Commit 07b509e6 authored by Anders Blomdell's avatar Anders Blomdell Committed by Greg Kroah-Hartman

Staging: comedi: add jr3_pci driver

hardware driver for JR3/PCI force sensor board

From: Anders Blomdell <anders.blomdell@control.lth.se>
Cc: David Schleef <ds@schleef.org>
Cc: Frank Mori Hess <fmhess@users.sourceforge.net>
Cc: Ian Abbott <abbotti@mev.co.uk>
Signed-off-by: default avatarGreg Kroah-Hartman <gregkh@suse.de>
parent c4beb34e
/*
comedi/drivers/jr3_pci.c
hardware driver for JR3/PCI force sensor board
COMEDI - Linux Control and Measurement Device Interface
Copyright (C) 2007 Anders Blomdell <anders.blomdell@control.lth.se>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
Driver: jr3_pci
Description: JR3/PCI force sensor board
Author: Anders Blomdell <anders.blomdell@control.lth.se>
Status: works
Devices: [JR3] PCI force sensor board (jr3_pci)
The DSP on the board requires initialization code, which can
be loaded by placing it in /lib/firmware/comedi.
The initialization code should be somewhere on the media you got
with your card. One version is available from http://www.comedi.org
in the comedi_nonfree_firmware tarball.
Configuration options:
[0] - PCI bus number - if bus number and slot number are 0,
then driver search for first unused card
[1] - PCI slot number
*/
#include "../comedidev.h"
#include <linux/delay.h>
#include <linux/ctype.h>
#include <linux/firmware.h>
#include "comedi_pci.h"
#include "jr3_pci.h"
/* Hotplug firmware loading stuff */
static void comedi_fw_release(struct device *dev)
{
printk(KERN_DEBUG "firmware_sample_driver: ghost_release\n");
}
static struct device comedi_fw_device = {
.bus_id = "comedi",
.release = comedi_fw_release
};
typedef int comedi_firmware_callback(comedi_device * dev,
const u8 * data, size_t size);
static int comedi_load_firmware(comedi_device * dev,
char *name, comedi_firmware_callback cb)
{
int result = 0;
const struct firmware *fw;
char *firmware_path;
static const char *prefix = "comedi/";
firmware_path = kmalloc(strlen(prefix) + strlen(name) + 1, GFP_KERNEL);
if (!firmware_path) {
result = -ENOMEM;
} else {
firmware_path[0] = '\0';
strcat(firmware_path, prefix);
strcat(firmware_path, name);
result = device_register(&comedi_fw_device);
if (result == 0) {
result = request_firmware(&fw, firmware_path,
&comedi_fw_device);
if (result == 0) {
if (!cb) {
result = -EINVAL;
} else {
result = cb(dev, fw->data, fw->size);
}
release_firmware(fw);
}
device_unregister(&comedi_fw_device);
}
kfree(firmware_path);
}
return result;
}
#define PCI_VENDOR_ID_JR3 0x1762
#define PCI_DEVICE_ID_JR3_1_CHANNEL 0x3111
#define PCI_DEVICE_ID_JR3_2_CHANNEL 0x3112
#define PCI_DEVICE_ID_JR3_3_CHANNEL 0x3113
#define PCI_DEVICE_ID_JR3_4_CHANNEL 0x3114
static int jr3_pci_attach(comedi_device * dev, comedi_devconfig * it);
static int jr3_pci_detach(comedi_device * dev);
static comedi_driver driver_jr3_pci = {
driver_name:"jr3_pci",
module:THIS_MODULE,
attach:jr3_pci_attach,
detach:jr3_pci_detach,
};
static DEFINE_PCI_DEVICE_TABLE(jr3_pci_pci_table) = {
{PCI_VENDOR_ID_JR3, PCI_DEVICE_ID_JR3_1_CHANNEL,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
{PCI_VENDOR_ID_JR3, PCI_DEVICE_ID_JR3_2_CHANNEL,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
{PCI_VENDOR_ID_JR3, PCI_DEVICE_ID_JR3_3_CHANNEL,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
{PCI_VENDOR_ID_JR3, PCI_DEVICE_ID_JR3_4_CHANNEL,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
{0}
};
MODULE_DEVICE_TABLE(pci, jr3_pci_pci_table);
typedef struct {
struct pci_dev *pci_dev;
int pci_enabled;
volatile jr3_t *iobase;
int n_channels;
struct timer_list timer;
} jr3_pci_dev_private;
typedef struct {
int min;
int max;
} poll_delay_t;
typedef struct {
volatile jr3_channel_t *channel;
unsigned long next_time_min;
unsigned long next_time_max;
enum { state_jr3_poll,
state_jr3_init_wait_for_offset,
state_jr3_init_transform_complete,
state_jr3_init_set_full_scale_complete,
state_jr3_init_use_offset_complete,
state_jr3_done
} state;
int channel_no;
int serial_no;
int model_no;
struct {
int length;
comedi_krange range;
} range[9];
const comedi_lrange *range_table_list[8 * 7 + 2];
lsampl_t maxdata_list[8 * 7 + 2];
u16 errors;
int retries;
} jr3_pci_subdev_private;
static poll_delay_t poll_delay_min_max(int min, int max)
{
poll_delay_t result;
result.min = min;
result.max = max;
return result;
}
static int is_complete(volatile jr3_channel_t * channel)
{
return get_s16(&channel->command_word0) == 0;
}
typedef struct {
struct {
u16 link_type;
s16 link_amount;
} link[8];
} transform_t;
static void set_transforms(volatile jr3_channel_t * channel,
transform_t transf, short num)
{
int i;
num &= 0x000f; // Make sure that 0 <= num <= 15
for (i = 0; i < 8; i++) {
set_u16(&channel->transforms[num].link[i].link_type,
transf.link[i].link_type);
comedi_udelay(1);
set_s16(&channel->transforms[num].link[i].link_amount,
transf.link[i].link_amount);
comedi_udelay(1);
if (transf.link[i].link_type == end_x_form) {
break;
}
}
}
static void use_transform(volatile jr3_channel_t * channel, short transf_num)
{
set_s16(&channel->command_word0, 0x0500 + (transf_num & 0x000f));
}
static void use_offset(volatile jr3_channel_t * channel, short offset_num)
{
set_s16(&channel->command_word0, 0x0600 + (offset_num & 0x000f));
}
static void set_offset(volatile jr3_channel_t * channel)
{
set_s16(&channel->command_word0, 0x0700);
}
typedef struct {
s16 fx;
s16 fy;
s16 fz;
s16 mx;
s16 my;
s16 mz;
} six_axis_t;
static void set_full_scales(volatile jr3_channel_t * channel,
six_axis_t full_scale)
{
printk("%d %d %d %d %d %d\n",
full_scale.fx,
full_scale.fy,
full_scale.fz, full_scale.mx, full_scale.my, full_scale.mz);
set_s16(&channel->full_scale.fx, full_scale.fx);
set_s16(&channel->full_scale.fy, full_scale.fy);
set_s16(&channel->full_scale.fz, full_scale.fz);
set_s16(&channel->full_scale.mx, full_scale.mx);
set_s16(&channel->full_scale.my, full_scale.my);
set_s16(&channel->full_scale.mz, full_scale.mz);
set_s16(&channel->command_word0, 0x0a00);
}
static six_axis_t get_min_full_scales(volatile jr3_channel_t * channel)
{
six_axis_t result;
result.fx = get_s16(&channel->min_full_scale.fx);
result.fy = get_s16(&channel->min_full_scale.fy);
result.fz = get_s16(&channel->min_full_scale.fz);
result.mx = get_s16(&channel->min_full_scale.mx);
result.my = get_s16(&channel->min_full_scale.my);
result.mz = get_s16(&channel->min_full_scale.mz);
return result;
}
static six_axis_t get_max_full_scales(volatile jr3_channel_t * channel)
{
six_axis_t result;
result.fx = get_s16(&channel->max_full_scale.fx);
result.fy = get_s16(&channel->max_full_scale.fy);
result.fz = get_s16(&channel->max_full_scale.fz);
result.mx = get_s16(&channel->max_full_scale.mx);
result.my = get_s16(&channel->max_full_scale.my);
result.mz = get_s16(&channel->max_full_scale.mz);
return result;
}
static int jr3_pci_ai_insn_read(comedi_device * dev, comedi_subdevice * s,
comedi_insn * insn, lsampl_t * data)
{
int result;
jr3_pci_subdev_private *p;
int channel;
p = s->private;
channel = CR_CHAN(insn->chanspec);
if (p == NULL || channel > 57) {
result = -EINVAL;
} else {
int i;
result = insn->n;
if (p->state != state_jr3_done ||
(get_u16(&p->channel->
errors) & (watch_dog | watch_dog2 |
sensor_change))) {
/* No sensor or sensor changed */
if (p->state == state_jr3_done) {
/* Restart polling */
p->state = state_jr3_poll;
}
result = -EAGAIN;
}
for (i = 0; i < insn->n; i++) {
if (channel < 56) {
int axis, filter;
axis = channel % 8;
filter = channel / 8;
if (p->state != state_jr3_done) {
data[i] = 0;
} else {
int F = 0;
switch (axis) {
case 0:{
F = get_s16(&p->
channel->
filter[filter].
fx);
}
break;
case 1:{
F = get_s16(&p->
channel->
filter[filter].
fy);
}
break;
case 2:{
F = get_s16(&p->
channel->
filter[filter].
fz);
}
break;
case 3:{
F = get_s16(&p->
channel->
filter[filter].
mx);
}
break;
case 4:{
F = get_s16(&p->
channel->
filter[filter].
my);
}
break;
case 5:{
F = get_s16(&p->
channel->
filter[filter].
mz);
}
break;
case 6:{
F = get_s16(&p->
channel->
filter[filter].
v1);
}
break;
case 7:{
F = get_s16(&p->
channel->
filter[filter].
v2);
}
break;
}
data[i] = F + 0x4000;
}
} else if (channel == 56) {
if (p->state != state_jr3_done) {
data[i] = 0;
} else {
data[i] =
get_u16(&p->channel->model_no);
}
} else if (channel == 57) {
if (p->state != state_jr3_done) {
data[i] = 0;
} else {
data[i] =
get_u16(&p->channel->serial_no);
}
}
}
}
return result;
}
static void jr3_pci_open(comedi_device * dev)
{
int i;
jr3_pci_dev_private *devpriv = dev->private;
printk("jr3_pci_open\n");
for (i = 0; i < devpriv->n_channels; i++) {
jr3_pci_subdev_private *p;
p = dev->subdevices[i].private;
if (p) {
printk("serial: %p %d (%d)\n", p, p->serial_no,
p->channel_no);
}
}
}
int read_idm_word(const u8 * data, size_t size, int *pos, unsigned int *val)
{
int result = 0;
if (pos != 0 && val != 0) {
// Skip over non hex
for (; *pos < size && !isxdigit(data[*pos]); (*pos)++) {
}
// Collect value
*val = 0;
for (; *pos < size && isxdigit(data[*pos]); (*pos)++) {
char ch = tolower(data[*pos]);
result = 1;
if ('0' <= ch && ch <= '9') {
*val = (*val << 4) + (ch - '0');
} else if ('a' <= ch && ch <= 'f') {
*val = (*val << 4) + (ch - 'a' + 10);
}
}
}
return result;
}
static int jr3_download_firmware(comedi_device * dev, const u8 * data,
size_t size)
{
/*
* IDM file format is:
* { count, address, data <count> } *
* ffff
*/
int result, more, pos, OK;
result = 0;
more = 1;
pos = 0;
OK = 0;
while (more) {
unsigned int count, addr;
more = more && read_idm_word(data, size, &pos, &count);
if (more && count == 0xffff) {
OK = 1;
break;
}
more = more && read_idm_word(data, size, &pos, &addr);
while (more && count > 0) {
unsigned int dummy;
more = more && read_idm_word(data, size, &pos, &dummy);
count--;
}
}
if (!OK) {
result = -ENODATA;
} else {
int i;
jr3_pci_dev_private *p = dev->private;
for (i = 0; i < p->n_channels; i++) {
jr3_pci_subdev_private *sp;
sp = dev->subdevices[i].private;
more = 1;
pos = 0;
while (more) {
unsigned int count, addr;
more = more
&& read_idm_word(data, size, &pos,
&count);
if (more && count == 0xffff) {
break;
}
more = more
&& read_idm_word(data, size, &pos,
&addr);
printk("Loading#%d %4.4x bytes at %4.4x\n", i,
count, addr);
while (more && count > 0) {
if (addr & 0x4000) {
// 16 bit data, never seen in real life!!
unsigned int data1;
more = more
&& read_idm_word(data,
size, &pos, &data1);
count--;
// printk("jr3_data, not tested\n");
// jr3[addr + 0x20000 * pnum] = data1;
} else {
// Download 24 bit program
unsigned int data1, data2;
more = more
&& read_idm_word(data,
size, &pos, &data1);
more = more
&& read_idm_word(data,
size, &pos, &data2);
count -= 2;
if (more) {
set_u16(&p->iobase->
channel[i].
program_low
[addr], data1);
comedi_udelay(1);
set_u16(&p->iobase->
channel[i].
program_high
[addr], data2);
comedi_udelay(1);
}
}
addr++;
}
}
}
}
return result;
}
static poll_delay_t jr3_pci_poll_subdevice(comedi_subdevice * s)
{
poll_delay_t result = poll_delay_min_max(1000, 2000);
jr3_pci_subdev_private *p = s->private;
if (p) {
volatile jr3_channel_t *channel = p->channel;
int errors = get_u16(&channel->errors);
if (errors != p->errors) {
printk("Errors: %x -> %x\n", p->errors, errors);
p->errors = errors;
}
if (errors & (watch_dog | watch_dog2 | sensor_change)) {
// Sensor communication lost, force poll mode
p->state = state_jr3_poll;
}
switch (p->state) {
case state_jr3_poll:{
u16 model_no = get_u16(&channel->model_no);
u16 serial_no = get_u16(&channel->serial_no);
if ((errors & (watch_dog | watch_dog2)) ||
model_no == 0 || serial_no == 0) {
// Still no sensor, keep on polling. Since it takes up to
// 10 seconds for offsets to stabilize, polling each
// second should suffice.
result = poll_delay_min_max(1000, 2000);
} else {
p->retries = 0;
p->state =
state_jr3_init_wait_for_offset;
result = poll_delay_min_max(1000, 2000);
}
}
break;
case state_jr3_init_wait_for_offset:{
p->retries++;
if (p->retries < 10) {
// Wait for offeset to stabilize (< 10 s according to manual)
result = poll_delay_min_max(1000, 2000);
} else {
transform_t transf;
p->model_no =
get_u16(&channel->model_no);
p->serial_no =
get_u16(&channel->serial_no);
printk("Setting transform for channel %d\n", p->channel_no);
printk("Sensor Model = %i\n",
p->model_no);
printk("Sensor Serial = %i\n",
p->serial_no);
// Transformation all zeros
transf.link[0].link_type =
(enum link_types)0;
transf.link[0].link_amount = 0;
transf.link[1].link_type =
(enum link_types)0;
transf.link[1].link_amount = 0;
transf.link[2].link_type =
(enum link_types)0;
transf.link[2].link_amount = 0;
transf.link[3].link_type =
(enum link_types)0;
transf.link[3].link_amount = 0;
set_transforms(channel, transf, 0);
use_transform(channel, 0);
p->state =
state_jr3_init_transform_complete;
result = poll_delay_min_max(20, 100); // Allow 20 ms for completion
}
} break;
case state_jr3_init_transform_complete:{
if (!is_complete(channel)) {
printk("state_jr3_init_transform_complete complete = %d\n", is_complete(channel));
result = poll_delay_min_max(20, 100);
} else {
// Set full scale
six_axis_t min_full_scale;
six_axis_t max_full_scale;
min_full_scale =
get_min_full_scales(channel);
printk("Obtained Min. Full Scales:\n");
printk("%i ", (min_full_scale).fx);
printk("%i ", (min_full_scale).fy);
printk("%i ", (min_full_scale).fz);
printk("%i ", (min_full_scale).mx);
printk("%i ", (min_full_scale).my);
printk("%i ", (min_full_scale).mz);
printk("\n");
max_full_scale =
get_max_full_scales(channel);
printk("Obtained Max. Full Scales:\n");
printk("%i ", (max_full_scale).fx);
printk("%i ", (max_full_scale).fy);
printk("%i ", (max_full_scale).fz);
printk("%i ", (max_full_scale).mx);
printk("%i ", (max_full_scale).my);
printk("%i ", (max_full_scale).mz);
printk("\n");
set_full_scales(channel,
max_full_scale);
p->state =
state_jr3_init_set_full_scale_complete;
result = poll_delay_min_max(20, 100); // Allow 20 ms for completion
}
}
break;
case state_jr3_init_set_full_scale_complete:{
if (!is_complete(channel)) {
printk("state_jr3_init_set_full_scale_complete complete = %d\n", is_complete(channel));
result = poll_delay_min_max(20, 100);
} else {
volatile force_array_t *full_scale;
// Use ranges in kN or we will overflow arount 2000N!
full_scale = &channel->full_scale;
p->range[0].range.min =
-get_s16(&full_scale->fx) *
1000;
p->range[0].range.max =
get_s16(&full_scale->fx) * 1000;
p->range[1].range.min =
-get_s16(&full_scale->fy) *
1000;
p->range[1].range.max =
get_s16(&full_scale->fy) * 1000;
p->range[2].range.min =
-get_s16(&full_scale->fz) *
1000;
p->range[2].range.max =
get_s16(&full_scale->fz) * 1000;
p->range[3].range.min =
-get_s16(&full_scale->mx) * 100;
p->range[3].range.max =
get_s16(&full_scale->mx) * 100;
p->range[4].range.min =
-get_s16(&full_scale->my) * 100;
p->range[4].range.max =
get_s16(&full_scale->my) * 100;
p->range[5].range.min =
-get_s16(&full_scale->mz) * 100;
p->range[5].range.max =
get_s16(&full_scale->mz) * 100;
p->range[6].range.min = -get_s16(&full_scale->v1) * 100; // ??
p->range[6].range.max = get_s16(&full_scale->v1) * 100; // ??
p->range[7].range.min = -get_s16(&full_scale->v2) * 100; // ??
p->range[7].range.max = get_s16(&full_scale->v2) * 100; // ??
p->range[8].range.min = 0;
p->range[8].range.max = 65535;
{
int i;
for (i = 0; i < 9; i++) {
printk("%d %d - %d\n",
i,
p->range[i].
range.min,
p->range[i].
range.max);
}
}
use_offset(channel, 0);
p->state =
state_jr3_init_use_offset_complete;
result = poll_delay_min_max(40, 100); // Allow 40 ms for completion
}
}
break;
case state_jr3_init_use_offset_complete:{
if (!is_complete(channel)) {
printk("state_jr3_init_use_offset_complete complete = %d\n", is_complete(channel));
result = poll_delay_min_max(20, 100);
} else {
printk("Default offsets %d %d %d %d %d %d\n", get_s16(&channel->offsets.fx), get_s16(&channel->offsets.fy), get_s16(&channel->offsets.fz), get_s16(&channel->offsets.mx), get_s16(&channel->offsets.my), get_s16(&channel->offsets.mz));
set_s16(&channel->offsets.fx, 0);
set_s16(&channel->offsets.fy, 0);
set_s16(&channel->offsets.fz, 0);
set_s16(&channel->offsets.mx, 0);
set_s16(&channel->offsets.my, 0);
set_s16(&channel->offsets.mz, 0);
set_offset(channel);
p->state = state_jr3_done;
}
}
break;
case state_jr3_done:{
poll_delay_min_max(10000, 20000);
}
break;
default:{
poll_delay_min_max(1000, 2000);
}
break;
}
}
return result;
}
static void jr3_pci_poll_dev(unsigned long data)
{
unsigned long flags;
comedi_device *dev = (comedi_device *) data;
jr3_pci_dev_private *devpriv = dev->private;
unsigned long now;
int delay;
int i;
comedi_spin_lock_irqsave(&dev->spinlock, flags);
delay = 1000;
now = jiffies;
// Poll all channels that are ready to be polled
for (i = 0; i < devpriv->n_channels; i++) {
jr3_pci_subdev_private *subdevpriv = dev->subdevices[i].private;
if (now > subdevpriv->next_time_min) {
poll_delay_t sub_delay;
sub_delay = jr3_pci_poll_subdevice(&dev->subdevices[i]);
subdevpriv->next_time_min =
jiffies + msecs_to_jiffies(sub_delay.min);
subdevpriv->next_time_max =
jiffies + msecs_to_jiffies(sub_delay.max);
if (sub_delay.max && sub_delay.max < delay) {
// Wake up as late as possible -> poll as many channels as
// possible at once
delay = sub_delay.max;
}
}
}
comedi_spin_unlock_irqrestore(&dev->spinlock, flags);
devpriv->timer.expires = jiffies + msecs_to_jiffies(delay);
add_timer(&devpriv->timer);
}
static int jr3_pci_attach(comedi_device * dev, comedi_devconfig * it)
{
int result = 0;
struct pci_dev *card = NULL;
int opt_bus, opt_slot, i;
jr3_pci_dev_private *devpriv;
printk("comedi%d: jr3_pci\n", dev->minor);
opt_bus = it->options[0];
opt_slot = it->options[1];
if (sizeof(jr3_channel_t) != 0xc00) {
printk("sizeof(jr3_channel_t) = %x [expected %x]\n",
(unsigned)sizeof(jr3_channel_t), 0xc00);
return -EINVAL;
}
result = alloc_private(dev, sizeof(jr3_pci_dev_private));
if (result < 0) {
return -ENOMEM;
}
card = NULL;
devpriv = dev->private;
init_timer(&devpriv->timer);
while (1) {
card = pci_get_device(PCI_VENDOR_ID_JR3, PCI_ANY_ID, card);
if (card == NULL) {
/* No card found */
break;
} else {
switch (card->device) {
case PCI_DEVICE_ID_JR3_1_CHANNEL:{
devpriv->n_channels = 1;
}
break;
case PCI_DEVICE_ID_JR3_2_CHANNEL:{
devpriv->n_channels = 2;
}
break;
case PCI_DEVICE_ID_JR3_3_CHANNEL:{
devpriv->n_channels = 3;
}
break;
case PCI_DEVICE_ID_JR3_4_CHANNEL:{
devpriv->n_channels = 4;
}
break;
default:{
devpriv->n_channels = 0;
}
}
if (devpriv->n_channels >= 1) {
if (opt_bus == 0 && opt_slot == 0) {
/* Take first available card */
break;
} else if (opt_bus == card->bus->number &&
opt_slot == PCI_SLOT(card->devfn)) {
/* Take requested card */
break;
}
}
}
}
if (!card) {
printk(" no jr3_pci found\n");
return -EIO;
} else {
devpriv->pci_dev = card;
dev->board_name = "jr3_pci";
}
if ((result = comedi_pci_enable(card, "jr3_pci")) < 0) {
return -EIO;
}
devpriv->pci_enabled = 1;
devpriv->iobase = ioremap(pci_resource_start(card, 0), sizeof(jr3_t));
result = alloc_subdevices(dev, devpriv->n_channels);
if (result < 0)
goto out;
dev->open = jr3_pci_open;
for (i = 0; i < devpriv->n_channels; i++) {
dev->subdevices[i].type = COMEDI_SUBD_AI;
dev->subdevices[i].subdev_flags = SDF_READABLE | SDF_GROUND;
dev->subdevices[i].n_chan = 8 * 7 + 2;
dev->subdevices[i].insn_read = jr3_pci_ai_insn_read;
dev->subdevices[i].private =
kzalloc(sizeof(jr3_pci_subdev_private), GFP_KERNEL);
if (dev->subdevices[i].private) {
jr3_pci_subdev_private *p;
int j;
p = dev->subdevices[i].private;
p->channel = &devpriv->iobase->channel[i].data;
printk("p->channel %p %p (%tx)\n",
p->channel, devpriv->iobase,
((char *)(p->channel) -
(char *)(devpriv->iobase)));
p->channel_no = i;
for (j = 0; j < 8; j++) {
int k;
p->range[j].length = 1;
p->range[j].range.min = -1000000;
p->range[j].range.max = 1000000;
for (k = 0; k < 7; k++) {
p->range_table_list[j + k * 8] =
(comedi_lrange *) & p->range[j];
p->maxdata_list[j + k * 8] = 0x7fff;
}
}
p->range[8].length = 1;
p->range[8].range.min = 0;
p->range[8].range.max = 65536;
p->range_table_list[56] =
(comedi_lrange *) & p->range[8];
p->range_table_list[57] =
(comedi_lrange *) & p->range[8];
p->maxdata_list[56] = 0xffff;
p->maxdata_list[57] = 0xffff;
// Channel specific range and maxdata
dev->subdevices[i].range_table = 0;
dev->subdevices[i].range_table_list =
p->range_table_list;
dev->subdevices[i].maxdata = 0;
dev->subdevices[i].maxdata_list = p->maxdata_list;
}
}
// Reset DSP card
devpriv->iobase->channel[0].reset = 0;
result = comedi_load_firmware(dev, "jr3pci.idm", jr3_download_firmware);
printk("Firmare load %d\n", result);
if (result < 0) {
goto out;
}
// TODO: use firmware to load preferred offset tables. Suggested format:
// model serial Fx Fy Fz Mx My Mz\n
//
// comedi_load_firmware(dev, "jr3_offsets_table", jr3_download_firmware);
// It takes a few milliseconds for software to settle
// as much as we can read firmware version
msleep_interruptible(25);
for (i = 0; i < 0x18; i++) {
printk("%c",
get_u16(&devpriv->iobase->channel[0].data.
copyright[i]) >> 8);
}
// Start card timer
for (i = 0; i < devpriv->n_channels; i++) {
jr3_pci_subdev_private *p = dev->subdevices[i].private;
p->next_time_min = jiffies + msecs_to_jiffies(500);
p->next_time_max = jiffies + msecs_to_jiffies(2000);
}
devpriv->timer.data = (unsigned long)dev;
devpriv->timer.function = jr3_pci_poll_dev;
devpriv->timer.expires = jiffies + msecs_to_jiffies(1000);
add_timer(&devpriv->timer);
out:
return result;
}
static int jr3_pci_detach(comedi_device * dev)
{
int i;
jr3_pci_dev_private *devpriv = dev->private;
printk("comedi%d: jr3_pci: remove\n", dev->minor);
if (devpriv) {
del_timer_sync(&devpriv->timer);
if (dev->subdevices) {
for (i = 0; i < devpriv->n_channels; i++) {
kfree(dev->subdevices[i].private);
}
}
if (devpriv->iobase) {
iounmap((void *)devpriv->iobase);
}
if (devpriv->pci_enabled) {
comedi_pci_disable(devpriv->pci_dev);
}
if (devpriv->pci_dev) {
pci_dev_put(devpriv->pci_dev);
}
}
return 0;
}
COMEDI_PCI_INITCLEANUP(driver_jr3_pci, jr3_pci_pci_table);
// Helper types to take care of the fact that the DSP card memory
// is 16 bits, but aligned on a 32 bit PCI boundary
typedef u32 u_val_t;
typedef s32 s_val_t;
static inline u16 get_u16(volatile const u_val_t * p)
{
return (u16) readl(p);
}
static inline void set_u16(volatile u_val_t * p, u16 val)
{
writel(val, p);
}
static inline s16 get_s16(volatile const s_val_t * p)
{
return (s16) readl(p);
}
static inline void set_s16(volatile s_val_t * p, s16 val)
{
writel(val, p);
}
// The raw data is stored in a format which facilitates rapid
// processing by the JR3 DSP chip. The raw_channel structure shows the
// format for a single channel of data. Each channel takes four,
// two-byte words.
//
// Raw_time is an unsigned integer which shows the value of the JR3
// DSP's internal clock at the time the sample was received. The clock
// runs at 1/10 the JR3 DSP cycle time. JR3's slowest DSP runs at 10
// Mhz. At 10 Mhz raw_time would therefore clock at 1 Mhz.
//
// Raw_data is the raw data received directly from the sensor. The
// sensor data stream is capable of representing 16 different
// channels. Channel 0 shows the excitation voltage at the sensor. It
// is used to regulate the voltage over various cable lengths.
// Channels 1-6 contain the coupled force data Fx through Mz. Channel
// 7 contains the sensor's calibration data. The use of channels 8-15
// varies with different sensors.
typedef struct raw_channel {
u_val_t raw_time;
s_val_t raw_data;
s_val_t reserved[2];
} raw_channel_t;
// The force_array structure shows the layout for the decoupled and
// filtered force data.
typedef struct force_array {
s_val_t fx;
s_val_t fy;
s_val_t fz;
s_val_t mx;
s_val_t my;
s_val_t mz;
s_val_t v1;
s_val_t v2;
} force_array_t;
// The six_axis_array structure shows the layout for the offsets and
// the full scales.
typedef struct six_axis_array {
s_val_t fx;
s_val_t fy;
s_val_t fz;
s_val_t mx;
s_val_t my;
s_val_t mz;
} six_axis_array_t;
// VECT_BITS
// The vect_bits structure shows the layout for indicating
// which axes to use in computing the vectors. Each bit signifies
// selection of a single axis. The V1x axis bit corresponds to a hex
// value of 0x0001 and the V2z bit corresponds to a hex value of
// 0x0020. Example: to specify the axes V1x, V1y, V2x, and V2z the
// pattern would be 0x002b. Vector 1 defaults to a force vector and
// vector 2 defaults to a moment vector. It is possible to change one
// or the other so that two force vectors or two moment vectors are
// calculated. Setting the changeV1 bit or the changeV2 bit will
// change that vector to be the opposite of its default. Therefore to
// have two force vectors, set changeV1 to 1.
typedef enum {
fx = 0x0001,
fy = 0x0002,
fz = 0x0004,
mx = 0x0008,
my = 0x0010,
mz = 0x0020,
changeV2 = 0x0040,
changeV1 = 0x0080
} vect_bits_t;
// WARNING_BITS
// The warning_bits structure shows the bit pattern for the warning
// word. The bit fields are shown from bit 0 (lsb) to bit 15 (msb).
//
// XX_NEAR_SET
// The xx_near_sat bits signify that the indicated axis has reached or
// exceeded the near saturation value.
typedef enum {
fx_near_sat = 0x0001,
fy_near_sat = 0x0002,
fz_near_sat = 0x0004,
mx_near_sat = 0x0008,
my_near_sat = 0x0010,
mz_near_sat = 0x0020
} warning_bits_t;
// ERROR_BITS
// XX_SAT
// MEMORY_ERROR
// SENSOR_CHANGE
//
// The error_bits structure shows the bit pattern for the error word.
// The bit fields are shown from bit 0 (lsb) to bit 15 (msb). The
// xx_sat bits signify that the indicated axis has reached or exceeded
// the saturation value. The memory_error bit indicates that a problem
// was detected in the on-board RAM during the power-up
// initialization. The sensor_change bit indicates that a sensor other
// than the one originally plugged in has passed its CRC check. This
// bit latches, and must be reset by the user.
//
// SYSTEM_BUSY
//
// The system_busy bit indicates that the JR3 DSP is currently busy
// and is not calculating force data. This occurs when a new
// coordinate transformation, or new sensor full scale is set by the
// user. A very fast system using the force data for feedback might
// become unstable during the approximately 4 ms needed to accomplish
// these calculations. This bit will also become active when a new
// sensor is plugged in and the system needs to recalculate the
// calibration CRC.
//
// CAL_CRC_BAD
//
// The cal_crc_bad bit indicates that the calibration CRC has not
// calculated to zero. CRC is short for cyclic redundancy code. It is
// a method for determining the integrity of messages in data
// communication. The calibration data stored inside the sensor is
// transmitted to the JR3 DSP along with the sensor data. The
// calibration data has a CRC attached to the end of it, to assist in
// determining the completeness and integrity of the calibration data
// received from the sensor. There are two reasons the CRC may not
// have calculated to zero. The first is that all the calibration data
// has not yet been received, the second is that the calibration data
// has been corrupted. A typical sensor transmits the entire contents
// of its calibration matrix over 30 times a second. Therefore, if
// this bit is not zero within a couple of seconds after the sensor
// has been plugged in, there is a problem with the sensor's
// calibration data.
//
// WATCH_DOG
// WATCH_DOG2
//
// The watch_dog and watch_dog2 bits are sensor, not processor, watch
// dog bits. Watch_dog indicates that the sensor data line seems to be
// acting correctly, while watch_dog2 indicates that sensor data and
// clock are being received. It is possible for watch_dog2 to go off
// while watch_dog does not. This would indicate an improper clock
// signal, while data is acting correctly. If either watch dog barks,
// the sensor data is not being received correctly.
typedef enum {
fx_sat = 0x0001,
fy_sat = 0x0002,
fz_sat = 0x0004,
mx_sat = 0x0008,
my_sat = 0x0010,
mz_sat = 0x0020,
memory_error = 0x0400,
sensor_change = 0x0800,
system_busy = 0x1000,
cal_crc_bad = 0x2000,
watch_dog2 = 0x4000,
watch_dog = 0x8000
} error_bits_t;
// THRESH_STRUCT
// This structure shows the layout for a single threshold packet inside of a
// load envelope. Each load envelope can contain several threshold structures.
// 1. data_address contains the address of the data for that threshold. This
// includes filtered, unfiltered, raw, rate, counters, error and warning data
// 2. threshold is the is the value at which, if data is above or below, the
// bits will be set ... (pag.24).
// 3. bit_pattern contains the bits that will be set if the threshold value is
// met or exceeded.
typedef struct thresh_struct {
s32 data_address;
s32 threshold;
s32 bit_pattern;
} thresh_struct;
// LE_STRUCT
// Layout of a load enveloped packet. Four thresholds are showed ... for more
// see manual (pag.25)
// 1. latch_bits is a bit pattern that show which bits the user wants to latch.
// The latched bits will not be reset once the threshold which set them is
// no longer true. In that case the user must reset them using the reset_bit
// command.
// 2. number_of_xx_thresholds specify how many GE/LE threshold there are.
typedef struct {
s32 latch_bits;
s32 number_of_ge_thresholds;
s32 number_of_le_thresholds;
struct thresh_struct thresholds[4];
s32 reserved;
} le_struct_t;
// LINK_TYPES
// Link types is an enumerated value showing the different possible transform
// link types.
// 0 - end transform packet
// 1 - translate along X axis (TX)
// 2 - translate along Y axis (TY)
// 3 - translate along Z axis (TZ)
// 4 - rotate about X axis (RX)
// 5 - rotate about Y axis (RY)
// 6 - rotate about Z axis (RZ)
// 7 - negate all axes (NEG)
typedef enum link_types {
end_x_form,
tx,
ty,
tz,
rx,
ry,
rz,
neg
} link_types;
// TRANSFORM
// Structure used to describe a transform.
typedef struct {
struct {
u_val_t link_type;
s_val_t link_amount;
} link[8];
} intern_transform_t;
// JR3 force/torque sensor data definition. For more information see sensor and
// hardware manuals.
typedef struct force_sensor_data {
// Raw_channels is the area used to store the raw data coming from
// the sensor.
raw_channel_t raw_channels[16]; /* offset 0x0000 */
// Copyright is a null terminated ASCII string containing the JR3
// copyright notice.
u_val_t copyright[0x0018]; /* offset 0x0040 */
s_val_t reserved1[0x0008]; /* offset 0x0058 */
// Shunts contains the sensor shunt readings. Some JR3 sensors have
// the ability to have their gains adjusted. This allows the
// hardware full scales to be adjusted to potentially allow
// better resolution or dynamic range. For sensors that have
// this ability, the gain of each sensor channel is measured at
// the time of calibration using a shunt resistor. The shunt
// resistor is placed across one arm of the resistor bridge, and
// the resulting change in the output of that channel is
// measured. This measurement is called the shunt reading, and
// is recorded here. If the user has changed the gain of the //
// sensor, and made new shunt measurements, those shunt
// measurements can be placed here. The JR3 DSP will then scale
// the calibration matrix such so that the gains are again
// proper for the indicated shunt readings. If shunts is 0, then
// the sensor cannot have its gain changed. For details on
// changing the sensor gain, and making shunts readings, please
// see the sensor manual. To make these values take effect the
// user must call either command (5) use transform # (pg. 33) or
// command (10) set new full scales (pg. 38).
six_axis_array_t shunts; /* offset 0x0060 */
s32 reserved2[2]; /* offset 0x0066 */
// Default_FS contains the full scale that is used if the user does
// not set a full scale.
six_axis_array_t default_FS; /* offset 0x0068 */
s_val_t reserved3; /* offset 0x006e */
// Load_envelope_num is the load envelope number that is currently
// in use. This value is set by the user after one of the load
// envelopes has been initialized.
s_val_t load_envelope_num; /* offset 0x006f */
// Min_full_scale is the recommend minimum full scale.
//
// These values in conjunction with max_full_scale (pg. 9) helps
// determine the appropriate value for setting the full scales. The
// software allows the user to set the sensor full scale to an
// arbitrary value. But setting the full scales has some hazards. If
// the full scale is set too low, the data will saturate
// prematurely, and dynamic range will be lost. If the full scale is
// set too high, then resolution is lost as the data is shifted to
// the right and the least significant bits are lost. Therefore the
// maximum full scale is the maximum value at which no resolution is
// lost, and the minimum full scale is the value at which the data
// will not saturate prematurely. These values are calculated
// whenever a new coordinate transformation is calculated. It is
// possible for the recommended maximum to be less than the
// recommended minimum. This comes about primarily when using
// coordinate translations. If this is the case, it means that any
// full scale selection will be a compromise between dynamic range
// and resolution. It is usually recommended to compromise in favor
// of resolution which means that the recommend maximum full scale
// should be chosen.
//
// WARNING: Be sure that the full scale is no less than 0.4% of the
// recommended minimum full scale. Full scales below this value will
// cause erroneous results.
six_axis_array_t min_full_scale; /* offset 0x0070 */
s_val_t reserved4; /* offset 0x0076 */
// Transform_num is the transform number that is currently in use.
// This value is set by the JR3 DSP after the user has used command
// (5) use transform # (pg. 33).
s_val_t transform_num; /* offset 0x0077 */
// Max_full_scale is the recommended maximum full scale. See
// min_full_scale (pg. 9) for more details.
six_axis_array_t max_full_scale; /* offset 0x0078 */
s_val_t reserved5; /* offset 0x007e */
// Peak_address is the address of the data which will be monitored
// by the peak routine. This value is set by the user. The peak
// routine will monitor any 8 contiguous addresses for peak values.
// (ex. to watch filter3 data for peaks, set this value to 0x00a8).
s_val_t peak_address; /* offset 0x007f */
// Full_scale is the sensor full scales which are currently in use.
// Decoupled and filtered data is scaled so that +/- 16384 is equal
// to the full scales. The engineering units used are indicated by
// the units value discussed on page 16. The full scales for Fx, Fy,
// Fz, Mx, My and Mz can be written by the user prior to calling
// command (10) set new full scales (pg. 38). The full scales for V1
// and V2 are set whenever the full scales are changed or when the
// axes used to calculate the vectors are changed. The full scale of
// V1 and V2 will always be equal to the largest full scale of the
// axes used for each vector respectively.
force_array_t full_scale; /* offset 0x0080 */
// Offsets contains the sensor offsets. These values are subtracted from
// the sensor data to obtain the decoupled data. The offsets are set a
// few seconds (< 10) after the calibration data has been received.
// They are set so that the output data will be zero. These values
// can be written as well as read. The JR3 DSP will use the values
// written here within 2 ms of being written. To set future
// decoupled data to zero, add these values to the current decoupled
// data values and place the sum here. The JR3 DSP will change these
// values when a new transform is applied. So if the offsets are
// such that FX is 5 and all other values are zero, after rotating
// about Z by 90 degrees, FY would be 5 and all others would be zero.
six_axis_array_t offsets; /* offset 0x0088 */
// Offset_num is the number of the offset currently in use. This
// value is set by the JR3 DSP after the user has executed the use
// offset # command (pg. 34). It can vary between 0 and 15.
s_val_t offset_num; /* offset 0x008e */
// Vect_axes is a bit map showing which of the axes are being used
// in the vector calculations. This value is set by the JR3 DSP
// after the user has executed the set vector axes command (pg. 37).
u_val_t vect_axes; /* offset 0x008f */
// Filter0 is the decoupled, unfiltered data from the JR3 sensor.
// This data has had the offsets removed.
//
// These force_arrays hold the filtered data. The decoupled data is
// passed through cascaded low pass filters. Each succeeding filter
// has a cutoff frequency of 1/4 of the preceding filter. The cutoff
// frequency of filter1 is 1/16 of the sample rate from the sensor.
// For a typical sensor with a sample rate of 8 kHz, the cutoff
// frequency of filter1 would be 500 Hz. The following filters would
// cutoff at 125 Hz, 31.25 Hz, 7.813 Hz, 1.953 Hz and 0.4883 Hz.
struct force_array filter[7]; /* offset 0x0090,
offset 0x0098,
offset 0x00a0,
offset 0x00a8,
offset 0x00b0,
offset 0x00b8 ,
offset 0x00c0 */
// Rate_data is the calculated rate data. It is a first derivative
// calculation. It is calculated at a frequency specified by the
// variable rate_divisor (pg. 12). The data on which the rate is
// calculated is specified by the variable rate_address (pg. 12).
force_array_t rate_data; /* offset 0x00c8 */
// Minimum_data & maximum_data are the minimum and maximum (peak)
// data values. The JR3 DSP can monitor any 8 contiguous data items
// for minimums and maximums at full sensor bandwidth. This area is
// only updated at user request. This is done so that the user does
// not miss any peaks. To read the data, use either the read peaks
// command (pg. 40), or the read and reset peaks command (pg. 39).
// The address of the data to watch for peaks is stored in the
// variable peak_address (pg. 10). Peak data is lost when executing
// a coordinate transformation or a full scale change. Peak data is
// also lost when plugging in a new sensor.
force_array_t minimum_data; /* offset 0x00d0 */
force_array_t maximum_data; /* offset 0x00d8 */
// Near_sat_value & sat_value contain the value used to determine if
// the raw sensor is saturated. Because of decoupling and offset
// removal, it is difficult to tell from the processed data if the
// sensor is saturated. These values, in conjunction with the error
// and warning words (pg. 14), provide this critical information.
// These two values may be set by the host processor. These values
// are positive signed values, since the saturation logic uses the
// absolute values of the raw data. The near_sat_value defaults to
// approximately 80% of the ADC's full scale, which is 26214, while
// sat_value defaults to the ADC's full scale:
//
// sat_value = 32768 - 2^(16 - ADC bits)
s_val_t near_sat_value; /* offset 0x00e0 */
s_val_t sat_value; /* offset 0x00e1 */
// Rate_address, rate_divisor & rate_count contain the data used to
// control the calculations of the rates. Rate_address is the
// address of the data used for the rate calculation. The JR3 DSP
// will calculate rates for any 8 contiguous values (ex. to
// calculate rates for filter3 data set rate_address to 0x00a8).
// Rate_divisor is how often the rate is calculated. If rate_divisor
// is 1, the rates are calculated at full sensor bandwidth. If
// rate_divisor is 200, rates are calculated every 200 samples.
// Rate_divisor can be any value between 1 and 65536. Set
// rate_divisor to 0 to calculate rates every 65536 samples.
// Rate_count starts at zero and counts until it equals
// rate_divisor, at which point the rates are calculated, and
// rate_count is reset to 0. When setting a new rate divisor, it is
// a good idea to set rate_count to one less than rate divisor. This
// will minimize the time necessary to start the rate calculations.
s_val_t rate_address; /* offset 0x00e2 */
u_val_t rate_divisor; /* offset 0x00e3 */
u_val_t rate_count; /* offset 0x00e4 */
// Command_word2 through command_word0 are the locations used to
// send commands to the JR3 DSP. Their usage varies with the command
// and is detailed later in the Command Definitions section (pg.
// 29). In general the user places values into various memory
// locations, and then places the command word into command_word0.
// The JR3 DSP will process the command and place a 0 into
// command_word0 to indicate successful completion. Alternatively
// the JR3 DSP will place a negative number into command_word0 to
// indicate an error condition. Please note the command locations
// are numbered backwards. (I.E. command_word2 comes before
// command_word1).
s_val_t command_word2; /* offset 0x00e5 */
s_val_t command_word1; /* offset 0x00e6 */
s_val_t command_word0; /* offset 0x00e7 */
// Count1 through count6 are unsigned counters which are incremented
// every time the matching filters are calculated. Filter1 is
// calculated at the sensor data bandwidth. So this counter would
// increment at 8 kHz for a typical sensor. The rest of the counters
// are incremented at 1/4 the interval of the counter immediately
// preceding it, so they would count at 2 kHz, 500 Hz, 125 Hz etc.
// These counters can be used to wait for data. Each time the
// counter changes, the corresponding data set can be sampled, and
// this will insure that the user gets each sample, once, and only
// once.
u_val_t count1; /* offset 0x00e8 */
u_val_t count2; /* offset 0x00e9 */
u_val_t count3; /* offset 0x00ea */
u_val_t count4; /* offset 0x00eb */
u_val_t count5; /* offset 0x00ec */
u_val_t count6; /* offset 0x00ed */
// Error_count is a running count of data reception errors. If this
// counter is changing rapidly, it probably indicates a bad sensor
// cable connection or other hardware problem. In most installations
// error_count should not change at all. But it is possible in an
// extremely noisy environment to experience occasional errors even
// without a hardware problem. If the sensor is well grounded, this
// is probably unavoidable in these environments. On the occasions
// where this counter counts a bad sample, that sample is ignored.
u_val_t error_count; /* offset 0x00ee */
// Count_x is a counter which is incremented every time the JR3 DSP
// searches its job queues and finds nothing to do. It indicates the
// amount of idle time the JR3 DSP has available. It can also be
// used to determine if the JR3 DSP is alive. See the Performance
// Issues section on pg. 49 for more details.
u_val_t count_x; /* offset 0x00ef */
// Warnings & errors contain the warning and error bits
// respectively. The format of these two words is discussed on page
// 21 under the headings warnings_bits and error_bits.
u_val_t warnings; /* offset 0x00f0 */
u_val_t errors; /* offset 0x00f1 */
// Threshold_bits is a word containing the bits that are set by the
// load envelopes. See load_envelopes (pg. 17) and thresh_struct
// (pg. 23) for more details.
s_val_t threshold_bits; /* offset 0x00f2 */
// Last_crc is the value that shows the actual calculated CRC. CRC
// is short for cyclic redundancy code. It should be zero. See the
// description for cal_crc_bad (pg. 21) for more information.
s_val_t last_CRC; /* offset 0x00f3 */
// EEProm_ver_no contains the version number of the sensor EEProm.
// EEProm version numbers can vary between 0 and 255.
// Software_ver_no contains the software version number. Version
// 3.02 would be stored as 302.
s_val_t eeprom_ver_no; /* offset 0x00f4 */
s_val_t software_ver_no; /* offset 0x00f5 */
// Software_day & software_year are the release date of the software
// the JR3 DSP is currently running. Day is the day of the year,
// with January 1 being 1, and December 31, being 365 for non leap
// years.
s_val_t software_day; /* offset 0x00f6 */
s_val_t software_year; /* offset 0x00f7 */
// Serial_no & model_no are the two values which uniquely identify a
// sensor. This model number does not directly correspond to the JR3
// model number, but it will provide a unique identifier for
// different sensor configurations.
u_val_t serial_no; /* offset 0x00f8 */
u_val_t model_no; /* offset 0x00f9 */
// Cal_day & cal_year are the sensor calibration date. Day is the
// day of the year, with January 1 being 1, and December 31, being
// 366 for leap years.
s_val_t cal_day; /* offset 0x00fa */
s_val_t cal_year; /* offset 0x00fb */
// Units is an enumerated read only value defining the engineering
// units used in the sensor full scale. The meanings of particular
// values are discussed in the section detailing the force_units
// structure on page 22. The engineering units are setto customer
// specifications during sensor manufacture and cannot be changed by
// writing to Units.
//
// Bits contains the number of bits of resolution of the ADC
// currently in use.
//
// Channels is a bit field showing which channels the current sensor
// is capable of sending. If bit 0 is active, this sensor can send
// channel 0, if bit 13 is active, this sensor can send channel 13,
// etc. This bit can be active, even if the sensor is not currently
// sending this channel. Some sensors are configurable as to which
// channels to send, and this field only contains information on the
// channels available to send, not on the current configuration. To
// find which channels are currently being sent, monitor the
// Raw_time fields (pg. 19) in the raw_channels array (pg. 7). If
// the time is changing periodically, then that channel is being
// received.
u_val_t units; /* offset 0x00fc */
s_val_t bits; /* offset 0x00fd */
s_val_t channels; /* offset 0x00fe */
// Thickness specifies the overall thickness of the sensor from
// flange to flange. The engineering units for this value are
// contained in units (pg. 16). The sensor calibration is relative
// to the center of the sensor. This value allows easy coordinate
// transformation from the center of the sensor to either flange.
s_val_t thickness; /* offset 0x00ff */
// Load_envelopes is a table containing the load envelope
// descriptions. There are 16 possible load envelope slots in the
// table. The slots are on 16 word boundaries and are numbered 0-15.
// Each load envelope needs to start at the beginning of a slot but
// need not be fully contained in that slot. That is to say that a
// single load envelope can be larger than a single slot. The
// software has been tested and ran satisfactorily with 50
// thresholds active. A single load envelope this large would take
// up 5 of the 16 slots. The load envelope data is laid out in an
// order that is most efficient for the JR3 DSP. The structure is
// detailed later in the section showing the definition of the
// le_struct structure (pg. 23).
le_struct_t load_envelopes[0x10]; /* offset 0x0100 */
// Transforms is a table containing the transform descriptions.
// There are 16 possible transform slots in the table. The slots are
// on 16 word boundaries and are numbered 0-15. Each transform needs
// to start at the beginning of a slot but need not be fully
// contained in that slot. That is to say that a single transform
// can be larger than a single slot. A transform is 2 * no of links
// + 1 words in length. So a single slot can contain a transform
// with 7 links. Two slots can contain a transform that is 15 links.
// The layout is detailed later in the section showing the
// definition of the transform structure (pg. 26).
intern_transform_t transforms[0x10]; /* offset 0x0200 */
} jr3_channel_t;
typedef struct {
struct {
u_val_t program_low[0x4000]; // 0x00000 - 0x10000
jr3_channel_t data; // 0x10000 - 0x10c00
char pad2[0x30000 - 0x00c00]; // 0x10c00 - 0x40000
u_val_t program_high[0x8000]; // 0x40000 - 0x60000
u32 reset; // 0x60000 - 0x60004
char pad3[0x20000 - 0x00004]; // 0x60004 - 0x80000
} channel[4];
} jr3_t;
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment