(hw, REG_MAC_STA_ADDR);
regs_buff[16] = ATL2_READ_REG(hw, REG_MAC_STA_ADDR+4);
regs_buff[17] = ATL2_READ_REG(hw, REG_RX_HASH_TABLE);
regs_buff[18] = ATL2_READ_REG(hw, REG_RX_HASH_TABLE+4);
regs_buff[19] = ATL2_READ_REG(hw, REG_MAC_HALF_DUPLX_CTRL);
regs_buff[20] = ATL2_READ_REG(hw, REG_MTU);
regs_buff[21] = ATL2_READ_REG(hw, REG_WOL_CTRL);
regs_buff[22] = ATL2_READ_REG(hw, REG_SRAM_TXRAM_END);
regs_buff[23] = ATL2_READ_REG(hw, REG_DESC_BASE_ADDR_HI);
regs_buff[24] = ATL2_READ_REG(hw, REG_TXD_BASE_ADDR_LO);
regs_buff[25] = ATL2_READ_REG(hw, REG_TXD_MEM_SIZE);
regs_buff[26] = ATL2_READ_REG(hw, REG_TXS_BASE_ADDR_LO);
regs_buff[27] = ATL2_READ_REG(hw, REG_TXS_MEM_SIZE);
regs_buff[28] = ATL2_READ_REG(hw, REG_RXD_BASE_ADDR_LO);
regs_buff[29] = ATL2_READ_REG(hw, REG_RXD_BUF_NUM);
regs_buff[30] = ATL2_READ_REG(hw, REG_DMAR);
regs_buff[31] = ATL2_READ_REG(hw, REG_TX_CUT_THRESH);
regs_buff[32] = ATL2_READ_REG(hw, REG_DMAW);
regs_buff[33] = ATL2_READ_REG(hw, REG_PAUSE_ON_TH);
regs_buff[34] = ATL2_READ_REG(hw, REG_PAUSE_OFF_TH);
regs_buff[35] = ATL2_READ_REG(hw, REG_MB_TXD_WR_IDX);
regs_buff[36] = ATL2_READ_REG(hw, REG_MB_RXD_RD_IDX);
regs_buff[38] = ATL2_READ_REG(hw, REG_ISR);
regs_buff[39] = ATL2_READ_REG(hw, REG_IMR);
atl2_read_phy_reg(hw, MII_BMCR, &phy_data);
regs_buff[40] = (u32)phy_data;
atl2_read_phy_reg(hw, MII_BMSR, &phy_data);
regs_buff[41] = (u32)phy_data;
}
static int atl2_get_eeprom_len(struct net_device *netdev)
{
struct atl2_adapter *adapter = netdev_priv(netdev);
if (!atl2_check_eeprom_exist(&adapter->hw))
return 512;
else
return 0;
}
static int atl2_get_eeprom(struct net_device *netdev,
struct ethtool_eeprom *eeprom, u8 *bytes)
{
struct atl2_adapter *adapter = netdev_priv(netdev);
struct atl2_hw *hw = &adapter->hw;
u32 *eeprom_buff;
int first_dword, last_dword;
int ret_val = 0;
int i;
if (eeprom->len == 0)
return -EINVAL;
if (atl2_check_eeprom_exist(hw))
return -EINVAL;
eeprom->magic = hw->vendor_id | (hw->device_id << 16);
first_dword = eeprom->offset >> 2;
last_dword = (eeprom->offset + eeprom->len - 1) >> 2;
eeprom_buff = kmalloc(sizeof(u32) * (last_dword - first_dword + 1),
GFP_KERNEL);
if (!eeprom_buff)
return -ENOMEM;
for (i = first_dword; i < last_dword; i++) {
if (!atl2_read_eeprom(hw, i*4, &(eeprom_buff[i-first_dword])))
return -EIO;
}
memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 3),
eeprom->len);
kfree(eeprom_buff);
return ret_val;
}
static int atl2_set_eeprom(struct net_device *netdev,
struct ethtool_eeprom *eeprom, u8 *bytes)
{
struct atl2_adapter *adapter = netdev_priv(netdev);
struct atl2_hw *hw = &adapter->hw;
u32 *eeprom_buff;
u32 *ptr;
int max_len, first_dword, last_dword, ret_val = 0;
int i;
if (eeprom->len == 0)
return -EOPNOTSUPP;
if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
return -EFAULT;
max_len = 512;
first_dword = eeprom->offset >> 2;
last_dword = (eeprom->offset + eeprom->len - 1) >> 2;
eeprom_buff = kmalloc(max_len, GFP_KERNEL);
if (!eeprom_buff)
return -ENOMEM;
ptr = (u32 *)eeprom_buff;
if (eeprom->offset & 3) {
/* need read/modify/write of first changed EEPROM word */
/* only the second byte of the word is being modified */
if (!atl2_read_eeprom(hw, first_dword*4, &(eeprom_buff[0])))
return -EIO;
ptr++;
}
if (((eeprom->offset + eeprom->len) & 3)) {
/*
* need read/modify/write of last changed EEPROM word
* only the first byte of the word is being modified
*/
if (!atl2_read_eeprom(hw, last_dword * 4,
&(eeprom_buff[last_dword - first_dword])))
return -EIO;
}
/* Device's eeprom is always little-endian, word addressable */
memcpy(ptr, bytes, eeprom->len);
for (i = 0; i < last_dword - first_dword + 1; i++) {
if (!atl2_write_eeprom(hw, ((first_dword+i)*4), eeprom_buff[i]))
return -EIO;
}
kfree(eeprom_buff);
return ret_val;
}
static void atl2_get_drvinfo(struct net_device *netdev,
struct ethtool_drvinfo *drvinfo)
{
struct atl2_adapter *adapter = netdev_priv(netdev);
strncpy(drvinfo->driver, atl2_driver_name, 32);
strncpy(drvinfo->version, atl2_driver_version, 32);
strncpy(drvinfo->fw_version, "L2", 32);
strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
drvinfo->n_stats = 0;
drvinfo->testinfo_len = 0;
drvinfo->regdump_len = atl2_get_regs_len(netdev);
drvinfo->eedump_len = atl2_get_eeprom_len(netdev);
}
static void atl2_get_wol(struct net_device *netdev,
struct ethtool_wolinfo *wol)
{
struct atl2_adapter *adapter = netdev_priv(netdev);
wol->supported = WAKE_MAGIC;
wol->wolopts = 0;
if (adapter->wol & ATLX_WUFC_EX)
wol->wolopts |= WAKE_UCAST;
if (adapter->wol & ATLX_WUFC_MC)
wol->wolopts |= WAKE_MCAST;
if (adapter->wol & ATLX_WUFC_BC)
wol->wolopts |= WAKE_BCAST;
if (adapter->wol & ATLX_WUFC_MAG)
wol->wolopts |= WAKE_MAGIC;
if (adapter->wol & ATLX_WUFC_LNKC)
wol->wolopts |= WAKE_PHY;
}
static int atl2_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
{
struct atl2_adapter *adapter = netdev_priv(netdev);
if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE))
return -EOPNOTSUPP;
if (wol->wolopts & (WAKE_MCAST|WAKE_BCAST|WAKE_MCAST))
return -EOPNOTSUPP;
/* these settings will always override what we currently have */
adapter->wol = 0;
if (wol->wolopts & WAKE_MAGIC)
adapter->wol |= ATLX_WUFC_MAG;
if (wol->wolopts & WAKE_PHY)
adapter->wol |= ATLX_WUFC_LNKC;
return 0;
}
static int atl2_nway_reset(struct net_device *netdev)
{
struct atl2_adapter *adapter = netdev_priv(netdev);
if (netif_running(netdev))
atl2_reinit_locked(adapter);
return 0;
}
static struct ethtool_ops atl2_ethtool_ops = {
.get_settings = atl2_get_settings,
.set_settings = atl2_set_settings,
.get_drvinfo = atl2_get_drvinfo,
.get_regs_len = atl2_get_regs_len,
.get_regs = atl2_get_regs,
.get_wol = atl2_get_wol,
.set_wol = atl2_set_wol,
.get_msglevel = atl2_get_msglevel,
.set_msglevel = atl2_set_msglevel,
.nway_reset = atl2_nway_reset,
.get_link = ethtool_op_get_link,
.get_eeprom_len = atl2_get_eeprom_len,
.get_eeprom = atl2_get_eeprom,
.set_eeprom = atl2_set_eeprom,
.get_tx_csum = atl2_get_tx_csum,
.get_sg = ethtool_op_get_sg,
.set_sg = ethtool_op_set_sg,
#ifdef NETIF_F_TSO
.get_tso = ethtool_op_get_tso,
#endif
};
static void atl2_set_ethtool_ops(struct net_device *netdev)
{
SET_ETHTOOL_OPS(netdev, &atl2_ethtool_ops);
}
#define LBYTESWAP(a) ((((a) & 0x00ff00ff) << 8) | \
(((a) & 0xff00ff00) >> 8))
#define LONGSWAP(a) ((LBYTESWAP(a) << 16) | (LBYTESWAP(a) >> 16))
#define SHORTSWAP(a) (((a) << 8) | ((a) >> 8))
/*
* Reset the transmit and receive units; mask and clear all interrupts.
*
* hw - Struct containing variables accessed by shared code
* return : 0 or idle status (if error)
*/
static s32 atl2_reset_hw(struct atl2_hw *hw)
{
u32 icr;
u16 pci_cfg_cmd_word;
int i;
/* Workaround for PCI problem when BIOS sets MMRBC incorrectly. */
atl2_read_pci_cfg(hw, PCI_REG_COMMAND, &pci_cfg_cmd_word);
if ((pci_cfg_cmd_word &
(CMD_IO_SPACE|CMD_MEMORY_SPACE|CMD_BUS_MASTER)) !=
(CMD_IO_SPACE|CMD_MEMORY_SPACE|CMD_BUS_MASTER)) {
pci_cfg_cmd_word |=
(CMD_IO_SPACE|CMD_MEMORY_SPACE|CMD_BUS_MASTER);
atl2_write_pci_cfg(hw, PCI_REG_COMMAND, &pci_cfg_cmd_word);
}
/* Clear Interrupt mask to stop board from generating
* interrupts & Clear any pending interrupt events
*/
/* FIXME */
/* ATL2_WRITE_REG(hw, REG_IMR, 0); */
/* ATL2_WRITE_REG(hw, REG_ISR, 0xffffffff); */
/* Issue Soft Reset to the MAC. This will reset the chip's
* transmit, receive, DMA. It will not effect
* the current PCI configuration. The global reset bit is self-
* clearing, and should clear within a microsecond.
*/
ATL2_WRITE_REG(hw, REG_MASTER_CTRL, MASTER_CTRL_SOFT_RST);
wmb();
msleep(1); /* delay about 1ms */
/* Wait at least 10ms for All module to be Idle */
for (i = 0; i < 10; i++) {
icr = ATL2_READ_REG(hw, REG_IDLE_STATUS);
if (!icr)
break;
msleep(1); /* delay 1 ms */
cpu_relax();
}
if (icr)
return icr;
return 0;
}
#define CUSTOM_SPI_CS_SETUP 2
#define CUSTOM_SPI_CLK_HI 2
#define CUSTOM_SPI_CLK_LO 2
#define CUSTOM_SPI_CS_HOLD 2
#define CUSTOM_SPI_CS_HI 3
static struct atl2_spi_flash_dev flash_table[] =
{
/* MFR WRSR READ PROGRAM WREN WRDI RDSR RDID SECTOR_ERASE CHIP_ERASE */
{"Atmel", 0x0, 0x03, 0x02, 0x06, 0x04, 0x05, 0x15, 0x52, 0x62 },
{"SST", 0x01, 0x03, 0x02, 0x06, 0x04, 0x05, 0x90, 0x20, 0x60 },
{"ST", 0x01, 0x03, 0x02, 0x06, 0x04, 0x05, 0xAB, 0xD8, 0xC7 },
};
static bool atl2_spi_read(struct atl2_hw *hw, u32 addr, u32 *buf)
{
int i;
u32 value;
ATL2_WRITE_REG(hw, REG_SPI_DATA, 0);
ATL2_WRITE_REG(hw, REG_SPI_ADDR, addr);
value = SPI_FLASH_CTRL_WAIT_READY |
(CUSTOM_SPI_CS_SETUP & SPI_FLASH_CTRL_CS_SETUP_MASK) <<
SPI_FLASH_CTRL_CS_SETUP_SHIFT |
(CUSTOM_SPI_CLK_HI & SPI_FLASH_CTRL_CLK_HI_MASK) <<
SPI_FLASH_CTRL_CLK_HI_SHIFT |
(CUSTOM_SPI_CLK_LO & SPI_FLASH_CTRL_CLK_LO_MASK) <<
SPI_FLASH_CTRL_CLK_LO_SHIFT |
(CUSTOM_SPI_CS_HOLD & SPI_FLASH_CTRL_CS_HOLD_MASK) <<
SPI_FLASH_CTRL_CS_HOLD_SHIFT |
(CUSTOM_SPI_CS_HI & SPI_FLASH_CTRL_CS_HI_MASK) <<
SPI_FLASH_CTRL_CS_HI_SHIFT |
(0x1 & SPI_FLASH_CTRL_INS_MASK) << SPI_FLASH_CTRL_INS_SHIFT;
ATL2_WRITE_REG(hw, REG_SPI_FLASH_CTRL, value);
value |= SPI_FLASH_CTRL_START;
ATL2_WRITE_REG(hw, REG_SPI_FLASH_CTRL, value);
for (i = 0; i < 10; i++) {
msleep(1);
value = ATL2_READ_REG(hw, REG_SPI_FLASH_CTRL);
if (!(value & SPI_FLASH_CTRL_START))
break;
}
if (value & SPI_FLASH_CTRL_START)
return false;
*buf = ATL2_READ_REG(hw, REG_SPI_DATA);
return true;
}
/*
* get_permanent_address
* return 0 if get valid mac address,
*/
static int get_permanent_address(struct atl2_hw *hw)
{
u32 Addr[2];
u32 i, Control;
u16 Register;
u8 EthAddr[NODE_ADDRESS_SIZE];
bool KeyValid;
if (is_valid_ether_addr(hw->perm_mac_addr))
return 0;
Addr[0] = 0;
Addr[1] = 0;
if (!atl2_check_eeprom_exist(hw)) { /* eeprom exists */
Register = 0;
KeyValid = false;
/* Read out all EEPROM content */
i = 0;
while (1) {
if (atl2_read_eeprom(hw, i + 0x100, &Control)) {
if (KeyValid) {
if (Register == REG_MAC_STA_ADDR)
Addr[0] = Control;
else if (Register ==
(REG_MAC_STA_ADDR + 4))
Addr[1] = Control;
KeyValid = false;
} else if ((Control & 0xff) == 0x5A) {
KeyValid = true;
Register = (u16) (Control >> 16);
} else {
/* assume data end while encount an invalid KEYWORD */
break;
}
} else {
break; /* read error */
}
i += 4;
}
*(u32 *) &EthAddr[2] = LONGSWAP(Addr[0]);
*(u16 *) &EthAddr[0] = SHORTSWAP(*(u16 *) &Addr[1]);
if (is_valid_ether_addr(EthAddr)) {
memcpy(hw->perm_mac_addr, EthAddr, NODE_ADDRESS_SIZE);
return 0;
}
return 1;
}
/* see if SPI flash exists? */
Addr[0] = 0;
Addr[1] = 0;
Register = 0;
KeyValid = false;
i = 0;
while (1) {
if (atl2_spi_read(hw, i + 0x1f000, &Control)) {
if (KeyValid) {
if (Register == REG_MAC_STA_ADDR)
Addr[0] = Control;
else if (Register == (REG_MAC_STA_ADDR + 4))
Addr[1] = Control;
KeyValid = false;
} else if ((Control & 0xff) == 0x5A) {
KeyValid = true;
Register = (u16) (Control >> 16);
} else {
break; /* data end */
}
} else {
break; /* read error */
}
i += 4;
}
*(u32 *) &EthAddr[2] = LONGSWAP(Addr[0]);
*(u16 *) &EthAddr[0] = SHORTSWAP(*(u16 *)&Addr[1]);
if (is_valid_ether_addr(EthAddr)) {
memcpy(hw->perm_mac_addr, EthAddr, NODE_ADDRESS_SIZE);
return 0;
}
/* maybe MAC-address is from BIOS */
Addr[0] = ATL2_READ_REG(hw, REG_MAC_STA_ADDR);
Addr[1] = ATL2_READ_REG(hw, REG_MAC_STA_ADDR + 4);
*(u32 *) &EthAddr[2] = LONGSWAP(Addr[0]);
*(u16 *) &EthAddr[0] = SHORTSWAP(*(u16 *) &Addr[1]);
if (is_valid_ether_addr(EthAddr)) {
memcpy(hw->perm_mac_addr, EthAddr, NODE_ADDRESS_SIZE);
return 0;
}
return 1;
}
/*
* Reads the adapter's MAC address from the EEPROM
*
* hw - Struct containing variables accessed by shared code
*/
static s32 atl2_read_mac_addr(struct atl2_hw *hw)
{
u16 i;
if (get_permanent_address(hw)) {
/* for test */
/* FIXME: shouldn't we use random_ether_addr() here? */
hw->perm_mac_addr[0] = 0x00;
hw->perm_mac_addr[1] = 0x13;
hw->perm_mac_addr[2] = 0x74;
hw->perm_mac_addr[3] = 0x00;
hw->perm_mac_addr[4] = 0x5c;
hw->perm_mac_addr[5] = 0x38;
}
for (i = 0; i < NODE_ADDRESS_SIZE; i++)
hw->mac_addr[i] = hw->perm_mac_addr[i];
return 0;
}
/*
* Hashes an address to determine its location in the multicast table
*
* hw - Struct containing variables accessed by shared code
* mc_addr - the multicast address to hash
*
* atl2_hash_mc_addr
* purpose
* set hash value for a multicast address
* hash calcu processing :
* 1. calcu 32bit CRC for multicast address
* 2. reverse crc with MSB to LSB
*/
static u32 atl2_hash_mc_addr(struct atl2_hw *hw, u8 *mc_addr)
{
u32 crc32, value;
int i;
value = 0;
crc32 = ether_crc_le(6, mc_addr);
for (i = 0; i < 32; i++)
value |= (((crc32 >> i) & 1) << (31 - i));
return value;
}
/*
* Sets the bit in the multicast table corresponding to the hash value.
*
* hw - Struct containing variables accessed by shared code
* hash_value - Multicast address hash value
*/
static void atl2_hash_set(struct atl2_hw *hw, u32 hash_value)
{
u32 hash_bit, hash_reg;
u32 mta;
/* The HASH Table is a register array of 2 32-bit registers.
* It is treated like an array of 64 bits. We want to set
* bit BitArray[hash_value]. So we figure out what register
* the bit is in, read it, OR in the new bit, then write
* back the new value. The register is determined by the
* upper 7 bits of the hash value and the bit within that
* register are determined by the lower 5 bits of the value.
*/
hash_reg = (hash_value >> 31) & 0x1;
hash_bit = (hash_value >> 26) & 0x1F;
mta = ATL2_READ_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg);
mta |= (1 << hash_bit);
ATL2_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg, mta);
}
/*
* atl2_init_pcie - init PCIE module
*/
static void atl2_init_pcie(struct atl2_hw *hw)
{
u32 value;
value = LTSSM_TEST_MODE_DEF;
ATL2_WRITE_REG(hw, REG_LTSSM_TEST_MODE, value);
value = PCIE_DLL_TX_CTRL1_DEF;
ATL2_WRITE_REG(hw, REG_PCIE_DLL_TX_CTRL1, value);
}
static void atl2_init_flash_opcode(struct atl2_hw *hw)
{
if (hw->flash_vendor >= ARRAY_SIZE(flash_table))
hw->flash_vendor = 0; /* ATMEL */
/* Init OP table */
ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_PROGRAM,
flash_table[hw->flash_vendor].cmdPROGRAM);
ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_SC_ERASE,
flash_table[hw->flash_vendor].cmdSECTOR_ERASE);
ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_CHIP_ERASE,
flash_table[hw->flash_vendor].cmdCHIP_ERASE);
ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_RDID,
flash_table[hw->flash_vendor].cmdRDID);
ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_WREN,
flash_table[hw->flash_vendor].cmdWREN);
ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_RDSR,
flash_table[hw->flash_vendor].cmdRDSR);
ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_WRSR,
flash_table[hw->flash_vendor].cmdWRSR);
ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_READ,
flash_table[hw->flash_vendor].cmdREAD);
}
/********************************************************************
* Performs basic configuration of the adapter.
*
* hw - Struct containing variables accessed by shared code
* Assumes that the controller has previously been reset and is in a
* post-reset uninitialized state. Initializes multicast table,
* and Calls routines to setup link
* Leaves the transmit and receive units disabled and uninitialized.
********************************************************************/
static s32 atl2_init_hw(struct atl2_hw *hw)
{
u32 ret_val = 0;
atl2_init_pcie(hw);
/* Zero out the Multicast HASH table */
/* clear the old settings from the multicast hash table */
ATL2_WRITE_REG(hw, REG_RX_HASH_TABLE, 0);
ATL2_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, 1, 0);
atl2_init_flash_opcode(hw);
ret_val = atl2_phy_init(hw);
return ret_val;
}
/*
* Detects the current speed and duplex settings of the hardware.
*
* hw - Struct containing variables accessed by shared code
* speed - Speed of the connection
* duplex - Duplex setting of the connection
*/
static s32 atl2_get_speed_and_duplex(struct atl2_hw *hw, u16 *speed,
u16 *duplex)
{
s32 ret_val;
u16 phy_data;
/* Read PHY Specific Status Register (17) */
ret_val = atl2_read_phy_reg(hw, MII_ATLX_PSSR, &phy_data);
if (ret_val)
return ret_val;
if (!(phy_data & MII_ATLX_PSSR_SPD_DPLX_RESOLVED))
return ATLX_ERR_PHY_RES;
switch (phy_data & MII_ATLX_PSSR_SPEED) {
case MII_ATLX_PSSR_100MBS:
*speed = SPEED_100;
break;
case MII_ATLX_PSSR_10MBS:
*speed = SPEED_10;
break;
default:
return ATLX_ERR_PHY_SPEED;
break;
}
if (phy_data & MII_ATLX_PSSR_DPLX)
*duplex = FULL_DUPLEX;
else
*duplex = HALF_DUPLEX;
return 0;
}
/*
* Reads the value from a PHY register
* hw - Struct containing variables accessed by shared code
* reg_addr - address of the PHY register to read
*/
static s32 atl2_read_phy_reg(struct atl2_hw *hw, u16 reg_addr, u16 *phy_data)
{
u32 val;
int i;
val = ((u32)(reg_addr & MDIO_REG_ADDR_MASK)) << MDIO_REG_ADDR_SHIFT |
MDIO_START |
MDIO_SUP_PREAMBLE |
MDIO_RW |
MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
ATL2_WRITE_REG(hw, REG_MDIO_CTRL, val);
wmb();
for (i = 0; i < MDIO_WAIT_TIMES; i++) {
udelay(2);
val = ATL2_READ_REG(hw, REG_MDIO_CTRL);
if (!(val & (MDIO_START | MDIO_BUSY)))
break;
wmb();
}
if (!(val & (MDIO_START | MDIO_BUSY))) {
*phy_data = (u16)val;
return 0;
}
return ATLX_ERR_PHY;
}
/*
* Writes a value to a PHY register
* hw - Struct containing variables accessed by shared code
* reg_addr - address of the PHY register to write
* data - data to write to the PHY
*/
static s32 atl2_write_phy_reg(struct atl2_hw *hw, u32 reg_addr, u16 phy_data)
{
int i;
u32 val;
val = ((u32)(phy_data & MDIO_DATA_MASK)) << MDIO_DATA_SHIFT |
(reg_addr & MDIO_REG_ADDR_MASK) << MDIO_REG_ADDR_SHIFT |
MDIO_SUP_PREAMBLE |
MDIO_START |
MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
ATL2_WRITE_REG(hw, REG_MDIO_CTRL, val);
wmb();
for (i = 0; i < MDIO_WAIT_TIMES; i++) {
udelay(2);
val = ATL2_READ_REG(hw, REG_MDIO_CTRL);
if (!(val & (MDIO_START | MDIO_BUSY)))
break;
wmb();
}
if (!(val & (MDIO_START | MDIO_BUSY)))
return 0;
return ATLX_ERR_PHY;
}
/*
* Configures PHY autoneg and flow control advertisement settings
*
* hw - Struct containing variables accessed by shared code
*/
static s32 atl2_phy_setup_autoneg_adv(struct atl2_hw *hw)
{
s32 ret_val;
s16 mii_autoneg_adv_reg;
/* Read the MII Auto-Neg Advertisement Register (Address 4). */
mii_autoneg_adv_reg = MII_AR_DEFAULT_CAP_MASK;
/* Need to parse autoneg_advertised and set up
* the appropriate PHY registers. First we will parse for
* autoneg_advertised software override. Since we can advertise
* a plethora of combinations, we need to check each bit
* individually.
*/
/* First we clear all the 10/100 mb speed bits in the Auto-Neg
* Advertisement Register (Address 4) and the 1000 mb speed bits in
* the 1000Base-T Control Register (Address 9). */
mii_autoneg_adv_reg &= ~MII_AR_SPEED_MASK;
/* Need to parse MediaType and setup the
* appropriate PHY registers. */
switch (hw->MediaType) {
case MEDIA_TYPE_AUTO_SENSOR:
mii_autoneg_adv_reg |=
(MII_AR_10T_HD_CAPS |
MII_AR_10T_FD_CAPS |
MII_AR_100TX_HD_CAPS|
MII_AR_100TX_FD_CAPS);
hw->autoneg_advertised =
ADVERTISE_10_HALF |
ADVERTISE_10_FULL |
ADVERTISE_100_HALF|
ADVERTISE_100_FULL;
break;
case MEDIA_TYPE_100M_FULL:
mii_autoneg_adv_reg |= MII_AR_100TX_FD_CAPS;
hw->autoneg_advertised = ADVERTISE_100_FULL;
break;
case MEDIA_TYPE_100M_HALF:
mii_autoneg_adv_reg |= MII_AR_100TX_HD_CAPS;
hw->autoneg_advertised = ADVERTISE_100_HALF;
break;
case MEDIA_TYPE_10M_FULL:
mii_autoneg_adv_reg |= MII_AR_10T_FD_CAPS;
hw->autoneg_advertised = ADVERTISE_10_FULL;
break;
default:
mii_autoneg_adv_reg |= MII_AR_10T_HD_CAPS;
hw->autoneg_advertised = ADVERTISE_10_HALF;
break;
}
/* flow control fixed to enable all */
mii_autoneg_adv_reg |= (MII_AR_ASM_DIR | MII_AR_PAUSE);
hw->mii_autoneg_adv_reg = mii_autoneg_adv_reg;
ret_val = atl2_write_phy_reg(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
if (ret_val)
return ret_val;
return 0;
}
/*
* Resets the PHY and make all config validate
*
* hw - Struct containing variables accessed by shared code
*
* Sets bit 15 and 12 of the MII Control regiser (for F001 bug)
*/
static s32 atl2_phy_commit(struct atl2_hw *hw)
{
s32 ret_val;
u16 phy_data;
phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG;
ret_val = atl2_write_phy_reg(hw, MII_BMCR, phy_data);
if (ret_val) {
u32 val;
int i;
/* pcie serdes link may be down ! */
for (i = 0; i < 25; i++) {
msleep(1);
val = ATL2_READ_REG(hw, REG_MDIO_CTRL);
if (!(val & (MDIO_START | MDIO_BUSY)))
break;
}
if (0 != (val & (MDIO_START | MDIO_BUSY))) {
printk(KERN_ERR "atl2: PCIe link down for at least 25ms !\n");
return ret_val;
}
}
return 0;
}
static s32 atl2_phy_init(struct atl2_hw *hw)
{
s32 ret_val;
u16 phy_val;
if (hw->phy_configured)
return 0;
/* Enable PHY */
ATL2_WRITE_REGW(hw, REG_PHY_ENABLE, 1);
ATL2_WRITE_FLUSH(hw);
msleep(1);
/* check if the PHY is in powersaving mode */
atl2_write_phy_reg(hw, MII_DBG_ADDR, 0);
atl2_read_phy_reg(hw, MII_DBG_DATA, &phy_val);
/* 024E / 124E 0r 0274 / 1274 ? */
if (phy_val & 0x1000) {
phy_val &= ~0x1000;
atl2_write_phy_reg(hw, MII_DBG_DATA, phy_val);
}
msleep(1);
/*Enable PHY LinkChange Interrupt */
ret_val = atl2_write_phy_reg(hw, 18, 0xC00);
if (ret_val)
return ret_val;
/* setup AutoNeg parameters */
ret_val = atl2_phy_setup_autoneg_adv(hw);
if (ret_val)
return ret_val;
/* SW.Reset & En-Auto-Neg to restart Auto-Neg */
ret_val = atl2_phy_commit(hw);
if (ret_val)
return ret_val;
hw->phy_configured = true;
return ret_val;
}
static void atl2_set_mac_addr(struct atl2_hw *hw)
{
u32 value;
/* 00-0B-6A-F6-00-DC
* 0: 6AF600DC 1: 000B
* low dword */
value = (((u32)hw->mac_addr[2]) << 24) |
(((u32)hw->mac_addr[3]) << 16) |
(((u32)hw->mac_addr[4]) << 8) |
(((u32)hw->mac_addr[5]));
ATL2_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 0, value);
/* hight dword */
value = (((u32)hw->mac_addr[0]) << 8) |
(((u32)hw->mac_addr[1]));
ATL2_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 1, value);
}
/*
* check_eeprom_exist
* return 0 if eeprom exist
*/
static int atl2_check_eeprom_exist(struct atl2_hw *hw)
{
u32 value;
value = ATL2_READ_REG(hw, REG_SPI_FLASH_CTRL);
if (value & SPI_FLASH_CTRL_EN_VPD) {
value &= ~SPI_FLASH_CTRL_EN_VPD;
ATL2_WRITE_REG(hw, REG_SPI_FLASH_CTRL, value);
}
value = ATL2_READ_REGW(hw, REG_PCIE_CAP_LIST);
return ((value & 0xFF00) == 0x6C00) ? 0 : 1;
}
/* FIXME: This doesn't look right. -- CHS */
static bool atl2_write_eeprom(struct atl2_hw *hw, u32 offset, u32 value)
{
return true;
}
static bool atl2_read_eeprom(struct atl2_hw *hw, u32 Offset, u32 *pValue)
{
int i;
u32 Control;
if (Offset & 0x3)
return false; /* address do not align */
ATL2_WRITE_REG(hw, REG_VPD_DATA, 0);
Control = (Offset & VPD_CAP_VPD_ADDR_MASK) << VPD_CAP_VPD_ADDR_SHIFT;
ATL2_WRITE_REG(hw, REG_VPD_CAP, Control);
for (i = 0; i < 10; i++) {
msleep(2);
Control = ATL2_READ_REG(hw, REG_VPD_CAP);
if (Control & VPD_CAP_VPD_FLAG)
break;
}
if (Control & VPD_CAP_VPD_FLAG) {
*pValue = ATL2_READ_REG(hw, REG_VPD_DATA);
return true;
}
return false; /* timeout */
}
static void atl2_force_ps(struct atl2_hw *hw)
{
u16 phy_val;
atl2_write_phy_reg(hw, MII_DBG_ADDR, 0);
atl2_read_phy_reg(hw, MII_DBG_DATA, &phy_val);
atl2_write_phy_reg(hw, MII_DBG_DATA, phy_val | 0x1000);
atl2_write_phy_reg(hw, MII_DBG_ADDR, 2);
atl2_write_phy_reg(hw, MII_DBG_DATA, 0x3000);
atl2_write_phy_reg(hw, MII_DBG_ADDR, 3);
atl2_write_phy_reg(hw, MII_DBG_DATA, 0);
}
/* This is the only thing that needs to be changed to adjust the
* maximum number of ports that the driver can manage.
*/
#define ATL2_MAX_NIC 4
#define OPTION_UNSET -1
#define OPTION_DISABLED 0
#define OPTION_ENABLED 1
/* All parameters are treated the same, as an integer array of values.
* This macro just reduces the need to repeat the same declaration code
* over and over (plus this helps to avoid typo bugs).
*/
#define ATL2_PARAM_INIT {[0 ... ATL2_MAX_NIC] = OPTION_UNSET}
#ifndef module_param_array
/* Module Parameters are always initialized to -1, so that the driver
* can tell the difference between no user specified value or the
* user asking for the default value.
* The true default values are loaded in when atl2_check_options is called.
*
* This is a GCC extension to ANSI C.
* See the item "Labeled Elements in Initializers" in the section
* "Extensions to the C Language Family" of the GCC documentation.
*/
#define ATL2_PARAM(X, desc) \
static const int __devinitdata X[ATL2_MAX_NIC + 1] = ATL2_PARAM_INIT; \
MODULE_PARM(X, "1-" __MODULE_STRING(ATL2_MAX_NIC) "i"); \
MODULE_PARM_DESC(X, desc);
#else
#define ATL2_PARAM(X, desc) \
static int __devinitdata X[ATL2_MAX_NIC+1] = ATL2_PARAM_INIT; \
static int num_##X = 0; \
module_param_array_named(X, X, int, &num_##X, 0); \
MODULE_PARM_DESC(X, desc);
#endif
/*
* Transmit Memory Size
* Valid Range: 64-2048
* Default Value: 128
*/
#define ATL2_MIN_TX_MEMSIZE 4 /* 4KB */
#define ATL2_MAX_TX_MEMSIZE 64 /* 64KB */
#define ATL2_DEFAULT_TX_MEMSIZE 8 /* 8KB */
ATL2_PARAM(TxMemSize, "Bytes of Transmit Memory");
/*
* Receive Memory Block Count
* Valid Range: 16-512
* Default Value: 128
*/
#define ATL2_MIN_RXD_COUNT 16
#define ATL2_MAX_RXD_COUNT 512
#define ATL2_DEFAULT_RXD_COUNT 64
ATL2_PARAM(RxMemBlock, "Number of receive memory block");
/*
* User Specified MediaType Override
*
* Valid Range: 0-5
* - 0 - auto-negotiate at all supported speeds
* - 1 - only link at 1000Mbps Full Duplex
* - 2 - only link at 100Mbps Full Duplex
* - 3 - only link at 100Mbps Half Duplex
* - 4 - only link at 10Mbps Full Duplex
* - 5 - only link at 10Mbps Half Duplex
* Default Value: 0
*/
ATL2_PARAM(MediaType, "MediaType Select");
/*
* Interrupt Moderate Timer in units of 2048 ns (~2 us)
* Valid Range: 10-65535
* Default Value: 45000(90ms)
*/
#define INT_MOD_DEFAULT_CNT 100 /* 200us */
#define INT_MOD_MAX_CNT 65000
#define INT_MOD_MIN_CNT 50
ATL2_PARAM(IntModTimer, "Interrupt Moderator Timer");
/*
* FlashVendor
* Valid Range: 0-2
* 0 - Atmel
* 1 - SST
* 2 - ST
*/
ATL2_PARAM(FlashVendor, "SPI Flash Vendor");
#define AUTONEG_ADV_DEFAULT 0x2F
#define AUTONEG_ADV_MASK 0x2F
#define FLOW_CONTROL_DEFAULT FLOW_CONTROL_FULL
#define FLASH_VENDOR_DEFAULT 0
#define FLASH_VENDOR_MIN 0
#define FLASH_VENDOR_MAX 2
struct atl2_option {
enum { enable_option, range_option, list_option } type;
char *name;
char *err;
int def;
union {
struct { /* range_option info */
int min;
int max;
} r;
struct { /* list_option info */
int nr;
struct atl2_opt_list { int i; char *str; } *p;
} l;
} arg;
};
static int __devinit atl2_validate_option(int *value, struct atl2_option *opt)
{
int i;
struct atl2_opt_list *ent;
if (*value == OPTION_UNSET) {
*value = opt->def;
return 0;
}
switch (opt->type) {
case enable_option:
switch (*value) {
case OPTION_ENABLED:
printk(KERN_INFO "%s Enabled\n", opt->name);
return 0;
break;
case OPTION_DISABLED:
printk(KERN_INFO "%s Disabled\n", opt->name);
return 0;
break;
}
break;
case range_option:
if (*value >= opt->arg.r.min && *value <= opt->arg.r.max) {
printk(KERN_INFO "%s set to %i\n", opt->name, *value);
return 0;
}
break;
case list_option:
for (i = 0; i < opt->arg.l.nr; i++) {
ent = &opt->arg.l.p[i];
if (*value == ent->i) {
if (ent->str[0] != '\0')
printk(KERN_INFO "%s\n", ent->str);
return 0;
}
}
break;
default:
BUG();
}
printk(KERN_INFO "Invalid %s specified (%i) %s\n",
opt->name, *value, opt->err);
*value = opt->def;
return -1;
}
/*
* atl2_check_options - Range Checking for Command Line Parameters
* @adapter: board private structure
*
* This routine checks all command line parameters for valid user
* input. If an invalid value is given, or if no user specified
* value exists, a default value is used. The final value is stored
* in a variable in the adapter structure.
*/
static void __devinit atl2_check_options(struct atl2_adapter *adapter)
{
int val;
struct atl2_option opt;
int bd = adapter->bd_number;
if (bd >= ATL2_MAX_NIC) {
printk(KERN_NOTICE "Warning: no configuration for board #%i\n",
bd);
printk(KERN_NOTICE "Using defaults for all values\n");
#ifndef module_param_array
bd = ATL2_MAX_NIC;
#endif
}
/* Bytes of Transmit Memory */
opt.type = range_option;
opt.name = "Bytes of Transmit Memory";
opt.err = "using default of " __MODULE_STRING(ATL2_DEFAULT_TX_MEMSIZE);
opt.def = ATL2_DEFAULT_TX_MEMSIZE;
opt.arg.r.min = ATL2_MIN_TX_MEMSIZE;
opt.arg.r.max = ATL2_MAX_TX_MEMSIZE;
#ifdef module_param_array
if (num_TxMemSize > bd) {
#endif
val = TxMemSize[bd];
atl2_validate_option(&val, &opt);
adapter->txd_ring_size = ((u32) val) * 1024;
#ifdef module_param_array
} else
adapter->txd_ring_size = ((u32)opt.def) * 1024;
#endif
/* txs ring size: */
adapter->txs_ring_size = adapter->txd_ring_size / 128;
if (adapter->txs_ring_size > 160)
adapter->txs_ring_size = 160;
/* Receive Memory Block Count */
opt.type = range_option;
opt.name = "Number of receive memory block";
opt.err = "using default of " __MODULE_STRING(ATL2_DEFAULT_RXD_COUNT);
opt.def = ATL2_DEFAULT_RXD_COUNT;
opt.arg.r.min = ATL2_MIN_RXD_COUNT;
opt.arg.r.max = ATL2_MAX_RXD_COUNT;
#ifdef module_param_array
if (num_RxMemBlock > bd) {
#endif
val = RxMemBlock[bd];
atl2_validate_option(&val, &opt);
adapter->rxd_ring_size = (u32)val;
/* FIXME */
/* ((u16)val)&~1; */ /* even number */
#ifdef module_param_array
} else
adapter->rxd_ring_size = (u32)opt.def;
#endif
/* init RXD Flow control value */
adapter->hw.fc_rxd_hi = (adapter->rxd_ring_size / 8) * 7;
adapter->hw.fc_rxd_lo = (ATL2_MIN_RXD_COUNT / 8) >
(adapter->rxd_ring_size / 12) ? (ATL2_MIN_RXD_COUNT / 8) :
(adapter->rxd_ring_size / 12);
/* Interrupt Moderate Timer */
opt.type = range_option;
opt.name = "Interrupt Moderate Timer";
opt.err = "using default of " __MODULE_STRING(INT_MOD_DEFAULT_CNT);
opt.def = INT_MOD_DEFAULT_CNT;
opt.arg.r.min = INT_MOD_MIN_CNT;
opt.arg.r.max = INT_MOD_MAX_CNT;
#ifdef module_param_array
if (num_IntModTimer > bd) {
#endif
val = IntModTimer[bd];
atl2_validate_option(&val, &opt);
adapter->imt = (u16) val;
#ifdef module_param_array
} else
adapter->imt = (u16)(opt.def);
#endif
/* Flash Vendor */
opt.type = range_option;
opt.name = "SPI Flash Vendor";
opt.err = "using default of " __MODULE_STRING(FLASH_VENDOR_DEFAULT);
opt.def = FLASH_VENDOR_DEFAULT;
opt.arg.r.min = FLASH_VENDOR_MIN;
opt.arg.r.max = FLASH_VENDOR_MAX;
#ifdef module_param_array
if (num_FlashVendor > bd) {
#endif
val = FlashVendor[bd];
atl2_validate_option(&val, &opt);
adapter->hw.flash_vendor = (u8) val;
#ifdef module_param_array
} else
adapter->hw.flash_vendor = (u8)(opt.def);
#endif
/* MediaType */
opt.type = range_option;
opt.name = "Speed/Duplex Selection";
opt.err = "using default of " __MODULE_STRING(MEDIA_TYPE_AUTO_SENSOR);
opt.def = MEDIA_TYPE_AUTO_SENSOR;
opt.arg.r.min = MEDIA_TYPE_AUTO_SENSOR;
opt.arg.r.max = MEDIA_TYPE_10M_HALF;
#ifdef module_param_array
if (num_MediaType > bd) {
#endif
val = MediaType[bd];
atl2_validate_option(&val, &opt);
adapter->hw.MediaType = (u16) val;
#ifdef module_param_array
} else
adapter->hw.MediaType = (u16)(opt.def);
#endif
}
/* atl2.h -- atl2 driver definitions
*
* Copyright(c) 2007 Atheros Corporation. All rights reserved.
* Copyright(c) 2006 xiong huang <xiong.huang@atheros.com>
* Copyright(c) 2007 Chris Snook <csnook@redhat.com>
*
* Derived from Intel e1000 driver
* Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc., 59
* Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#ifndef _ATL2_H_
#define _ATL2_H_
#include <asm/atomic.h>
#include <linux/netdevice.h>
#ifndef _ATL2_HW_H_
#define _ATL2_HW_H_
#ifndef _ATL2_OSDEP_H_
#define _ATL2_OSDEP_H_
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/if_ether.h>
#include "atlx.h"
#ifdef ETHTOOL_OPS_COMPAT
extern int ethtool_ioctl(struct ifreq *ifr);
#endif
#define PCI_COMMAND_REGISTER PCI_COMMAND
#define CMD_MEM_WRT_INVALIDATE PCI_COMMAND_INVALIDATE
#define ETH_ADDR_LEN ETH_ALEN
#define ATL2_WRITE_REG(a, reg, value) (iowrite32((value), \
((a)->hw_addr + (reg))))
#define ATL2_WRITE_FLUSH(a) (ioread32((a)->hw_addr))
#define ATL2_READ_REG(a, reg) (ioread32((a)->hw_addr + (reg)))
#define ATL2_WRITE_REGB(a, reg, value) (iowrite8((value), \
((a)->hw_addr + (reg))))
#define ATL2_READ_REGB(a, reg) (ioread8((a)->hw_addr + (reg)))
#define ATL2_WRITE_REGW(a, reg, value) (iowrite16((value), \
((a)->hw_addr + (reg))))
#define ATL2_READ_REGW(a, reg) (ioread16((a)->hw_addr + (reg)))
#define ATL2_WRITE_REG_ARRAY(a, reg, offset, value) \
(iowrite32((value), (((a)->hw_addr + (reg)) + ((offset) << 2))))
#define ATL2_READ_REG_ARRAY(a, reg, offset) \
(ioread32(((a)->hw_addr + (reg)) + ((offset) << 2)))
#endif /* _ATL2_OSDEP_H_ */
struct atl2_adapter;
struct atl2_hw;
/* function prototype */
static s32 atl2_reset_hw(struct atl2_hw *hw);
static s32 atl2_read_mac_addr(struct atl2_hw *hw);
static s32 atl2_init_hw(struct atl2_hw *hw);
static s32 atl2_get_speed_and_duplex(struct atl2_hw *hw, u16 *speed,
u16 *duplex);
static u32 atl2_hash_mc_addr(struct atl2_hw *hw, u8 *mc_addr);
static void atl2_hash_set(struct atl2_hw *hw, u32 hash_value);
static s32 atl2_read_phy_reg(struct atl2_hw *hw, u16 reg_addr, u16 *phy_data);
static s32 atl2_write_phy_reg(struct atl2_hw *hw, u32 reg_addr, u16 phy_data);
static void atl2_read_pci_cfg(struct atl2_hw *hw, u32 reg, u16 *value);
static void atl2_write_pci_cfg(struct atl2_hw *hw, u32 reg, u16 *value);
static void atl2_set_mac_addr(struct atl2_hw *hw);
static bool atl2_read_eeprom(struct atl2_hw *hw, u32 Offset, u32 *pValue);
static bool atl2_write_eeprom(struct atl2_hw *hw, u32 offset, u32 value);
static s32 atl2_phy_init(struct atl2_hw *hw);
static int atl2_check_eeprom_exist(struct atl2_hw *hw);
static void atl2_force_ps(struct atl2_hw *hw);
/* register definition */
/* Block IDLE Status Register */
#define IDLE_STATUS_RXMAC 1 /* 1: RXMAC is non-IDLE */
#define IDLE_STATUS_TXMAC 2 /* 1: TXMAC is non-IDLE */
#define IDLE_STATUS_DMAR 8 /* 1: DMAR is non-IDLE */
#define IDLE_STATUS_DMAW 4 /* 1: DMAW is non-IDLE */
/* MDIO Control Register */
#define MDIO_WAIT_TIMES 10
/* MAC Control Register */
#define MAC_CTRL_DBG_TX_BKPRESURE 0x100000 /* 1: TX max backoff */
#define MAC_CTRL_MACLP_CLK_PHY 0x8000000 /* 1: 25MHz from phy */
#define MAC_CTRL_HALF_LEFT_BUF_SHIFT 28
#define MAC_CTRL_HALF_LEFT_BUF_MASK 0xF /* MAC retry buf x32B */
/* Internal SRAM Partition Register */
#define REG_SRAM_TXRAM_END 0x1500 /* Internal tail address of TXRAM
* default: 2byte*1024 */
#define REG_SRAM_RXRAM_END 0x1502 /* Internal tail address of RXRAM
* default: 2byte*1024 */
/* Descriptor Control register */
#define REG_TXD_BASE_ADDR_LO 0x1544 /* The base address of the Transmit
* Data Mem low 32-bit(dword align) */
#define REG_TXD_MEM_SIZE 0x1548 /* Transmit Data Memory size(by
* double word , max 256KB) */
#define REG_TXS_BASE_ADDR_LO 0x154C /* The base address of the Transmit
* Status Memory low 32-bit(dword word
* align) */
#define REG_TXS_MEM_SIZE 0x1550 /* double word unit, max 4*2047
* bytes. */
#define REG_RXD_BASE_ADDR_LO 0x1554 /* The base address of the Transmit
* Status Memory low 32-bit(unit 8
* bytes) */
#define REG_RXD_BUF_NUM 0x1558 /* Receive Data & Status Memory buffer
* number (unit 1536bytes, max
* 1536*2047) */
/* DMAR Control Register */
#define REG_DMAR 0x1580
#define DMAR_EN 0x1 /* 1: Enable DMAR */
/* TX Cur-Through (early tx threshold) Control Register */
#define REG_TX_CUT_THRESH 0x1590 /* TxMac begin transmit packet
* threshold(unit word) */
/* DMAW Control Register */
#define REG_DMAW 0x15A0
#define DMAW_EN 0x1
/* Flow control register */
#define REG_PAUSE_ON_TH 0x15A8 /* RXD high watermark of overflow
* threshold configuration register */
#define REG_PAUSE_OFF_TH 0x15AA /* RXD lower watermark of overflow
* threshold configuration register */
/* Mailbox Register */
#define REG_MB_TXD_WR_IDX 0x15f0 /* double word align */
#define REG_MB_RXD_RD_IDX 0x15F4 /* RXD Read index (unit: 1536byets) */
/* Interrupt Status Register */
#define ISR_TIMER 1 /* Interrupt when Timer counts down to zero */
#define ISR_MANUAL 2 /* Software manual interrupt, for debug. Set
* when SW_MAN_INT_EN is set in Table 51
* Selene Master Control Register
* (Offset 0x1400). */
#define ISR_RXF_OV 4 /* RXF overflow interrupt */
#define ISR_TXF_UR 8 /* TXF underrun interrupt */
#define ISR_TXS_OV 0x10 /* Internal transmit status buffer full
* interrupt */
#define ISR_RXS_OV 0x20 /* Internal receive status buffer full
* interrupt */
#define ISR_LINK_CHG 0x40 /* Link Status Change Interrupt */
#define ISR_HOST_TXD_UR 0x80
#define ISR_HOST_RXD_OV 0x100 /* Host rx data memory full , one pulse */
#define ISR_DMAR_TO_RST 0x200 /* DMAR op timeout interrupt. SW should
* do Reset */
#define ISR_DMAW_TO_RST 0x400
#define ISR_PHY 0x800 /* phy interrupt */
#define ISR_TS_UPDATE 0x10000 /* interrupt after new tx pkt status written
* to host */
#define ISR_RS_UPDATE 0x20000 /* interrupt ater new rx pkt status written
* to host. */
#define ISR_TX_EARLY 0x40000 /* interrupt when txmac begin transmit one
* packet */
#define ISR_TX_EVENT (ISR_TXF_UR | ISR_TXS_OV | ISR_HOST_TXD_UR |\
ISR_TS_UPDATE | ISR_TX_EARLY)
#define ISR_RX_EVENT (ISR_RXF_OV | ISR_RXS_OV | ISR_HOST_RXD_OV |\
ISR_RS_UPDATE)
#define IMR_NORMAL_MASK (\
/*ISR_LINK_CHG |*/\
ISR_MANUAL |\
ISR_DMAR_TO_RST |\
ISR_DMAW_TO_RST |\
ISR_PHY |\
ISR_PHY_LINKDOWN |\
ISR_TS_UPDATE |\
ISR_RS_UPDATE)
/* Receive MAC Statistics Registers */
#define REG_STS_RX_PAUSE 0x1700 /* Num pause packets received */
#define REG_STS_RXD_OV 0x1704 /* Num frames dropped due to RX
* FIFO overflow */
#define REG_STS_RXS_OV 0x1708 /* Num frames dropped due to RX
* Status Buffer Overflow */
#define REG_STS_RX_FILTER 0x170C /* Num packets dropped due to
* address filtering */
/* MII definitions */
/* PHY Common Register */
#define MII_SMARTSPEED 0x14
#define MII_DBG_ADDR 0x1D
#define MII_DBG_DATA 0x1E
/* PCI Command Register Bit Definitions */
#define PCI_REG_COMMAND 0x04
#define CMD_IO_SPACE 0x0001
#define CMD_MEMORY_SPACE 0x0002
#define CMD_BUS_MASTER 0x0004
#define MEDIA_TYPE_100M_FULL 1
#define MEDIA_TYPE_100M_HALF 2
#define MEDIA_TYPE_10M_FULL 3
#define MEDIA_TYPE_10M_HALF 4
#define AUTONEG_ADVERTISE_SPEED_DEFAULT 0x000F /* Everything */
/* The size (in bytes) of a ethernet packet */
#define ENET_HEADER_SIZE 14
#define MAXIMUM_ETHERNET_FRAME_SIZE 1518 /* with FCS */
#define MINIMUM_ETHERNET_FRAME_SIZE 64 /* with FCS */
#define ETHERNET_FCS_SIZE 4
#define MAX_JUMBO_FRAME_SIZE 0x2000
#define VLAN_SIZE 4
struct tx_pkt_header {
unsigned pkt_size:11;
unsigned:4; /* reserved */
unsigned ins_vlan:1; /* txmac should insert vlan */
unsigned short vlan; /* vlan tag */
};
/* FIXME: replace above bitfields with MASK/SHIFT defines below */
#define TX_PKT_HEADER_SIZE_MASK 0x7FF
#define TX_PKT_HEADER_SIZE_SHIFT 0
#define TX_PKT_HEADER_INS_VLAN_MASK 0x1
#define TX_PKT_HEADER_INS_VLAN_SHIFT 15
#define TX_PKT_HEADER_VLAN_TAG_MASK 0xFFFF
#define TX_PKT_HEADER_VLAN_TAG_SHIFT 16
struct tx_pkt_status {
unsigned pkt_size:11;
unsigned:5; /* reserved */
unsigned ok:1; /* current packet transmitted without error */
unsigned bcast:1; /* broadcast packet */
unsigned mcast:1; /* multicast packet */
unsigned pause:1; /* transmiited a pause frame */
unsigned ctrl:1;
unsigned defer:1; /* current packet is xmitted with defer */
unsigned exc_defer:1;
unsigned single_col:1;
unsigned multi_col:1;
unsigned late_col:1;
unsigned abort_col:1;
unsigned underun:1; /* current packet is aborted
* due to txram underrun */
unsigned:3; /* reserved */
unsigned update:1; /* always 1'b1 in tx_status_buf */
};
/* FIXME: replace above bitfields with MASK/SHIFT defines below */
#define TX_PKT_STATUS_SIZE_MASK 0x7FF
#define TX_PKT_STATUS_SIZE_SHIFT 0
#define TX_PKT_STATUS_OK_MASK 0x1
#define TX_PKT_STATUS_OK_SHIFT 16
#define TX_PKT_STATUS_BCAST_MASK 0x1
#define TX_PKT_STATUS_BCAST_SHIFT 17
#define TX_PKT_STATUS_MCAST_MASK 0x1
#define TX_PKT_STATUS_MCAST_SHIFT 18
#define TX_PKT_STATUS_PAUSE_MASK 0x1
#define TX_PKT_STATUS_PAUSE_SHIFT 19
#define TX_PKT_STATUS_CTRL_MASK 0x1
#define TX_PKT_STATUS_CTRL_SHIFT 20
#define TX_PKT_STATUS_DEFER_MASK 0x1
#define TX_PKT_STATUS_DEFER_SHIFT 21
#define TX_PKT_STATUS_EXC_DEFER_MASK 0x1
#define TX_PKT_STATUS_EXC_DEFER_SHIFT 22
#define TX_PKT_STATUS_SINGLE_COL_MASK 0x1
#define TX_PKT_STATUS_SINGLE_COL_SHIFT 23
#define TX_PKT_STATUS_MULTI_COL_MASK 0x1
#define TX_PKT_STATUS_MULTI_COL_SHIFT 24
#define TX_PKT_STATUS_LATE_COL_MASK 0x1
#define TX_PKT_STATUS_LATE_COL_SHIFT 25
#define TX_PKT_STATUS_ABORT_COL_MASK 0x1
#define TX_PKT_STATUS_ABORT_COL_SHIFT 26
#define TX_PKT_STATUS_UNDERRUN_MASK 0x1
#define TX_PKT_STATUS_UNDERRUN_SHIFT 27
#define TX_PKT_STATUS_UPDATE_MASK 0x1
#define TX_PKT_STATUS_UPDATE_SHIFT 31
struct rx_pkt_status {
unsigned pkt_size:11; /* packet size, max 2047 bytes */
unsigned:5; /* reserved */
unsigned ok:1; /* current packet received ok without error */
unsigned bcast:1; /* current packet is broadcast */
unsigned mcast:1; /* current packet is multicast */
unsigned pause:1;
unsigned ctrl:1;
unsigned crc:1; /* received a packet with crc error */
unsigned code:1; /* received a packet with code error */
unsigned runt:1; /* received a packet less than 64 bytes
* with good crc */
unsigned frag:1; /* received a packet less than 64 bytes
* with bad crc */
unsigned trunc:1; /* current frame truncated due to rxram full */
unsigned align:1; /* this packet is alignment error */
unsigned vlan:1; /* this packet has vlan */
unsigned:3; /* reserved */
unsigned update:1;
unsigned short vtag; /* vlan tag */
unsigned:16;
};
/* FIXME: replace above bitfields with MASK/SHIFT defines below */
#define RX_PKT_STATUS_SIZE_MASK 0x7FF
#define RX_PKT_STATUS_SIZE_SHIFT 0
#define RX_PKT_STATUS_OK_MASK 0x1
#define RX_PKT_STATUS_OK_SHIFT 16
#define RX_PKT_STATUS_BCAST_MASK 0x1
#define RX_PKT_STATUS_BCAST_SHIFT 17
#define RX_PKT_STATUS_MCAST_MASK 0x1
#define RX_PKT_STATUS_MCAST_SHIFT 18
#define RX_PKT_STATUS_PAUSE_MASK 0x1
#define RX_PKT_STATUS_PAUSE_SHIFT 19
#define RX_PKT_STATUS_CTRL_MASK 0x1
#define RX_PKT_STATUS_CTRL_SHIFT 20
#define RX_PKT_STATUS_CRC_MASK 0x1
#define RX_PKT_STATUS_CRC_SHIFT 21
#define RX_PKT_STATUS_CODE_MASK 0x1
#define RX_PKT_STATUS_CODE_SHIFT 22
#define RX_PKT_STATUS_RUNT_MASK 0x1
#define RX_PKT_STATUS_RUNT_SHIFT 23
#define RX_PKT_STATUS_FRAG_MASK 0x1
#define RX_PKT_STATUS_FRAG_SHIFT 24
#define RX_PKT_STATUS_TRUNK_MASK 0x1
#define RX_PKT_STATUS_TRUNK_SHIFT 25
#define RX_PKT_STATUS_ALIGN_MASK 0x1
#define RX_PKT_STATUS_ALIGN_SHIFT 26
#define RX_PKT_STATUS_VLAN_MASK 0x1
#define RX_PKT_STATUS_VLAN_SHIFT 27
#define RX_PKT_STATUS_UPDATE_MASK 0x1
#define RX_PKT_STATUS_UPDATE_SHIFT 31
#define RX_PKT_STATUS_VLAN_TAG_MASK 0xFFFF
#define RX_PKT_STATUS_VLAN_TAG_SHIFT 32
struct rx_desc {
struct rx_pkt_status status;
unsigned char packet[1536-sizeof(struct rx_pkt_status)];
};
enum atl2_speed_duplex {
atl2_10_half = 0,
atl2_10_full = 1,
atl2_100_half = 2,
atl2_100_full = 3
};
struct atl2_spi_flash_dev {
const char *manu_name; /* manufacturer id */
/* op-code */
u8 cmdWRSR;
u8 cmdREAD;
u8 cmdPROGRAM;
u8 cmdWREN;
u8 cmdWRDI;
u8 cmdRDSR;
u8 cmdRDID;
u8 cmdSECTOR_ERASE;
u8 cmdCHIP_ERASE;
};
/* Structure containing variables used by the shared code (atl2_hw.c) */
struct atl2_hw {
u8 __iomem *hw_addr;
void *back;
u8 preamble_len;
u8 max_retry; /* Retransmission maximum, afterwards the
* packet will be discarded. */
u8 jam_ipg; /* IPG to start JAM for collision based flow
* control in half-duplex mode. In unit of
* 8-bit time. */
u8 ipgt; /* Desired back to back inter-packet gap. The
* default is 96-bit time. */
u8 min_ifg; /* Minimum number of IFG to enforce in between
* RX frames. Frame gap below such IFP is
* dropped. */
u8 ipgr1; /* 64bit Carrier-Sense window */
u8 ipgr2; /* 96-bit IPG window */
u8 retry_buf; /* When half-duplex mode, should hold some
* bytes for mac retry . (8*4bytes unit) */
u16 fc_rxd_hi;
u16 fc_rxd_lo;
u16 lcol; /* Collision Window */
u16 max_frame_size;
u16 MediaType;
u16 autoneg_advertised;
u16 pci_cmd_word;
u16 mii_autoneg_adv_reg;
u32 mem_rang;
u32 txcw;
u32 mc_filter_type;
u32 num_mc_addrs;
u32 collision_delta;
u32 tx_packet_delta;
u16 phy_spd_default;
u16 device_id;
u16 vendor_id;
u16 subsystem_id;
u16 subsystem_vendor_id;
u8 revision_id;
/* spi flash */
u8 flash_vendor;
u8 dma_fairness;
u8 mac_addr[NODE_ADDRESS_SIZE];
u8 perm_mac_addr[NODE_ADDRESS_SIZE];
/* FIXME */
/* bool phy_preamble_sup; */
bool phy_configured;
};
#endif /* _ATL2_HW_H_ */
struct atl2_ring_header {
/* pointer to the descriptor ring memory */
void *desc;
/* physical adress of the descriptor ring */
dma_addr_t dma;
/* length of descriptor ring in bytes */
unsigned int size;
};
/* board specific private data structure */
struct atl2_adapter {
/* OS defined structs */
struct net_device *netdev;
struct pci_dev *pdev;
struct net_device_stats net_stats;
#ifdef NETIF_F_HW_VLAN_TX
struct vlan_group *vlgrp;
#endif
u32 wol;
u16 link_speed;
u16 link_duplex;
spinlock_t stats_lock;
spinlock_t tx_lock;
struct work_struct reset_task;
struct work_struct link_chg_task;
struct timer_list watchdog_timer;
struct timer_list phy_config_timer;
unsigned long cfg_phy;
bool mac_disabled;
/* All Descriptor memory */
dma_addr_t ring_dma;
void *ring_vir_addr;
int ring_size;
struct tx_pkt_header *txd_ring;
dma_addr_t txd_dma;
struct tx_pkt_status *txs_ring;
dma_addr_t txs_dma;
struct rx_desc *rxd_ring;
dma_addr_t rxd_dma;
u32 txd_ring_size; /* bytes per unit */
u32 txs_ring_size; /* dwords per unit */
u32 rxd_ring_size; /* 1536 bytes per unit */
/* read /write ptr: */
/* host */
u32 txd_write_ptr;
u32 txs_next_clear;
u32 rxd_read_ptr;
/* nic */
atomic_t txd_read_ptr;
atomic_t txs_write_ptr;
u32 rxd_write_ptr;
/* Interrupt Moderator timer ( 2us resolution) */
u16 imt;
/* Interrupt Clear timer (2us resolution) */
u16 ict;
unsigned long flags;
/* structs defined in atl2_hw.h */
u32 bd_number; /* board number */
bool pci_using_64;
bool have_msi;
struct atl2_hw hw;
u32 usr_cmd;
/* FIXME */
/* u32 regs_buff[ATL2_REGS_LEN]; */
u32 pci_state[16];
u32 *config_space;
};
enum atl2_state_t {
__ATL2_TESTING,
__ATL2_RESETTING,
__ATL2_DOWN
};
#endif /* _ATL2_H_ */
......@@ -2213,6 +2213,7 @@
#define PCI_VENDOR_ID_ATTANSIC 0x1969
#define PCI_DEVICE_ID_ATTANSIC_L1 0x1048
#define PCI_DEVICE_ID_ATTANSIC_L2 0x2048
#define PCI_VENDOR_ID_JMICRON 0x197B
#define PCI_DEVICE_ID_JMICRON_JMB360 0x2360
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment