Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
L
linux-davinci
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Redmine
Redmine
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Operations
Operations
Metrics
Environments
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
linux
linux-davinci
Commits
2c0a2bed
Commit
2c0a2bed
authored
May 23, 2006
by
Thomas Gleixner
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[MTD] NAND whitespace and formatting cleanup
Signed-off-by:
Thomas Gleixner
<
tglx@linutronix.de
>
parent
dcb09328
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
96 additions
and
111 deletions
+96
-111
drivers/mtd/nand/nand_base.c
drivers/mtd/nand/nand_base.c
+62
-42
include/linux/mtd/nand.h
include/linux/mtd/nand.h
+34
-69
No files found.
drivers/mtd/nand/nand_base.c
View file @
2c0a2bed
...
...
@@ -25,26 +25,30 @@
* 05-19-2004 tglx: Basic support for Renesas AG-AND chips
*
* 09-24-2004 tglx: add support for hardware controllers (e.g. ECC) shared
* among multiple independend devices. Suggestions and initial patch
* from Ben Dooks <ben-mtd@fluff.org>
*
* 12-05-2004 dmarlin: add workaround for Renesas AG-AND chips "disturb" issue.
* Basically, any block not rewritten may lose data when surrounding blocks
* are rewritten many times. JFFS2 ensures this doesn't happen for blocks
* it uses, but the Bad Block Table(s) may not be rewritten. To ensure they
* do not lose data, force them to be rewritten when some of the surrounding
* blocks are erased. Rather than tracking a specific nearby block (which
* could itself go bad), use a page address 'mask' to select several blocks
* in the same area, and rewrite the BBT when any of them are erased.
*
* 01-03-2005 dmarlin: added support for the device recovery command sequence for Renesas
* AG-AND chips. If there was a sudden loss of power during an erase operation,
* a "device recovery" operation must be performed when power is restored
* to ensure correct operation.
*
* 01-20-2005 dmarlin: added support for optional hardware specific callback routine to
* perform extra error status checks on erase and write failures. This required
* adding a wrapper function for nand_read_ecc.
* among multiple independend devices. Suggestions and initial
* patch from Ben Dooks <ben-mtd@fluff.org>
*
* 12-05-2004 dmarlin: add workaround for Renesas AG-AND chips "disturb"
* issue. Basically, any block not rewritten may lose data when
* surrounding blocks are rewritten many times. JFFS2 ensures
* this doesn't happen for blocks it uses, but the Bad Block
* Table(s) may not be rewritten. To ensure they do not lose
* data, force them to be rewritten when some of the surrounding
* blocks are erased. Rather than tracking a specific nearby
* block (which could itself go bad), use a page address 'mask' to
* select several blocks in the same area, and rewrite the BBT
* when any of them are erased.
*
* 01-03-2005 dmarlin: added support for the device recovery command sequence
* for Renesas AG-AND chips. If there was a sudden loss of power
* during an erase operation, a "device recovery" operation must
* be performed when power is restored to ensure correct
* operation.
*
* 01-20-2005 dmarlin: added support for optional hardware specific callback
* routine to perform extra error status checks on erase and write
* failures. This required adding a wrapper function for
* nand_read_ecc.
*
* 08-20-2005 vwool: suspend/resume added
*
...
...
@@ -132,32 +136,43 @@ static void nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len);
static
void
nand_read_buf
(
struct
mtd_info
*
mtd
,
u_char
*
buf
,
int
len
);
static
int
nand_verify_buf
(
struct
mtd_info
*
mtd
,
const
u_char
*
buf
,
int
len
);
static
int
nand_read
(
struct
mtd_info
*
mtd
,
loff_t
from
,
size_t
len
,
size_t
*
retlen
,
u_char
*
buf
);
static
int
nand_read
(
struct
mtd_info
*
mtd
,
loff_t
from
,
size_t
len
,
size_t
*
retlen
,
u_char
*
buf
);
static
int
nand_read_ecc
(
struct
mtd_info
*
mtd
,
loff_t
from
,
size_t
len
,
size_t
*
retlen
,
u_char
*
buf
,
u_char
*
eccbuf
,
struct
nand_oobinfo
*
oobsel
);
static
int
nand_read_oob
(
struct
mtd_info
*
mtd
,
loff_t
from
,
size_t
len
,
size_t
*
retlen
,
u_char
*
buf
);
static
int
nand_write
(
struct
mtd_info
*
mtd
,
loff_t
to
,
size_t
len
,
size_t
*
retlen
,
const
u_char
*
buf
);
size_t
*
retlen
,
u_char
*
buf
,
u_char
*
eccbuf
,
struct
nand_oobinfo
*
oobsel
);
static
int
nand_read_oob
(
struct
mtd_info
*
mtd
,
loff_t
from
,
size_t
len
,
size_t
*
retlen
,
u_char
*
buf
);
static
int
nand_write
(
struct
mtd_info
*
mtd
,
loff_t
to
,
size_t
len
,
size_t
*
retlen
,
const
u_char
*
buf
);
static
int
nand_write_ecc
(
struct
mtd_info
*
mtd
,
loff_t
to
,
size_t
len
,
size_t
*
retlen
,
const
u_char
*
buf
,
u_char
*
eccbuf
,
struct
nand_oobinfo
*
oobsel
);
static
int
nand_write_oob
(
struct
mtd_info
*
mtd
,
loff_t
to
,
size_t
len
,
size_t
*
retlen
,
const
u_char
*
buf
);
static
int
nand_writev
(
struct
mtd_info
*
mtd
,
const
struct
kvec
*
vecs
,
unsigned
long
count
,
loff_t
to
,
size_t
*
retlen
);
static
int
nand_writev_ecc
(
struct
mtd_info
*
mtd
,
const
struct
kvec
*
vecs
,
unsigned
long
count
,
loff_t
to
,
size_t
*
retlen
,
u_char
*
eccbuf
,
size_t
*
retlen
,
const
u_char
*
buf
,
u_char
*
eccbuf
,
struct
nand_oobinfo
*
oobsel
);
static
int
nand_write_oob
(
struct
mtd_info
*
mtd
,
loff_t
to
,
size_t
len
,
size_t
*
retlen
,
const
u_char
*
buf
);
static
int
nand_writev
(
struct
mtd_info
*
mtd
,
const
struct
kvec
*
vecs
,
unsigned
long
count
,
loff_t
to
,
size_t
*
retlen
);
static
int
nand_writev_ecc
(
struct
mtd_info
*
mtd
,
const
struct
kvec
*
vecs
,
unsigned
long
count
,
loff_t
to
,
size_t
*
retlen
,
u_char
*
eccbuf
,
struct
nand_oobinfo
*
oobsel
);
static
int
nand_erase
(
struct
mtd_info
*
mtd
,
struct
erase_info
*
instr
);
static
void
nand_sync
(
struct
mtd_info
*
mtd
);
/* Some internal functions */
static
int
nand_write_page
(
struct
mtd_info
*
mtd
,
struct
nand_chip
*
this
,
int
page
,
u_char
*
oob_buf
,
static
int
nand_write_page
(
struct
mtd_info
*
mtd
,
struct
nand_chip
*
this
,
int
page
,
u_char
*
oob_buf
,
struct
nand_oobinfo
*
oobsel
,
int
mode
);
#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
static
int
nand_verify_pages
(
struct
mtd_info
*
mtd
,
struct
nand_chip
*
this
,
int
page
,
int
numpages
,
u_char
*
oob_buf
,
struct
nand_oobinfo
*
oobsel
,
int
chipnr
,
int
oobmode
);
static
int
nand_verify_pages
(
struct
mtd_info
*
mtd
,
struct
nand_chip
*
this
,
int
page
,
int
numpages
,
u_char
*
oob_buf
,
struct
nand_oobinfo
*
oobsel
,
int
chipnr
,
int
oobmode
);
#else
#define nand_verify_pages(...) (0)
#endif
static
int
nand_get_device
(
struct
nand_chip
*
this
,
struct
mtd_info
*
mtd
,
int
new_state
);
static
int
nand_get_device
(
struct
nand_chip
*
this
,
struct
mtd_info
*
mtd
,
int
new_state
);
/**
* nand_release_device - [GENERIC] release chip
...
...
@@ -424,14 +439,16 @@ static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
page
=
(
int
)
ofs
;
if
(
this
->
options
&
NAND_BUSWIDTH_16
)
{
this
->
cmdfunc
(
mtd
,
NAND_CMD_READOOB
,
this
->
badblockpos
&
0xFE
,
page
&
this
->
pagemask
);
this
->
cmdfunc
(
mtd
,
NAND_CMD_READOOB
,
this
->
badblockpos
&
0xFE
,
page
&
this
->
pagemask
);
bad
=
cpu_to_le16
(
this
->
read_word
(
mtd
));
if
(
this
->
badblockpos
&
0x1
)
bad
>>=
8
;
if
((
bad
&
0xFF
)
!=
0xff
)
res
=
1
;
}
else
{
this
->
cmdfunc
(
mtd
,
NAND_CMD_READOOB
,
this
->
badblockpos
,
page
&
this
->
pagemask
);
this
->
cmdfunc
(
mtd
,
NAND_CMD_READOOB
,
this
->
badblockpos
,
page
&
this
->
pagemask
);
if
(
this
->
read_byte
(
mtd
)
!=
0xff
)
res
=
1
;
}
...
...
@@ -498,7 +515,8 @@ static int nand_check_wp(struct mtd_info *mtd)
* Check, if the block is bad. Either by reading the bad block table or
* calling of the scan function.
*/
static
int
nand_block_checkbad
(
struct
mtd_info
*
mtd
,
loff_t
ofs
,
int
getchip
,
int
allowbbt
)
static
int
nand_block_checkbad
(
struct
mtd_info
*
mtd
,
loff_t
ofs
,
int
getchip
,
int
allowbbt
)
{
struct
nand_chip
*
this
=
mtd
->
priv
;
...
...
@@ -540,7 +558,8 @@ static void nand_wait_ready(struct mtd_info *mtd)
* Send command to NAND device. This function is used for small page
* devices (256/512 Bytes per page)
*/
static
void
nand_command
(
struct
mtd_info
*
mtd
,
unsigned
command
,
int
column
,
int
page_addr
)
static
void
nand_command
(
struct
mtd_info
*
mtd
,
unsigned
command
,
int
column
,
int
page_addr
)
{
register
struct
nand_chip
*
this
=
mtd
->
priv
;
...
...
@@ -755,7 +774,8 @@ static void nand_command_lp(struct mtd_info *mtd, unsigned command, int column,
*
* Get the device and lock it for exclusive access
*/
static
int
nand_get_device
(
struct
nand_chip
*
this
,
struct
mtd_info
*
mtd
,
int
new_state
)
static
int
nand_get_device
(
struct
nand_chip
*
this
,
struct
mtd_info
*
mtd
,
int
new_state
)
{
spinlock_t
*
lock
=
&
this
->
controller
->
lock
;
wait_queue_head_t
*
wq
=
&
this
->
controller
->
wq
;
...
...
@@ -2293,8 +2313,8 @@ static void nand_resume(struct mtd_info *mtd)
if
(
this
->
state
==
FL_PM_SUSPENDED
)
nand_release_device
(
mtd
);
else
printk
(
KERN_ERR
"
resume() called for the chip which is not in suspended state
\n
"
);
printk
(
KERN_ERR
"
nand_resume() called for a chip which is not "
"in suspended state
\n
"
);
}
/*
...
...
include/linux/mtd/nand.h
View file @
2c0a2bed
...
...
@@ -15,43 +15,7 @@
* Contains standard defines and IDs for NAND flash devices
*
* Changelog:
* 01-31-2000 DMW Created
* 09-18-2000 SJH Moved structure out of the Disk-On-Chip drivers
* so it can be used by other NAND flash device
* drivers. I also changed the copyright since none
* of the original contents of this file are specific
* to DoC devices. David can whack me with a baseball
* bat later if I did something naughty.
* 10-11-2000 SJH Added private NAND flash structure for driver
* 10-24-2000 SJH Added prototype for 'nand_scan' function
* 10-29-2001 TG changed nand_chip structure to support
* hardwarespecific function for accessing control lines
* 02-21-2002 TG added support for different read/write adress and
* ready/busy line access function
* 02-26-2002 TG added chip_delay to nand_chip structure to optimize
* command delay times for different chips
* 04-28-2002 TG OOB config defines moved from nand.c to avoid duplicate
* defines in jffs2/wbuf.c
* 08-07-2002 TG forced bad block location to byte 5 of OOB, even if
* CONFIG_MTD_NAND_ECC_JFFS2 is not set
* 08-10-2002 TG extensions to nand_chip structure to support HW-ECC
*
* 08-29-2002 tglx nand_chip structure: data_poi for selecting
* internal / fs-driver buffer
* support for 6byte/512byte hardware ECC
* read_ecc, write_ecc extended for different oob-layout
* oob layout selections: NAND_NONE_OOB, NAND_JFFS2_OOB,
* NAND_YAFFS_OOB
* 11-25-2002 tglx Added Manufacturer code FUJITSU, NATIONAL
* Split manufacturer and device ID structures
*
* 02-08-2004 tglx added option field to nand structure for chip anomalities
* 05-25-2004 tglx added bad block table support, ST-MICRO manufacturer id
* update of nand_chip structure description
* 01-17-2005 dmarlin added extended commands for AG-AND device and added option
* for BBT_AUTO_REFRESH.
* 01-20-2005 dmarlin added optional pointer to hardware specific callback for
* extra error status checks.
* See git changelog.
*/
#ifndef __LINUX_MTD_NAND_H
#define __LINUX_MTD_NAND_H
...
...
@@ -68,7 +32,8 @@ extern int nand_scan (struct mtd_info *mtd, int max_chips);
extern
void
nand_release
(
struct
mtd_info
*
mtd
);
/* Read raw data from the device without ECC */
extern
int
nand_read_raw
(
struct
mtd_info
*
mtd
,
uint8_t
*
buf
,
loff_t
from
,
size_t
len
,
size_t
ooblen
);
extern
int
nand_read_raw
(
struct
mtd_info
*
mtd
,
uint8_t
*
buf
,
loff_t
from
,
size_t
len
,
size_t
ooblen
);
/* The maximum number of NAND chips in an array */
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment