Commit 3cee5a60 authored by Remy Bruno's avatar Remy Bruno Committed by Jaroslav Kysela

[ALSA] hdspm: Add support for AES32

Add support for AES32. Difference between MADI and AES32 is done
through revision. Master support is not finished for now (RME so-called DDS
feature is not supported yet)
Signed-off-by: default avatarRemy Bruno <remy.bruno@trinnov.com>
Signed-off-by: default avatarTakashi Iwai <tiwai@suse.de>
Signed-off-by: default avatarJaroslav Kysela <perex@suse.cz>
parent b3b9c1cb
...@@ -6,6 +6,8 @@ ...@@ -6,6 +6,8 @@
* code based on hdsp.c Paul Davis * code based on hdsp.c Paul Davis
* Marcus Andersson * Marcus Andersson
* Thomas Charbonnel * Thomas Charbonnel
* Modified 2006-06-01 for AES32 support by Remy Bruno
* <remy.bruno@trinnov.com>
* *
* This program is free software; you can redistribute it and/or modify * This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by * it under the terms of the GNU General Public License as published by
...@@ -77,7 +79,8 @@ MODULE_PARM_DESC(enable_monitor, ...@@ -77,7 +79,8 @@ MODULE_PARM_DESC(enable_monitor,
MODULE_AUTHOR MODULE_AUTHOR
("Winfried Ritsch <ritsch_AT_iem.at>, Paul Davis <paul@linuxaudiosystems.com>, " ("Winfried Ritsch <ritsch_AT_iem.at>, Paul Davis <paul@linuxaudiosystems.com>, "
"Marcus Andersson, Thomas Charbonnel <thomas@undata.org>"); "Marcus Andersson, Thomas Charbonnel <thomas@undata.org>, "
"Remy Bruno <remy.bruno@trinnov.com>");
MODULE_DESCRIPTION("RME HDSPM"); MODULE_DESCRIPTION("RME HDSPM");
MODULE_LICENSE("GPL"); MODULE_LICENSE("GPL");
MODULE_SUPPORTED_DEVICE("{{RME HDSPM-MADI}}"); MODULE_SUPPORTED_DEVICE("{{RME HDSPM-MADI}}");
...@@ -107,7 +110,12 @@ MODULE_SUPPORTED_DEVICE("{{RME HDSPM-MADI}}"); ...@@ -107,7 +110,12 @@ MODULE_SUPPORTED_DEVICE("{{RME HDSPM-MADI}}");
/* --- Read registers. --- /* --- Read registers. ---
These are defined as byte-offsets from the iobase value */ These are defined as byte-offsets from the iobase value */
#define HDSPM_statusRegister 0 #define HDSPM_statusRegister 0
#define HDSPM_statusRegister2 96 /*#define HDSPM_statusRegister2 96 */
/* after RME Windows driver sources, status2 is 4-byte word # 48 = word at
* offset 192, for AES32 *and* MADI
* => need to check that offset 192 is working on MADI */
#define HDSPM_statusRegister2 192
#define HDSPM_timecodeRegister 128
#define HDSPM_midiDataIn0 360 #define HDSPM_midiDataIn0 360
#define HDSPM_midiDataIn1 364 #define HDSPM_midiDataIn1 364
...@@ -140,37 +148,50 @@ MODULE_SUPPORTED_DEVICE("{{RME HDSPM-MADI}}"); ...@@ -140,37 +148,50 @@ MODULE_SUPPORTED_DEVICE("{{RME HDSPM-MADI}}");
#define HDSPM_Frequency0 (1<<6) /* 0=44.1kHz/88.2kHz 1=48kHz/96kHz */ #define HDSPM_Frequency0 (1<<6) /* 0=44.1kHz/88.2kHz 1=48kHz/96kHz */
#define HDSPM_Frequency1 (1<<7) /* 0=32kHz/64kHz */ #define HDSPM_Frequency1 (1<<7) /* 0=32kHz/64kHz */
#define HDSPM_DoubleSpeed (1<<8) /* 0=normal speed, 1=double speed */ #define HDSPM_DoubleSpeed (1<<8) /* 0=normal speed, 1=double speed */
#define HDSPM_QuadSpeed (1<<31) /* quad speed bit, not implemented now */ #define HDSPM_QuadSpeed (1<<31) /* quad speed bit */
#define HDSPM_Professional (1<<9) /* Professional */ /* AES32 ONLY */
#define HDSPM_TX_64ch (1<<10) /* Output 64channel MODE=1, #define HDSPM_TX_64ch (1<<10) /* Output 64channel MODE=1,
56channelMODE=0 */ 56channelMODE=0 */ /* MADI ONLY*/
#define HDSPM_Emphasis (1<<10) /* Emphasis */ /* AES32 ONLY */
#define HDSPM_AutoInp (1<<11) /* Auto Input (takeover) == Safe Mode, #define HDSPM_AutoInp (1<<11) /* Auto Input (takeover) == Safe Mode,
0=off, 1=on */ 0=off, 1=on */ /* MADI ONLY */
#define HDSPM_Dolby (1<<11) /* Dolby = "NonAudio" ?? */ /* AES32 ONLY */
#define HDSPM_InputSelect0 (1<<14) /* Input select 0= optical, 1=coax */ #define HDSPM_InputSelect0 (1<<14) /* Input select 0= optical, 1=coax */ /* MADI ONLY*/
#define HDSPM_InputSelect1 (1<<15) /* should be 0 */ #define HDSPM_InputSelect1 (1<<15) /* should be 0 */
#define HDSPM_SyncRef0 (1<<16) /* 0=WOrd, 1=MADI */ #define HDSPM_SyncRef0 (1<<16) /* 0=WOrd, 1=MADI */
#define HDSPM_SyncRef1 (1<<17) /* should be 0 */ #define HDSPM_SyncRef1 (1<<17) /* for AES32: SyncRefN codes the AES # */
#define HDSPM_SyncRef2 (1<<13)
#define HDSPM_SyncRef3 (1<<25)
#define HDSPM_SMUX (1<<18) /* Frame ??? */ /* MADI ONY */
#define HDSPM_clr_tms (1<<19) /* clear track marker, do not use #define HDSPM_clr_tms (1<<19) /* clear track marker, do not use
AES additional bits in AES additional bits in
lower 5 Audiodatabits ??? */ lower 5 Audiodatabits ??? */
#define HDSPM_taxi_reset (1<<20) /* ??? */ /* MADI ONLY ? */
#define HDSPM_WCK48 (1<<20) /* Frame ??? = HDSPM_SMUX */ /* AES32 ONLY */
#define HDSPM_Midi0InterruptEnable (1<<22) #define HDSPM_Midi0InterruptEnable (1<<22)
#define HDSPM_Midi1InterruptEnable (1<<23) #define HDSPM_Midi1InterruptEnable (1<<23)
#define HDSPM_LineOut (1<<24) /* Analog Out on channel 63/64 on=1, mute=0 */ #define HDSPM_LineOut (1<<24) /* Analog Out on channel 63/64 on=1, mute=0 */
#define HDSPM_DS_DoubleWire (1<<26) /* AES32 ONLY */
#define HDSPM_QS_DoubleWire (1<<27) /* AES32 ONLY */
#define HDSPM_QS_QuadWire (1<<28) /* AES32 ONLY */
#define HDSPM_wclk_sel (1<<30)
/* --- bit helper defines */ /* --- bit helper defines */
#define HDSPM_LatencyMask (HDSPM_Latency0|HDSPM_Latency1|HDSPM_Latency2) #define HDSPM_LatencyMask (HDSPM_Latency0|HDSPM_Latency1|HDSPM_Latency2)
#define HDSPM_FrequencyMask (HDSPM_Frequency0|HDSPM_Frequency1) #define HDSPM_FrequencyMask (HDSPM_Frequency0|HDSPM_Frequency1|HDSPM_DoubleSpeed|HDSPM_QuadSpeed)
#define HDSPM_InputMask (HDSPM_InputSelect0|HDSPM_InputSelect1) #define HDSPM_InputMask (HDSPM_InputSelect0|HDSPM_InputSelect1)
#define HDSPM_InputOptical 0 #define HDSPM_InputOptical 0
#define HDSPM_InputCoaxial (HDSPM_InputSelect0) #define HDSPM_InputCoaxial (HDSPM_InputSelect0)
#define HDSPM_SyncRefMask (HDSPM_SyncRef0|HDSPM_SyncRef1) #define HDSPM_SyncRefMask (HDSPM_SyncRef0|HDSPM_SyncRef1|HDSPM_SyncRef2|HDSPM_SyncRef3)
#define HDSPM_SyncRef_Word 0 #define HDSPM_SyncRef_Word 0
#define HDSPM_SyncRef_MADI (HDSPM_SyncRef0) #define HDSPM_SyncRef_MADI (HDSPM_SyncRef0)
...@@ -183,6 +204,9 @@ MODULE_SUPPORTED_DEVICE("{{RME HDSPM-MADI}}"); ...@@ -183,6 +204,9 @@ MODULE_SUPPORTED_DEVICE("{{RME HDSPM-MADI}}");
#define HDSPM_Frequency64KHz (HDSPM_DoubleSpeed|HDSPM_Frequency0) #define HDSPM_Frequency64KHz (HDSPM_DoubleSpeed|HDSPM_Frequency0)
#define HDSPM_Frequency88_2KHz (HDSPM_DoubleSpeed|HDSPM_Frequency1) #define HDSPM_Frequency88_2KHz (HDSPM_DoubleSpeed|HDSPM_Frequency1)
#define HDSPM_Frequency96KHz (HDSPM_DoubleSpeed|HDSPM_Frequency1|HDSPM_Frequency0) #define HDSPM_Frequency96KHz (HDSPM_DoubleSpeed|HDSPM_Frequency1|HDSPM_Frequency0)
#define HDSPM_Frequency128KHz (HDSPM_QuadSpeed|HDSPM_Frequency0)
#define HDSPM_Frequency176_4KHz (HDSPM_QuadSpeed|HDSPM_Frequency1)
#define HDSPM_Frequency192KHz (HDSPM_QuadSpeed|HDSPM_Frequency1|HDSPM_Frequency0)
/* --- for internal discrimination */ /* --- for internal discrimination */
#define HDSPM_CLOCK_SOURCE_AUTOSYNC 0 /* Sample Clock Sources */ #define HDSPM_CLOCK_SOURCE_AUTOSYNC 0 /* Sample Clock Sources */
...@@ -229,7 +253,8 @@ MODULE_SUPPORTED_DEVICE("{{RME HDSPM-MADI}}"); ...@@ -229,7 +253,8 @@ MODULE_SUPPORTED_DEVICE("{{RME HDSPM-MADI}}");
#define HDSPM_BIGENDIAN_MODE (1<<9) #define HDSPM_BIGENDIAN_MODE (1<<9)
#define HDSPM_RD_MULTIPLE (1<<10) #define HDSPM_RD_MULTIPLE (1<<10)
/* --- Status Register bits --- */ /* --- Status Register bits --- */ /* MADI ONLY */ /* Bits defined here and
that do not conflict with specific bits for AES32 seem to be valid also for the AES32 */
#define HDSPM_audioIRQPending (1<<0) /* IRQ is high and pending */ #define HDSPM_audioIRQPending (1<<0) /* IRQ is high and pending */
#define HDSPM_RX_64ch (1<<1) /* Input 64chan. MODE=1, 56chn. MODE=0 */ #define HDSPM_RX_64ch (1<<1) /* Input 64chan. MODE=1, 56chn. MODE=0 */
#define HDSPM_AB_int (1<<2) /* InputChannel Opt=0, Coax=1 (like inp0) */ #define HDSPM_AB_int (1<<2) /* InputChannel Opt=0, Coax=1 (like inp0) */
...@@ -263,7 +288,7 @@ MODULE_SUPPORTED_DEVICE("{{RME HDSPM-MADI}}"); ...@@ -263,7 +288,7 @@ MODULE_SUPPORTED_DEVICE("{{RME HDSPM-MADI}}");
#define HDSPM_madiFreq176_4 (HDSPM_madiFreq3) #define HDSPM_madiFreq176_4 (HDSPM_madiFreq3)
#define HDSPM_madiFreq192 (HDSPM_madiFreq3|HDSPM_madiFreq0) #define HDSPM_madiFreq192 (HDSPM_madiFreq3|HDSPM_madiFreq0)
/* Status2 Register bits */ /* Status2 Register bits */ /* MADI ONLY */
#define HDSPM_version0 (1<<0) /* not realy defined but I guess */ #define HDSPM_version0 (1<<0) /* not realy defined but I guess */
#define HDSPM_version1 (1<<1) /* in former cards it was ??? */ #define HDSPM_version1 (1<<1) /* in former cards it was ??? */
...@@ -297,6 +322,56 @@ MODULE_SUPPORTED_DEVICE("{{RME HDSPM-MADI}}"); ...@@ -297,6 +322,56 @@ MODULE_SUPPORTED_DEVICE("{{RME HDSPM-MADI}}");
#define HDSPM_SelSyncRef_MADI (HDSPM_SelSyncRef0) #define HDSPM_SelSyncRef_MADI (HDSPM_SelSyncRef0)
#define HDSPM_SelSyncRef_NVALID (HDSPM_SelSyncRef0|HDSPM_SelSyncRef1|HDSPM_SelSyncRef2) #define HDSPM_SelSyncRef_NVALID (HDSPM_SelSyncRef0|HDSPM_SelSyncRef1|HDSPM_SelSyncRef2)
/*
For AES32, bits for status, status2 and timecode are different
*/
/* status */
#define HDSPM_AES32_wcLock 0x0200000
#define HDSPM_AES32_wcFreq_bit 22
/* (status >> HDSPM_AES32_wcFreq_bit) & 0xF gives WC frequency (cf function
HDSPM_bit2freq */
#define HDSPM_AES32_syncref_bit 16
/* (status >> HDSPM_AES32_syncref_bit) & 0xF gives sync source */
#define HDSPM_AES32_AUTOSYNC_FROM_WORD 0
#define HDSPM_AES32_AUTOSYNC_FROM_AES1 1
#define HDSPM_AES32_AUTOSYNC_FROM_AES2 2
#define HDSPM_AES32_AUTOSYNC_FROM_AES3 3
#define HDSPM_AES32_AUTOSYNC_FROM_AES4 4
#define HDSPM_AES32_AUTOSYNC_FROM_AES5 5
#define HDSPM_AES32_AUTOSYNC_FROM_AES6 6
#define HDSPM_AES32_AUTOSYNC_FROM_AES7 7
#define HDSPM_AES32_AUTOSYNC_FROM_AES8 8
#define HDSPM_AES32_AUTOSYNC_FROM_NONE -1
/* status2 */
/* HDSPM_LockAES_bit is given by HDSPM_LockAES >> (AES# - 1) */
#define HDSPM_LockAES 0x80
#define HDSPM_LockAES1 0x80
#define HDSPM_LockAES2 0x40
#define HDSPM_LockAES3 0x20
#define HDSPM_LockAES4 0x10
#define HDSPM_LockAES5 0x8
#define HDSPM_LockAES6 0x4
#define HDSPM_LockAES7 0x2
#define HDSPM_LockAES8 0x1
/*
Timecode
After windows driver sources, bits 4*i to 4*i+3 give the input frequency on
AES i+1
bits 3210
0001 32kHz
0010 44.1kHz
0011 48kHz
0100 64kHz
0101 88.2kHz
0110 96kHz
0111 128kHz
1000 176.4kHz
1001 192kHz
NB: Timecode register doesn't seem to work on AES32 card revision 230
*/
/* Mixer Values */ /* Mixer Values */
#define UNITY_GAIN 32768 /* = 65536/2 */ #define UNITY_GAIN 32768 /* = 65536/2 */
#define MINUS_INFINITY_GAIN 0 #define MINUS_INFINITY_GAIN 0
...@@ -314,10 +389,14 @@ MODULE_SUPPORTED_DEVICE("{{RME HDSPM-MADI}}"); ...@@ -314,10 +389,14 @@ MODULE_SUPPORTED_DEVICE("{{RME HDSPM-MADI}}");
size is the same regardless of the number of channels, and size is the same regardless of the number of channels, and
also the latency to use. also the latency to use.
for one direction !!! for one direction !!!
=> need to mupltiply by 2!!
*/ */
#define HDSPM_DMA_AREA_BYTES (HDSPM_MAX_CHANNELS * HDSPM_CHANNEL_BUFFER_BYTES) #define HDSPM_DMA_AREA_BYTES (2 * HDSPM_MAX_CHANNELS * HDSPM_CHANNEL_BUFFER_BYTES)
#define HDSPM_DMA_AREA_KILOBYTES (HDSPM_DMA_AREA_BYTES/1024) #define HDSPM_DMA_AREA_KILOBYTES (HDSPM_DMA_AREA_BYTES/1024)
/* revisions >= 230 indicate AES32 card */
#define HDSPM_AESREVISION 230
struct hdspm_midi { struct hdspm_midi {
struct hdspm *hdspm; struct hdspm *hdspm;
int id; int id;
...@@ -336,7 +415,9 @@ struct hdspm { ...@@ -336,7 +415,9 @@ struct hdspm {
struct snd_pcm_substream *playback_substream; /* and/or capture stream */ struct snd_pcm_substream *playback_substream; /* and/or capture stream */
char *card_name; /* for procinfo */ char *card_name; /* for procinfo */
unsigned short firmware_rev; /* dont know if relevant */ unsigned short firmware_rev; /* dont know if relevant (yes if AES32)*/
unsigned char is_aes32; /* indicates if card is AES32 */
int precise_ptr; /* use precise pointers, to be tested */ int precise_ptr; /* use precise pointers, to be tested */
int monitor_outs; /* set up monitoring outs init flag */ int monitor_outs; /* set up monitoring outs init flag */
...@@ -453,6 +534,15 @@ static int snd_hdspm_set_defaults(struct hdspm * hdspm); ...@@ -453,6 +534,15 @@ static int snd_hdspm_set_defaults(struct hdspm * hdspm);
static void hdspm_set_sgbuf(struct hdspm * hdspm, struct snd_sg_buf *sgbuf, static void hdspm_set_sgbuf(struct hdspm * hdspm, struct snd_sg_buf *sgbuf,
unsigned int reg, int channels); unsigned int reg, int channels);
static inline int HDSPM_bit2freq(int n)
{
static int bit2freq_tab[] = { 0, 32000, 44100, 48000, 64000, 88200,
96000, 128000, 176400, 192000 };
if (n < 1 || n > 9)
return 0;
return bit2freq_tab[n];
}
/* Write/read to/from HDSPM with Adresses in Bytes /* Write/read to/from HDSPM with Adresses in Bytes
not words but only 32Bit writes are allowed */ not words but only 32Bit writes are allowed */
...@@ -544,86 +634,105 @@ static inline int snd_hdspm_use_is_exclusive(struct hdspm * hdspm) ...@@ -544,86 +634,105 @@ static inline int snd_hdspm_use_is_exclusive(struct hdspm * hdspm)
/* check for external sample rate */ /* check for external sample rate */
static inline int hdspm_external_sample_rate(struct hdspm * hdspm) static inline int hdspm_external_sample_rate(struct hdspm * hdspm)
{ {
unsigned int status2 = hdspm_read(hdspm, HDSPM_statusRegister2); if (hdspm->is_aes32) {
unsigned int status = hdspm_read(hdspm, HDSPM_statusRegister); unsigned int status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
unsigned int rate_bits; unsigned int status = hdspm_read(hdspm, HDSPM_statusRegister);
int rate = 0; unsigned int timecode = hdspm_read(hdspm, HDSPM_timecodeRegister);
int syncref = hdspm_autosync_ref(hdspm);
if (syncref == HDSPM_AES32_AUTOSYNC_FROM_WORD &&
status & HDSPM_AES32_wcLock)
return HDSPM_bit2freq((status >> HDSPM_AES32_wcFreq_bit) & 0xF);
if (syncref >= HDSPM_AES32_AUTOSYNC_FROM_AES1 &&
syncref <= HDSPM_AES32_AUTOSYNC_FROM_AES8 &&
status2 & (HDSPM_LockAES >>
(syncref - HDSPM_AES32_AUTOSYNC_FROM_AES1)))
return HDSPM_bit2freq((timecode >>
(4*(syncref-HDSPM_AES32_AUTOSYNC_FROM_AES1))) & 0xF);
return 0;
} else {
unsigned int status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
unsigned int status = hdspm_read(hdspm, HDSPM_statusRegister);
unsigned int rate_bits;
int rate = 0;
/* if wordclock has synced freq and wordclock is valid */ /* if wordclock has synced freq and wordclock is valid */
if ((status2 & HDSPM_wcLock) != 0 && if ((status2 & HDSPM_wcLock) != 0 &&
(status & HDSPM_SelSyncRef0) == 0) { (status & HDSPM_SelSyncRef0) == 0) {
rate_bits = status2 & HDSPM_wcFreqMask; rate_bits = status2 & HDSPM_wcFreqMask;
switch (rate_bits) { switch (rate_bits) {
case HDSPM_wcFreq32: case HDSPM_wcFreq32:
rate = 32000; rate = 32000;
break; break;
case HDSPM_wcFreq44_1: case HDSPM_wcFreq44_1:
rate = 44100; rate = 44100;
break; break;
case HDSPM_wcFreq48: case HDSPM_wcFreq48:
rate = 48000; rate = 48000;
break; break;
case HDSPM_wcFreq64: case HDSPM_wcFreq64:
rate = 64000; rate = 64000;
break; break;
case HDSPM_wcFreq88_2: case HDSPM_wcFreq88_2:
rate = 88200; rate = 88200;
break; break;
case HDSPM_wcFreq96: case HDSPM_wcFreq96:
rate = 96000; rate = 96000;
break; break;
/* Quadspeed Bit missing ???? */ /* Quadspeed Bit missing ???? */
default: default:
rate = 0; rate = 0;
break; break;
}
} }
}
/* if rate detected and Syncref is Word than have it, word has priority to MADI */ /* if rate detected and Syncref is Word than have it, word has priority to MADI */
if (rate != 0 if (rate != 0 &&
&& (status2 & HDSPM_SelSyncRefMask) == HDSPM_SelSyncRef_WORD) (status2 & HDSPM_SelSyncRefMask) == HDSPM_SelSyncRef_WORD)
return rate; return rate;
/* maby a madi input (which is taken if sel sync is madi) */ /* maby a madi input (which is taken if sel sync is madi) */
if (status & HDSPM_madiLock) { if (status & HDSPM_madiLock) {
rate_bits = status & HDSPM_madiFreqMask; rate_bits = status & HDSPM_madiFreqMask;
switch (rate_bits) { switch (rate_bits) {
case HDSPM_madiFreq32: case HDSPM_madiFreq32:
rate = 32000; rate = 32000;
break; break;
case HDSPM_madiFreq44_1: case HDSPM_madiFreq44_1:
rate = 44100; rate = 44100;
break; break;
case HDSPM_madiFreq48: case HDSPM_madiFreq48:
rate = 48000; rate = 48000;
break; break;
case HDSPM_madiFreq64: case HDSPM_madiFreq64:
rate = 64000; rate = 64000;
break; break;
case HDSPM_madiFreq88_2: case HDSPM_madiFreq88_2:
rate = 88200; rate = 88200;
break; break;
case HDSPM_madiFreq96: case HDSPM_madiFreq96:
rate = 96000; rate = 96000;
break; break;
case HDSPM_madiFreq128: case HDSPM_madiFreq128:
rate = 128000; rate = 128000;
break; break;
case HDSPM_madiFreq176_4: case HDSPM_madiFreq176_4:
rate = 176400; rate = 176400;
break; break;
case HDSPM_madiFreq192: case HDSPM_madiFreq192:
rate = 192000; rate = 192000;
break; break;
default: default:
rate = 0; rate = 0;
break; break;
}
} }
return rate;
} }
return rate;
} }
/* Latency function */ /* Latency function */
...@@ -676,7 +785,8 @@ static inline void hdspm_silence_playback(struct hdspm * hdspm) ...@@ -676,7 +785,8 @@ static inline void hdspm_silence_playback(struct hdspm * hdspm)
int n = hdspm->period_bytes; int n = hdspm->period_bytes;
void *buf = hdspm->playback_buffer; void *buf = hdspm->playback_buffer;
snd_assert(buf != NULL, return); if (buf == NULL)
return;
for (i = 0; i < HDSPM_MAX_CHANNELS; i++) { for (i = 0; i < HDSPM_MAX_CHANNELS; i++) {
memset(buf, 0, n); memset(buf, 0, n);
...@@ -716,6 +826,7 @@ static int hdspm_set_rate(struct hdspm * hdspm, int rate, int called_internally) ...@@ -716,6 +826,7 @@ static int hdspm_set_rate(struct hdspm * hdspm, int rate, int called_internally)
int current_rate; int current_rate;
int rate_bits; int rate_bits;
int not_set = 0; int not_set = 0;
int is_single, is_double, is_quad;
/* ASSUMPTION: hdspm->lock is either set, or there is no need for /* ASSUMPTION: hdspm->lock is either set, or there is no need for
it (e.g. during module initialization). it (e.g. during module initialization).
...@@ -766,43 +877,56 @@ static int hdspm_set_rate(struct hdspm * hdspm, int rate, int called_internally) ...@@ -766,43 +877,56 @@ static int hdspm_set_rate(struct hdspm * hdspm, int rate, int called_internally)
changes in the read/write routines. changes in the read/write routines.
*/ */
is_single = (current_rate <= 48000);
is_double = (current_rate > 48000 && current_rate <= 96000);
is_quad = (current_rate > 96000);
switch (rate) { switch (rate) {
case 32000: case 32000:
if (current_rate > 48000) { if (!is_single)
reject_if_open = 1; reject_if_open = 1;
}
rate_bits = HDSPM_Frequency32KHz; rate_bits = HDSPM_Frequency32KHz;
break; break;
case 44100: case 44100:
if (current_rate > 48000) { if (!is_single)
reject_if_open = 1; reject_if_open = 1;
}
rate_bits = HDSPM_Frequency44_1KHz; rate_bits = HDSPM_Frequency44_1KHz;
break; break;
case 48000: case 48000:
if (current_rate > 48000) { if (!is_single)
reject_if_open = 1; reject_if_open = 1;
}
rate_bits = HDSPM_Frequency48KHz; rate_bits = HDSPM_Frequency48KHz;
break; break;
case 64000: case 64000:
if (current_rate <= 48000) { if (!is_double)
reject_if_open = 1; reject_if_open = 1;
}
rate_bits = HDSPM_Frequency64KHz; rate_bits = HDSPM_Frequency64KHz;
break; break;
case 88200: case 88200:
if (current_rate <= 48000) { if (!is_double)
reject_if_open = 1; reject_if_open = 1;
}
rate_bits = HDSPM_Frequency88_2KHz; rate_bits = HDSPM_Frequency88_2KHz;
break; break;
case 96000: case 96000:
if (current_rate <= 48000) { if (!is_double)
reject_if_open = 1; reject_if_open = 1;
}
rate_bits = HDSPM_Frequency96KHz; rate_bits = HDSPM_Frequency96KHz;
break; break;
case 128000:
if (!is_quad)
reject_if_open = 1;
rate_bits = HDSPM_Frequency128KHz;
break;
case 176400:
if (!is_quad)
reject_if_open = 1;
rate_bits = HDSPM_Frequency176_4KHz;
break;
case 192000:
if (!is_quad)
reject_if_open = 1;
rate_bits = HDSPM_Frequency192KHz;
break;
default: default:
return -EINVAL; return -EINVAL;
} }
...@@ -819,7 +943,7 @@ static int hdspm_set_rate(struct hdspm * hdspm, int rate, int called_internally) ...@@ -819,7 +943,7 @@ static int hdspm_set_rate(struct hdspm * hdspm, int rate, int called_internally)
hdspm->control_register |= rate_bits; hdspm->control_register |= rate_bits;
hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register); hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
if (rate > 64000) if (rate > 96000 /* 64000*/)
hdspm->channel_map = channel_map_madi_qs; hdspm->channel_map = channel_map_madi_qs;
else if (rate > 48000) else if (rate > 48000)
hdspm->channel_map = channel_map_madi_ds; hdspm->channel_map = channel_map_madi_ds;
...@@ -1455,11 +1579,27 @@ static int hdspm_pref_sync_ref(struct hdspm * hdspm) ...@@ -1455,11 +1579,27 @@ static int hdspm_pref_sync_ref(struct hdspm * hdspm)
/* Notice that this looks at the requested sync source, /* Notice that this looks at the requested sync source,
not the one actually in use. not the one actually in use.
*/ */
switch (hdspm->control_register & HDSPM_SyncRefMask) { if (hdspm->is_aes32) {
case HDSPM_SyncRef_Word: switch (hdspm->control_register & HDSPM_SyncRefMask) {
return HDSPM_SYNC_FROM_WORD; /* number gives AES index, except for 0 which
case HDSPM_SyncRef_MADI: corresponds to WordClock */
return HDSPM_SYNC_FROM_MADI; case 0: return 0;
case HDSPM_SyncRef0: return 1;
case HDSPM_SyncRef1: return 2;
case HDSPM_SyncRef1+HDSPM_SyncRef0: return 3;
case HDSPM_SyncRef2: return 4;
case HDSPM_SyncRef2+HDSPM_SyncRef0: return 5;
case HDSPM_SyncRef2+HDSPM_SyncRef1: return 6;
case HDSPM_SyncRef2+HDSPM_SyncRef1+HDSPM_SyncRef0: return 7;
case HDSPM_SyncRef3: return 8;
}
} else {
switch (hdspm->control_register & HDSPM_SyncRefMask) {
case HDSPM_SyncRef_Word:
return HDSPM_SYNC_FROM_WORD;
case HDSPM_SyncRef_MADI:
return HDSPM_SYNC_FROM_MADI;
}
} }
return HDSPM_SYNC_FROM_WORD; return HDSPM_SYNC_FROM_WORD;
...@@ -1469,15 +1609,49 @@ static int hdspm_set_pref_sync_ref(struct hdspm * hdspm, int pref) ...@@ -1469,15 +1609,49 @@ static int hdspm_set_pref_sync_ref(struct hdspm * hdspm, int pref)
{ {
hdspm->control_register &= ~HDSPM_SyncRefMask; hdspm->control_register &= ~HDSPM_SyncRefMask;
switch (pref) { if (hdspm->is_aes32) {
case HDSPM_SYNC_FROM_MADI: switch (pref) {
hdspm->control_register |= HDSPM_SyncRef_MADI; case 0:
break; hdspm->control_register |= 0;
case HDSPM_SYNC_FROM_WORD: break;
hdspm->control_register |= HDSPM_SyncRef_Word; case 1:
break; hdspm->control_register |= HDSPM_SyncRef0;
default: break;
return -1; case 2:
hdspm->control_register |= HDSPM_SyncRef1;
break;
case 3:
hdspm->control_register |= HDSPM_SyncRef1+HDSPM_SyncRef0;
break;
case 4:
hdspm->control_register |= HDSPM_SyncRef2;
break;
case 5:
hdspm->control_register |= HDSPM_SyncRef2+HDSPM_SyncRef0;
break;
case 6:
hdspm->control_register |= HDSPM_SyncRef2+HDSPM_SyncRef1;
break;
case 7:
hdspm->control_register |= HDSPM_SyncRef2+HDSPM_SyncRef1+HDSPM_SyncRef0;
break;
case 8:
hdspm->control_register |= HDSPM_SyncRef3;
break;
default:
return -1;
}
} else {
switch (pref) {
case HDSPM_SYNC_FROM_MADI:
hdspm->control_register |= HDSPM_SyncRef_MADI;
break;
case HDSPM_SYNC_FROM_WORD:
hdspm->control_register |= HDSPM_SyncRef_Word;
break;
default:
return -1;
}
} }
hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register); hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
return 0; return 0;
...@@ -1486,18 +1660,36 @@ static int hdspm_set_pref_sync_ref(struct hdspm * hdspm, int pref) ...@@ -1486,18 +1660,36 @@ static int hdspm_set_pref_sync_ref(struct hdspm * hdspm, int pref)
static int snd_hdspm_info_pref_sync_ref(struct snd_kcontrol *kcontrol, static int snd_hdspm_info_pref_sync_ref(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo) struct snd_ctl_elem_info *uinfo)
{ {
static char *texts[] = { "Word", "MADI" }; struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; if (hdspm->is_aes32) {
uinfo->count = 1; static char *texts[] = { "Word", "AES1", "AES2", "AES3",
"AES4", "AES5", "AES6", "AES7", "AES8" };
uinfo->value.enumerated.items = 2; uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
uinfo->count = 1;
if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items) uinfo->value.enumerated.items = 9;
uinfo->value.enumerated.item =
uinfo->value.enumerated.items - 1; if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
strcpy(uinfo->value.enumerated.name, uinfo->value.enumerated.item =
texts[uinfo->value.enumerated.item]); uinfo->value.enumerated.items - 1;
strcpy(uinfo->value.enumerated.name,
texts[uinfo->value.enumerated.item]);
} else {
static char *texts[] = { "Word", "MADI" };
uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
uinfo->count = 1;
uinfo->value.enumerated.items = 2;
if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
uinfo->value.enumerated.item =
uinfo->value.enumerated.items - 1;
strcpy(uinfo->value.enumerated.name,
texts[uinfo->value.enumerated.item]);
}
return 0; return 0;
} }
...@@ -1517,7 +1709,7 @@ static int snd_hdspm_put_pref_sync_ref(struct snd_kcontrol *kcontrol, ...@@ -1517,7 +1709,7 @@ static int snd_hdspm_put_pref_sync_ref(struct snd_kcontrol *kcontrol,
int change, max; int change, max;
unsigned int val; unsigned int val;
max = 2; max = hdspm->is_aes32 ? 9 : 2;
if (!snd_hdspm_use_is_exclusive(hdspm)) if (!snd_hdspm_use_is_exclusive(hdspm))
return -EBUSY; return -EBUSY;
...@@ -1542,40 +1734,64 @@ static int snd_hdspm_put_pref_sync_ref(struct snd_kcontrol *kcontrol, ...@@ -1542,40 +1734,64 @@ static int snd_hdspm_put_pref_sync_ref(struct snd_kcontrol *kcontrol,
static int hdspm_autosync_ref(struct hdspm * hdspm) static int hdspm_autosync_ref(struct hdspm * hdspm)
{ {
/* This looks at the autosync selected sync reference */ if (hdspm->is_aes32) {
unsigned int status2 = hdspm_read(hdspm, HDSPM_statusRegister2); unsigned int status = hdspm_read(hdspm, HDSPM_statusRegister);
unsigned int syncref = (status >> HDSPM_AES32_syncref_bit) & 0xF;
switch (status2 & HDSPM_SelSyncRefMask) { if (syncref == 0)
return HDSPM_AES32_AUTOSYNC_FROM_WORD;
case HDSPM_SelSyncRef_WORD: if (syncref <= 8)
return HDSPM_AUTOSYNC_FROM_WORD; return syncref;
return HDSPM_AES32_AUTOSYNC_FROM_NONE;
case HDSPM_SelSyncRef_MADI: } else {
return HDSPM_AUTOSYNC_FROM_MADI; /* This looks at the autosync selected sync reference */
unsigned int status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
case HDSPM_SelSyncRef_NVALID:
return HDSPM_AUTOSYNC_FROM_NONE; switch (status2 & HDSPM_SelSyncRefMask) {
case HDSPM_SelSyncRef_WORD:
return HDSPM_AUTOSYNC_FROM_WORD;
case HDSPM_SelSyncRef_MADI:
return HDSPM_AUTOSYNC_FROM_MADI;
case HDSPM_SelSyncRef_NVALID:
return HDSPM_AUTOSYNC_FROM_NONE;
default:
return 0;
}
default:
return 0; return 0;
} }
return 0;
} }
static int snd_hdspm_info_autosync_ref(struct snd_kcontrol *kcontrol, static int snd_hdspm_info_autosync_ref(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo) struct snd_ctl_elem_info *uinfo)
{ {
static char *texts[] = { "WordClock", "MADI", "None" }; struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; if (hdspm->is_aes32) {
uinfo->count = 1; static char *texts[] = { "WordClock", "AES1", "AES2", "AES3",
uinfo->value.enumerated.items = 3; "AES4", "AES5", "AES6", "AES7", "AES8", "None"};
if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
uinfo->value.enumerated.item = uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
uinfo->value.enumerated.items - 1; uinfo->count = 1;
strcpy(uinfo->value.enumerated.name, uinfo->value.enumerated.items = 10;
texts[uinfo->value.enumerated.item]); if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
uinfo->value.enumerated.item =
uinfo->value.enumerated.items - 1;
strcpy(uinfo->value.enumerated.name,
texts[uinfo->value.enumerated.item]);
}
else
{
static char *texts[] = { "WordClock", "MADI", "None" };
uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
uinfo->count = 1;
uinfo->value.enumerated.items = 3;
if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
uinfo->value.enumerated.item =
uinfo->value.enumerated.items - 1;
strcpy(uinfo->value.enumerated.name,
texts[uinfo->value.enumerated.item]);
}
return 0; return 0;
} }
...@@ -1787,45 +2003,376 @@ static int snd_hdspm_put_c_tms(struct snd_kcontrol *kcontrol, ...@@ -1787,45 +2003,376 @@ static int snd_hdspm_put_c_tms(struct snd_kcontrol *kcontrol,
.put = snd_hdspm_put_safe_mode \ .put = snd_hdspm_put_safe_mode \
} }
static int hdspm_safe_mode(struct hdspm * hdspm) static int hdspm_safe_mode(struct hdspm * hdspm)
{
return (hdspm->control_register & HDSPM_AutoInp) ? 1 : 0;
}
static int hdspm_set_safe_mode(struct hdspm * hdspm, int out)
{
if (out)
hdspm->control_register |= HDSPM_AutoInp;
else
hdspm->control_register &= ~HDSPM_AutoInp;
hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
return 0;
}
static int snd_hdspm_info_safe_mode(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
uinfo->count = 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = 1;
return 0;
}
static int snd_hdspm_get_safe_mode(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
spin_lock_irq(&hdspm->lock);
ucontrol->value.integer.value[0] = hdspm_safe_mode(hdspm);
spin_unlock_irq(&hdspm->lock);
return 0;
}
static int snd_hdspm_put_safe_mode(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
int change;
unsigned int val;
if (!snd_hdspm_use_is_exclusive(hdspm))
return -EBUSY;
val = ucontrol->value.integer.value[0] & 1;
spin_lock_irq(&hdspm->lock);
change = (int) val != hdspm_safe_mode(hdspm);
hdspm_set_safe_mode(hdspm, val);
spin_unlock_irq(&hdspm->lock);
return change;
}
#define HDSPM_EMPHASIS(xname, xindex) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
.name = xname, \
.index = xindex, \
.info = snd_hdspm_info_emphasis, \
.get = snd_hdspm_get_emphasis, \
.put = snd_hdspm_put_emphasis \
}
static int hdspm_emphasis(struct hdspm * hdspm)
{
return (hdspm->control_register & HDSPM_Emphasis) ? 1 : 0;
}
static int hdspm_set_emphasis(struct hdspm * hdspm, int emp)
{
if (emp)
hdspm->control_register |= HDSPM_Emphasis;
else
hdspm->control_register &= ~HDSPM_Emphasis;
hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
return 0;
}
static int snd_hdspm_info_emphasis(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
uinfo->count = 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = 1;
return 0;
}
static int snd_hdspm_get_emphasis(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
spin_lock_irq(&hdspm->lock);
ucontrol->value.enumerated.item[0] = hdspm_emphasis(hdspm);
spin_unlock_irq(&hdspm->lock);
return 0;
}
static int snd_hdspm_put_emphasis(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
int change;
unsigned int val;
if (!snd_hdspm_use_is_exclusive(hdspm))
return -EBUSY;
val = ucontrol->value.integer.value[0] & 1;
spin_lock_irq(&hdspm->lock);
change = (int) val != hdspm_emphasis(hdspm);
hdspm_set_emphasis(hdspm, val);
spin_unlock_irq(&hdspm->lock);
return change;
}
#define HDSPM_DOLBY(xname, xindex) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
.name = xname, \
.index = xindex, \
.info = snd_hdspm_info_dolby, \
.get = snd_hdspm_get_dolby, \
.put = snd_hdspm_put_dolby \
}
static int hdspm_dolby(struct hdspm * hdspm)
{
return (hdspm->control_register & HDSPM_Dolby) ? 1 : 0;
}
static int hdspm_set_dolby(struct hdspm * hdspm, int dol)
{
if (dol)
hdspm->control_register |= HDSPM_Dolby;
else
hdspm->control_register &= ~HDSPM_Dolby;
hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
return 0;
}
static int snd_hdspm_info_dolby(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
uinfo->count = 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = 1;
return 0;
}
static int snd_hdspm_get_dolby(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
spin_lock_irq(&hdspm->lock);
ucontrol->value.enumerated.item[0] = hdspm_dolby(hdspm);
spin_unlock_irq(&hdspm->lock);
return 0;
}
static int snd_hdspm_put_dolby(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
int change;
unsigned int val;
if (!snd_hdspm_use_is_exclusive(hdspm))
return -EBUSY;
val = ucontrol->value.integer.value[0] & 1;
spin_lock_irq(&hdspm->lock);
change = (int) val != hdspm_dolby(hdspm);
hdspm_set_dolby(hdspm, val);
spin_unlock_irq(&hdspm->lock);
return change;
}
#define HDSPM_PROFESSIONAL(xname, xindex) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
.name = xname, \
.index = xindex, \
.info = snd_hdspm_info_professional, \
.get = snd_hdspm_get_professional, \
.put = snd_hdspm_put_professional \
}
static int hdspm_professional(struct hdspm * hdspm)
{
return (hdspm->control_register & HDSPM_Professional) ? 1 : 0;
}
static int hdspm_set_professional(struct hdspm * hdspm, int dol)
{
if (dol)
hdspm->control_register |= HDSPM_Professional;
else
hdspm->control_register &= ~HDSPM_Professional;
hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
return 0;
}
static int snd_hdspm_info_professional(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
uinfo->count = 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = 1;
return 0;
}
static int snd_hdspm_get_professional(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
spin_lock_irq(&hdspm->lock);
ucontrol->value.enumerated.item[0] = hdspm_professional(hdspm);
spin_unlock_irq(&hdspm->lock);
return 0;
}
static int snd_hdspm_put_professional(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
int change;
unsigned int val;
if (!snd_hdspm_use_is_exclusive(hdspm))
return -EBUSY;
val = ucontrol->value.integer.value[0] & 1;
spin_lock_irq(&hdspm->lock);
change = (int) val != hdspm_professional(hdspm);
hdspm_set_professional(hdspm, val);
spin_unlock_irq(&hdspm->lock);
return change;
}
#define HDSPM_INPUT_SELECT(xname, xindex) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
.name = xname, \
.index = xindex, \
.info = snd_hdspm_info_input_select, \
.get = snd_hdspm_get_input_select, \
.put = snd_hdspm_put_input_select \
}
static int hdspm_input_select(struct hdspm * hdspm)
{
return (hdspm->control_register & HDSPM_InputSelect0) ? 1 : 0;
}
static int hdspm_set_input_select(struct hdspm * hdspm, int out)
{
if (out)
hdspm->control_register |= HDSPM_InputSelect0;
else
hdspm->control_register &= ~HDSPM_InputSelect0;
hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
return 0;
}
static int snd_hdspm_info_input_select(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
static char *texts[] = { "optical", "coaxial" };
uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
uinfo->count = 1;
uinfo->value.enumerated.items = 2;
if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
uinfo->value.enumerated.item =
uinfo->value.enumerated.items - 1;
strcpy(uinfo->value.enumerated.name,
texts[uinfo->value.enumerated.item]);
return 0;
}
static int snd_hdspm_get_input_select(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
spin_lock_irq(&hdspm->lock);
ucontrol->value.enumerated.item[0] = hdspm_input_select(hdspm);
spin_unlock_irq(&hdspm->lock);
return 0;
}
static int snd_hdspm_put_input_select(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
int change;
unsigned int val;
if (!snd_hdspm_use_is_exclusive(hdspm))
return -EBUSY;
val = ucontrol->value.integer.value[0] & 1;
spin_lock_irq(&hdspm->lock);
change = (int) val != hdspm_input_select(hdspm);
hdspm_set_input_select(hdspm, val);
spin_unlock_irq(&hdspm->lock);
return change;
}
#define HDSPM_DS_WIRE(xname, xindex) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
.name = xname, \
.index = xindex, \
.info = snd_hdspm_info_ds_wire, \
.get = snd_hdspm_get_ds_wire, \
.put = snd_hdspm_put_ds_wire \
}
static int hdspm_ds_wire(struct hdspm * hdspm)
{ {
return (hdspm->control_register & HDSPM_AutoInp) ? 1 : 0; return (hdspm->control_register & HDSPM_DS_DoubleWire) ? 1 : 0;
} }
static int hdspm_set_safe_mode(struct hdspm * hdspm, int out) static int hdspm_set_ds_wire(struct hdspm * hdspm, int ds)
{ {
if (out) if (ds)
hdspm->control_register |= HDSPM_AutoInp; hdspm->control_register |= HDSPM_DS_DoubleWire;
else else
hdspm->control_register &= ~HDSPM_AutoInp; hdspm->control_register &= ~HDSPM_DS_DoubleWire;
hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register); hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
return 0; return 0;
} }
static int snd_hdspm_info_safe_mode(struct snd_kcontrol *kcontrol, static int snd_hdspm_info_ds_wire(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo) struct snd_ctl_elem_info *uinfo)
{ {
uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN; static char *texts[] = { "Single", "Double" };
uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
uinfo->count = 1; uinfo->count = 1;
uinfo->value.integer.min = 0; uinfo->value.enumerated.items = 2;
uinfo->value.integer.max = 1;
if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
uinfo->value.enumerated.item =
uinfo->value.enumerated.items - 1;
strcpy(uinfo->value.enumerated.name,
texts[uinfo->value.enumerated.item]);
return 0; return 0;
} }
static int snd_hdspm_get_safe_mode(struct snd_kcontrol *kcontrol, static int snd_hdspm_get_ds_wire(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol) struct snd_ctl_elem_value *ucontrol)
{ {
struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
spin_lock_irq(&hdspm->lock); spin_lock_irq(&hdspm->lock);
ucontrol->value.integer.value[0] = hdspm_safe_mode(hdspm); ucontrol->value.enumerated.item[0] = hdspm_ds_wire(hdspm);
spin_unlock_irq(&hdspm->lock); spin_unlock_irq(&hdspm->lock);
return 0; return 0;
} }
static int snd_hdspm_put_safe_mode(struct snd_kcontrol *kcontrol, static int snd_hdspm_put_ds_wire(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol) struct snd_ctl_elem_value *ucontrol)
{ {
struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
int change; int change;
...@@ -1835,45 +2382,56 @@ static int snd_hdspm_put_safe_mode(struct snd_kcontrol *kcontrol, ...@@ -1835,45 +2382,56 @@ static int snd_hdspm_put_safe_mode(struct snd_kcontrol *kcontrol,
return -EBUSY; return -EBUSY;
val = ucontrol->value.integer.value[0] & 1; val = ucontrol->value.integer.value[0] & 1;
spin_lock_irq(&hdspm->lock); spin_lock_irq(&hdspm->lock);
change = (int) val != hdspm_safe_mode(hdspm); change = (int) val != hdspm_ds_wire(hdspm);
hdspm_set_safe_mode(hdspm, val); hdspm_set_ds_wire(hdspm, val);
spin_unlock_irq(&hdspm->lock); spin_unlock_irq(&hdspm->lock);
return change; return change;
} }
#define HDSPM_INPUT_SELECT(xname, xindex) \ #define HDSPM_QS_WIRE(xname, xindex) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
.name = xname, \ .name = xname, \
.index = xindex, \ .index = xindex, \
.info = snd_hdspm_info_input_select, \ .info = snd_hdspm_info_qs_wire, \
.get = snd_hdspm_get_input_select, \ .get = snd_hdspm_get_qs_wire, \
.put = snd_hdspm_put_input_select \ .put = snd_hdspm_put_qs_wire \
} }
static int hdspm_input_select(struct hdspm * hdspm) static int hdspm_qs_wire(struct hdspm * hdspm)
{ {
return (hdspm->control_register & HDSPM_InputSelect0) ? 1 : 0; if (hdspm->control_register & HDSPM_QS_DoubleWire)
return 1;
if (hdspm->control_register & HDSPM_QS_QuadWire)
return 2;
return 0;
} }
static int hdspm_set_input_select(struct hdspm * hdspm, int out) static int hdspm_set_qs_wire(struct hdspm * hdspm, int mode)
{ {
if (out) hdspm->control_register &= ~(HDSPM_QS_DoubleWire | HDSPM_QS_QuadWire);
hdspm->control_register |= HDSPM_InputSelect0; switch (mode) {
else case 0:
hdspm->control_register &= ~HDSPM_InputSelect0; break;
case 1:
hdspm->control_register |= HDSPM_QS_DoubleWire;
break;
case 2:
hdspm->control_register |= HDSPM_QS_QuadWire;
break;
}
hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register); hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
return 0; return 0;
} }
static int snd_hdspm_info_input_select(struct snd_kcontrol *kcontrol, static int snd_hdspm_info_qs_wire(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo) struct snd_ctl_elem_info *uinfo)
{ {
static char *texts[] = { "optical", "coaxial" }; static char *texts[] = { "Single", "Double", "Quad" };
uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
uinfo->count = 1; uinfo->count = 1;
uinfo->value.enumerated.items = 2; uinfo->value.enumerated.items = 3;
if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items) if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
uinfo->value.enumerated.item = uinfo->value.enumerated.item =
...@@ -1884,30 +2442,34 @@ static int snd_hdspm_info_input_select(struct snd_kcontrol *kcontrol, ...@@ -1884,30 +2442,34 @@ static int snd_hdspm_info_input_select(struct snd_kcontrol *kcontrol,
return 0; return 0;
} }
static int snd_hdspm_get_input_select(struct snd_kcontrol *kcontrol, static int snd_hdspm_get_qs_wire(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol) struct snd_ctl_elem_value *ucontrol)
{ {
struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
spin_lock_irq(&hdspm->lock); spin_lock_irq(&hdspm->lock);
ucontrol->value.enumerated.item[0] = hdspm_input_select(hdspm); ucontrol->value.enumerated.item[0] = hdspm_qs_wire(hdspm);
spin_unlock_irq(&hdspm->lock); spin_unlock_irq(&hdspm->lock);
return 0; return 0;
} }
static int snd_hdspm_put_input_select(struct snd_kcontrol *kcontrol, static int snd_hdspm_put_qs_wire(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol) struct snd_ctl_elem_value *ucontrol)
{ {
struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
int change; int change;
unsigned int val; int val;
if (!snd_hdspm_use_is_exclusive(hdspm)) if (!snd_hdspm_use_is_exclusive(hdspm))
return -EBUSY; return -EBUSY;
val = ucontrol->value.integer.value[0] & 1; val = ucontrol->value.integer.value[0];
if (val < 0)
val = 0;
if (val > 2)
val = 2;
spin_lock_irq(&hdspm->lock); spin_lock_irq(&hdspm->lock);
change = (int) val != hdspm_input_select(hdspm); change = (int) val != hdspm_qs_wire(hdspm);
hdspm_set_input_select(hdspm, val); hdspm_set_qs_wire(hdspm, val);
spin_unlock_irq(&hdspm->lock); spin_unlock_irq(&hdspm->lock);
return change; return change;
} }
...@@ -2135,14 +2697,24 @@ static int snd_hdspm_info_sync_check(struct snd_kcontrol *kcontrol, ...@@ -2135,14 +2697,24 @@ static int snd_hdspm_info_sync_check(struct snd_kcontrol *kcontrol,
static int hdspm_wc_sync_check(struct hdspm * hdspm) static int hdspm_wc_sync_check(struct hdspm * hdspm)
{ {
int status2 = hdspm_read(hdspm, HDSPM_statusRegister2); if (hdspm->is_aes32) {
if (status2 & HDSPM_wcLock) { int status = hdspm_read(hdspm, HDSPM_statusRegister);
if (status2 & HDSPM_wcSync) if (status & HDSPM_AES32_wcLock) {
/* I don't know how to differenciate sync from lock.
Doing as if sync for now */
return 2; return 2;
else }
return 1; return 0;
} else {
int status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
if (status2 & HDSPM_wcLock) {
if (status2 & HDSPM_wcSync)
return 2;
else
return 1;
}
return 0;
} }
return 0;
} }
static int snd_hdspm_get_wc_sync_check(struct snd_kcontrol *kcontrol, static int snd_hdspm_get_wc_sync_check(struct snd_kcontrol *kcontrol,
...@@ -2188,9 +2760,43 @@ static int snd_hdspm_get_madisync_sync_check(struct snd_kcontrol *kcontrol, ...@@ -2188,9 +2760,43 @@ static int snd_hdspm_get_madisync_sync_check(struct snd_kcontrol *kcontrol,
} }
#define HDSPM_AES_SYNC_CHECK(xname, xindex) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
.name = xname, \
.index = xindex, \
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
.info = snd_hdspm_info_sync_check, \
.get = snd_hdspm_get_aes_sync_check \
}
static int hdspm_aes_sync_check(struct hdspm * hdspm, int idx)
{
int status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
if (status2 & (HDSPM_LockAES >> idx)) {
/* I don't know how to differenciate sync from lock.
Doing as if sync for now */
return 2;
}
return 0;
}
static int snd_hdspm_get_aes_sync_check(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
int offset;
struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
offset = ucontrol->id.index - 1;
if (offset < 0 || offset >= 8)
return -EINVAL;
ucontrol->value.enumerated.item[0] =
hdspm_aes_sync_check(hdspm, offset);
return 0;
}
static struct snd_kcontrol_new snd_hdspm_controls[] = { static struct snd_kcontrol_new snd_hdspm_controls_madi[] = {
HDSPM_MIXER("Mixer", 0), HDSPM_MIXER("Mixer", 0),
/* 'Sample Clock Source' complies with the alsa control naming scheme */ /* 'Sample Clock Source' complies with the alsa control naming scheme */
...@@ -2211,6 +2817,29 @@ static struct snd_kcontrol_new snd_hdspm_controls[] = { ...@@ -2211,6 +2817,29 @@ static struct snd_kcontrol_new snd_hdspm_controls[] = {
HDSPM_INPUT_SELECT("Input Select", 0), HDSPM_INPUT_SELECT("Input Select", 0),
}; };
static struct snd_kcontrol_new snd_hdspm_controls_aes32[] = {
HDSPM_MIXER("Mixer", 0),
/* 'Sample Clock Source' complies with the alsa control naming scheme */
HDSPM_CLOCK_SOURCE("Sample Clock Source", 0),
HDSPM_SYSTEM_CLOCK_MODE("System Clock Mode", 0),
HDSPM_PREF_SYNC_REF("Preferred Sync Reference", 0),
HDSPM_AUTOSYNC_REF("AutoSync Reference", 0),
HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0),
/* 'External Rate' complies with the alsa control naming scheme */
HDSPM_AUTOSYNC_SAMPLE_RATE("External Rate", 0),
HDSPM_WC_SYNC_CHECK("Word Clock Lock Status", 0),
/* HDSPM_AES_SYNC_CHECK("AES Lock Status", 0),*/ /* created in snd_hdspm_create_controls() */
HDSPM_LINE_OUT("Line Out", 0),
HDSPM_EMPHASIS("Emphasis", 0),
HDSPM_DOLBY("Non Audio", 0),
HDSPM_PROFESSIONAL("Professional", 0),
HDSPM_C_TMS("Clear Track Marker", 0),
HDSPM_DS_WIRE("Double Speed Wire Mode", 0),
HDSPM_QS_WIRE("Quad Speed Wire Mode", 0),
};
static struct snd_kcontrol_new snd_hdspm_playback_mixer = HDSPM_PLAYBACK_MIXER; static struct snd_kcontrol_new snd_hdspm_playback_mixer = HDSPM_PLAYBACK_MIXER;
...@@ -2245,20 +2874,40 @@ static int snd_hdspm_create_controls(struct snd_card *card, struct hdspm * hdspm ...@@ -2245,20 +2874,40 @@ static int snd_hdspm_create_controls(struct snd_card *card, struct hdspm * hdspm
struct snd_kcontrol *kctl; struct snd_kcontrol *kctl;
/* add control list first */ /* add control list first */
if (hdspm->is_aes32) {
for (idx = 0; idx < ARRAY_SIZE(snd_hdspm_controls); idx++) { struct snd_kcontrol_new aes_sync_ctl =
if ((err = HDSPM_AES_SYNC_CHECK("AES Lock Status", 0);
snd_ctl_add(card, kctl =
snd_ctl_new1(&snd_hdspm_controls[idx], for (idx = 0; idx < ARRAY_SIZE(snd_hdspm_controls_aes32);
hdspm))) < 0) { idx++) {
return err; err = snd_ctl_add(card,
snd_ctl_new1(&snd_hdspm_controls_aes32[idx],
hdspm));
if (err < 0)
return err;
}
for (idx = 1; idx <= 8; idx++) {
aes_sync_ctl.index = idx;
err = snd_ctl_add(card,
snd_ctl_new1(&aes_sync_ctl, hdspm));
if (err < 0)
return err;
}
} else {
for (idx = 0; idx < ARRAY_SIZE(snd_hdspm_controls_madi);
idx++) {
err = snd_ctl_add(card,
snd_ctl_new1(&snd_hdspm_controls_madi[idx],
hdspm));
if (err < 0)
return err;
} }
} }
/* Channel playback mixer as default control /* Channel playback mixer as default control
Note: the whole matrix would be 128*HDSPM_MIXER_CHANNELS Faders, thats too big for any alsamixer Note: the whole matrix would be 128*HDSPM_MIXER_CHANNELS Faders, thats too big for any alsamixer
they are accesible via special IOCTL on hwdep they are accesible via special IOCTL on hwdep
and the mixer 2dimensional mixer control */ and the mixer 2dimensional mixer control */
snd_hdspm_playback_mixer.name = "Chn"; snd_hdspm_playback_mixer.name = "Chn";
limit = HDSPM_MAX_CHANNELS; limit = HDSPM_MAX_CHANNELS;
...@@ -2289,7 +2938,8 @@ static int snd_hdspm_create_controls(struct snd_card *card, struct hdspm * hdspm ...@@ -2289,7 +2938,8 @@ static int snd_hdspm_create_controls(struct snd_card *card, struct hdspm * hdspm
------------------------------------------------------------*/ ------------------------------------------------------------*/
static void static void
snd_hdspm_proc_read(struct snd_info_entry * entry, struct snd_info_buffer *buffer) snd_hdspm_proc_read_madi(struct snd_info_entry * entry,
struct snd_info_buffer *buffer)
{ {
struct hdspm *hdspm = (struct hdspm *) entry->private_data; struct hdspm *hdspm = (struct hdspm *) entry->private_data;
unsigned int status; unsigned int status;
...@@ -2420,11 +3070,10 @@ snd_hdspm_proc_read(struct snd_info_entry * entry, struct snd_info_buffer *buffe ...@@ -2420,11 +3070,10 @@ snd_hdspm_proc_read(struct snd_info_entry * entry, struct snd_info_buffer *buffe
clock_source = "Error"; clock_source = "Error";
} }
snd_iprintf(buffer, "Sample Clock Source: %s\n", clock_source); snd_iprintf(buffer, "Sample Clock Source: %s\n", clock_source);
if (!(hdspm->control_register & HDSPM_ClockModeMaster)) { if (!(hdspm->control_register & HDSPM_ClockModeMaster))
system_clock_mode = "Slave"; system_clock_mode = "Slave";
} else { else
system_clock_mode = "Master"; system_clock_mode = "Master";
}
snd_iprintf(buffer, "System Clock Mode: %s\n", system_clock_mode); snd_iprintf(buffer, "System Clock Mode: %s\n", system_clock_mode);
switch (hdspm_pref_sync_ref(hdspm)) { switch (hdspm_pref_sync_ref(hdspm)) {
...@@ -2484,13 +3133,213 @@ snd_hdspm_proc_read(struct snd_info_entry * entry, struct snd_info_buffer *buffe ...@@ -2484,13 +3133,213 @@ snd_hdspm_proc_read(struct snd_info_entry * entry, struct snd_info_buffer *buffe
snd_iprintf(buffer, "\n"); snd_iprintf(buffer, "\n");
} }
static void
snd_hdspm_proc_read_aes32(struct snd_info_entry * entry,
struct snd_info_buffer *buffer)
{
struct hdspm *hdspm = (struct hdspm *) entry->private_data;
unsigned int status;
unsigned int status2;
unsigned int timecode;
int pref_syncref;
char *autosync_ref;
char *system_clock_mode;
char *clock_source;
int x;
status = hdspm_read(hdspm, HDSPM_statusRegister);
status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
timecode = hdspm_read(hdspm, HDSPM_timecodeRegister);
snd_iprintf(buffer, "%s (Card #%d) Rev.%x\n",
hdspm->card_name, hdspm->card->number + 1,
hdspm->firmware_rev);
snd_iprintf(buffer, "IRQ: %d Registers bus: 0x%lx VM: 0x%lx\n",
hdspm->irq, hdspm->port, (unsigned long)hdspm->iobase);
snd_iprintf(buffer, "--- System ---\n");
snd_iprintf(buffer,
"IRQ Pending: Audio=%d, MIDI0=%d, MIDI1=%d, IRQcount=%d\n",
status & HDSPM_audioIRQPending,
(status & HDSPM_midi0IRQPending) ? 1 : 0,
(status & HDSPM_midi1IRQPending) ? 1 : 0,
hdspm->irq_count);
snd_iprintf(buffer,
"HW pointer: id = %d, rawptr = %d (%d->%d) estimated= %ld (bytes)\n",
((status & HDSPM_BufferID) ? 1 : 0),
(status & HDSPM_BufferPositionMask),
(status & HDSPM_BufferPositionMask) % (2 *
(int)hdspm->
period_bytes),
((status & HDSPM_BufferPositionMask) -
64) % (2 * (int)hdspm->period_bytes),
(long) hdspm_hw_pointer(hdspm) * 4);
snd_iprintf(buffer,
"MIDI FIFO: Out1=0x%x, Out2=0x%x, In1=0x%x, In2=0x%x \n",
hdspm_read(hdspm, HDSPM_midiStatusOut0) & 0xFF,
hdspm_read(hdspm, HDSPM_midiStatusOut1) & 0xFF,
hdspm_read(hdspm, HDSPM_midiStatusIn0) & 0xFF,
hdspm_read(hdspm, HDSPM_midiStatusIn1) & 0xFF);
snd_iprintf(buffer,
"Register: ctrl1=0x%x, ctrl2=0x%x, status1=0x%x, status2=0x%x, timecode=0x%x\n",
hdspm->control_register, hdspm->control2_register,
status, status2, timecode);
snd_iprintf(buffer, "--- Settings ---\n");
x = 1 << (6 +
hdspm_decode_latency(hdspm->
control_register &
HDSPM_LatencyMask));
snd_iprintf(buffer,
"Size (Latency): %d samples (2 periods of %lu bytes)\n",
x, (unsigned long) hdspm->period_bytes);
snd_iprintf(buffer, "Line out: %s, Precise Pointer: %s\n",
(hdspm->
control_register & HDSPM_LineOut) ? "on " : "off",
(hdspm->precise_ptr) ? "on" : "off");
snd_iprintf(buffer,
"ClearTrackMarker %s, Emphasis %s, Dolby %s\n",
(hdspm->
control_register & HDSPM_clr_tms) ? "on" : "off",
(hdspm->
control_register & HDSPM_Emphasis) ? "on" : "off",
(hdspm->
control_register & HDSPM_Dolby) ? "on" : "off");
switch (hdspm_clock_source(hdspm)) {
case HDSPM_CLOCK_SOURCE_AUTOSYNC:
clock_source = "AutoSync";
break;
case HDSPM_CLOCK_SOURCE_INTERNAL_32KHZ:
clock_source = "Internal 32 kHz";
break;
case HDSPM_CLOCK_SOURCE_INTERNAL_44_1KHZ:
clock_source = "Internal 44.1 kHz";
break;
case HDSPM_CLOCK_SOURCE_INTERNAL_48KHZ:
clock_source = "Internal 48 kHz";
break;
case HDSPM_CLOCK_SOURCE_INTERNAL_64KHZ:
clock_source = "Internal 64 kHz";
break;
case HDSPM_CLOCK_SOURCE_INTERNAL_88_2KHZ:
clock_source = "Internal 88.2 kHz";
break;
case HDSPM_CLOCK_SOURCE_INTERNAL_96KHZ:
clock_source = "Internal 96 kHz";
break;
case HDSPM_CLOCK_SOURCE_INTERNAL_128KHZ:
clock_source = "Internal 128 kHz";
break;
case HDSPM_CLOCK_SOURCE_INTERNAL_176_4KHZ:
clock_source = "Internal 176.4 kHz";
break;
case HDSPM_CLOCK_SOURCE_INTERNAL_192KHZ:
clock_source = "Internal 192 kHz";
break;
default:
clock_source = "Error";
}
snd_iprintf(buffer, "Sample Clock Source: %s\n", clock_source);
if (!(hdspm->control_register & HDSPM_ClockModeMaster))
system_clock_mode = "Slave";
else
system_clock_mode = "Master";
snd_iprintf(buffer, "System Clock Mode: %s\n", system_clock_mode);
pref_syncref = hdspm_pref_sync_ref(hdspm);
if (pref_syncref == 0)
snd_iprintf(buffer, "Preferred Sync Reference: Word Clock\n");
else
snd_iprintf(buffer, "Preferred Sync Reference: AES%d\n",
pref_syncref);
snd_iprintf(buffer, "System Clock Frequency: %d\n",
hdspm->system_sample_rate);
snd_iprintf(buffer, "Double speed: %s\n",
hdspm->control_register & HDSPM_DS_DoubleWire?
"Double wire" : "Single wire");
snd_iprintf(buffer, "Quad speed: %s\n",
hdspm->control_register & HDSPM_QS_DoubleWire?
"Double wire" :
hdspm->control_register & HDSPM_QS_QuadWire?
"Quad wire" : "Single wire");
snd_iprintf(buffer, "--- Status:\n");
snd_iprintf(buffer, "Word: %s Frequency: %d\n",
(status & HDSPM_AES32_wcLock)? "Sync " : "No Lock",
HDSPM_bit2freq((status >> HDSPM_AES32_wcFreq_bit) & 0xF));
for (x = 0; x < 8; x++) {
snd_iprintf(buffer, "AES%d: %s Frequency: %d\n",
x+1,
(status2 & (HDSPM_LockAES >> x))? "Sync ": "No Lock",
HDSPM_bit2freq((timecode >> (4*x)) & 0xF));
}
switch (hdspm_autosync_ref(hdspm)) {
case HDSPM_AES32_AUTOSYNC_FROM_NONE: autosync_ref="None"; break;
case HDSPM_AES32_AUTOSYNC_FROM_WORD: autosync_ref="Word Clock"; break;
case HDSPM_AES32_AUTOSYNC_FROM_AES1: autosync_ref="AES1"; break;
case HDSPM_AES32_AUTOSYNC_FROM_AES2: autosync_ref="AES2"; break;
case HDSPM_AES32_AUTOSYNC_FROM_AES3: autosync_ref="AES3"; break;
case HDSPM_AES32_AUTOSYNC_FROM_AES4: autosync_ref="AES4"; break;
case HDSPM_AES32_AUTOSYNC_FROM_AES5: autosync_ref="AES5"; break;
case HDSPM_AES32_AUTOSYNC_FROM_AES6: autosync_ref="AES6"; break;
case HDSPM_AES32_AUTOSYNC_FROM_AES7: autosync_ref="AES7"; break;
case HDSPM_AES32_AUTOSYNC_FROM_AES8: autosync_ref="AES8"; break;
default: autosync_ref = "---"; break;
}
snd_iprintf(buffer, "AutoSync ref = %s\n", autosync_ref);
snd_iprintf(buffer, "\n");
}
#ifdef CONFIG_SND_DEBUG
static void
snd_hdspm_proc_read_debug(struct snd_info_entry * entry,
struct snd_info_buffer *buffer)
{
struct hdspm *hdspm = (struct hdspm *)entry->private_data;
int j,i;
for (i = 0; i < 256 /* 1024*64 */; i += j)
{
snd_iprintf(buffer, "0x%08X: ", i);
for (j = 0; j < 16; j += 4)
snd_iprintf(buffer, "%08X ", hdspm_read(hdspm, i + j));
snd_iprintf(buffer, "\n");
}
}
#endif
static void __devinit snd_hdspm_proc_init(struct hdspm * hdspm) static void __devinit snd_hdspm_proc_init(struct hdspm * hdspm)
{ {
struct snd_info_entry *entry; struct snd_info_entry *entry;
if (!snd_card_proc_new(hdspm->card, "hdspm", &entry)) if (!snd_card_proc_new(hdspm->card, "hdspm", &entry))
snd_info_set_text_ops(entry, hdspm, snd_info_set_text_ops(entry, hdspm,
snd_hdspm_proc_read); hdspm->is_aes32 ?
snd_hdspm_proc_read_aes32 :
snd_hdspm_proc_read_madi);
#ifdef CONFIG_SND_DEBUG
/* debug file to read all hdspm registers */
if (!snd_card_proc_new(hdspm->card, "debug", &entry))
snd_info_set_text_ops(entry, hdspm,
snd_hdspm_proc_read_debug);
#endif
} }
/*------------------------------------------------------------ /*------------------------------------------------------------
...@@ -2507,13 +3356,20 @@ static int snd_hdspm_set_defaults(struct hdspm * hdspm) ...@@ -2507,13 +3356,20 @@ static int snd_hdspm_set_defaults(struct hdspm * hdspm)
/* set defaults: */ /* set defaults: */
hdspm->control_register = HDSPM_ClockModeMaster | /* Master Cloack Mode on */ if (hdspm->is_aes32)
hdspm_encode_latency(7) | /* latency maximum = 8192 samples */ hdspm->control_register = HDSPM_ClockModeMaster | /* Master Cloack Mode on */
HDSPM_InputCoaxial | /* Input Coax not Optical */ hdspm_encode_latency(7) | /* latency maximum = 8192 samples */
HDSPM_SyncRef_MADI | /* Madi is syncclock */ HDSPM_SyncRef0 | /* AES1 is syncclock */
HDSPM_LineOut | /* Analog output in */ HDSPM_LineOut | /* Analog output in */
HDSPM_TX_64ch | /* transmit in 64ch mode */ HDSPM_Professional; /* Professional mode */
HDSPM_AutoInp; /* AutoInput chossing (takeover) */ else
hdspm->control_register = HDSPM_ClockModeMaster | /* Master Cloack Mode on */
hdspm_encode_latency(7) | /* latency maximum = 8192 samples */
HDSPM_InputCoaxial | /* Input Coax not Optical */
HDSPM_SyncRef_MADI | /* Madi is syncclock */
HDSPM_LineOut | /* Analog output in */
HDSPM_TX_64ch | /* transmit in 64ch mode */
HDSPM_AutoInp; /* AutoInput chossing (takeover) */
/* ! HDSPM_Frequency0|HDSPM_Frequency1 = 44.1khz */ /* ! HDSPM_Frequency0|HDSPM_Frequency1 = 44.1khz */
/* ! HDSPM_DoubleSpeed HDSPM_QuadSpeed = normal speed */ /* ! HDSPM_DoubleSpeed HDSPM_QuadSpeed = normal speed */
...@@ -2822,6 +3678,8 @@ static int snd_hdspm_hw_params(struct snd_pcm_substream *substream, ...@@ -2822,6 +3678,8 @@ static int snd_hdspm_hw_params(struct snd_pcm_substream *substream,
hdspm->playback_buffer = hdspm->playback_buffer =
(unsigned char *) substream->runtime->dma_area; (unsigned char *) substream->runtime->dma_area;
snd_printdd("Allocated sample buffer for playback at 0x%08X\n",
hdspm->playback_buffer);
} else { } else {
hdspm_set_sgbuf(hdspm, sgbuf, HDSPM_pageAddressBufferIn, hdspm_set_sgbuf(hdspm, sgbuf, HDSPM_pageAddressBufferIn,
params_channels(params)); params_channels(params));
...@@ -2831,7 +3689,15 @@ static int snd_hdspm_hw_params(struct snd_pcm_substream *substream, ...@@ -2831,7 +3689,15 @@ static int snd_hdspm_hw_params(struct snd_pcm_substream *substream,
hdspm->capture_buffer = hdspm->capture_buffer =
(unsigned char *) substream->runtime->dma_area; (unsigned char *) substream->runtime->dma_area;
snd_printdd("Allocated sample buffer for capture at 0x%08X\n",
hdspm->capture_buffer);
} }
/*
snd_printdd("Allocated sample buffer for %s at 0x%08X\n",
substream->stream == SNDRV_PCM_STREAM_PLAYBACK ?
"playback" : "capture",
snd_pcm_sgbuf_get_addr(sgbuf, 0));
*/
return 0; return 0;
} }
...@@ -2982,9 +3848,10 @@ static struct snd_pcm_hardware snd_hdspm_playback_subinfo = { ...@@ -2982,9 +3848,10 @@ static struct snd_pcm_hardware snd_hdspm_playback_subinfo = {
SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_44100 |
SNDRV_PCM_RATE_48000 | SNDRV_PCM_RATE_48000 |
SNDRV_PCM_RATE_64000 | SNDRV_PCM_RATE_64000 |
SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000), SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000 |
SNDRV_PCM_RATE_176400 | SNDRV_PCM_RATE_192000 ),
.rate_min = 32000, .rate_min = 32000,
.rate_max = 96000, .rate_max = 192000,
.channels_min = 1, .channels_min = 1,
.channels_max = HDSPM_MAX_CHANNELS, .channels_max = HDSPM_MAX_CHANNELS,
.buffer_bytes_max = .buffer_bytes_max =
...@@ -3006,9 +3873,10 @@ static struct snd_pcm_hardware snd_hdspm_capture_subinfo = { ...@@ -3006,9 +3873,10 @@ static struct snd_pcm_hardware snd_hdspm_capture_subinfo = {
SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_44100 |
SNDRV_PCM_RATE_48000 | SNDRV_PCM_RATE_48000 |
SNDRV_PCM_RATE_64000 | SNDRV_PCM_RATE_64000 |
SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000), SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000 |
SNDRV_PCM_RATE_176400 | SNDRV_PCM_RATE_192000),
.rate_min = 32000, .rate_min = 32000,
.rate_max = 96000, .rate_max = 192000,
.channels_min = 1, .channels_min = 1,
.channels_max = HDSPM_MAX_CHANNELS, .channels_max = HDSPM_MAX_CHANNELS,
.buffer_bytes_max = .buffer_bytes_max =
...@@ -3315,7 +4183,8 @@ static int __devinit snd_hdspm_preallocate_memory(struct hdspm * hdspm) ...@@ -3315,7 +4183,8 @@ static int __devinit snd_hdspm_preallocate_memory(struct hdspm * hdspm)
pcm = hdspm->pcm; pcm = hdspm->pcm;
wanted = HDSPM_DMA_AREA_BYTES + 4096; /* dont know why, but it works */ /* wanted = HDSPM_DMA_AREA_BYTES + 4096;*/ /* dont know why, but it works */
wanted = HDSPM_DMA_AREA_BYTES;
if ((err = if ((err =
snd_pcm_lib_preallocate_pages_for_all(pcm, snd_pcm_lib_preallocate_pages_for_all(pcm,
...@@ -3467,9 +4336,16 @@ static int __devinit snd_hdspm_create(struct snd_card *card, struct hdspm * hdsp ...@@ -3467,9 +4336,16 @@ static int __devinit snd_hdspm_create(struct snd_card *card, struct hdspm * hdsp
pci_read_config_word(hdspm->pci, pci_read_config_word(hdspm->pci,
PCI_CLASS_REVISION, &hdspm->firmware_rev); PCI_CLASS_REVISION, &hdspm->firmware_rev);
strcpy(card->driver, "HDSPM"); hdspm->is_aes32 = (hdspm->firmware_rev >= HDSPM_AESREVISION);
strcpy(card->mixername, "Xilinx FPGA"); strcpy(card->mixername, "Xilinx FPGA");
hdspm->card_name = "RME HDSPM MADI"; if (hdspm->is_aes32) {
strcpy(card->driver, "HDSPAES32");
hdspm->card_name = "RME HDSPM AES32";
} else {
strcpy(card->driver, "HDSPM");
hdspm->card_name = "RME HDSPM MADI";
}
if ((err = pci_enable_device(pci)) < 0) if ((err = pci_enable_device(pci)) < 0)
return err; return err;
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment