Commit f3f54ffa authored by Ingo Molnar's avatar Ingo Molnar Committed by Ingo Molnar

[PATCH] mutex subsystem, documentation

Add mutex design related documentation.
Signed-off-by: default avatarIngo Molnar <mingo@elte.hu>
Signed-off-by: default avatarArjan van de Ven <arjan@infradead.org>
parent 6053ee3b
...@@ -222,7 +222,7 @@ ...@@ -222,7 +222,7 @@
<title>Two Main Types of Kernel Locks: Spinlocks and Semaphores</title> <title>Two Main Types of Kernel Locks: Spinlocks and Semaphores</title>
<para> <para>
There are two main types of kernel locks. The fundamental type There are three main types of kernel locks. The fundamental type
is the spinlock is the spinlock
(<filename class="headerfile">include/asm/spinlock.h</filename>), (<filename class="headerfile">include/asm/spinlock.h</filename>),
which is a very simple single-holder lock: if you can't get the which is a very simple single-holder lock: if you can't get the
...@@ -230,16 +230,22 @@ ...@@ -230,16 +230,22 @@
very small and fast, and can be used anywhere. very small and fast, and can be used anywhere.
</para> </para>
<para> <para>
The second type is a semaphore The second type is a mutex
(<filename class="headerfile">include/linux/mutex.h</filename>): it
is like a spinlock, but you may block holding a mutex.
If you can't lock a mutex, your task will suspend itself, and be woken
up when the mutex is released. This means the CPU can do something
else while you are waiting. There are many cases when you simply
can't sleep (see <xref linkend="sleeping-things"/>), and so have to
use a spinlock instead.
</para>
<para>
The third type is a semaphore
(<filename class="headerfile">include/asm/semaphore.h</filename>): it (<filename class="headerfile">include/asm/semaphore.h</filename>): it
can have more than one holder at any time (the number decided at can have more than one holder at any time (the number decided at
initialization time), although it is most commonly used as a initialization time), although it is most commonly used as a
single-holder lock (a mutex). If you can't get a semaphore, single-holder lock (a mutex). If you can't get a semaphore, your
your task will put itself on the queue, and be woken up when the task will be suspended and later on woken up - just like for mutexes.
semaphore is released. This means the CPU will do something
else while you are waiting, but there are many cases when you
simply can't sleep (see <xref linkend="sleeping-things"/>), and so
have to use a spinlock instead.
</para> </para>
<para> <para>
Neither type of lock is recursive: see Neither type of lock is recursive: see
......
Generic Mutex Subsystem
started by Ingo Molnar <mingo@redhat.com>
"Why on earth do we need a new mutex subsystem, and what's wrong
with semaphores?"
firstly, there's nothing wrong with semaphores. But if the simpler
mutex semantics are sufficient for your code, then there are a couple
of advantages of mutexes:
- 'struct mutex' is smaller on most architectures: .e.g on x86,
'struct semaphore' is 20 bytes, 'struct mutex' is 16 bytes.
A smaller structure size means less RAM footprint, and better
CPU-cache utilization.
- tighter code. On x86 i get the following .text sizes when
switching all mutex-alike semaphores in the kernel to the mutex
subsystem:
text data bss dec hex filename
3280380 868188 396860 4545428 455b94 vmlinux-semaphore
3255329 865296 396732 4517357 44eded vmlinux-mutex
that's 25051 bytes of code saved, or a 0.76% win - off the hottest
codepaths of the kernel. (The .data savings are 2892 bytes, or 0.33%)
Smaller code means better icache footprint, which is one of the
major optimization goals in the Linux kernel currently.
- the mutex subsystem is slightly faster and has better scalability for
contended workloads. On an 8-way x86 system, running a mutex-based
kernel and testing creat+unlink+close (of separate, per-task files)
in /tmp with 16 parallel tasks, the average number of ops/sec is:
Semaphores: Mutexes:
$ ./test-mutex V 16 10 $ ./test-mutex V 16 10
8 CPUs, running 16 tasks. 8 CPUs, running 16 tasks.
checking VFS performance. checking VFS performance.
avg loops/sec: 34713 avg loops/sec: 84153
CPU utilization: 63% CPU utilization: 22%
i.e. in this workload, the mutex based kernel was 2.4 times faster
than the semaphore based kernel, _and_ it also had 2.8 times less CPU
utilization. (In terms of 'ops per CPU cycle', the semaphore kernel
performed 551 ops/sec per 1% of CPU time used, while the mutex kernel
performed 3825 ops/sec per 1% of CPU time used - it was 6.9 times
more efficient.)
the scalability difference is visible even on a 2-way P4 HT box:
Semaphores: Mutexes:
$ ./test-mutex V 16 10 $ ./test-mutex V 16 10
4 CPUs, running 16 tasks. 8 CPUs, running 16 tasks.
checking VFS performance. checking VFS performance.
avg loops/sec: 127659 avg loops/sec: 181082
CPU utilization: 100% CPU utilization: 34%
(the straight performance advantage of mutexes is 41%, the per-cycle
efficiency of mutexes is 4.1 times better.)
- there are no fastpath tradeoffs, the mutex fastpath is just as tight
as the semaphore fastpath. On x86, the locking fastpath is 2
instructions:
c0377ccb <mutex_lock>:
c0377ccb: f0 ff 08 lock decl (%eax)
c0377cce: 78 0e js c0377cde <.text.lock.mutex>
c0377cd0: c3 ret
the unlocking fastpath is equally tight:
c0377cd1 <mutex_unlock>:
c0377cd1: f0 ff 00 lock incl (%eax)
c0377cd4: 7e 0f jle c0377ce5 <.text.lock.mutex+0x7>
c0377cd6: c3 ret
- 'struct mutex' semantics are well-defined and are enforced if
CONFIG_DEBUG_MUTEXES is turned on. Semaphores on the other hand have
virtually no debugging code or instrumentation. The mutex subsystem
checks and enforces the following rules:
* - only one task can hold the mutex at a time
* - only the owner can unlock the mutex
* - multiple unlocks are not permitted
* - recursive locking is not permitted
* - a mutex object must be initialized via the API
* - a mutex object must not be initialized via memset or copying
* - task may not exit with mutex held
* - memory areas where held locks reside must not be freed
* - held mutexes must not be reinitialized
* - mutexes may not be used in irq contexts
furthermore, there are also convenience features in the debugging
code:
* - uses symbolic names of mutexes, whenever they are printed in debug output
* - point-of-acquire tracking, symbolic lookup of function names
* - list of all locks held in the system, printout of them
* - owner tracking
* - detects self-recursing locks and prints out all relevant info
* - detects multi-task circular deadlocks and prints out all affected
* locks and tasks (and only those tasks)
Disadvantages
-------------
The stricter mutex API means you cannot use mutexes the same way you
can use semaphores: e.g. they cannot be used from an interrupt context,
nor can they be unlocked from a different context that which acquired
it. [ I'm not aware of any other (e.g. performance) disadvantages from
using mutexes at the moment, please let me know if you find any. ]
Implementation of mutexes
-------------------------
'struct mutex' is the new mutex type, defined in include/linux/mutex.h
and implemented in kernel/mutex.c. It is a counter-based mutex with a
spinlock and a wait-list. The counter has 3 states: 1 for "unlocked",
0 for "locked" and negative numbers (usually -1) for "locked, potential
waiters queued".
the APIs of 'struct mutex' have been streamlined:
DEFINE_MUTEX(name);
mutex_init(mutex);
void mutex_lock(struct mutex *lock);
int mutex_lock_interruptible(struct mutex *lock);
int mutex_trylock(struct mutex *lock);
void mutex_unlock(struct mutex *lock);
int mutex_is_locked(struct mutex *lock);
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment