Commit 17a941d8 authored by Muli Ben-Yehuda's avatar Muli Ben-Yehuda Committed by Linus Torvalds

[PATCH] x86_64: Use function pointers to call DMA mapping functions

AK: I hacked Muli's original patch a lot and there were a lot
of changes - all bugs are probably to blame on me now.
There were also some changes in the fall back behaviour
for swiotlb - in particular it doesn't try to use GFP_DMA
now anymore. Also all DMA mapping operations use the
same core dma_alloc_coherent code with proper fallbacks now.
And various other changes and cleanups.

Known problems: iommu=force swiotlb=force together breaks
                needs more testing.

This patch cleans up x86_64's DMA mapping dispatching code. Right now
we have three possible IOMMU types: AGP GART, swiotlb and nommu, and
in the future we will also have Xen's x86_64 swiotlb and other HW
IOMMUs for x86_64. In order to support all of them cleanly, this
patch:

- introduces a struct dma_mapping_ops with function pointers for each
  of the DMA mapping operations of gart (AMD HW IOMMU), swiotlb
  (software IOMMU) and nommu (no IOMMU).

- gets rid of:

  if (swiotlb)
      return swiotlb_xxx();

- PCI_DMA_BUS_IS_PHYS is now checked against the dma_ops being set
This makes swiotlb faster by avoiding double copying in some cases.
Signed-Off-By: default avatarMuli Ben-Yehuda <mulix@mulix.org>
Signed-Off-By: default avatarJon D. Mason <jdmason@us.ibm.com>
Signed-off-by: default avatarAndi Kleen <ak@suse.de>
Signed-off-by: default avatarLinus Torvalds <torvalds@osdl.org>
parent 8a6fdd3e
...@@ -351,32 +351,24 @@ config HPET_EMULATE_RTC ...@@ -351,32 +351,24 @@ config HPET_EMULATE_RTC
depends on HPET_TIMER && RTC=y depends on HPET_TIMER && RTC=y
config GART_IOMMU config GART_IOMMU
bool "IOMMU support" bool "K8 GART IOMMU support"
default y default y
select SWIOTLB
depends on PCI depends on PCI
help help
Support the IOMMU. Needed to run systems with more than 3GB of memory Support the IOMMU. Needed to run systems with more than 3GB of memory
properly with 32-bit PCI devices that do not support DAC (Double Address properly with 32-bit PCI devices that do not support DAC (Double Address
Cycle). The IOMMU can be turned off at runtime with the iommu=off parameter. Cycle). The IOMMU can be turned off at runtime with the iommu=off parameter.
Normally the kernel will take the right choice by itself. Normally the kernel will take the right choice by itself.
This option includes a driver for the AMD Opteron/Athlon64 IOMMU This option includes a driver for the AMD Opteron/Athlon64 northbridge IOMMU
and a software emulation used on some other systems. and a software emulation used on other systems.
If unsure, say Y. If unsure, say Y.
# need this always enabled with GART_IOMMU for the VIA workaround # need this always enabled with GART_IOMMU for the VIA workaround
config SWIOTLB config SWIOTLB
bool
depends on GART_IOMMU
default y
config DUMMY_IOMMU
bool bool
depends on !GART_IOMMU && !SWIOTLB
default y default y
help depends on GART_IOMMU
Don't use IOMMU code. This will cause problems when you have more than 4GB
of memory and any 32-bit devices. Don't turn on unless you know what you
are doing.
config X86_MCE config X86_MCE
bool "Machine check support" if EMBEDDED bool "Machine check support" if EMBEDDED
......
...@@ -8,7 +8,7 @@ obj-y := process.o signal.o entry.o traps.o irq.o \ ...@@ -8,7 +8,7 @@ obj-y := process.o signal.o entry.o traps.o irq.o \
ptrace.o time.o ioport.o ldt.o setup.o i8259.o sys_x86_64.o \ ptrace.o time.o ioport.o ldt.o setup.o i8259.o sys_x86_64.o \
x8664_ksyms.o i387.o syscall.o vsyscall.o \ x8664_ksyms.o i387.o syscall.o vsyscall.o \
setup64.o bootflag.o e820.o reboot.o quirks.o i8237.o \ setup64.o bootflag.o e820.o reboot.o quirks.o i8237.o \
dmi_scan.o dmi_scan.o pci-dma.o pci-nommu.o
obj-$(CONFIG_X86_MCE) += mce.o obj-$(CONFIG_X86_MCE) += mce.o
obj-$(CONFIG_X86_MCE_INTEL) += mce_intel.o obj-$(CONFIG_X86_MCE_INTEL) += mce_intel.o
...@@ -29,7 +29,7 @@ obj-$(CONFIG_SOFTWARE_SUSPEND) += suspend_asm.o ...@@ -29,7 +29,7 @@ obj-$(CONFIG_SOFTWARE_SUSPEND) += suspend_asm.o
obj-$(CONFIG_CPU_FREQ) += cpufreq/ obj-$(CONFIG_CPU_FREQ) += cpufreq/
obj-$(CONFIG_EARLY_PRINTK) += early_printk.o obj-$(CONFIG_EARLY_PRINTK) += early_printk.o
obj-$(CONFIG_GART_IOMMU) += pci-gart.o aperture.o obj-$(CONFIG_GART_IOMMU) += pci-gart.o aperture.o
obj-$(CONFIG_DUMMY_IOMMU) += pci-nommu.o pci-dma.o obj-$(CONFIG_SWIOTLB) += pci-swiotlb.o
obj-$(CONFIG_KPROBES) += kprobes.o obj-$(CONFIG_KPROBES) += kprobes.o
obj-$(CONFIG_X86_PM_TIMER) += pmtimer.o obj-$(CONFIG_X86_PM_TIMER) += pmtimer.o
......
...@@ -8,53 +8,259 @@ ...@@ -8,53 +8,259 @@
#include <linux/pci.h> #include <linux/pci.h>
#include <linux/module.h> #include <linux/module.h>
#include <asm/io.h> #include <asm/io.h>
#include <asm/proto.h>
/* Map a set of buffers described by scatterlist in streaming int iommu_merge __read_mostly = 0;
* mode for DMA. This is the scatter-gather version of the EXPORT_SYMBOL(iommu_merge);
* above pci_map_single interface. Here the scatter gather list
* elements are each tagged with the appropriate dma address dma_addr_t bad_dma_address __read_mostly;
* and length. They are obtained via sg_dma_{address,length}(SG). EXPORT_SYMBOL(bad_dma_address);
*
* NOTE: An implementation may be able to use a smaller number of /* This tells the BIO block layer to assume merging. Default to off
* DMA address/length pairs than there are SG table elements. because we cannot guarantee merging later. */
* (for example via virtual mapping capabilities) int iommu_bio_merge __read_mostly = 0;
* The routine returns the number of addr/length pairs actually EXPORT_SYMBOL(iommu_bio_merge);
* used, at most nents.
* int iommu_sac_force __read_mostly = 0;
* Device ownership issues as mentioned above for pci_map_single are EXPORT_SYMBOL(iommu_sac_force);
* the same here.
int no_iommu __read_mostly;
#ifdef CONFIG_IOMMU_DEBUG
int panic_on_overflow __read_mostly = 1;
int force_iommu __read_mostly = 1;
#else
int panic_on_overflow __read_mostly = 0;
int force_iommu __read_mostly= 0;
#endif
/* Dummy device used for NULL arguments (normally ISA). Better would
be probably a smaller DMA mask, but this is bug-to-bug compatible
to i386. */
struct device fallback_dev = {
.bus_id = "fallback device",
.coherent_dma_mask = 0xffffffff,
.dma_mask = &fallback_dev.coherent_dma_mask,
};
/* Allocate DMA memory on node near device */
noinline static void *
dma_alloc_pages(struct device *dev, gfp_t gfp, unsigned order)
{
struct page *page;
int node;
if (dev->bus == &pci_bus_type)
node = pcibus_to_node(to_pci_dev(dev)->bus);
else
node = numa_node_id();
page = alloc_pages_node(node, gfp, order);
return page ? page_address(page) : NULL;
}
/*
* Allocate memory for a coherent mapping.
*/ */
int dma_map_sg(struct device *hwdev, struct scatterlist *sg, void *
int nents, int direction) dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_handle,
gfp_t gfp)
{ {
int i; void *memory;
unsigned long dma_mask = 0;
BUG_ON(direction == DMA_NONE); u64 bus;
for (i = 0; i < nents; i++ ) {
struct scatterlist *s = &sg[i]; if (!dev)
BUG_ON(!s->page); dev = &fallback_dev;
s->dma_address = virt_to_bus(page_address(s->page) +s->offset); dma_mask = dev->coherent_dma_mask;
s->dma_length = s->length; if (dma_mask == 0)
dma_mask = 0xffffffff;
/* Kludge to make it bug-to-bug compatible with i386. i386
uses the normal dma_mask for alloc_coherent. */
dma_mask &= *dev->dma_mask;
/* Why <=? Even when the mask is smaller than 4GB it is often
larger than 16MB and in this case we have a chance of
finding fitting memory in the next higher zone first. If
not retry with true GFP_DMA. -AK */
if (dma_mask <= 0xffffffff)
gfp |= GFP_DMA32;
again:
memory = dma_alloc_pages(dev, gfp, get_order(size));
if (memory == NULL)
return NULL;
{
int high, mmu;
bus = virt_to_bus(memory);
high = (bus + size) >= dma_mask;
mmu = high;
if (force_iommu && !(gfp & GFP_DMA))
mmu = 1;
else if (high) {
free_pages((unsigned long)memory,
get_order(size));
/* Don't use the 16MB ZONE_DMA unless absolutely
needed. It's better to use remapping first. */
if (dma_mask < 0xffffffff && !(gfp & GFP_DMA)) {
gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
goto again;
}
if (dma_ops->alloc_coherent)
return dma_ops->alloc_coherent(dev, size,
dma_handle, gfp);
return NULL;
}
memset(memory, 0, size);
if (!mmu) {
*dma_handle = virt_to_bus(memory);
return memory;
}
}
if (dma_ops->alloc_coherent) {
free_pages((unsigned long)memory, get_order(size));
gfp &= ~(GFP_DMA|GFP_DMA32);
return dma_ops->alloc_coherent(dev, size, dma_handle, gfp);
}
if (dma_ops->map_simple) {
*dma_handle = dma_ops->map_simple(dev, memory,
size,
PCI_DMA_BIDIRECTIONAL);
if (*dma_handle != bad_dma_address)
return memory;
} }
return nents;
}
EXPORT_SYMBOL(dma_map_sg); if (panic_on_overflow)
panic("dma_alloc_coherent: IOMMU overflow by %lu bytes\n",size);
free_pages((unsigned long)memory, get_order(size));
return NULL;
}
EXPORT_SYMBOL(dma_alloc_coherent);
/* Unmap a set of streaming mode DMA translations. /*
* Again, cpu read rules concerning calls here are the same as for * Unmap coherent memory.
* pci_unmap_single() above. * The caller must ensure that the device has finished accessing the mapping.
*/ */
void dma_unmap_sg(struct device *dev, struct scatterlist *sg, void dma_free_coherent(struct device *dev, size_t size,
int nents, int dir) void *vaddr, dma_addr_t bus)
{
if (dma_ops->unmap_single)
dma_ops->unmap_single(dev, bus, size, 0);
free_pages((unsigned long)vaddr, get_order(size));
}
EXPORT_SYMBOL(dma_free_coherent);
int dma_supported(struct device *dev, u64 mask)
{
if (dma_ops->dma_supported)
return dma_ops->dma_supported(dev, mask);
/* Copied from i386. Doesn't make much sense, because it will
only work for pci_alloc_coherent.
The caller just has to use GFP_DMA in this case. */
if (mask < 0x00ffffff)
return 0;
/* Tell the device to use SAC when IOMMU force is on. This
allows the driver to use cheaper accesses in some cases.
Problem with this is that if we overflow the IOMMU area and
return DAC as fallback address the device may not handle it
correctly.
As a special case some controllers have a 39bit address
mode that is as efficient as 32bit (aic79xx). Don't force
SAC for these. Assume all masks <= 40 bits are of this
type. Normally this doesn't make any difference, but gives
more gentle handling of IOMMU overflow. */
if (iommu_sac_force && (mask >= 0xffffffffffULL)) {
printk(KERN_INFO "%s: Force SAC with mask %Lx\n", dev->bus_id,mask);
return 0;
}
return 1;
}
EXPORT_SYMBOL(dma_supported);
int dma_set_mask(struct device *dev, u64 mask)
{ {
int i; if (!dev->dma_mask || !dma_supported(dev, mask))
for (i = 0; i < nents; i++) { return -EIO;
struct scatterlist *s = &sg[i]; *dev->dma_mask = mask;
BUG_ON(s->page == NULL); return 0;
BUG_ON(s->dma_address == 0);
dma_unmap_single(dev, s->dma_address, s->dma_length, dir);
}
} }
EXPORT_SYMBOL(dma_set_mask);
/* iommu=[size][,noagp][,off][,force][,noforce][,leak][,memaper[=order]][,merge]
[,forcesac][,fullflush][,nomerge][,biomerge]
size set size of iommu (in bytes)
noagp don't initialize the AGP driver and use full aperture.
off don't use the IOMMU
leak turn on simple iommu leak tracing (only when CONFIG_IOMMU_LEAK is on)
memaper[=order] allocate an own aperture over RAM with size 32MB^order.
noforce don't force IOMMU usage. Default.
force Force IOMMU.
merge Do lazy merging. This may improve performance on some block devices.
Implies force (experimental)
biomerge Do merging at the BIO layer. This is more efficient than merge,
but should be only done with very big IOMMUs. Implies merge,force.
nomerge Don't do SG merging.
forcesac For SAC mode for masks <40bits (experimental)
fullflush Flush IOMMU on each allocation (default)
nofullflush Don't use IOMMU fullflush
allowed overwrite iommu off workarounds for specific chipsets.
soft Use software bounce buffering (default for Intel machines)
noaperture Don't touch the aperture for AGP.
*/
__init int iommu_setup(char *p)
{
iommu_merge = 1;
EXPORT_SYMBOL(dma_unmap_sg); while (*p) {
if (!strncmp(p,"off",3))
no_iommu = 1;
/* gart_parse_options has more force support */
if (!strncmp(p,"force",5))
force_iommu = 1;
if (!strncmp(p,"noforce",7)) {
iommu_merge = 0;
force_iommu = 0;
}
if (!strncmp(p, "biomerge",8)) {
iommu_bio_merge = 4096;
iommu_merge = 1;
force_iommu = 1;
}
if (!strncmp(p, "panic",5))
panic_on_overflow = 1;
if (!strncmp(p, "nopanic",7))
panic_on_overflow = 0;
if (!strncmp(p, "merge",5)) {
iommu_merge = 1;
force_iommu = 1;
}
if (!strncmp(p, "nomerge",7))
iommu_merge = 0;
if (!strncmp(p, "forcesac",8))
iommu_sac_force = 1;
#ifdef CONFIG_SWIOTLB
if (!strncmp(p, "soft",4))
swiotlb = 1;
#endif
#ifdef CONFIG_GART_IOMMU
gart_parse_options(p);
#endif
p += strcspn(p, ",");
if (*p == ',')
++p;
}
return 1;
}
...@@ -30,8 +30,8 @@ ...@@ -30,8 +30,8 @@
#include <asm/proto.h> #include <asm/proto.h>
#include <asm/cacheflush.h> #include <asm/cacheflush.h>
#include <asm/kdebug.h> #include <asm/kdebug.h>
#include <asm/swiotlb.h>
dma_addr_t bad_dma_address; #include <asm/dma.h>
unsigned long iommu_bus_base; /* GART remapping area (physical) */ unsigned long iommu_bus_base; /* GART remapping area (physical) */
static unsigned long iommu_size; /* size of remapping area bytes */ static unsigned long iommu_size; /* size of remapping area bytes */
...@@ -39,18 +39,6 @@ static unsigned long iommu_pages; /* .. and in pages */ ...@@ -39,18 +39,6 @@ static unsigned long iommu_pages; /* .. and in pages */
u32 *iommu_gatt_base; /* Remapping table */ u32 *iommu_gatt_base; /* Remapping table */
int no_iommu;
static int no_agp;
#ifdef CONFIG_IOMMU_DEBUG
int panic_on_overflow = 1;
int force_iommu = 1;
#else
int panic_on_overflow = 0;
int force_iommu = 0;
#endif
int iommu_merge = 1;
int iommu_sac_force = 0;
/* If this is disabled the IOMMU will use an optimized flushing strategy /* If this is disabled the IOMMU will use an optimized flushing strategy
of only flushing when an mapping is reused. With it true the GART is flushed of only flushing when an mapping is reused. With it true the GART is flushed
for every mapping. Problem is that doing the lazy flush seems to trigger for every mapping. Problem is that doing the lazy flush seems to trigger
...@@ -58,10 +46,6 @@ int iommu_sac_force = 0; ...@@ -58,10 +46,6 @@ int iommu_sac_force = 0;
also seen with Qlogic at least). */ also seen with Qlogic at least). */
int iommu_fullflush = 1; int iommu_fullflush = 1;
/* This tells the BIO block layer to assume merging. Default to off
because we cannot guarantee merging later. */
int iommu_bio_merge = 0;
#define MAX_NB 8 #define MAX_NB 8
/* Allocation bitmap for the remapping area */ /* Allocation bitmap for the remapping area */
...@@ -102,16 +86,6 @@ AGPEXTERN __u32 *agp_gatt_table; ...@@ -102,16 +86,6 @@ AGPEXTERN __u32 *agp_gatt_table;
static unsigned long next_bit; /* protected by iommu_bitmap_lock */ static unsigned long next_bit; /* protected by iommu_bitmap_lock */
static int need_flush; /* global flush state. set for each gart wrap */ static int need_flush; /* global flush state. set for each gart wrap */
static dma_addr_t dma_map_area(struct device *dev, unsigned long phys_mem,
size_t size, int dir, int do_panic);
/* Dummy device used for NULL arguments (normally ISA). Better would
be probably a smaller DMA mask, but this is bug-to-bug compatible to i386. */
static struct device fallback_dev = {
.bus_id = "fallback device",
.coherent_dma_mask = 0xffffffff,
.dma_mask = &fallback_dev.coherent_dma_mask,
};
static unsigned long alloc_iommu(int size) static unsigned long alloc_iommu(int size)
{ {
...@@ -185,114 +159,7 @@ static void flush_gart(struct device *dev) ...@@ -185,114 +159,7 @@ static void flush_gart(struct device *dev)
spin_unlock_irqrestore(&iommu_bitmap_lock, flags); spin_unlock_irqrestore(&iommu_bitmap_lock, flags);
} }
/* Allocate DMA memory on node near device */
noinline
static void *dma_alloc_pages(struct device *dev, gfp_t gfp, unsigned order)
{
struct page *page;
int node;
if (dev->bus == &pci_bus_type)
node = pcibus_to_node(to_pci_dev(dev)->bus);
else
node = numa_node_id();
page = alloc_pages_node(node, gfp, order);
return page ? page_address(page) : NULL;
}
/*
* Allocate memory for a coherent mapping.
*/
void *
dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_handle,
gfp_t gfp)
{
void *memory;
unsigned long dma_mask = 0;
u64 bus;
if (!dev)
dev = &fallback_dev;
dma_mask = dev->coherent_dma_mask;
if (dma_mask == 0)
dma_mask = 0xffffffff;
/* Kludge to make it bug-to-bug compatible with i386. i386
uses the normal dma_mask for alloc_coherent. */
dma_mask &= *dev->dma_mask;
/* Why <=? Even when the mask is smaller than 4GB it is often larger
than 16MB and in this case we have a chance of finding fitting memory
in the next higher zone first. If not retry with true GFP_DMA. -AK */
if (dma_mask <= 0xffffffff)
gfp |= GFP_DMA32;
again:
memory = dma_alloc_pages(dev, gfp, get_order(size));
if (memory == NULL)
return NULL;
{
int high, mmu;
bus = virt_to_bus(memory);
high = (bus + size) >= dma_mask;
mmu = high;
if (force_iommu && !(gfp & GFP_DMA))
mmu = 1;
if (no_iommu || dma_mask < 0xffffffffUL) {
if (high) {
free_pages((unsigned long)memory,
get_order(size));
if (swiotlb) {
return
swiotlb_alloc_coherent(dev, size,
dma_handle,
gfp);
}
if (!(gfp & GFP_DMA)) {
gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
goto again;
}
return NULL;
}
mmu = 0;
}
memset(memory, 0, size);
if (!mmu) {
*dma_handle = virt_to_bus(memory);
return memory;
}
}
*dma_handle = dma_map_area(dev, bus, size, PCI_DMA_BIDIRECTIONAL, 0);
if (*dma_handle == bad_dma_address)
goto error;
flush_gart(dev);
return memory;
error:
if (panic_on_overflow)
panic("dma_alloc_coherent: IOMMU overflow by %lu bytes\n", size);
free_pages((unsigned long)memory, get_order(size));
return NULL;
}
/*
* Unmap coherent memory.
* The caller must ensure that the device has finished accessing the mapping.
*/
void dma_free_coherent(struct device *dev, size_t size,
void *vaddr, dma_addr_t bus)
{
if (swiotlb) {
swiotlb_free_coherent(dev, size, vaddr, bus);
return;
}
dma_unmap_single(dev, bus, size, 0);
free_pages((unsigned long)vaddr, get_order(size));
}
#ifdef CONFIG_IOMMU_LEAK #ifdef CONFIG_IOMMU_LEAK
...@@ -326,7 +193,7 @@ void dump_leak(void) ...@@ -326,7 +193,7 @@ void dump_leak(void)
#define CLEAR_LEAK(x) #define CLEAR_LEAK(x)
#endif #endif
static void iommu_full(struct device *dev, size_t size, int dir, int do_panic) static void iommu_full(struct device *dev, size_t size, int dir)
{ {
/* /*
* Ran out of IOMMU space for this operation. This is very bad. * Ran out of IOMMU space for this operation. This is very bad.
...@@ -342,11 +209,11 @@ static void iommu_full(struct device *dev, size_t size, int dir, int do_panic) ...@@ -342,11 +209,11 @@ static void iommu_full(struct device *dev, size_t size, int dir, int do_panic)
"PCI-DMA: Out of IOMMU space for %lu bytes at device %s\n", "PCI-DMA: Out of IOMMU space for %lu bytes at device %s\n",
size, dev->bus_id); size, dev->bus_id);
if (size > PAGE_SIZE*EMERGENCY_PAGES && do_panic) { if (size > PAGE_SIZE*EMERGENCY_PAGES) {
if (dir == PCI_DMA_FROMDEVICE || dir == PCI_DMA_BIDIRECTIONAL) if (dir == PCI_DMA_FROMDEVICE || dir == PCI_DMA_BIDIRECTIONAL)
panic("PCI-DMA: Memory would be corrupted\n"); panic("PCI-DMA: Memory would be corrupted\n");
if (dir == PCI_DMA_TODEVICE || dir == PCI_DMA_BIDIRECTIONAL) if (dir == PCI_DMA_TODEVICE || dir == PCI_DMA_BIDIRECTIONAL)
panic("PCI-DMA: Random memory would be DMAed\n"); panic(KERN_ERR "PCI-DMA: Random memory would be DMAed\n");
} }
#ifdef CONFIG_IOMMU_LEAK #ifdef CONFIG_IOMMU_LEAK
...@@ -385,8 +252,8 @@ static inline int nonforced_iommu(struct device *dev, unsigned long addr, size_t ...@@ -385,8 +252,8 @@ static inline int nonforced_iommu(struct device *dev, unsigned long addr, size_t
/* Map a single continuous physical area into the IOMMU. /* Map a single continuous physical area into the IOMMU.
* Caller needs to check if the iommu is needed and flush. * Caller needs to check if the iommu is needed and flush.
*/ */
static dma_addr_t dma_map_area(struct device *dev, unsigned long phys_mem, static dma_addr_t dma_map_area(struct device *dev, dma_addr_t phys_mem,
size_t size, int dir, int do_panic) size_t size, int dir)
{ {
unsigned long npages = to_pages(phys_mem, size); unsigned long npages = to_pages(phys_mem, size);
unsigned long iommu_page = alloc_iommu(npages); unsigned long iommu_page = alloc_iommu(npages);
...@@ -396,7 +263,7 @@ static dma_addr_t dma_map_area(struct device *dev, unsigned long phys_mem, ...@@ -396,7 +263,7 @@ static dma_addr_t dma_map_area(struct device *dev, unsigned long phys_mem,
return phys_mem; return phys_mem;
if (panic_on_overflow) if (panic_on_overflow)
panic("dma_map_area overflow %lu bytes\n", size); panic("dma_map_area overflow %lu bytes\n", size);
iommu_full(dev, size, dir, do_panic); iommu_full(dev, size, dir);
return bad_dma_address; return bad_dma_address;
} }
...@@ -408,15 +275,21 @@ static dma_addr_t dma_map_area(struct device *dev, unsigned long phys_mem, ...@@ -408,15 +275,21 @@ static dma_addr_t dma_map_area(struct device *dev, unsigned long phys_mem,
return iommu_bus_base + iommu_page*PAGE_SIZE + (phys_mem & ~PAGE_MASK); return iommu_bus_base + iommu_page*PAGE_SIZE + (phys_mem & ~PAGE_MASK);
} }
static dma_addr_t gart_map_simple(struct device *dev, char *buf,
size_t size, int dir)
{
dma_addr_t map = dma_map_area(dev, virt_to_bus(buf), size, dir);
flush_gart(dev);
return map;
}
/* Map a single area into the IOMMU */ /* Map a single area into the IOMMU */
dma_addr_t dma_map_single(struct device *dev, void *addr, size_t size, int dir) dma_addr_t gart_map_single(struct device *dev, void *addr, size_t size, int dir)
{ {
unsigned long phys_mem, bus; unsigned long phys_mem, bus;
BUG_ON(dir == DMA_NONE); BUG_ON(dir == DMA_NONE);
if (swiotlb)
return swiotlb_map_single(dev,addr,size,dir);
if (!dev) if (!dev)
dev = &fallback_dev; dev = &fallback_dev;
...@@ -424,10 +297,24 @@ dma_addr_t dma_map_single(struct device *dev, void *addr, size_t size, int dir) ...@@ -424,10 +297,24 @@ dma_addr_t dma_map_single(struct device *dev, void *addr, size_t size, int dir)
if (!need_iommu(dev, phys_mem, size)) if (!need_iommu(dev, phys_mem, size))
return phys_mem; return phys_mem;
bus = dma_map_area(dev, phys_mem, size, dir, 1); bus = gart_map_simple(dev, addr, size, dir);
flush_gart(dev);
return bus; return bus;
} }
/*
* Wrapper for pci_unmap_single working with scatterlists.
*/
void gart_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, int dir)
{
int i;
for (i = 0; i < nents; i++) {
struct scatterlist *s = &sg[i];
if (!s->dma_length || !s->length)
break;
dma_unmap_single(dev, s->dma_address, s->dma_length, dir);
}
}
/* Fallback for dma_map_sg in case of overflow */ /* Fallback for dma_map_sg in case of overflow */
static int dma_map_sg_nonforce(struct device *dev, struct scatterlist *sg, static int dma_map_sg_nonforce(struct device *dev, struct scatterlist *sg,
...@@ -443,10 +330,10 @@ static int dma_map_sg_nonforce(struct device *dev, struct scatterlist *sg, ...@@ -443,10 +330,10 @@ static int dma_map_sg_nonforce(struct device *dev, struct scatterlist *sg,
struct scatterlist *s = &sg[i]; struct scatterlist *s = &sg[i];
unsigned long addr = page_to_phys(s->page) + s->offset; unsigned long addr = page_to_phys(s->page) + s->offset;
if (nonforced_iommu(dev, addr, s->length)) { if (nonforced_iommu(dev, addr, s->length)) {
addr = dma_map_area(dev, addr, s->length, dir, 0); addr = dma_map_area(dev, addr, s->length, dir);
if (addr == bad_dma_address) { if (addr == bad_dma_address) {
if (i > 0) if (i > 0)
dma_unmap_sg(dev, sg, i, dir); gart_unmap_sg(dev, sg, i, dir);
nents = 0; nents = 0;
sg[0].dma_length = 0; sg[0].dma_length = 0;
break; break;
...@@ -515,7 +402,7 @@ static inline int dma_map_cont(struct scatterlist *sg, int start, int stopat, ...@@ -515,7 +402,7 @@ static inline int dma_map_cont(struct scatterlist *sg, int start, int stopat,
* DMA map all entries in a scatterlist. * DMA map all entries in a scatterlist.
* Merge chunks that have page aligned sizes into a continuous mapping. * Merge chunks that have page aligned sizes into a continuous mapping.
*/ */
int dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, int dir) int gart_map_sg(struct device *dev, struct scatterlist *sg, int nents, int dir)
{ {
int i; int i;
int out; int out;
...@@ -527,8 +414,6 @@ int dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, int dir) ...@@ -527,8 +414,6 @@ int dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, int dir)
if (nents == 0) if (nents == 0)
return 0; return 0;
if (swiotlb)
return swiotlb_map_sg(dev,sg,nents,dir);
if (!dev) if (!dev)
dev = &fallback_dev; dev = &fallback_dev;
...@@ -571,13 +456,13 @@ int dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, int dir) ...@@ -571,13 +456,13 @@ int dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, int dir)
error: error:
flush_gart(NULL); flush_gart(NULL);
dma_unmap_sg(dev, sg, nents, dir); gart_unmap_sg(dev, sg, nents, dir);
/* When it was forced try again unforced */ /* When it was forced try again unforced */
if (force_iommu) if (force_iommu)
return dma_map_sg_nonforce(dev, sg, nents, dir); return dma_map_sg_nonforce(dev, sg, nents, dir);
if (panic_on_overflow) if (panic_on_overflow)
panic("dma_map_sg: overflow on %lu pages\n", pages); panic("dma_map_sg: overflow on %lu pages\n", pages);
iommu_full(dev, pages << PAGE_SHIFT, dir, 0); iommu_full(dev, pages << PAGE_SHIFT, dir);
for (i = 0; i < nents; i++) for (i = 0; i < nents; i++)
sg[i].dma_address = bad_dma_address; sg[i].dma_address = bad_dma_address;
return 0; return 0;
...@@ -586,18 +471,13 @@ error: ...@@ -586,18 +471,13 @@ error:
/* /*
* Free a DMA mapping. * Free a DMA mapping.
*/ */
void dma_unmap_single(struct device *dev, dma_addr_t dma_addr, void gart_unmap_single(struct device *dev, dma_addr_t dma_addr,
size_t size, int direction) size_t size, int direction)
{ {
unsigned long iommu_page; unsigned long iommu_page;
int npages; int npages;
int i; int i;
if (swiotlb) {
swiotlb_unmap_single(dev,dma_addr,size,direction);
return;
}
if (dma_addr < iommu_bus_base + EMERGENCY_PAGES*PAGE_SIZE || if (dma_addr < iommu_bus_base + EMERGENCY_PAGES*PAGE_SIZE ||
dma_addr >= iommu_bus_base + iommu_size) dma_addr >= iommu_bus_base + iommu_size)
return; return;
...@@ -610,68 +490,7 @@ void dma_unmap_single(struct device *dev, dma_addr_t dma_addr, ...@@ -610,68 +490,7 @@ void dma_unmap_single(struct device *dev, dma_addr_t dma_addr,
free_iommu(iommu_page, npages); free_iommu(iommu_page, npages);
} }
/* static int no_agp;
* Wrapper for pci_unmap_single working with scatterlists.
*/
void dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, int dir)
{
int i;
if (swiotlb) {
swiotlb_unmap_sg(dev,sg,nents,dir);
return;
}
for (i = 0; i < nents; i++) {
struct scatterlist *s = &sg[i];
if (!s->dma_length || !s->length)
break;
dma_unmap_single(dev, s->dma_address, s->dma_length, dir);
}
}
int dma_supported(struct device *dev, u64 mask)
{
/* Copied from i386. Doesn't make much sense, because it will
only work for pci_alloc_coherent.
The caller just has to use GFP_DMA in this case. */
if (mask < 0x00ffffff)
return 0;
/* Tell the device to use SAC when IOMMU force is on.
This allows the driver to use cheaper accesses in some cases.
Problem with this is that if we overflow the IOMMU area
and return DAC as fallback address the device may not handle it correctly.
As a special case some controllers have a 39bit address mode
that is as efficient as 32bit (aic79xx). Don't force SAC for these.
Assume all masks <= 40 bits are of this type. Normally this doesn't
make any difference, but gives more gentle handling of IOMMU overflow. */
if (iommu_sac_force && (mask >= 0xffffffffffULL)) {
printk(KERN_INFO "%s: Force SAC with mask %Lx\n", dev->bus_id,mask);
return 0;
}
return 1;
}
int dma_get_cache_alignment(void)
{
return boot_cpu_data.x86_clflush_size;
}
EXPORT_SYMBOL(dma_unmap_sg);
EXPORT_SYMBOL(dma_map_sg);
EXPORT_SYMBOL(dma_map_single);
EXPORT_SYMBOL(dma_unmap_single);
EXPORT_SYMBOL(dma_supported);
EXPORT_SYMBOL(no_iommu);
EXPORT_SYMBOL(force_iommu);
EXPORT_SYMBOL(bad_dma_address);
EXPORT_SYMBOL(iommu_bio_merge);
EXPORT_SYMBOL(iommu_sac_force);
EXPORT_SYMBOL(dma_get_cache_alignment);
EXPORT_SYMBOL(dma_alloc_coherent);
EXPORT_SYMBOL(dma_free_coherent);
static __init unsigned long check_iommu_size(unsigned long aper, u64 aper_size) static __init unsigned long check_iommu_size(unsigned long aper, u64 aper_size)
{ {
...@@ -778,6 +597,21 @@ static __init int init_k8_gatt(struct agp_kern_info *info) ...@@ -778,6 +597,21 @@ static __init int init_k8_gatt(struct agp_kern_info *info)
extern int agp_amd64_init(void); extern int agp_amd64_init(void);
static struct dma_mapping_ops gart_dma_ops = {
.mapping_error = NULL,
.map_single = gart_map_single,
.map_simple = gart_map_simple,
.unmap_single = gart_unmap_single,
.sync_single_for_cpu = NULL,
.sync_single_for_device = NULL,
.sync_single_range_for_cpu = NULL,
.sync_single_range_for_device = NULL,
.sync_sg_for_cpu = NULL,
.sync_sg_for_device = NULL,
.map_sg = gart_map_sg,
.unmap_sg = gart_unmap_sg,
};
static int __init pci_iommu_init(void) static int __init pci_iommu_init(void)
{ {
struct agp_kern_info info; struct agp_kern_info info;
...@@ -799,16 +633,15 @@ static int __init pci_iommu_init(void) ...@@ -799,16 +633,15 @@ static int __init pci_iommu_init(void)
if (swiotlb) { if (swiotlb) {
no_iommu = 1; no_iommu = 1;
printk(KERN_INFO "PCI-DMA: Using software bounce buffering for IO (SWIOTLB)\n");
return -1; return -1;
} }
if (no_iommu || if (no_iommu ||
(!force_iommu && (end_pfn-1) < 0xffffffff>>PAGE_SHIFT) || (!force_iommu && end_pfn <= MAX_DMA32_PFN) ||
!iommu_aperture || !iommu_aperture ||
(no_agp && init_k8_gatt(&info) < 0)) { (no_agp && init_k8_gatt(&info) < 0)) {
printk(KERN_INFO "PCI-DMA: Disabling IOMMU.\n");
no_iommu = 1; no_iommu = 1;
no_iommu_init();
return -1; return -1;
} }
...@@ -885,100 +718,50 @@ static int __init pci_iommu_init(void) ...@@ -885,100 +718,50 @@ static int __init pci_iommu_init(void)
flush_gart(NULL); flush_gart(NULL);
printk(KERN_INFO "PCI-DMA: using GART IOMMU.\n");
dma_ops = &gart_dma_ops;
return 0; return 0;
} }
/* Must execute after PCI subsystem */ /* Must execute after PCI subsystem */
fs_initcall(pci_iommu_init); fs_initcall(pci_iommu_init);
/* iommu=[size][,noagp][,off][,force][,noforce][,leak][,memaper[=order]][,merge] void gart_parse_options(char *p)
[,forcesac][,fullflush][,nomerge][,biomerge] {
size set size of iommu (in bytes) int arg;
noagp don't initialize the AGP driver and use full aperture.
off don't use the IOMMU
leak turn on simple iommu leak tracing (only when CONFIG_IOMMU_LEAK is on)
memaper[=order] allocate an own aperture over RAM with size 32MB^order.
noforce don't force IOMMU usage. Default.
force Force IOMMU.
merge Do lazy merging. This may improve performance on some block devices.
Implies force (experimental)
biomerge Do merging at the BIO layer. This is more efficient than merge,
but should be only done with very big IOMMUs. Implies merge,force.
nomerge Don't do SG merging.
forcesac For SAC mode for masks <40bits (experimental)
fullflush Flush IOMMU on each allocation (default)
nofullflush Don't use IOMMU fullflush
allowed overwrite iommu off workarounds for specific chipsets.
soft Use software bounce buffering (default for Intel machines)
noaperture Don't touch the aperture for AGP.
*/
__init int iommu_setup(char *p)
{
int arg;
while (*p) {
if (!strncmp(p,"noagp",5))
no_agp = 1;
if (!strncmp(p,"off",3))
no_iommu = 1;
if (!strncmp(p,"force",5)) {
force_iommu = 1;
iommu_aperture_allowed = 1;
}
if (!strncmp(p,"allowed",7))
iommu_aperture_allowed = 1;
if (!strncmp(p,"noforce",7)) {
iommu_merge = 0;
force_iommu = 0;
}
if (!strncmp(p, "memaper", 7)) {
fallback_aper_force = 1;
p += 7;
if (*p == '=') {
++p;
if (get_option(&p, &arg))
fallback_aper_order = arg;
}
}
if (!strncmp(p, "biomerge",8)) {
iommu_bio_merge = 4096;
iommu_merge = 1;
force_iommu = 1;
}
if (!strncmp(p, "panic",5))
panic_on_overflow = 1;
if (!strncmp(p, "nopanic",7))
panic_on_overflow = 0;
if (!strncmp(p, "merge",5)) {
iommu_merge = 1;
force_iommu = 1;
}
if (!strncmp(p, "nomerge",7))
iommu_merge = 0;
if (!strncmp(p, "forcesac",8))
iommu_sac_force = 1;
if (!strncmp(p, "fullflush",8))
iommu_fullflush = 1;
if (!strncmp(p, "nofullflush",11))
iommu_fullflush = 0;
if (!strncmp(p, "soft",4))
swiotlb = 1;
if (!strncmp(p, "noaperture",10))
fix_aperture = 0;
#ifdef CONFIG_IOMMU_LEAK #ifdef CONFIG_IOMMU_LEAK
if (!strncmp(p,"leak",4)) { if (!strncmp(p,"leak",4)) {
leak_trace = 1; leak_trace = 1;
p += 4; p += 4;
if (*p == '=') ++p; if (*p == '=') ++p;
if (isdigit(*p) && get_option(&p, &arg)) if (isdigit(*p) && get_option(&p, &arg))
iommu_leak_pages = arg; iommu_leak_pages = arg;
} else }
#endif #endif
if (isdigit(*p) && get_option(&p, &arg)) if (isdigit(*p) && get_option(&p, &arg))
iommu_size = arg; iommu_size = arg;
p += strcspn(p, ","); if (!strncmp(p, "fullflush",8))
if (*p == ',') iommu_fullflush = 1;
++p; if (!strncmp(p, "nofullflush",11))
} iommu_fullflush = 0;
return 1; if (!strncmp(p,"noagp",5))
} no_agp = 1;
if (!strncmp(p, "noaperture",10))
fix_aperture = 0;
/* duplicated from pci-dma.c */
if (!strncmp(p,"force",5))
iommu_aperture_allowed = 1;
if (!strncmp(p,"allowed",7))
iommu_aperture_allowed = 1;
if (!strncmp(p, "memaper", 7)) {
fallback_aper_force = 1;
p += 7;
if (*p == '=') {
++p;
if (get_option(&p, &arg))
fallback_aper_order = arg;
}
}
}
...@@ -6,89 +6,93 @@ ...@@ -6,89 +6,93 @@
#include <linux/string.h> #include <linux/string.h>
#include <asm/proto.h> #include <asm/proto.h>
#include <asm/processor.h> #include <asm/processor.h>
#include <asm/dma.h>
int iommu_merge = 0; static int
EXPORT_SYMBOL(iommu_merge); check_addr(char *name, struct device *hwdev, dma_addr_t bus, size_t size)
dma_addr_t bad_dma_address;
EXPORT_SYMBOL(bad_dma_address);
int iommu_bio_merge = 0;
EXPORT_SYMBOL(iommu_bio_merge);
int iommu_sac_force = 0;
EXPORT_SYMBOL(iommu_sac_force);
/*
* Dummy IO MMU functions
*/
void *dma_alloc_coherent(struct device *hwdev, size_t size,
dma_addr_t *dma_handle, gfp_t gfp)
{ {
void *ret; if (hwdev && bus + size > *hwdev->dma_mask) {
u64 mask; printk(KERN_ERR
int order = get_order(size); "nommu_%s: overflow %Lx+%lu of device mask %Lx\n",
name, (long long)bus, size, (long long)*hwdev->dma_mask);
if (hwdev) return 0;
mask = hwdev->coherent_dma_mask & *hwdev->dma_mask;
else
mask = 0xffffffff;
for (;;) {
ret = (void *)__get_free_pages(gfp, order);
if (ret == NULL)
return NULL;
*dma_handle = virt_to_bus(ret);
if ((*dma_handle & ~mask) == 0)
break;
free_pages((unsigned long)ret, order);
if (gfp & GFP_DMA)
return NULL;
gfp |= GFP_DMA;
} }
return 1;
}
memset(ret, 0, size); static dma_addr_t
return ret; nommu_map_single(struct device *hwdev, void *ptr, size_t size,
int direction)
{
dma_addr_t bus = virt_to_bus(ptr);
if (!check_addr("map_single", hwdev, bus, size))
return bad_dma_address;
return bus;
} }
EXPORT_SYMBOL(dma_alloc_coherent);
void dma_free_coherent(struct device *hwdev, size_t size, void nommu_unmap_single(struct device *dev, dma_addr_t addr,size_t size,
void *vaddr, dma_addr_t dma_handle) int direction)
{ {
free_pages((unsigned long)vaddr, get_order(size));
} }
EXPORT_SYMBOL(dma_free_coherent);
int dma_supported(struct device *hwdev, u64 mask) /* Map a set of buffers described by scatterlist in streaming
* mode for DMA. This is the scatter-gather version of the
* above pci_map_single interface. Here the scatter gather list
* elements are each tagged with the appropriate dma address
* and length. They are obtained via sg_dma_{address,length}(SG).
*
* NOTE: An implementation may be able to use a smaller number of
* DMA address/length pairs than there are SG table elements.
* (for example via virtual mapping capabilities)
* The routine returns the number of addr/length pairs actually
* used, at most nents.
*
* Device ownership issues as mentioned above for pci_map_single are
* the same here.
*/
int nommu_map_sg(struct device *hwdev, struct scatterlist *sg,
int nents, int direction)
{ {
/* int i;
* we fall back to GFP_DMA when the mask isn't all 1s,
* so we can't guarantee allocations that must be
* within a tighter range than GFP_DMA..
* RED-PEN this won't work for pci_map_single. Caller has to
* use GFP_DMA in the first place.
*/
if (mask < 0x00ffffff)
return 0;
return 1; BUG_ON(direction == DMA_NONE);
} for (i = 0; i < nents; i++ ) {
EXPORT_SYMBOL(dma_supported); struct scatterlist *s = &sg[i];
BUG_ON(!s->page);
s->dma_address = virt_to_bus(page_address(s->page) +s->offset);
if (!check_addr("map_sg", hwdev, s->dma_address, s->length))
return 0;
s->dma_length = s->length;
}
return nents;
}
int dma_get_cache_alignment(void) /* Unmap a set of streaming mode DMA translations.
* Again, cpu read rules concerning calls here are the same as for
* pci_unmap_single() above.
*/
void nommu_unmap_sg(struct device *dev, struct scatterlist *sg,
int nents, int dir)
{ {
return boot_cpu_data.x86_clflush_size;
} }
EXPORT_SYMBOL(dma_get_cache_alignment);
static int __init check_ram(void) struct dma_mapping_ops nommu_dma_ops = {
{ .map_single = nommu_map_single,
if (end_pfn >= 0xffffffff>>PAGE_SHIFT) { .unmap_single = nommu_unmap_single,
printk( .map_sg = nommu_map_sg,
KERN_ERR "WARNING more than 4GB of memory but IOMMU not compiled in.\n" .unmap_sg = nommu_unmap_sg,
KERN_ERR "WARNING 32bit PCI may malfunction.\n"); .is_phys = 1,
} };
return 0;
}
__initcall(check_ram);
void __init no_iommu_init(void)
{
if (dma_ops)
return;
printk(KERN_INFO "PCI-DMA: Disabling IOMMU.\n");
dma_ops = &nommu_dma_ops;
if (end_pfn > MAX_DMA32_PFN) {
printk(KERN_ERR
"WARNING more than 4GB of memory but IOMMU disabled.\n"
KERN_ERR "WARNING 32bit PCI may malfunction.\n");
}
}
/* Glue code to lib/swiotlb.c */
#include <linux/pci.h>
#include <linux/cache.h>
#include <linux/module.h>
#include <asm/dma-mapping.h>
#include <asm/proto.h>
#include <asm/swiotlb.h>
#include <asm/dma.h>
int swiotlb __read_mostly;
EXPORT_SYMBOL(swiotlb);
struct dma_mapping_ops swiotlb_dma_ops = {
.mapping_error = swiotlb_dma_mapping_error,
.alloc_coherent = swiotlb_alloc_coherent,
.free_coherent = swiotlb_free_coherent,
.map_single = swiotlb_map_single,
.unmap_single = swiotlb_unmap_single,
.sync_single_for_cpu = swiotlb_sync_single_for_cpu,
.sync_single_for_device = swiotlb_sync_single_for_device,
.sync_single_range_for_cpu = swiotlb_sync_single_range_for_cpu,
.sync_single_range_for_device = swiotlb_sync_single_range_for_device,
.sync_sg_for_cpu = swiotlb_sync_sg_for_cpu,
.sync_sg_for_device = swiotlb_sync_sg_for_device,
.map_sg = swiotlb_map_sg,
.unmap_sg = swiotlb_unmap_sg,
.dma_supported = NULL,
};
void pci_swiotlb_init(void)
{
/* don't initialize swiotlb if iommu=off (no_iommu=1) */
if (!iommu_aperture && !no_iommu &&
(end_pfn > MAX_DMA32_PFN || force_iommu))
swiotlb = 1;
if (swiotlb) {
swiotlb_init();
printk(KERN_INFO "PCI-DMA: Using software bounce buffering for IO (SWIOTLB)\n");
dma_ops = &swiotlb_dma_ops;
}
}
...@@ -45,6 +45,7 @@ ...@@ -45,6 +45,7 @@
#include <linux/kexec.h> #include <linux/kexec.h>
#include <linux/cpufreq.h> #include <linux/cpufreq.h>
#include <linux/dmi.h> #include <linux/dmi.h>
#include <linux/dma-mapping.h>
#include <asm/mtrr.h> #include <asm/mtrr.h>
#include <asm/uaccess.h> #include <asm/uaccess.h>
...@@ -63,7 +64,9 @@ ...@@ -63,7 +64,9 @@
#include <asm/setup.h> #include <asm/setup.h>
#include <asm/mach_apic.h> #include <asm/mach_apic.h>
#include <asm/numa.h> #include <asm/numa.h>
#include <asm/swiotlb.h>
#include <asm/sections.h> #include <asm/sections.h>
#include <asm/gart-mapping.h>
/* /*
* Machine setup.. * Machine setup..
...@@ -88,11 +91,6 @@ int bootloader_type; ...@@ -88,11 +91,6 @@ int bootloader_type;
unsigned long saved_video_mode; unsigned long saved_video_mode;
#ifdef CONFIG_SWIOTLB
int swiotlb;
EXPORT_SYMBOL(swiotlb);
#endif
/* /*
* Setup options * Setup options
*/ */
...@@ -389,11 +387,9 @@ static __init void parse_cmdline_early (char ** cmdline_p) ...@@ -389,11 +387,9 @@ static __init void parse_cmdline_early (char ** cmdline_p)
numa_setup(from+5); numa_setup(from+5);
#endif #endif
#ifdef CONFIG_GART_IOMMU
if (!memcmp(from,"iommu=",6)) { if (!memcmp(from,"iommu=",6)) {
iommu_setup(from+6); iommu_setup(from+6);
} }
#endif
if (!memcmp(from,"oops=panic", 10)) if (!memcmp(from,"oops=panic", 10))
panic_on_oops = 1; panic_on_oops = 1;
......
...@@ -23,6 +23,7 @@ ...@@ -23,6 +23,7 @@
#include <linux/bootmem.h> #include <linux/bootmem.h>
#include <linux/proc_fs.h> #include <linux/proc_fs.h>
#include <linux/pci.h> #include <linux/pci.h>
#include <linux/dma-mapping.h>
#include <asm/processor.h> #include <asm/processor.h>
#include <asm/system.h> #include <asm/system.h>
...@@ -38,11 +39,16 @@ ...@@ -38,11 +39,16 @@
#include <asm/proto.h> #include <asm/proto.h>
#include <asm/smp.h> #include <asm/smp.h>
#include <asm/sections.h> #include <asm/sections.h>
#include <asm/dma-mapping.h>
#include <asm/swiotlb.h>
#ifndef Dprintk #ifndef Dprintk
#define Dprintk(x...) #define Dprintk(x...)
#endif #endif
struct dma_mapping_ops* dma_ops;
EXPORT_SYMBOL(dma_ops);
static unsigned long dma_reserve __initdata; static unsigned long dma_reserve __initdata;
DEFINE_PER_CPU(struct mmu_gather, mmu_gathers); DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
...@@ -423,12 +429,9 @@ void __init mem_init(void) ...@@ -423,12 +429,9 @@ void __init mem_init(void)
long codesize, reservedpages, datasize, initsize; long codesize, reservedpages, datasize, initsize;
#ifdef CONFIG_SWIOTLB #ifdef CONFIG_SWIOTLB
if (!iommu_aperture && pci_swiotlb_init();
((end_pfn-1) >= 0xffffffff>>PAGE_SHIFT || force_iommu))
swiotlb = 1;
if (swiotlb)
swiotlb_init();
#endif #endif
no_iommu_init();
/* How many end-of-memory variables you have, grandma! */ /* How many end-of-memory variables you have, grandma! */
max_low_pfn = end_pfn; max_low_pfn = end_pfn;
......
...@@ -12,155 +12,176 @@ ...@@ -12,155 +12,176 @@
#include <asm/io.h> #include <asm/io.h>
#include <asm/swiotlb.h> #include <asm/swiotlb.h>
extern dma_addr_t bad_dma_address; struct dma_mapping_ops {
#define dma_mapping_error(x) \ int (*mapping_error)(dma_addr_t dma_addr);
(swiotlb ? swiotlb_dma_mapping_error(x) : ((x) == bad_dma_address)) void* (*alloc_coherent)(struct device *dev, size_t size,
dma_addr_t *dma_handle, gfp_t gfp);
void *dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_handle, void (*free_coherent)(struct device *dev, size_t size,
gfp_t gfp); void *vaddr, dma_addr_t dma_handle);
void dma_free_coherent(struct device *dev, size_t size, void *vaddr, dma_addr_t (*map_single)(struct device *hwdev, void *ptr,
dma_addr_t dma_handle); size_t size, int direction);
/* like map_single, but doesn't check the device mask */
dma_addr_t (*map_simple)(struct device *hwdev, char *ptr,
size_t size, int direction);
void (*unmap_single)(struct device *dev, dma_addr_t addr,
size_t size, int direction);
void (*sync_single_for_cpu)(struct device *hwdev,
dma_addr_t dma_handle, size_t size,
int direction);
void (*sync_single_for_device)(struct device *hwdev,
dma_addr_t dma_handle, size_t size,
int direction);
void (*sync_single_range_for_cpu)(struct device *hwdev,
dma_addr_t dma_handle, unsigned long offset,
size_t size, int direction);
void (*sync_single_range_for_device)(struct device *hwdev,
dma_addr_t dma_handle, unsigned long offset,
size_t size, int direction);
void (*sync_sg_for_cpu)(struct device *hwdev,
struct scatterlist *sg, int nelems,
int direction);
void (*sync_sg_for_device)(struct device *hwdev,
struct scatterlist *sg, int nelems,
int direction);
int (*map_sg)(struct device *hwdev, struct scatterlist *sg,
int nents, int direction);
void (*unmap_sg)(struct device *hwdev,
struct scatterlist *sg, int nents,
int direction);
int (*dma_supported)(struct device *hwdev, u64 mask);
int is_phys;
};
#ifdef CONFIG_GART_IOMMU extern dma_addr_t bad_dma_address;
extern struct dma_mapping_ops* dma_ops;
extern int iommu_merge;
extern dma_addr_t dma_map_single(struct device *hwdev, void *ptr, size_t size, static inline int dma_mapping_error(dma_addr_t dma_addr)
int direction); {
extern void dma_unmap_single(struct device *dev, dma_addr_t addr,size_t size, if (dma_ops->mapping_error)
int direction); return dma_ops->mapping_error(dma_addr);
#else return (dma_addr == bad_dma_address);
}
/* No IOMMU */ extern void *dma_alloc_coherent(struct device *dev, size_t size,
dma_addr_t *dma_handle, gfp_t gfp);
extern void dma_free_coherent(struct device *dev, size_t size, void *vaddr,
dma_addr_t dma_handle);
static inline dma_addr_t dma_map_single(struct device *hwdev, void *ptr, static inline dma_addr_t
size_t size, int direction) dma_map_single(struct device *hwdev, void *ptr, size_t size,
int direction)
{ {
dma_addr_t addr; return dma_ops->map_single(hwdev, ptr, size, direction);
if (direction == DMA_NONE)
out_of_line_bug();
addr = virt_to_bus(ptr);
if ((addr+size) & ~*hwdev->dma_mask)
out_of_line_bug();
return addr;
} }
static inline void dma_unmap_single(struct device *hwdev, dma_addr_t dma_addr, static inline void
size_t size, int direction) dma_unmap_single(struct device *dev, dma_addr_t addr,size_t size,
int direction)
{ {
if (direction == DMA_NONE) dma_ops->unmap_single(dev, addr, size, direction);
out_of_line_bug();
/* Nothing to do */
} }
#endif
#define dma_map_page(dev,page,offset,size,dir) \ #define dma_map_page(dev,page,offset,size,dir) \
dma_map_single((dev), page_address(page)+(offset), (size), (dir)) dma_map_single((dev), page_address(page)+(offset), (size), (dir))
static inline void dma_sync_single_for_cpu(struct device *hwdev, #define dma_unmap_page dma_unmap_single
dma_addr_t dma_handle,
size_t size, int direction)
{
if (direction == DMA_NONE)
out_of_line_bug();
if (swiotlb)
return swiotlb_sync_single_for_cpu(hwdev,dma_handle,size,direction);
static inline void
dma_sync_single_for_cpu(struct device *hwdev, dma_addr_t dma_handle,
size_t size, int direction)
{
if (dma_ops->sync_single_for_cpu)
dma_ops->sync_single_for_cpu(hwdev, dma_handle, size,
direction);
flush_write_buffers(); flush_write_buffers();
} }
static inline void dma_sync_single_for_device(struct device *hwdev, static inline void
dma_addr_t dma_handle, dma_sync_single_for_device(struct device *hwdev, dma_addr_t dma_handle,
size_t size, int direction) size_t size, int direction)
{ {
if (direction == DMA_NONE) if (dma_ops->sync_single_for_device)
out_of_line_bug(); dma_ops->sync_single_for_device(hwdev, dma_handle, size,
direction);
if (swiotlb)
return swiotlb_sync_single_for_device(hwdev,dma_handle,size,direction);
flush_write_buffers(); flush_write_buffers();
} }
static inline void dma_sync_single_range_for_cpu(struct device *hwdev, static inline void
dma_addr_t dma_handle, dma_sync_single_range_for_cpu(struct device *hwdev, dma_addr_t dma_handle,
unsigned long offset, unsigned long offset, size_t size, int direction)
size_t size, int direction)
{ {
if (direction == DMA_NONE) if (dma_ops->sync_single_range_for_cpu) {
out_of_line_bug(); dma_ops->sync_single_range_for_cpu(hwdev, dma_handle, offset, size, direction);
}
if (swiotlb)
return swiotlb_sync_single_range_for_cpu(hwdev,dma_handle,offset,size,direction);
flush_write_buffers(); flush_write_buffers();
} }
static inline void dma_sync_single_range_for_device(struct device *hwdev, static inline void
dma_addr_t dma_handle, dma_sync_single_range_for_device(struct device *hwdev, dma_addr_t dma_handle,
unsigned long offset, unsigned long offset, size_t size, int direction)
size_t size, int direction)
{ {
if (direction == DMA_NONE) if (dma_ops->sync_single_range_for_device)
out_of_line_bug(); dma_ops->sync_single_range_for_device(hwdev, dma_handle,
offset, size, direction);
if (swiotlb)
return swiotlb_sync_single_range_for_device(hwdev,dma_handle,offset,size,direction);
flush_write_buffers(); flush_write_buffers();
} }
static inline void dma_sync_sg_for_cpu(struct device *hwdev, static inline void
struct scatterlist *sg, dma_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
int nelems, int direction) int nelems, int direction)
{ {
if (direction == DMA_NONE) if (dma_ops->sync_sg_for_cpu)
out_of_line_bug(); dma_ops->sync_sg_for_cpu(hwdev, sg, nelems, direction);
if (swiotlb)
return swiotlb_sync_sg_for_cpu(hwdev,sg,nelems,direction);
flush_write_buffers(); flush_write_buffers();
} }
static inline void dma_sync_sg_for_device(struct device *hwdev, static inline void
struct scatterlist *sg, dma_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
int nelems, int direction) int nelems, int direction)
{ {
if (direction == DMA_NONE) if (dma_ops->sync_sg_for_device) {
out_of_line_bug(); dma_ops->sync_sg_for_device(hwdev, sg, nelems, direction);
}
if (swiotlb)
return swiotlb_sync_sg_for_device(hwdev,sg,nelems,direction);
flush_write_buffers(); flush_write_buffers();
} }
extern int dma_map_sg(struct device *hwdev, struct scatterlist *sg, static inline int
int nents, int direction); dma_map_sg(struct device *hwdev, struct scatterlist *sg, int nents, int direction)
extern void dma_unmap_sg(struct device *hwdev, struct scatterlist *sg, {
int nents, int direction); return dma_ops->map_sg(hwdev, sg, nents, direction);
}
#define dma_unmap_page dma_unmap_single static inline void
dma_unmap_sg(struct device *hwdev, struct scatterlist *sg, int nents,
int direction)
{
dma_ops->unmap_sg(hwdev, sg, nents, direction);
}
extern int dma_supported(struct device *hwdev, u64 mask); extern int dma_supported(struct device *hwdev, u64 mask);
extern int dma_get_cache_alignment(void);
#define dma_is_consistent(h) 1
static inline int dma_set_mask(struct device *dev, u64 mask) /* same for gart, swiotlb, and nommu */
static inline int dma_get_cache_alignment(void)
{ {
if (!dev->dma_mask || !dma_supported(dev, mask)) return boot_cpu_data.x86_clflush_size;
return -EIO;
*dev->dma_mask = mask;
return 0;
} }
static inline void dma_cache_sync(void *vaddr, size_t size, enum dma_data_direction dir) #define dma_is_consistent(h) 1
extern int dma_set_mask(struct device *dev, u64 mask);
static inline void
dma_cache_sync(void *vaddr, size_t size, enum dma_data_direction dir)
{ {
flush_write_buffers(); flush_write_buffers();
} }
#endif extern struct device fallback_dev;
extern int panic_on_overflow;
#endif /* _X8664_DMA_MAPPING_H */
#ifndef _X8664_GART_MAPPING_H
#define _X8664_GART_MAPPING_H 1
#include <linux/types.h>
#include <asm/types.h>
struct device;
extern void*
gart_alloc_coherent(struct device *dev, size_t size,
dma_addr_t *dma_handle, gfp_t gfp);
extern int
gart_dma_supported(struct device *hwdev, u64 mask);
#endif /* _X8664_GART_MAPPING_H */
...@@ -42,18 +42,20 @@ int pcibios_set_irq_routing(struct pci_dev *dev, int pin, int irq); ...@@ -42,18 +42,20 @@ int pcibios_set_irq_routing(struct pci_dev *dev, int pin, int irq);
#include <asm/scatterlist.h> #include <asm/scatterlist.h>
#include <linux/string.h> #include <linux/string.h>
#include <asm/page.h> #include <asm/page.h>
#include <linux/dma-mapping.h> /* for have_iommu */
extern int iommu_setup(char *opt); extern int iommu_setup(char *opt);
#ifdef CONFIG_GART_IOMMU
/* The PCI address space does equal the physical memory /* The PCI address space does equal the physical memory
* address space. The networking and block device layers use * address space. The networking and block device layers use
* this boolean for bounce buffer decisions * this boolean for bounce buffer decisions
* *
* On AMD64 it mostly equals, but we set it to zero to tell some subsystems * On AMD64 it mostly equals, but we set it to zero if a hardware
* that an IOMMU is available. * IOMMU (gart) of sotware IOMMU (swiotlb) is available.
*/ */
#define PCI_DMA_BUS_IS_PHYS (no_iommu ? 1 : 0) #define PCI_DMA_BUS_IS_PHYS (dma_ops->is_phys)
#ifdef CONFIG_GART_IOMMU
/* /*
* x86-64 always supports DAC, but sometimes it is useful to force * x86-64 always supports DAC, but sometimes it is useful to force
...@@ -79,7 +81,6 @@ extern int iommu_sac_force; ...@@ -79,7 +81,6 @@ extern int iommu_sac_force;
#else #else
/* No IOMMU */ /* No IOMMU */
#define PCI_DMA_BUS_IS_PHYS 1
#define pci_dac_dma_supported(pci_dev, mask) 1 #define pci_dac_dma_supported(pci_dev, mask) 1
#define DECLARE_PCI_UNMAP_ADDR(ADDR_NAME) #define DECLARE_PCI_UNMAP_ADDR(ADDR_NAME)
......
...@@ -92,7 +92,9 @@ extern void check_efer(void); ...@@ -92,7 +92,9 @@ extern void check_efer(void);
extern int unhandled_signal(struct task_struct *tsk, int sig); extern int unhandled_signal(struct task_struct *tsk, int sig);
extern void select_idle_routine(const struct cpuinfo_x86 *c); extern void select_idle_routine(const struct cpuinfo_x86 *c);
extern void swiotlb_init(void);
extern void gart_parse_options(char *);
extern void __init no_iommu_init(void);
extern unsigned long table_start, table_end; extern unsigned long table_start, table_end;
...@@ -106,12 +108,17 @@ extern int skip_ioapic_setup; ...@@ -106,12 +108,17 @@ extern int skip_ioapic_setup;
extern int acpi_ht; extern int acpi_ht;
extern int acpi_disabled; extern int acpi_disabled;
#ifdef CONFIG_GART_IOMMU
extern int fallback_aper_order; extern int fallback_aper_order;
extern int fallback_aper_force; extern int fallback_aper_force;
extern int iommu_aperture; extern int iommu_aperture;
extern int iommu_aperture_disabled;
extern int iommu_aperture_allowed; extern int iommu_aperture_allowed;
extern int iommu_aperture_disabled;
extern int fix_aperture; extern int fix_aperture;
#else
#define iommu_aperture 0
#define iommu_aperture_allowed 0
#endif
extern int force_iommu; extern int force_iommu;
extern int reboot_force; extern int reboot_force;
......
...@@ -3,10 +3,14 @@ ...@@ -3,10 +3,14 @@
#include <linux/config.h> #include <linux/config.h>
#include <asm/dma-mapping.h>
/* SWIOTLB interface */ /* SWIOTLB interface */
extern dma_addr_t swiotlb_map_single(struct device *hwdev, void *ptr, size_t size, extern dma_addr_t swiotlb_map_single(struct device *hwdev, void *ptr,
int dir); size_t size, int dir);
extern void *swiotlb_alloc_coherent(struct device *hwdev, size_t size,
dma_addr_t *dma_handle, gfp_t flags);
extern void swiotlb_unmap_single(struct device *hwdev, dma_addr_t dev_addr, extern void swiotlb_unmap_single(struct device *hwdev, dma_addr_t dev_addr,
size_t size, int dir); size_t size, int dir);
extern void swiotlb_sync_single_for_cpu(struct device *hwdev, extern void swiotlb_sync_single_for_cpu(struct device *hwdev,
...@@ -34,10 +38,10 @@ extern int swiotlb_map_sg(struct device *hwdev, struct scatterlist *sg, ...@@ -34,10 +38,10 @@ extern int swiotlb_map_sg(struct device *hwdev, struct scatterlist *sg,
extern void swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sg, extern void swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sg,
int nents, int direction); int nents, int direction);
extern int swiotlb_dma_mapping_error(dma_addr_t dma_addr); extern int swiotlb_dma_mapping_error(dma_addr_t dma_addr);
extern void *swiotlb_alloc_coherent (struct device *hwdev, size_t size,
dma_addr_t *dma_handle, gfp_t flags);
extern void swiotlb_free_coherent (struct device *hwdev, size_t size, extern void swiotlb_free_coherent (struct device *hwdev, size_t size,
void *vaddr, dma_addr_t dma_handle); void *vaddr, dma_addr_t dma_handle);
extern int swiotlb_dma_supported(struct device *hwdev, u64 mask);
extern void swiotlb_init(void);
#ifdef CONFIG_SWIOTLB #ifdef CONFIG_SWIOTLB
extern int swiotlb; extern int swiotlb;
...@@ -45,4 +49,6 @@ extern int swiotlb; ...@@ -45,4 +49,6 @@ extern int swiotlb;
#define swiotlb 0 #define swiotlb 0
#endif #endif
#endif extern void pci_swiotlb_init(void);
#endif /* _ASM_SWTIOLB_H */
...@@ -463,7 +463,7 @@ swiotlb_alloc_coherent(struct device *hwdev, size_t size, ...@@ -463,7 +463,7 @@ swiotlb_alloc_coherent(struct device *hwdev, size_t size,
*/ */
dma_addr_t handle; dma_addr_t handle;
handle = swiotlb_map_single(NULL, NULL, size, DMA_FROM_DEVICE); handle = swiotlb_map_single(NULL, NULL, size, DMA_FROM_DEVICE);
if (dma_mapping_error(handle)) if (swiotlb_dma_mapping_error(handle))
return NULL; return NULL;
ret = phys_to_virt(handle); ret = phys_to_virt(handle);
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment