Commit 2bef7a0f authored by Mithlesh Thukral's avatar Mithlesh Thukral Committed by Greg Kroah-Hartman

Staging: otus : checkpatch.pl cleanup for some more .c files

Second lot of checkpatch.pl error and warning fixes for .c files of
otus driver in staging tree.
(Externs would be removed in a seperate patch)
Signed-off-by: default avatarMithlesh Thukral <mithlesh@linsyssoft.com>
Signed-off-by: default avatarGreg Kroah-Hartman <gregkh@suse.de>
parent b767fa1d
......@@ -111,7 +111,7 @@ extern u8_t zfLnxCreateThread(zdev_t *dev);
/* Definition of Wireless Extension */
//wireless extension helper functions
/* wireless extension helper functions */
extern int usbdrv_ioctl_setessid(struct net_device *dev, struct iw_point *erq);
extern int usbdrv_ioctl_setrts(struct net_device *dev, struct iw_param *rrq);
/* Wireless Extension Handler functions */
......@@ -282,8 +282,8 @@ static struct iw_handler_def p80211wext_handler_def = {
};
/* WDS */
//struct zsWdsStruct wds[ZM_WDS_PORT_NUMBER];
//void zfInitWdsStruct(void);
/* struct zsWdsStruct wds[ZM_WDS_PORT_NUMBER]; */
/* void zfInitWdsStruct(void); */
/* VAP */
struct zsVapStruct vap[ZM_VAP_PORT_NUMBER];
......@@ -314,13 +314,11 @@ irqreturn_t usbdrv_intr(int irq, void *dev_inst, struct pt_regs *regs)
return IRQ_NONE;
/* the device is closed, don't continue or else bad things may happen. */
if (!netif_running(dev)) {
if (!netif_running(dev))
return IRQ_NONE;
}
if (macp->driver_isolated) {
if (macp->driver_isolated)
return IRQ_NONE;
}
#if (WLAN_HOSTIF == WLAN_PCI)
//zfiIsrPci(dev);
......@@ -340,9 +338,11 @@ int usbdrv_open(struct net_device *dev)
printk("Enter open()\n");
//#ifndef CONFIG_SMP
// read_lock(&(macp->isolate_lock));
//#endif
/*
* #ifndef CONFIG_SMP
* read_lock(&(macp->isolate_lock));
* #endif
*/
if (macp->driver_isolated) {
rc = -EBUSY;
goto exit;
......@@ -393,11 +393,11 @@ int usbdrv_open(struct net_device *dev)
dev->dev_addr[4] = addr[4];
dev->dev_addr[5] = addr[5];
#endif
//zfwMacAddressNotify() will be called to setup dev->dev_addr[]
/* zfwMacAddressNotify() will be called to setup dev->dev_addr[] */
zfLnxCreateThread(dev);
mod_timer(&(macp->hbTimer10ms), jiffies + (1*HZ)/100); //10 ms
mod_timer(&(macp->hbTimer10ms), jiffies + (1*HZ)/100); /* 10 ms */
netif_carrier_on(dev);
......@@ -425,15 +425,15 @@ int usbdrv_open(struct net_device *dev)
#if ZM_SHARE_AUTH == 1
zfiWlanSetAuthenticationMode(dev, 1);
#endif //#if ZM_SHARE_AUTH == 1
#endif //#if ZM_WEP_MOME == 1
#endif /* #if ZM_SHARE_AUTH == 1 */
#endif /* #if ZM_WEP_MOME == 1 */
#elif ZM_PIBSS_MODE == 1
zfiWlanSetWlanMode(dev, ZM_MODE_PSEUDO);
#else
zfiWlanSetWlanMode(dev, ZM_MODE_INFRASTRUCTURE);
#endif
//zfiWlanSetChannel(dev, ZM_CHANNEL, FALSE);
/* zfiWlanSetChannel(dev, ZM_CHANNEL, FALSE); */
zfiWlanSetFrequency(dev, 2462000, FALSE);
zfiWlanSetRtsThreshold(dev, 32767);
zfiWlanSetFragThreshold(dev, 0);
......@@ -720,7 +720,7 @@ void zfLnxInitVapStruct(void)
{
u16_t i;
for (i=0; i<ZM_VAP_PORT_NUMBER; i++)
for (i = 0; i < ZM_VAP_PORT_NUMBER; i++)
{
vap[i].dev = NULL;
vap[i].openFlag = 0;
......@@ -1128,8 +1128,7 @@ u8_t zfLnxClearStructs(struct net_device *dev)
printk(KERN_ERR "TxQCnt: %d\n", TxQCnt);
for(ii = 0; ii < TxQCnt; ii++)
{
for (ii = 0; ii < TxQCnt; ii++) {
UsbTxQ_t *TxQ = zfLnxGetUsbTxBuffer(dev);
printk(KERN_ERR "dev_kfree_skb_any\n");
......
......@@ -34,9 +34,9 @@
/* Called to allocate buffer, must return a continue buffer space */
zbuf_t* zfwBufAllocate(zdev_t* dev, u16_t len)
zbuf_t *zfwBufAllocate(zdev_t *dev, u16_t len)
{
zbuf_t* buf;
zbuf_t *buf;
/* Allocate SKB for packet*/
buf = dev_alloc_skb(len);
......@@ -46,15 +46,15 @@ zbuf_t* zfwBufAllocate(zdev_t* dev, u16_t len)
/* Called to free buffer, replace below 3 functions */
void zfwBufFree(zdev_t* dev, zbuf_t* buf, u16_t status)
void zfwBufFree(zdev_t *dev, zbuf_t *buf, u16_t status)
{
dev_kfree_skb_any(buf);
}
/* Called to adjust buffer size and head pointer */
u16_t zfwBufRemoveHead(zdev_t* dev, zbuf_t* buf, u16_t size)
u16_t zfwBufRemoveHead(zdev_t *dev, zbuf_t *buf, u16_t size)
{
//zm_assert(buf->len > size);
/* zm_assert(buf->len > size); */
buf->data += size;
buf->len -= size;
......@@ -68,7 +68,7 @@ u16_t zfwBufRemoveHead(zdev_t* dev, zbuf_t* buf, u16_t size)
/* Used to chain Rx buffer to form a frame. if the prepared Rx buffer */
/* is greater than an ethernet frame(1518+32 byte), then this function */
/* will only be called with head=NULL. */
u16_t zfwBufChain(zdev_t* dev, zbuf_t** head, zbuf_t* tail)
u16_t zfwBufChain(zdev_t *dev, zbuf_t **head, zbuf_t *tail)
{
*head = tail;
......@@ -77,7 +77,7 @@ u16_t zfwBufChain(zdev_t* dev, zbuf_t** head, zbuf_t* tail)
/* Called when doing infra-bss forwarding */
u16_t zfwBufCopy(zdev_t* dev, zbuf_t* dst, zbuf_t* src)
u16_t zfwBufCopy(zdev_t *dev, zbuf_t *dst, zbuf_t *src)
{
memcpy(dst->data, src->data, src->len);
dst->tail = dst->data;
......@@ -87,7 +87,7 @@ u16_t zfwBufCopy(zdev_t* dev, zbuf_t* dst, zbuf_t* src)
/* Called to adjust buffer size and tail pointer */
u16_t zfwBufSetSize(zdev_t* dev, zbuf_t* buf, u16_t size)
u16_t zfwBufSetSize(zdev_t *dev, zbuf_t *buf, u16_t size)
{
#ifdef NET_SKBUFF_DATA_USES_OFFSET
buf->tail = 0;
......@@ -101,11 +101,11 @@ u16_t zfwBufSetSize(zdev_t* dev, zbuf_t* buf, u16_t size)
return 0;
}
u16_t zfwBufGetSize(zdev_t* dev, zbuf_t* buf)
u16_t zfwBufGetSize(zdev_t *dev, zbuf_t *buf)
{
return buf->len;
}
void zfwCopyBufContext(zdev_t* dev, zbuf_t* source, zbuf_t* dst)
void zfwCopyBufContext(zdev_t *dev, zbuf_t *source, zbuf_t *dst)
{
}
......@@ -32,202 +32,214 @@
/***** Management *****/
u16_t zfLnxAuthNotify(zdev_t* dev, u16_t* macAddr)
u16_t zfLnxAuthNotify(zdev_t *dev, u16_t *macAddr)
{
return 0;
return 0;
}
u16_t zfLnxAsocNotify(zdev_t* dev, u16_t* macAddr, u8_t* body, u16_t bodySize, u16_t port)
u16_t zfLnxAsocNotify(zdev_t *dev, u16_t *macAddr, u8_t *body, u16_t bodySize,
u16_t port)
{
//#ifdef ZM_HOSTAPD_SUPPORT
struct usbdrv_private *macp = dev->ml_priv;
union iwreq_data wreq;
u8_t *addr = (u8_t *) macAddr;
u16_t i, j;
memset(&wreq, 0, sizeof(wreq));
memcpy(wreq.addr.sa_data, macAddr, ETH_ALEN);
wreq.addr.sa_family = ARPHRD_ETHER;
printk(KERN_DEBUG "join_event of MAC: %02x:%02x:%02x:%02x:%02x:%02x\n",
addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
for(i = 0; i < ZM_OAL_MAX_STA_SUPPORT; i++)
{
for(j = 0; j < IEEE80211_ADDR_LEN; j++)
{
if ((macp->stawpaie[i].wpa_macaddr[j] != 0) &&
(macp->stawpaie[i].wpa_macaddr[j] != addr[j]))
break;
}
if (j == 6)
break;
}
if (i < ZM_OAL_MAX_STA_SUPPORT)
{
//printk("zfwAsocNotify - store wpa ie in macp, index = %d\n", i);
memcpy(macp->stawpaie[i].wpa_macaddr, macAddr, IEEE80211_ADDR_LEN);
memcpy(macp->stawpaie[i].wpa_ie, body, bodySize);
}
//if(macp->cardSetting.BssType == INFRASTRUCTURE_BSS) {
// //wireless_send_event(macp->device, SIOCGIWSCAN, &wreq, NULL);
// wireless_send_event(macp->device, SIOCGIWAP, &wreq, NULL);
//}
//else if(macp->cardSetting.BssType == AP_BSS) {
// if (port == 0)
// {
wireless_send_event(dev, IWEVREGISTERED, &wreq, NULL);
// }
// else
// {
// /* Check whether the VAP device is valid */
// if (vap[port].dev != NULL)
// {
// wireless_send_event(vap[port].dev, IWEVREGISTERED, &wreq, NULL);
// }
// else
// {
// printk(KERN_ERR "Can' find a valid VAP device, port: %d\n", port);
// }
// }
//}
//#endif
return 0;
/* #ifdef ZM_HOSTAPD_SUPPORT */
struct usbdrv_private *macp = dev->ml_priv;
union iwreq_data wreq;
u8_t *addr = (u8_t *) macAddr;
u16_t i, j;
memset(&wreq, 0, sizeof(wreq));
memcpy(wreq.addr.sa_data, macAddr, ETH_ALEN);
wreq.addr.sa_family = ARPHRD_ETHER;
printk(KERN_DEBUG "join_event of MAC: %02x:%02x:%02x:%02x:%02x:%02x\n",
addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
for (i = 0; i < ZM_OAL_MAX_STA_SUPPORT; i++) {
for (j = 0; j < IEEE80211_ADDR_LEN; j++) {
if ((macp->stawpaie[i].wpa_macaddr[j] != 0) &&
(macp->stawpaie[i].wpa_macaddr[j] != addr[j]))
break;
}
if (j == 6)
break;
}
if (i < ZM_OAL_MAX_STA_SUPPORT) {
/*
* printk("zfwAsocNotify - store wpa ie in macp,
* index = %d\n", i);
*/
memcpy(macp->stawpaie[i].wpa_macaddr, macAddr,
IEEE80211_ADDR_LEN);
memcpy(macp->stawpaie[i].wpa_ie, body, bodySize);
}
/*
* if(macp->cardSetting.BssType == INFRASTRUCTURE_BSS) {
* wireless_send_event(macp->device, SIOCGIWSCAN, &wreq, NULL);
* wireless_send_event(macp->device, SIOCGIWAP, &wreq, NULL);
* }
* else if(macp->cardSetting.BssType == AP_BSS) {
* if (port == 0)
* {
*/
wireless_send_event(dev, IWEVREGISTERED, &wreq, NULL);
/*
* }
* else
* {
* Check whether the VAP device is valid
* if (vap[port].dev != NULL)
* {
* wireless_send_event(vap[port].dev,
* IWEVREGISTERED, &wreq, NULL);
* }
* else
* {
* printk(KERN_ERR "Can' find a valid VAP device,
* port: %d\n", port);
* }
* }
* }
*/
/* #endif */
return 0;
}
/* Notification that a STA is disassociated from AP */
/* AP mode only */
u16_t zfLnxDisAsocNotify(zdev_t* dev, u8_t* macAddr, u16_t port)
u16_t zfLnxDisAsocNotify(zdev_t *dev, u8_t *macAddr, u16_t port)
{
union iwreq_data wreq;
u8_t *addr = (u8_t *) macAddr;
union iwreq_data wreq;
u8_t *addr = (u8_t *) macAddr;
memset(&wreq, 0, sizeof(wreq));
memcpy(wreq.addr.sa_data, macAddr, ETH_ALEN);
wreq.addr.sa_family = ARPHRD_ETHER;
printk(KERN_DEBUG "zfwDisAsocNotify(), MAC: %02x:%02x:%02x:%02x:%02x:%02x\n",
addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
memset(&wreq, 0, sizeof(wreq));
memcpy(wreq.addr.sa_data, macAddr, ETH_ALEN);
wreq.addr.sa_family = ARPHRD_ETHER;
printk(KERN_DEBUG "zfwDisAsocNotify(), MAC: %02x:%02x:%02x:%02x:%02x:%02x\n",
addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
return 0;
return 0;
}
/* Notification that a STA is connect to AP */
/* AP mode only */
u16_t zfLnxApConnectNotify(zdev_t* dev, u8_t* macAddr, u16_t port)
u16_t zfLnxApConnectNotify(zdev_t *dev, u8_t *macAddr, u16_t port)
{
union iwreq_data wreq;
u8_t *addr = (u8_t *) macAddr;
union iwreq_data wreq;
u8_t *addr = (u8_t *) macAddr;
memset(&wreq, 0, sizeof(wreq));
memcpy(wreq.addr.sa_data, macAddr, ETH_ALEN);
wreq.addr.sa_family = ARPHRD_ETHER;
printk(KERN_DEBUG "zfwApConnectNotify(), MAC: %02x:%02x:%02x:%02x:%02x:%02x\n",
addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
memset(&wreq, 0, sizeof(wreq));
memcpy(wreq.addr.sa_data, macAddr, ETH_ALEN);
wreq.addr.sa_family = ARPHRD_ETHER;
printk(KERN_DEBUG "zfwApConnectNotify(), MAC: %02x:%02x:%02x:%02x:%02x:%02x\n",
addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
return 0;
return 0;
}
void zfLnxConnectNotify(zdev_t* dev, u16_t status, u16_t* bssid)
void zfLnxConnectNotify(zdev_t *dev, u16_t status, u16_t *bssid)
{
union iwreq_data wreq;
u8_t *addr = (u8_t *) bssid;
struct usbdrv_private *macp = dev->ml_priv;
if (bssid != NULL)
{
memset(&wreq, 0, sizeof(wreq));
if (status == ZM_STATUS_MEDIA_CONNECT)
memcpy(wreq.addr.sa_data, bssid, ETH_ALEN);
wreq.addr.sa_family = ARPHRD_ETHER;
if (status == ZM_STATUS_MEDIA_CONNECT)
{
union iwreq_data wreq;
u8_t *addr = (u8_t *) bssid;
struct usbdrv_private *macp = dev->ml_priv;
if (bssid != NULL) {
memset(&wreq, 0, sizeof(wreq));
if (status == ZM_STATUS_MEDIA_CONNECT)
memcpy(wreq.addr.sa_data, bssid, ETH_ALEN);
wreq.addr.sa_family = ARPHRD_ETHER;
if (status == ZM_STATUS_MEDIA_CONNECT) {
#ifdef ZM_CONFIG_BIG_ENDIAN
printk(KERN_DEBUG "Connected to AP, MAC: %02x:%02x:%02x:%02x:%02x:%02x\n",
addr[1], addr[0], addr[3], addr[2], addr[5], addr[4]);
printk(KERN_DEBUG "Connected to AP, MAC:"
"%02x:%02x:%02x:%02x:%02x:%02x\n",
addr[1], addr[0], addr[3], addr[2],
addr[5], addr[4]);
#else
printk(KERN_DEBUG "Connected to AP, MAC: %02x:%02x:%02x:%02x:%02x:%02x\n",
addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
printk(KERN_DEBUG "Connected to AP, MAC:"
"%02x:%02x:%02x:%02x:%02x:%02x\n",
addr[0], addr[1], addr[2], addr[3],
addr[4], addr[5]);
#endif
netif_start_queue(dev);
}
else if ((status == ZM_STATUS_MEDIA_DISCONNECT) ||
(status == ZM_STATUS_MEDIA_DISABLED) ||
(status == ZM_STATUS_MEDIA_CONNECTION_DISABLED) ||
(status == ZM_STATUS_MEDIA_CONNECTION_RESET) ||
(status == ZM_STATUS_MEDIA_RESET) ||
(status == ZM_STATUS_MEDIA_DISCONNECT_DEAUTH) ||
(status == ZM_STATUS_MEDIA_DISCONNECT_DISASOC) ||
(status == ZM_STATUS_MEDIA_DISCONNECT_BEACON_MISS) ||
(status == ZM_STATUS_MEDIA_DISCONNECT_NOT_FOUND) ||
(status == ZM_STATUS_MEDIA_DISCONNECT_TIMEOUT))
{
printk(KERN_DEBUG "Disconnection Notify\n");
netif_stop_queue(dev);
}
netif_start_queue(dev);
} else if ((status == ZM_STATUS_MEDIA_DISCONNECT) ||
(status == ZM_STATUS_MEDIA_DISABLED) ||
(status == ZM_STATUS_MEDIA_CONNECTION_DISABLED) ||
(status == ZM_STATUS_MEDIA_CONNECTION_RESET) ||
(status == ZM_STATUS_MEDIA_RESET) ||
(status == ZM_STATUS_MEDIA_DISCONNECT_DEAUTH) ||
(status == ZM_STATUS_MEDIA_DISCONNECT_DISASOC) ||
(status == ZM_STATUS_MEDIA_DISCONNECT_BEACON_MISS) ||
(status == ZM_STATUS_MEDIA_DISCONNECT_NOT_FOUND) ||
(status == ZM_STATUS_MEDIA_DISCONNECT_TIMEOUT)) {
printk(KERN_DEBUG "Disconnection Notify\n");
netif_stop_queue(dev);
}
/* Save the connected status */
macp->adapterState = status;
if(zfiWlanQueryWlanMode(dev) == ZM_MODE_INFRASTRUCTURE) {
// //wireless_send_event(dev, SIOCGIWSCAN, &wreq, NULL);
wireless_send_event(dev, SIOCGIWAP, &wreq, NULL);
}
else if(zfiWlanQueryWlanMode(dev) == ZM_MODE_AP) {
//if (port == 0)
//{
wireless_send_event(dev, IWEVREGISTERED, &wreq, NULL);
//}
//else
//{
// /* Check whether the VAP device is valid */
// if (vap[port].dev != NULL)
// {
// wireless_send_event(vap[port].dev, IWEVREGISTERED, &wreq, NULL);
// }
// else
// {
// printk(KERN_ERR "Can' find a valid VAP device, port: %d\n", port);
// }
//}
}
}
//return 0;
if (zfiWlanQueryWlanMode(dev) == ZM_MODE_INFRASTRUCTURE) {
/*wireless_send_event(dev, SIOCGIWSCAN, &wreq, NULL);*/
wireless_send_event(dev, SIOCGIWAP, &wreq, NULL);
} else if (zfiWlanQueryWlanMode(dev) == ZM_MODE_AP) {
/*
* if (port == 0)
* {
* wireless_send_event(dev, IWEVREGISTERED,
* &wreq, NULL);
* }
* else
* {
* Check whether the VAP device is valid
* if (vap[port].dev != NULL)
* {
* wireless_send_event(vap[port].dev,
* IWEVREGISTERED, &wreq, NULL);
* }
* else
* {
* printk(KERN_ERR "Can' find a valid VAP"
* " device, port: %d\n", port);
* }
* }
*/
}
}
/* return 0; */
}
void zfLnxScanNotify(zdev_t* dev, struct zsScanResult* result)
void zfLnxScanNotify(zdev_t *dev, struct zsScanResult *result)
{
return;
return;
}
void zfLnxStatisticsNotify(zdev_t* dev, struct zsStastics* result)
void zfLnxStatisticsNotify(zdev_t *dev, struct zsStastics *result)
{
return;
return;
}
//void zfwMicFailureNotify(zdev_t* dev, u8_t* message, u16_t event)
void zfLnxMicFailureNotify(zdev_t* dev, u16_t* addr, u16_t status)
/* void zfwMicFailureNotify(zdev_t *dev, u8_t *message, u16_t event) */
void zfLnxMicFailureNotify(zdev_t *dev, u16_t *addr, u16_t status)
{
static const char *tag = "MLME-MICHAELMICFAILURE.indication";
union iwreq_data wrqu;
char buf[128];
/* TODO: needed parameters: count, type, src address */
//snprintf(buf, sizeof(buf), "%s(%scast addr=%s)", tag,
// (status == ZM_MIC_GROUP_ERROR) ? "broad" : "uni",
// ether_sprintf((u8_t *)addr));
/*
* snprintf(buf, sizeof(buf), "%s(%scast addr=%s)", tag,
* (status == ZM_MIC_GROUP_ERROR) ? "broad" : "uni",
* ether_sprintf((u8_t *)addr));
*/
if (zfiWlanQueryWlanMode(dev) == ZM_MODE_INFRASTRUCTURE)
{
strcpy(buf, tag);
}
memset(&wrqu, 0, sizeof(wrqu));
wrqu.data.length = strlen(buf);
......@@ -235,42 +247,46 @@ void zfLnxMicFailureNotify(zdev_t* dev, u16_t* addr, u16_t status)
}
void zfLnxApMicFailureNotify(zdev_t* dev, u8_t* addr, zbuf_t* buf)
void zfLnxApMicFailureNotify(zdev_t *dev, u8_t *addr, zbuf_t *buf)
{
union iwreq_data wreq;
union iwreq_data wreq;
memset(&wreq, 0, sizeof(wreq));
memcpy(wreq.addr.sa_data, addr, ETH_ALEN);
wreq.addr.sa_family = ARPHRD_ETHER;
printk(KERN_DEBUG "zfwApMicFailureNotify(), MAC: %02x:%02x:%02x:%02x:%02x:%02x\n",
addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
memset(&wreq, 0, sizeof(wreq));
memcpy(wreq.addr.sa_data, addr, ETH_ALEN);
wreq.addr.sa_family = ARPHRD_ETHER;
printk(KERN_DEBUG "zfwApMicFailureNotify(), "
"MAC: %02x:%02x:%02x:%02x:%02x:%02x\n",
addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
return;
return;
}
// status = 0 => partner lost
// = 1 => partner alive
//void zfwIbssPartnerNotify(zdev_t* dev, u8_t status)
void zfLnxIbssPartnerNotify(zdev_t* dev, u16_t status, struct zsPartnerNotifyEvent *event)
/*
* status = 0 => partner lost
* = 1 => partner alive
* void zfwIbssPartnerNotify(zdev_t* dev, u8_t status)
*/
void zfLnxIbssPartnerNotify(zdev_t *dev, u16_t status,
struct zsPartnerNotifyEvent *event)
{
}
void zfLnxMacAddressNotify(zdev_t* dev, u8_t* addr)
void zfLnxMacAddressNotify(zdev_t *dev, u8_t *addr)
{
dev->dev_addr[0] = addr[0];
dev->dev_addr[1] = addr[1];
dev->dev_addr[2] = addr[2];
dev->dev_addr[3] = addr[3];
dev->dev_addr[4] = addr[4];
dev->dev_addr[5] = addr[5];
dev->dev_addr[0] = addr[0];
dev->dev_addr[1] = addr[1];
dev->dev_addr[2] = addr[2];
dev->dev_addr[3] = addr[3];
dev->dev_addr[4] = addr[4];
dev->dev_addr[5] = addr[5];
}
void zfLnxSendCompleteIndication(zdev_t* dev, zbuf_t* buf)
void zfLnxSendCompleteIndication(zdev_t *dev, zbuf_t *buf)
{
}
void zfLnxRestoreBufData(zdev_t* dev, zbuf_t* buf) {
void zfLnxRestoreBufData(zdev_t *dev, zbuf_t *buf)
{
}
/* Leave an empty line below to remove warning message on some compiler */
......@@ -30,76 +30,73 @@
#include <linux/netlink.h>
#include <net/iw_handler.h>
//extern struct zsWdsStruct wds[ZM_WDS_PORT_NUMBER];
/* extern struct zsWdsStruct wds[ZM_WDS_PORT_NUMBER]; */
extern struct zsVapStruct vap[ZM_VAP_PORT_NUMBER];
extern u16_t zfLnxGetVapId(zdev_t* dev);
extern u16_t zfLnxGetVapId(zdev_t *dev);
/* Simply return 0xffff if VAP function is not supported */
u16_t zfwGetVapId(zdev_t* dev)
u16_t zfwGetVapId(zdev_t *dev)
{
return zfLnxGetVapId(dev);
return zfLnxGetVapId(dev);
}
void zfwSleep(zdev_t* dev, u32_t ms)
void zfwSleep(zdev_t *dev, u32_t ms)
{
if (in_interrupt() == 0)
{
mdelay(ms);
}
else
{
int ii;
int iter = 100000 * ms;
for (ii = 0; ii < iter; ii++)
{
}
}
if (in_interrupt() == 0)
mdelay(ms);
else {
int ii;
int iter = 100000 * ms;
for (ii = 0; ii < iter; ii++) {
}
}
}
#ifdef ZM_HALPLUS_LOCK
asmlinkage struct zsWlanDev *zfwGetWlanDev(zdev_t* dev)
asmlinkage struct zsWlanDev *zfwGetWlanDev(zdev_t *dev)
{
struct usbdrv_private *macp = dev->ml_priv;
return macp->wd;
}
asmlinkage void zfwEnterCriticalSection(zdev_t* dev)
asmlinkage void zfwEnterCriticalSection(zdev_t *dev)
{
struct usbdrv_private *macp = dev->ml_priv;
spin_lock_irqsave(&macp->cs_lock, macp->hal_irqFlag);
}
asmlinkage void zfwLeaveCriticalSection(zdev_t* dev)
asmlinkage void zfwLeaveCriticalSection(zdev_t *dev)
{
struct usbdrv_private *macp = dev->ml_priv;
spin_unlock_irqrestore(&macp->cs_lock, macp->hal_irqFlag);
}
asmlinkage u8_t zfwBufReadByte(zdev_t* dev, zbuf_t* buf, u16_t offset)
asmlinkage u8_t zfwBufReadByte(zdev_t *dev, zbuf_t *buf, u16_t offset)
{
return *(u8_t*)((u8_t*)buf->data+offset);
return *(u8_t *)((u8_t *)buf->data+offset);
}
asmlinkage u16_t zfwBufReadHalfWord(zdev_t* dev, zbuf_t* buf, u16_t offset)
asmlinkage u16_t zfwBufReadHalfWord(zdev_t *dev, zbuf_t *buf, u16_t offset)
{
return zmw_cpu_to_le16(*(u16_t*)((u8_t*)buf->data+offset));
return zmw_cpu_to_le16(*(u16_t *)((u8_t *)buf->data+offset));
}
asmlinkage void zfwBufWriteByte(zdev_t* dev, zbuf_t* buf, u16_t offset, u8_t value)
asmlinkage void zfwBufWriteByte(zdev_t *dev, zbuf_t *buf, u16_t offset,
u8_t value)
{
*(u8_t*)((u8_t*)buf->data+offset) = value;
*(u8_t *)((u8_t *)buf->data+offset) = value;
}
asmlinkage void zfwBufWriteHalfWord(zdev_t* dev, zbuf_t* buf, u16_t offset, u16_t value)
asmlinkage void zfwBufWriteHalfWord(zdev_t *dev, zbuf_t *buf, u16_t offset,
u16_t value)
{
*(u16_t*)((u8_t*)buf->data+offset) = zmw_cpu_to_le16(value);
*(u16_t *)((u8_t *)buf->data+offset) = zmw_cpu_to_le16(value);
}
asmlinkage u8_t *zfwGetBuffer(zdev_t* dev, zbuf_t* buf)
asmlinkage u8_t *zfwGetBuffer(zdev_t *dev, zbuf_t *buf)
{
return (u8_t*)(buf->data);
return (u8_t *)(buf->data);
}
#endif
......
......@@ -31,136 +31,122 @@
#include <net/iw_handler.h>
//extern struct zsWdsStruct wds[ZM_WDS_PORT_NUMBER];
/* extern struct zsWdsStruct wds[ZM_WDS_PORT_NUMBER]; */
extern struct zsVapStruct vap[ZM_VAP_PORT_NUMBER];
/***** Rx *****/
void zfLnxRecv80211(zdev_t* dev, zbuf_t* buf, struct zsAdditionInfo* addInfo)
void zfLnxRecv80211(zdev_t *dev, zbuf_t *buf, struct zsAdditionInfo *addInfo)
{
u16_t frameType;
u16_t frameCtrl;
u16_t frameSubtype;
zbuf_t *skb1;
struct usbdrv_private *macp = dev->ml_priv;
//frameCtrl = zmw_buf_readb(dev, buf, 0);
frameCtrl = *(u8_t*)((u8_t*)buf->data);
frameType = frameCtrl & 0xf;
frameSubtype = frameCtrl & 0xf0;
if ((frameType == 0x0) && (macp->forwardMgmt))
{
switch (frameSubtype)
{
/* Beacon */
case 0x80 :
/* Probe response */
case 0x50 :
skb1 = skb_copy(buf, GFP_ATOMIC);
if(skb1 != NULL)
{
skb1->dev = dev;
skb1->mac_header = skb1->data;
skb1->ip_summed = CHECKSUM_NONE;
skb1->pkt_type = PACKET_OTHERHOST;
skb1->protocol = __constant_htons(0x0019); /* ETH_P_80211_RAW */
netif_rx(skb1);
}
break;
default:
break;
}
}
zfiRecv80211(dev, buf, addInfo);
return;
u16_t frameType;
u16_t frameCtrl;
u16_t frameSubtype;
zbuf_t *skb1;
struct usbdrv_private *macp = dev->ml_priv;
/* frameCtrl = zmw_buf_readb(dev, buf, 0); */
frameCtrl = *(u8_t *)((u8_t *)buf->data);
frameType = frameCtrl & 0xf;
frameSubtype = frameCtrl & 0xf0;
if ((frameType == 0x0) && (macp->forwardMgmt)) {
switch (frameSubtype) {
/* Beacon */
case 0x80:
/* Probe response */
case 0x50:
skb1 = skb_copy(buf, GFP_ATOMIC);
if (skb1 != NULL) {
skb1->dev = dev;
skb1->mac_header = skb1->data;
skb1->ip_summed = CHECKSUM_NONE;
skb1->pkt_type = PACKET_OTHERHOST;
/* ETH_P_80211_RAW */
skb1->protocol = __constant_htons(0x0019);
netif_rx(skb1);
}
break;
default:
break;
}
}
zfiRecv80211(dev, buf, addInfo);
return;
}
#define ZM_AVOID_UDP_LARGE_PACKET_FAIL
void zfLnxRecvEth(zdev_t* dev, zbuf_t* buf, u16_t port)
void zfLnxRecvEth(zdev_t *dev, zbuf_t *buf, u16_t port)
{
struct usbdrv_private *macp = dev->ml_priv;
struct usbdrv_private *macp = dev->ml_priv;
#ifdef ZM_AVOID_UDP_LARGE_PACKET_FAIL
zbuf_t *new_buf;
zbuf_t *new_buf;
//new_buf = dev_alloc_skb(2048);
new_buf = dev_alloc_skb(buf->len);
/* new_buf = dev_alloc_skb(2048); */
new_buf = dev_alloc_skb(buf->len);
#ifdef NET_SKBUFF_DATA_USES_OFFSET
new_buf->tail = 0;
new_buf->len = 0;
new_buf->tail = 0;
new_buf->len = 0;
#else
new_buf->tail = new_buf->data;
new_buf->len = 0;
new_buf->tail = new_buf->data;
new_buf->len = 0;
#endif
skb_put(new_buf, buf->len);
memcpy(new_buf->data, buf->data, buf->len);
/* Free buffer */
dev_kfree_skb_any(buf);
if (port == 0)
{
new_buf->dev = dev;
new_buf->protocol = eth_type_trans(new_buf, dev);
}
else
{
/* VAP */
if (vap[0].dev != NULL)
{
new_buf->dev = vap[0].dev;
new_buf->protocol = eth_type_trans(new_buf, vap[0].dev);
}
else
{
new_buf->dev = dev;
new_buf->protocol = eth_type_trans(new_buf, dev);
}
}
new_buf->ip_summed = CHECKSUM_NONE;
dev->last_rx = jiffies;
switch(netif_rx(new_buf))
skb_put(new_buf, buf->len);
memcpy(new_buf->data, buf->data, buf->len);
/* Free buffer */
dev_kfree_skb_any(buf);
if (port == 0) {
new_buf->dev = dev;
new_buf->protocol = eth_type_trans(new_buf, dev);
} else {
/* VAP */
if (vap[0].dev != NULL) {
new_buf->dev = vap[0].dev;
new_buf->protocol = eth_type_trans(new_buf, vap[0].dev);
} else {
new_buf->dev = dev;
new_buf->protocol = eth_type_trans(new_buf, dev);
}
}
new_buf->ip_summed = CHECKSUM_NONE;
dev->last_rx = jiffies;
switch (netif_rx(new_buf))
#else
if (port == 0)
{
buf->dev = dev;
buf->protocol = eth_type_trans(buf, dev);
}
else
{
/* VAP */
if (vap[0].dev != NULL)
{
buf->dev = vap[0].dev;
buf->protocol = eth_type_trans(buf, vap[0].dev);
}
else
{
buf->dev = dev;
buf->protocol = eth_type_trans(buf, dev);
}
}
buf->ip_summed = CHECKSUM_NONE;
dev->last_rx = jiffies;
switch(netif_rx(buf))
if (port == 0) {
buf->dev = dev;
buf->protocol = eth_type_trans(buf, dev);
} else {
/* VAP */
if (vap[0].dev != NULL) {
buf->dev = vap[0].dev;
buf->protocol = eth_type_trans(buf, vap[0].dev);
} else {
buf->dev = dev;
buf->protocol = eth_type_trans(buf, dev);
}
}
buf->ip_summed = CHECKSUM_NONE;
dev->last_rx = jiffies;
switch (netif_rx(buf))
#endif
{
case NET_RX_DROP:
break;
default:
macp->drv_stats.net_stats.rx_packets++;
macp->drv_stats.net_stats.rx_bytes += buf->len;
break;
}
return;
{
case NET_RX_DROP:
break;
default:
macp->drv_stats.net_stats.rx_packets++;
macp->drv_stats.net_stats.rx_bytes += buf->len;
break;
}
return;
}
/* Leave an empty line below to remove warning message on some compiler */
......@@ -33,92 +33,93 @@
#ifdef ZM_ENABLE_CENC
extern int zfLnxCencSendMsg(struct sock *netlink_sk, u_int8_t *msg, int len);
u16_t zfLnxCencAsocNotify(zdev_t* dev, u16_t* macAddr, u8_t* body, u16_t bodySize, u16_t port)
u16_t zfLnxCencAsocNotify(zdev_t *dev, u16_t *macAddr, u8_t *body,
u16_t bodySize, u16_t port)
{
struct usbdrv_private *macp = (struct usbdrv_private *)dev->priv;
struct zydas_cenc_sta_info cenc_info;
//struct sock *netlink_sk;
u8_t ie_len;
int ii;
struct usbdrv_private *macp = (struct usbdrv_private *)dev->priv;
struct zydas_cenc_sta_info cenc_info;
/* struct sock *netlink_sk; */
u8_t ie_len;
int ii;
/* Create NETLINK socket */
//netlink_sk = netlink_kernel_create(NETLINK_USERSOCK, NULL);
/* Create NETLINK socket */
/*netlink_sk = netlink_kernel_create(NETLINK_USERSOCK, NULL); */
if (macp->netlink_sk == NULL)
{
printk(KERN_ERR "NETLINK Socket is NULL\n");
return -1;
}
if (macp->netlink_sk == NULL) {
printk(KERN_ERR "NETLINK Socket is NULL\n");
return -1;
}
memset(&cenc_info, 0, sizeof(cenc_info));
memset(&cenc_info, 0, sizeof(cenc_info));
//memcpy(cenc_info.gsn, vap->iv_cencmsk_keys.wk_txiv, ZM_CENC_IV_LEN);
zfiWlanQueryGSN(dev, cenc_info.gsn, port);
cenc_info.datalen += ZM_CENC_IV_LEN;
ie_len = body[1] + 2;
memcpy(cenc_info.wie, body, ie_len);
cenc_info.datalen += ie_len;
/* memcpy(cenc_info.gsn, vap->iv_cencmsk_keys.wk_txiv,
* ZM_CENC_IV_LEN);
*/
zfiWlanQueryGSN(dev, cenc_info.gsn, port);
cenc_info.datalen += ZM_CENC_IV_LEN;
ie_len = body[1] + 2;
memcpy(cenc_info.wie, body, ie_len);
cenc_info.datalen += ie_len;
memcpy(cenc_info.sta_mac, macAddr, 6);
cenc_info.msg_type = ZM_CENC_WAI_REQUEST;
cenc_info.datalen += 6 + 2;
memcpy(cenc_info.sta_mac, macAddr, 6);
cenc_info.msg_type = ZM_CENC_WAI_REQUEST;
cenc_info.datalen += 6 + 2;
printk(KERN_ERR "===== zfwCencSendMsg, bodySize: %d =====\n", bodySize);
printk(KERN_ERR "===== zfwCencSendMsg, bodySize: %d =====\n", bodySize);
for(ii = 0; ii < bodySize; ii++)
{
printk(KERN_ERR "%02x ", body[ii]);
for (ii = 0; ii < bodySize; ii++) {
printk(KERN_ERR "%02x ", body[ii]);
if ((ii & 0xf) == 0xf)
{
printk(KERN_ERR "\n");
}
}
if ((ii & 0xf) == 0xf)
printk(KERN_ERR "\n");
}
zfLnxCencSendMsg(macp->netlink_sk, (u8_t *)&cenc_info, cenc_info.datalen+4);
zfLnxCencSendMsg(macp->netlink_sk, (u8_t *)&cenc_info,
cenc_info.datalen+4);
/* Close NETLINK socket */
//sock_release(netlink_sk);
/* Close NETLINK socket */
/* sock_release(netlink_sk); */
return 0;
return 0;
}
#endif //ZM_ENABLE_CENC
#endif /* ZM_ENABLE_CENC */
u8_t zfwCencHandleBeaconProbrespon(zdev_t* dev, u8_t *pWIEc,
u8_t *pPeerSSIDc, u8_t *pPeerAddrc)
u8_t zfwCencHandleBeaconProbrespon(zdev_t *dev, u8_t *pWIEc,
u8_t *pPeerSSIDc, u8_t *pPeerAddrc)
{
return 0;
return 0;
}
u8_t zfwGetPktEncExemptionActionType(zdev_t* dev, zbuf_t* buf)
u8_t zfwGetPktEncExemptionActionType(zdev_t *dev, zbuf_t *buf)
{
return ZM_ENCRYPTION_EXEMPT_NO_EXEMPTION;
return ZM_ENCRYPTION_EXEMPT_NO_EXEMPTION;
}
void copyToIntTxBuffer(zdev_t* dev, zbuf_t* buf, u8_t* src,
u16_t offset, u16_t length)
void copyToIntTxBuffer(zdev_t *dev, zbuf_t *buf, u8_t *src,
u16_t offset, u16_t length)
{
u16_t i;
u16_t i;
for(i=0; i<length;i++)
{
//zmw_tx_buf_writeb(dev, buf, offset+i, src[i]);
*(u8_t*)((u8_t*)buf->data+offset+i) = src[i];
}
for (i = 0; i < length; i++) {
/* zmw_tx_buf_writeb(dev, buf, offset+i, src[i]); */
*(u8_t *)((u8_t *)buf->data+offset+i) = src[i];
}
}
u16_t zfwStaAddIeWpaRsn(zdev_t* dev, zbuf_t* buf, u16_t offset, u8_t frameType)
u16_t zfwStaAddIeWpaRsn(zdev_t *dev, zbuf_t *buf, u16_t offset, u8_t frameType)
{
struct usbdrv_private *macp = dev->ml_priv;
//zm_msg1_mm(ZM_LV_0, "CWY - add wpaie content Length : ", macp->supIe[1]);
if (macp->supIe[1] != 0)
{
copyToIntTxBuffer(dev, buf, macp->supIe, offset, macp->supIe[1]+2);
//memcpy(buf->data[offset], macp->supIe, macp->supIe[1]+2);
offset += (macp->supIe[1]+2);
}
return offset;
struct usbdrv_private *macp = dev->ml_priv;
/* zm_msg1_mm(ZM_LV_0, "CWY - add wpaie content Length : "
* , macp->supIe[1]);
*/
if (macp->supIe[1] != 0) {
copyToIntTxBuffer(dev, buf, macp->supIe, offset,
macp->supIe[1]+2);
/* memcpy(buf->data[offset], macp->supIe, macp->supIe[1]+2);*/
offset += (macp->supIe[1]+2);
}
return offset;
}
/* Leave an empty line below to remove warning message on some compiler */
......@@ -30,159 +30,152 @@
#include <linux/netlink.h>
#include <net/iw_handler.h>
extern void zfLnxInitUsbTxQ(zdev_t* dev);
extern void zfLnxInitUsbRxQ(zdev_t* dev);
extern void zfLnxInitUsbTxQ(zdev_t *dev);
extern void zfLnxInitUsbRxQ(zdev_t *dev);
extern u32_t zfLnxSubmitRegInUrb(zdev_t *dev);
u32_t zfLnxUsbOut(zdev_t* dev, u8_t *hdr, u16_t hdrlen, u8_t *snap, u16_t snapLen,
u8_t *tail, u16_t tailLen, zbuf_t *buf, u16_t offset);
u32_t zfLnxUsbWriteReg(zdev_t* dev, u32_t* cmd, u16_t cmdLen);
u32_t zfLnxUsbOut(zdev_t *dev, u8_t *hdr, u16_t hdrlen, u8_t *snap,
u16_t snapLen, u8_t *tail, u16_t tailLen, zbuf_t *buf,
u16_t offset);
u32_t zfLnxUsbWriteReg(zdev_t *dev, u32_t *cmd, u16_t cmdLen);
void zfwUsbRegisterCallBack(zdev_t* dev, struct zfCbUsbFuncTbl *zfUsbFunc) {
struct usbdrv_private *macp = dev->ml_priv;
void zfwUsbRegisterCallBack(zdev_t *dev, struct zfCbUsbFuncTbl *zfUsbFunc)
{
struct usbdrv_private *macp = dev->ml_priv;
macp->usbCbFunctions.zfcbUsbRecv = zfUsbFunc->zfcbUsbRecv;
macp->usbCbFunctions.zfcbUsbRegIn = zfUsbFunc->zfcbUsbRegIn;
macp->usbCbFunctions.zfcbUsbOutComplete = zfUsbFunc->zfcbUsbOutComplete;
macp->usbCbFunctions.zfcbUsbRecv = zfUsbFunc->zfcbUsbRecv;
macp->usbCbFunctions.zfcbUsbRegIn = zfUsbFunc->zfcbUsbRegIn;
macp->usbCbFunctions.zfcbUsbOutComplete = zfUsbFunc->zfcbUsbOutComplete;
return;
return;
}
u32_t zfwUsbGetFreeTxQSize(zdev_t* dev)
u32_t zfwUsbGetFreeTxQSize(zdev_t *dev)
{
struct usbdrv_private *macp = dev->ml_priv;
u32_t freeTxQSize;
unsigned long irqFlag;
//zmw_declare_for_critical_section();
struct usbdrv_private *macp = dev->ml_priv;
u32_t freeTxQSize;
unsigned long irqFlag;
/* zmw_declare_for_critical_section(); */
//zmw_enter_critical_section(dev);
spin_lock_irqsave(&macp->cs_lock, irqFlag);
/* zmw_enter_critical_section(dev); */
spin_lock_irqsave(&macp->cs_lock, irqFlag);
freeTxQSize = ZM_MAX_TX_BUF_NUM - macp->TxBufCnt;
freeTxQSize = ZM_MAX_TX_BUF_NUM - macp->TxBufCnt;
//zmw_leave_critical_section(dev);
spin_unlock_irqrestore(&macp->cs_lock, irqFlag);
/* zmw_leave_critical_section(dev); */
spin_unlock_irqrestore(&macp->cs_lock, irqFlag);
return freeTxQSize;
return freeTxQSize;
}
u32_t zfwUsbGetMaxTxQSize(zdev_t* dev)
u32_t zfwUsbGetMaxTxQSize(zdev_t *dev)
{
return ZM_MAX_TX_BUF_NUM;
return ZM_MAX_TX_BUF_NUM;
}
u32_t zfwUsbEnableIntEpt(zdev_t *dev, u8_t endpt)
{
/* Initialize USB TxQ */
zfLnxInitUsbTxQ(dev);
/* Initialize USB TxQ */
zfLnxInitUsbTxQ(dev);
/* Initialize USB RxQ */
zfLnxInitUsbRxQ(dev);
/* Initialize USB RxQ */
zfLnxInitUsbRxQ(dev);
/* Initialize USB Register In URB */
//zfwUsbSubmitRegIn(dev);
/* Initialize USB Register In URB */
zfLnxSubmitRegInUrb(dev);
/* Initialize USB Register In URB */
/* zfwUsbSubmitRegIn(dev); */
/* Initialize USB Register In URB */
zfLnxSubmitRegInUrb(dev);
return 0;
return 0;
}
int zfwUsbEnableRxEpt(zdev_t* dev, u8_t endpt)
int zfwUsbEnableRxEpt(zdev_t *dev, u8_t endpt)
{
return 0;
return 0;
}
u32_t zfwUsbSubmitControl(zdev_t* dev, u8_t req, u16_t value, u16_t index, void *data, u32_t size)
u32_t zfwUsbSubmitControl(zdev_t *dev, u8_t req, u16_t value, u16_t index,
void *data, u32_t size)
{
int result = 0;
u32_t ret = 0;
struct usbdrv_private *macp = dev->ml_priv;
u8_t* buf;
if (size > 0)
{
buf = kmalloc(size, GFP_KERNEL);
memcpy(buf, (u8_t*)data, size);
}
else
{
buf = NULL;
}
int result = 0;
u32_t ret = 0;
struct usbdrv_private *macp = dev->ml_priv;
u8_t *buf;
if (size > 0) {
buf = kmalloc(size, GFP_KERNEL);
memcpy(buf, (u8_t *)data, size);
} else
buf = NULL;
#if 0
printk(KERN_ERR "req = 0x%02x\n", req);
printk(KERN_ERR "value = 0x%04x\n", value);
printk(KERN_ERR "index = 0x%04x\n", index);
printk(KERN_ERR "data = 0x%lx\n", (u32_t) data);
printk(KERN_ERR "size = %ld\n", size);
printk(KERN_ERR "req = 0x%02x\n", req);
printk(KERN_ERR "value = 0x%04x\n", value);
printk(KERN_ERR "index = 0x%04x\n", index);
printk(KERN_ERR "data = 0x%lx\n", (u32_t) data);
printk(KERN_ERR "size = %ld\n", size);
#endif
result = usb_control_msg(macp->udev, usb_sndctrlpipe(macp->udev, 0),
req, USB_DIR_OUT | 0x40, value, index, buf, size, HZ);
result = usb_control_msg(macp->udev, usb_sndctrlpipe(macp->udev, 0),
req, USB_DIR_OUT | 0x40, value, index, buf, size, HZ);
if (result < 0)
{
printk("zfwUsbSubmitControl() failed, result=0x%x\n", result);
ret = 1;
}
kfree(buf);
if (result < 0) {
printk(KERN_ERR "zfwUsbSubmitControl() failed, result = 0x%x\n",
result);
ret = 1;
}
kfree(buf);
return ret;
return ret;
}
void zfwUsbCmd(zdev_t* dev, u8_t endpt, u32_t* cmd, u16_t cmdLen)
void zfwUsbCmd(zdev_t *dev, u8_t endpt, u32_t *cmd, u16_t cmdLen)
{
struct usbdrv_private *macp = dev->ml_priv;
u32_t ret;
//MPUsbCommand(dev, endpt, cmd, cmdLen);
ret = zfLnxUsbWriteReg(dev, cmd, cmdLen);
/* if zfLnxUsbWriteReg() return error, free and allocate urb, resend again */
if (ret != 0)
{
usb_free_urb(macp->RegOutUrb);
macp->RegOutUrb = usb_alloc_urb(0, GFP_ATOMIC);
ret = zfLnxUsbWriteReg(dev, cmd, cmdLen);
}
struct usbdrv_private *macp = dev->ml_priv;
u32_t ret;
/* MPUsbCommand(dev, endpt, cmd, cmdLen); */
ret = zfLnxUsbWriteReg(dev, cmd, cmdLen);
/*
* if zfLnxUsbWriteReg() return error, free and allocate urb,
* resend again
*/
if (ret != 0) {
usb_free_urb(macp->RegOutUrb);
macp->RegOutUrb = usb_alloc_urb(0, GFP_ATOMIC);
ret = zfLnxUsbWriteReg(dev, cmd, cmdLen);
}
}
u32_t zfwUsbSend(zdev_t* dev, u8_t endpt, u8_t *hdr, u16_t hdrlen, u8_t *snap, u16_t snapLen,
u8_t *tail, u16_t tailLen, zbuf_t *buf, u16_t offset)
u32_t zfwUsbSend(zdev_t *dev, u8_t endpt, u8_t *hdr, u16_t hdrlen, u8_t *snap,
u16_t snapLen, u8_t *tail, u16_t tailLen,
zbuf_t *buf, u16_t offset)
{
u32_t status;
u32_t status;
#ifdef ZM_CONFIG_BIG_ENDIAN
u32_t ii = 0;
u16_t *pc = NULL;
pc = (u16_t *)hdr;
for(ii=0; ii<(hdrlen>>1); ii++)
{
pc[ii] = cpu_to_le16(pc[ii]);
}
pc = (u16_t *)snap;
for(ii=0; ii<(snapLen>>1); ii++)
{
pc[ii] = cpu_to_le16(pc[ii]);
}
pc = (u16_t *)tail;
for(ii=0; ii<(tailLen>>1); ii++)
{
pc[ii] = cpu_to_le16(pc[ii]);
}
u32_t ii = 0;
u16_t *pc = NULL;
pc = (u16_t *)hdr;
for (ii = 0; ii < (hdrlen >> 1); ii++)
pc[ii] = cpu_to_le16(pc[ii]);
pc = (u16_t *)snap;
for (ii = 0; ii < (snapLen >> 1); ii++)
pc[ii] = cpu_to_le16(pc[ii]);
pc = (u16_t *)tail;
for (ii = 0; ii < (tailLen>>1); ii++)
pc[ii] = cpu_to_le16(pc[ii]);
#endif
status = zfLnxUsbOut(dev, hdr, hdrlen, snap, snapLen, tail, tailLen, buf, offset);
if ( status == 0 )
{
return 0;
}
else
{
return 1;
}
status = zfLnxUsbOut(dev, hdr, hdrlen, snap, snapLen, tail, tailLen,
buf, offset);
if (status == 0)
return 0;
else
return 1;
}
/* Leave an empty line below to remove warning message on some compiler */
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment