Commit 020bb6f3 authored by Inaky Perez-Gonzalez's avatar Inaky Perez-Gonzalez Committed by Greg Kroah-Hartman

i2400m/SDIO: firmware upload backend

This implements the backends for the generic driver (i2400m) to be
able to load firmware to the SDIO device.
Signed-off-by: default avatarInaky Perez-Gonzalez <inaky@linux.intel.com>
Signed-off-by: default avatarGreg Kroah-Hartman <gregkh@suse.de>
parent a0848826
/*
* Intel Wireless WiMAX Connection 2400m
* Firmware uploader's SDIO specifics
*
*
* Copyright (C) 2007-2008 Intel Corporation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*
* Intel Corporation <linux-wimax@intel.com>
* Yanir Lubetkin <yanirx.lubetkin@intel.com>
* Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
* - Initial implementation
*
* Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
* - Bus generic/specific split for USB
*
* Dirk Brandewie <dirk.j.brandewie@intel.com>
* - Initial implementation for SDIO
*
* Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
* - SDIO rehash for changes in the bus-driver model
*
* THE PROCEDURE
*
* See fw.c for the generic description of this procedure.
*
* This file implements only the SDIO specifics. It boils down to how
* to send a command and waiting for an acknowledgement from the
* device. We do polled reads.
*
* COMMAND EXECUTION
*
* THe generic firmware upload code will call i2400m_bus_bm_cmd_send()
* to send commands.
*
* The SDIO devices expects things in 256 byte blocks, so it will pad
* it, compute the checksum (if needed) and pass it to SDIO.
*
* ACK RECEPTION
*
* This works in polling mode -- the fw loader says when to wait for
* data and for that it calls i2400ms_bus_bm_wait_for_ack().
*
* This will poll the device for data until it is received. We need to
* receive at least as much bytes as where asked for (although it'll
* always be a multiple of 256 bytes).
*/
#include <linux/mmc/sdio_func.h>
#include "i2400m-sdio.h"
#define D_SUBMODULE fw
#include "sdio-debug-levels.h"
/*
* Send a boot-mode command to the SDIO function
*
* We use a bounce buffer (i2400m->bm_cmd_buf) because we need to
* touch the header if the RAW flag is not set.
*
* @flags: pass thru from i2400m_bm_cmd()
* @return: cmd_size if ok, < 0 errno code on error.
*
* Note the command is padded to the SDIO block size for the device.
*/
ssize_t i2400ms_bus_bm_cmd_send(struct i2400m *i2400m,
const struct i2400m_bootrom_header *_cmd,
size_t cmd_size, int flags)
{
ssize_t result;
struct device *dev = i2400m_dev(i2400m);
struct i2400ms *i2400ms = container_of(i2400m, struct i2400ms, i2400m);
int opcode = _cmd == NULL ? -1 : i2400m_brh_get_opcode(_cmd);
struct i2400m_bootrom_header *cmd;
/* SDIO restriction */
size_t cmd_size_a = ALIGN(cmd_size, I2400MS_BLK_SIZE);
d_fnstart(5, dev, "(i2400m %p cmd %p size %zu)\n",
i2400m, _cmd, cmd_size);
result = -E2BIG;
if (cmd_size > I2400M_BM_CMD_BUF_SIZE)
goto error_too_big;
memcpy(i2400m->bm_cmd_buf, _cmd, cmd_size); /* Prep command */
cmd = i2400m->bm_cmd_buf;
if (cmd_size_a > cmd_size) /* Zero pad space */
memset(i2400m->bm_cmd_buf + cmd_size, 0, cmd_size_a - cmd_size);
if ((flags & I2400M_BM_CMD_RAW) == 0) {
if (WARN_ON(i2400m_brh_get_response_required(cmd) == 0))
dev_warn(dev, "SW BUG: response_required == 0\n");
i2400m_bm_cmd_prepare(cmd);
}
d_printf(4, dev, "BM cmd %d: %zu bytes (%zu padded)\n",
opcode, cmd_size, cmd_size_a);
d_dump(5, dev, cmd, cmd_size);
sdio_claim_host(i2400ms->func); /* Send & check */
result = sdio_memcpy_toio(i2400ms->func, I2400MS_DATA_ADDR,
i2400m->bm_cmd_buf, cmd_size_a);
sdio_release_host(i2400ms->func);
if (result < 0) {
dev_err(dev, "BM cmd %d: cannot send: %ld\n",
opcode, (long) result);
goto error_cmd_send;
}
result = cmd_size;
error_cmd_send:
error_too_big:
d_fnend(5, dev, "(i2400m %p cmd %p size %zu) = %d\n",
i2400m, _cmd, cmd_size, (int) result);
return result;
}
/*
* Read an ack from the device's boot-mode (polling)
*
* @i2400m:
* @_ack: pointer to where to store the read data
* @ack_size: how many bytes we should read
*
* Returns: < 0 errno code on error; otherwise, amount of received bytes.
*
* The ACK for a BM command is always at least sizeof(*ack) bytes, so
* check for that. We don't need to check for device reboots
*
* NOTE: We do an artificial timeout of 1 sec over the SDIO timeout;
* this way we have control over it...there is no way that I know
* of setting an SDIO transaction timeout.
*/
ssize_t i2400ms_bus_bm_wait_for_ack(struct i2400m *i2400m,
struct i2400m_bootrom_header *ack,
size_t ack_size)
{
int result;
ssize_t rx_size;
u64 timeout;
struct i2400ms *i2400ms = container_of(i2400m, struct i2400ms, i2400m);
struct sdio_func *func = i2400ms->func;
struct device *dev = &func->dev;
BUG_ON(sizeof(*ack) > ack_size);
d_fnstart(5, dev, "(i2400m %p ack %p size %zu)\n",
i2400m, ack, ack_size);
timeout = get_jiffies_64() + 2 * HZ;
sdio_claim_host(func);
while (1) {
if (time_after64(get_jiffies_64(), timeout)) {
rx_size = -ETIMEDOUT;
dev_err(dev, "timeout waiting for ack data\n");
goto error_timedout;
}
/* Find the RX size, check if it fits or not -- it if
* doesn't fit, fail, as we have no way to dispose of
* the extra data. */
rx_size = __i2400ms_rx_get_size(i2400ms);
if (rx_size < 0)
goto error_rx_get_size;
result = -ENOSPC; /* Check it fits */
if (rx_size < sizeof(*ack)) {
rx_size = -EIO;
dev_err(dev, "HW BUG? received is too small (%zu vs "
"%zu needed)\n", sizeof(*ack), rx_size);
goto error_too_small;
}
if (rx_size > I2400M_BM_ACK_BUF_SIZE) {
dev_err(dev, "SW BUG? BM_ACK_BUF is too small (%u vs "
"%zu needed)\n", I2400M_BM_ACK_BUF_SIZE,
rx_size);
goto error_too_small;
}
/* Read it */
result = sdio_memcpy_fromio(func, i2400m->bm_ack_buf,
I2400MS_DATA_ADDR, rx_size);
if (result == -ETIMEDOUT || result == -ETIME)
continue;
if (result < 0) {
dev_err(dev, "BM SDIO receive (%zu B) failed: %d\n",
rx_size, result);
goto error_read;
} else
break;
}
rx_size = min((ssize_t)ack_size, rx_size);
memcpy(ack, i2400m->bm_ack_buf, rx_size);
error_read:
error_too_small:
error_rx_get_size:
error_timedout:
sdio_release_host(func);
d_fnend(5, dev, "(i2400m %p ack %p size %zu) = %ld\n",
i2400m, ack, ack_size, (long) rx_size);
return rx_size;
}
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment