Commit 35d1bc90 authored by Linus Torvalds's avatar Linus Torvalds

Automatic merge of master.kernel.org:/home/rmk/linux-2.6-arm

parents 1d6757fb f8f98a93
...@@ -47,3 +47,10 @@ __XScale_start: ...@@ -47,3 +47,10 @@ __XScale_start:
orr r7, r7, #(MACH_TYPE_GTWX5715 & 0xff00) orr r7, r7, #(MACH_TYPE_GTWX5715 & 0xff00)
#endif #endif
#ifdef CONFIG_ARCH_IXP2000
mov r1, #-1
mov r0, #0xd6000000
str r1, [r0, #0x14]
str r1, [r0, #0x18]
#endif
...@@ -304,6 +304,15 @@ static void __init mainstone_map_io(void) ...@@ -304,6 +304,15 @@ static void __init mainstone_map_io(void)
PWER = 0xC0000002; PWER = 0xC0000002;
PRER = 0x00000002; PRER = 0x00000002;
PFER = 0x00000002; PFER = 0x00000002;
/* for use I SRAM as framebuffer. */
PSLR |= 0xF04;
PCFR = 0x66;
/* For Keypad wakeup. */
KPC &=~KPC_ASACT;
KPC |=KPC_AS;
PKWR = 0x000FD000;
/* Need read PKWR back after set it. */
PKWR;
} }
MACHINE_START(MAINSTONE, "Intel HCDDBBVA0 Development Platform (aka Mainstone)") MACHINE_START(MAINSTONE, "Intel HCDDBBVA0 Development Platform (aka Mainstone)")
......
...@@ -29,9 +29,6 @@ ...@@ -29,9 +29,6 @@
*/ */
#undef DEBUG #undef DEBUG
extern void pxa_cpu_suspend(void);
extern void pxa_cpu_resume(void);
#define SAVE(x) sleep_save[SLEEP_SAVE_##x] = x #define SAVE(x) sleep_save[SLEEP_SAVE_##x] = x
#define RESTORE(x) x = sleep_save[SLEEP_SAVE_##x] #define RESTORE(x) x = sleep_save[SLEEP_SAVE_##x]
...@@ -63,6 +60,12 @@ enum { SLEEP_SAVE_START = 0, ...@@ -63,6 +60,12 @@ enum { SLEEP_SAVE_START = 0,
SLEEP_SAVE_ICMR, SLEEP_SAVE_ICMR,
SLEEP_SAVE_CKEN, SLEEP_SAVE_CKEN,
#ifdef CONFIG_PXA27x
SLEEP_SAVE_MDREFR,
SLEEP_SAVE_PWER, SLEEP_SAVE_PCFR, SLEEP_SAVE_PRER,
SLEEP_SAVE_PFER, SLEEP_SAVE_PKWR,
#endif
SLEEP_SAVE_CKSUM, SLEEP_SAVE_CKSUM,
SLEEP_SAVE_SIZE SLEEP_SAVE_SIZE
...@@ -75,9 +78,7 @@ static int pxa_pm_enter(suspend_state_t state) ...@@ -75,9 +78,7 @@ static int pxa_pm_enter(suspend_state_t state)
unsigned long checksum = 0; unsigned long checksum = 0;
struct timespec delta, rtc; struct timespec delta, rtc;
int i; int i;
extern void pxa_cpu_pm_enter(suspend_state_t state);
if (state != PM_SUSPEND_MEM)
return -EINVAL;
#ifdef CONFIG_IWMMXT #ifdef CONFIG_IWMMXT
/* force any iWMMXt context to ram **/ /* force any iWMMXt context to ram **/
...@@ -100,16 +101,17 @@ static int pxa_pm_enter(suspend_state_t state) ...@@ -100,16 +101,17 @@ static int pxa_pm_enter(suspend_state_t state)
SAVE(GAFR2_L); SAVE(GAFR2_U); SAVE(GAFR2_L); SAVE(GAFR2_U);
#ifdef CONFIG_PXA27x #ifdef CONFIG_PXA27x
SAVE(MDREFR);
SAVE(GPLR3); SAVE(GPDR3); SAVE(GRER3); SAVE(GFER3); SAVE(PGSR3); SAVE(GPLR3); SAVE(GPDR3); SAVE(GRER3); SAVE(GFER3); SAVE(PGSR3);
SAVE(GAFR3_L); SAVE(GAFR3_U); SAVE(GAFR3_L); SAVE(GAFR3_U);
SAVE(PWER); SAVE(PCFR); SAVE(PRER);
SAVE(PFER); SAVE(PKWR);
#endif #endif
SAVE(ICMR); SAVE(ICMR);
ICMR = 0; ICMR = 0;
SAVE(CKEN); SAVE(CKEN);
CKEN = 0;
SAVE(PSTR); SAVE(PSTR);
/* Note: wake up source are set up in each machine specific files */ /* Note: wake up source are set up in each machine specific files */
...@@ -123,16 +125,13 @@ static int pxa_pm_enter(suspend_state_t state) ...@@ -123,16 +125,13 @@ static int pxa_pm_enter(suspend_state_t state)
/* Clear sleep reset status */ /* Clear sleep reset status */
RCSR = RCSR_SMR; RCSR = RCSR_SMR;
/* set resume return address */
PSPR = virt_to_phys(pxa_cpu_resume);
/* before sleeping, calculate and save a checksum */ /* before sleeping, calculate and save a checksum */
for (i = 0; i < SLEEP_SAVE_SIZE - 1; i++) for (i = 0; i < SLEEP_SAVE_SIZE - 1; i++)
checksum += sleep_save[i]; checksum += sleep_save[i];
sleep_save[SLEEP_SAVE_CKSUM] = checksum; sleep_save[SLEEP_SAVE_CKSUM] = checksum;
/* *** go zzz *** */ /* *** go zzz *** */
pxa_cpu_suspend(); pxa_cpu_pm_enter(state);
/* after sleeping, validate the checksum */ /* after sleeping, validate the checksum */
checksum = 0; checksum = 0;
...@@ -145,7 +144,7 @@ static int pxa_pm_enter(suspend_state_t state) ...@@ -145,7 +144,7 @@ static int pxa_pm_enter(suspend_state_t state)
LUB_HEXLED = 0xbadbadc5; LUB_HEXLED = 0xbadbadc5;
#endif #endif
while (1) while (1)
pxa_cpu_suspend(); pxa_cpu_pm_enter(state);
} }
/* ensure not to come back here if it wasn't intended */ /* ensure not to come back here if it wasn't intended */
...@@ -162,8 +161,11 @@ static int pxa_pm_enter(suspend_state_t state) ...@@ -162,8 +161,11 @@ static int pxa_pm_enter(suspend_state_t state)
RESTORE(PGSR0); RESTORE(PGSR1); RESTORE(PGSR2); RESTORE(PGSR0); RESTORE(PGSR1); RESTORE(PGSR2);
#ifdef CONFIG_PXA27x #ifdef CONFIG_PXA27x
RESTORE(MDREFR);
RESTORE(GAFR3_L); RESTORE(GAFR3_U); RESTORE_GPLEVEL(3); RESTORE(GAFR3_L); RESTORE(GAFR3_U); RESTORE_GPLEVEL(3);
RESTORE(GPDR3); RESTORE(GRER3); RESTORE(GFER3); RESTORE(PGSR3); RESTORE(GPDR3); RESTORE(GRER3); RESTORE(GFER3); RESTORE(PGSR3);
RESTORE(PWER); RESTORE(PCFR); RESTORE(PRER);
RESTORE(PFER); RESTORE(PKWR);
#endif #endif
PSSR = PSSR_RDH | PSSR_PH; PSSR = PSSR_RDH | PSSR_PH;
...@@ -197,7 +199,9 @@ unsigned long sleep_phys_sp(void *sp) ...@@ -197,7 +199,9 @@ unsigned long sleep_phys_sp(void *sp)
*/ */
static int pxa_pm_prepare(suspend_state_t state) static int pxa_pm_prepare(suspend_state_t state)
{ {
return 0; extern int pxa_cpu_pm_prepare(suspend_state_t state);
return pxa_cpu_pm_prepare(state);
} }
/* /*
......
...@@ -102,3 +102,32 @@ unsigned int get_lcdclk_frequency_10khz(void) ...@@ -102,3 +102,32 @@ unsigned int get_lcdclk_frequency_10khz(void)
} }
EXPORT_SYMBOL(get_lcdclk_frequency_10khz); EXPORT_SYMBOL(get_lcdclk_frequency_10khz);
int pxa_cpu_pm_prepare(suspend_state_t state)
{
switch (state) {
case PM_SUSPEND_MEM:
break;
default:
return -EINVAL;
}
return 0;
}
void pxa_cpu_pm_enter(suspend_state_t state)
{
extern void pxa_cpu_suspend(unsigned int);
extern void pxa_cpu_resume(void);
CKEN = 0;
switch (state) {
case PM_SUSPEND_MEM:
/* set resume return address */
PSPR = virt_to_phys(pxa_cpu_resume);
pxa_cpu_suspend(3);
break;
}
}
...@@ -120,6 +120,38 @@ EXPORT_SYMBOL(get_clk_frequency_khz); ...@@ -120,6 +120,38 @@ EXPORT_SYMBOL(get_clk_frequency_khz);
EXPORT_SYMBOL(get_memclk_frequency_10khz); EXPORT_SYMBOL(get_memclk_frequency_10khz);
EXPORT_SYMBOL(get_lcdclk_frequency_10khz); EXPORT_SYMBOL(get_lcdclk_frequency_10khz);
int pxa_cpu_pm_prepare(suspend_state_t state)
{
switch (state) {
case PM_SUSPEND_MEM:
return 0;
default:
return -EINVAL;
}
}
void pxa_cpu_pm_enter(suspend_state_t state)
{
extern void pxa_cpu_standby(void);
extern void pxa_cpu_suspend(unsigned int);
extern void pxa_cpu_resume(void);
CKEN = CKEN22_MEMC | CKEN9_OSTIMER;
/* ensure voltage-change sequencer not initiated, which hangs */
PCFR &= ~PCFR_FVC;
/* Clear edge-detect status register. */
PEDR = 0xDF12FE1B;
switch (state) {
case PM_SUSPEND_MEM:
/* set resume return address */
PSPR = virt_to_phys(pxa_cpu_resume);
pxa_cpu_suspend(3);
break;
}
}
/* /*
* device registration specific to PXA27x. * device registration specific to PXA27x.
......
...@@ -785,6 +785,10 @@ int s3c2410_dma_free(dmach_t channel, s3c2410_dma_client_t *client) ...@@ -785,6 +785,10 @@ int s3c2410_dma_free(dmach_t channel, s3c2410_dma_client_t *client)
chan->client = NULL; chan->client = NULL;
chan->in_use = 0; chan->in_use = 0;
if (chan->irq_claimed)
free_irq(chan->irq, (void *)chan);
chan->irq_claimed = 0;
local_irq_restore(flags); local_irq_restore(flags);
return 0; return 0;
......
...@@ -228,7 +228,6 @@ config CPU_SA1100 ...@@ -228,7 +228,6 @@ config CPU_SA1100
select CPU_CACHE_V4WB select CPU_CACHE_V4WB
select CPU_CACHE_VIVT select CPU_CACHE_VIVT
select CPU_TLB_V4WB select CPU_TLB_V4WB
select CPU_MINICACHE
# XScale # XScale
config CPU_XSCALE config CPU_XSCALE
...@@ -239,7 +238,6 @@ config CPU_XSCALE ...@@ -239,7 +238,6 @@ config CPU_XSCALE
select CPU_ABRT_EV5T select CPU_ABRT_EV5T
select CPU_CACHE_VIVT select CPU_CACHE_VIVT
select CPU_TLB_V4WBI select CPU_TLB_V4WBI
select CPU_MINICACHE
# ARMv6 # ARMv6
config CPU_V6 config CPU_V6
...@@ -345,11 +343,6 @@ config CPU_TLB_V4WBI ...@@ -345,11 +343,6 @@ config CPU_TLB_V4WBI
config CPU_TLB_V6 config CPU_TLB_V6
bool bool
config CPU_MINICACHE
bool
help
Processor has a minicache.
comment "Processor Features" comment "Processor Features"
config ARM_THUMB config ARM_THUMB
......
...@@ -31,8 +31,6 @@ obj-$(CONFIG_CPU_COPY_V6) += copypage-v6.o mmu.o ...@@ -31,8 +31,6 @@ obj-$(CONFIG_CPU_COPY_V6) += copypage-v6.o mmu.o
obj-$(CONFIG_CPU_SA1100) += copypage-v4mc.o obj-$(CONFIG_CPU_SA1100) += copypage-v4mc.o
obj-$(CONFIG_CPU_XSCALE) += copypage-xscale.o obj-$(CONFIG_CPU_XSCALE) += copypage-xscale.o
obj-$(CONFIG_CPU_MINICACHE) += minicache.o
obj-$(CONFIG_CPU_TLB_V3) += tlb-v3.o obj-$(CONFIG_CPU_TLB_V3) += tlb-v3.o
obj-$(CONFIG_CPU_TLB_V4WT) += tlb-v4.o obj-$(CONFIG_CPU_TLB_V4WT) += tlb-v4.o
obj-$(CONFIG_CPU_TLB_V4WB) += tlb-v4wb.o obj-$(CONFIG_CPU_TLB_V4WB) += tlb-v4wb.o
......
/*
* linux/arch/arm/lib/copypage-xscale.S
*
* Copyright (C) 2001 Russell King
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/linkage.h>
#include <linux/init.h>
#include <asm/constants.h>
/*
* General note:
* We don't really want write-allocate cache behaviour for these functions
* since that will just eat through 8K of the cache.
*/
.text
.align 5
/*
* XScale optimised copy_user_page
* r0 = destination
* r1 = source
* r2 = virtual user address of ultimate destination page
*
* The source page may have some clean entries in the cache already, but we
* can safely ignore them - break_cow() will flush them out of the cache
* if we eventually end up using our copied page.
*
* What we could do is use the mini-cache to buffer reads from the source
* page. We rely on the mini-cache being smaller than one page, so we'll
* cycle through the complete cache anyway.
*/
ENTRY(xscale_mc_copy_user_page)
stmfd sp!, {r4, r5, lr}
mov r5, r0
mov r0, r1
bl map_page_minicache
mov r1, r5
mov lr, #PAGE_SZ/64-1
/*
* Strangely enough, best performance is achieved
* when prefetching destination as well. (NP)
*/
pld [r0, #0]
pld [r0, #32]
pld [r1, #0]
pld [r1, #32]
1: pld [r0, #64]
pld [r0, #96]
pld [r1, #64]
pld [r1, #96]
2: ldrd r2, [r0], #8
ldrd r4, [r0], #8
mov ip, r1
strd r2, [r1], #8
ldrd r2, [r0], #8
strd r4, [r1], #8
ldrd r4, [r0], #8
strd r2, [r1], #8
strd r4, [r1], #8
mcr p15, 0, ip, c7, c10, 1 @ clean D line
ldrd r2, [r0], #8
mcr p15, 0, ip, c7, c6, 1 @ invalidate D line
ldrd r4, [r0], #8
mov ip, r1
strd r2, [r1], #8
ldrd r2, [r0], #8
strd r4, [r1], #8
ldrd r4, [r0], #8
strd r2, [r1], #8
strd r4, [r1], #8
mcr p15, 0, ip, c7, c10, 1 @ clean D line
subs lr, lr, #1
mcr p15, 0, ip, c7, c6, 1 @ invalidate D line
bgt 1b
beq 2b
ldmfd sp!, {r4, r5, pc}
.align 5
/*
* XScale optimised clear_user_page
* r0 = destination
* r1 = virtual user address of ultimate destination page
*/
ENTRY(xscale_mc_clear_user_page)
mov r1, #PAGE_SZ/32
mov r2, #0
mov r3, #0
1: mov ip, r0
strd r2, [r0], #8
strd r2, [r0], #8
strd r2, [r0], #8
strd r2, [r0], #8
mcr p15, 0, ip, c7, c10, 1 @ clean D line
subs r1, r1, #1
mcr p15, 0, ip, c7, c6, 1 @ invalidate D line
bne 1b
mov pc, lr
__INITDATA
.type xscale_mc_user_fns, #object
ENTRY(xscale_mc_user_fns)
.long xscale_mc_clear_user_page
.long xscale_mc_copy_user_page
.size xscale_mc_user_fns, . - xscale_mc_user_fns
/*
* linux/arch/arm/lib/copypage-xscale.S
*
* Copyright (C) 1995-2005 Russell King
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This handles the mini data cache, as found on SA11x0 and XScale
* processors. When we copy a user page page, we map it in such a way
* that accesses to this page will not touch the main data cache, but
* will be cached in the mini data cache. This prevents us thrashing
* the main data cache on page faults.
*/
#include <linux/init.h>
#include <linux/mm.h>
#include <asm/page.h>
#include <asm/pgtable.h>
#include <asm/tlbflush.h>
/*
* 0xffff8000 to 0xffffffff is reserved for any ARM architecture
* specific hacks for copying pages efficiently.
*/
#define COPYPAGE_MINICACHE 0xffff8000
#define minicache_pgprot __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | \
L_PTE_CACHEABLE)
#define TOP_PTE(x) pte_offset_kernel(top_pmd, x)
static DEFINE_SPINLOCK(minicache_lock);
/*
* XScale mini-dcache optimised copy_user_page
*
* We flush the destination cache lines just before we write the data into the
* corresponding address. Since the Dcache is read-allocate, this removes the
* Dcache aliasing issue. The writes will be forwarded to the write buffer,
* and merged as appropriate.
*/
static void __attribute__((naked))
mc_copy_user_page(void *from, void *to)
{
/*
* Strangely enough, best performance is achieved
* when prefetching destination as well. (NP)
*/
asm volatile(
"stmfd sp!, {r4, r5, lr} \n\
mov lr, %2 \n\
pld [r0, #0] \n\
pld [r0, #32] \n\
pld [r1, #0] \n\
pld [r1, #32] \n\
1: pld [r0, #64] \n\
pld [r0, #96] \n\
pld [r1, #64] \n\
pld [r1, #96] \n\
2: ldrd r2, [r0], #8 \n\
ldrd r4, [r0], #8 \n\
mov ip, r1 \n\
strd r2, [r1], #8 \n\
ldrd r2, [r0], #8 \n\
strd r4, [r1], #8 \n\
ldrd r4, [r0], #8 \n\
strd r2, [r1], #8 \n\
strd r4, [r1], #8 \n\
mcr p15, 0, ip, c7, c10, 1 @ clean D line\n\
ldrd r2, [r0], #8 \n\
mcr p15, 0, ip, c7, c6, 1 @ invalidate D line\n\
ldrd r4, [r0], #8 \n\
mov ip, r1 \n\
strd r2, [r1], #8 \n\
ldrd r2, [r0], #8 \n\
strd r4, [r1], #8 \n\
ldrd r4, [r0], #8 \n\
strd r2, [r1], #8 \n\
strd r4, [r1], #8 \n\
mcr p15, 0, ip, c7, c10, 1 @ clean D line\n\
subs lr, lr, #1 \n\
mcr p15, 0, ip, c7, c6, 1 @ invalidate D line\n\
bgt 1b \n\
beq 2b \n\
ldmfd sp!, {r4, r5, pc} "
:
: "r" (from), "r" (to), "I" (PAGE_SIZE / 64 - 1));
}
void xscale_mc_copy_user_page(void *kto, const void *kfrom, unsigned long vaddr)
{
spin_lock(&minicache_lock);
set_pte(TOP_PTE(COPYPAGE_MINICACHE), pfn_pte(__pa(kfrom) >> PAGE_SHIFT, minicache_pgprot));
flush_tlb_kernel_page(COPYPAGE_MINICACHE);
mc_copy_user_page((void *)COPYPAGE_MINICACHE, kto);
spin_unlock(&minicache_lock);
}
/*
* XScale optimised clear_user_page
*/
void __attribute__((naked))
xscale_mc_clear_user_page(void *kaddr, unsigned long vaddr)
{
asm volatile(
"mov r1, %0 \n\
mov r2, #0 \n\
mov r3, #0 \n\
1: mov ip, r0 \n\
strd r2, [r0], #8 \n\
strd r2, [r0], #8 \n\
strd r2, [r0], #8 \n\
strd r2, [r0], #8 \n\
mcr p15, 0, ip, c7, c10, 1 @ clean D line\n\
subs r1, r1, #1 \n\
mcr p15, 0, ip, c7, c6, 1 @ invalidate D line\n\
bne 1b \n\
mov pc, lr"
:
: "I" (PAGE_SIZE / 32));
}
struct cpu_user_fns xscale_mc_user_fns __initdata = {
.cpu_clear_user_page = xscale_mc_clear_user_page,
.cpu_copy_user_page = xscale_mc_copy_user_page,
};
/*
* linux/arch/arm/mm/minicache.c
*
* Copyright (C) 2001 Russell King
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This handles the mini data cache, as found on SA11x0 and XScale
* processors. When we copy a user page page, we map it in such a way
* that accesses to this page will not touch the main data cache, but
* will be cached in the mini data cache. This prevents us thrashing
* the main data cache on page faults.
*/
#include <linux/init.h>
#include <linux/mm.h>
#include <asm/page.h>
#include <asm/pgtable.h>
#include <asm/tlbflush.h>
/*
* 0xffff8000 to 0xffffffff is reserved for any ARM architecture
* specific hacks for copying pages efficiently.
*/
#define minicache_address (0xffff8000)
#define minicache_pgprot __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | \
L_PTE_CACHEABLE)
static pte_t *minicache_pte;
/*
* Note that this is intended to be called only from the copy_user_page
* asm code; anything else will require special locking to prevent the
* mini-cache space being re-used. (Note: probably preempt unsafe).
*
* We rely on the fact that the minicache is 2K, and we'll be pushing
* 4K of data through it, so we don't actually have to specifically
* flush the minicache when we change the mapping.
*
* Note also: assert(PAGE_OFFSET <= virt < high_memory).
* Unsafe: preempt, kmap.
*/
unsigned long map_page_minicache(unsigned long virt)
{
set_pte(minicache_pte, pfn_pte(__pa(virt) >> PAGE_SHIFT, minicache_pgprot));
flush_tlb_kernel_page(minicache_address);
return minicache_address;
}
static int __init minicache_init(void)
{
pgd_t *pgd;
pmd_t *pmd;
spin_lock(&init_mm.page_table_lock);
pgd = pgd_offset_k(minicache_address);
pmd = pmd_alloc(&init_mm, pgd, minicache_address);
if (!pmd)
BUG();
minicache_pte = pte_alloc_kernel(&init_mm, pmd, minicache_address);
if (!minicache_pte)
BUG();
spin_unlock(&init_mm.page_table_lock);
return 0;
}
core_initcall(minicache_init);
...@@ -75,8 +75,8 @@ static inline void insw(u32 ptr, void *buf, int length) ...@@ -75,8 +75,8 @@ static inline void insw(u32 ptr, void *buf, int length)
* Is this cycle meant for the CS8900? * Is this cycle meant for the CS8900?
*/ */
if ((machine_is_ixdp2401() || machine_is_ixdp2801()) && if ((machine_is_ixdp2401() || machine_is_ixdp2801()) &&
((port >= IXDP2X01_CS8900_VIRT_BASE) && (((u32)port >= (u32)IXDP2X01_CS8900_VIRT_BASE) &&
(port <= IXDP2X01_CS8900_VIRT_END))) { ((u32)port <= (u32)IXDP2X01_CS8900_VIRT_END))) {
u8 *buf8 = (u8*)buf; u8 *buf8 = (u8*)buf;
register u32 tmp32; register u32 tmp32;
...@@ -100,8 +100,8 @@ static inline void outsw(u32 ptr, void *buf, int length) ...@@ -100,8 +100,8 @@ static inline void outsw(u32 ptr, void *buf, int length)
* Is this cycle meant for the CS8900? * Is this cycle meant for the CS8900?
*/ */
if ((machine_is_ixdp2401() || machine_is_ixdp2801()) && if ((machine_is_ixdp2401() || machine_is_ixdp2801()) &&
((port >= IXDP2X01_CS8900_VIRT_BASE) && (((u32)port >= (u32)IXDP2X01_CS8900_VIRT_BASE) &&
(port <= IXDP2X01_CS8900_VIRT_END))) { ((u32)port <= (u32)IXDP2X01_CS8900_VIRT_END))) {
register u32 tmp32; register u32 tmp32;
u8 *buf8 = (u8*)buf; u8 *buf8 = (u8*)buf;
do { do {
...@@ -124,8 +124,8 @@ static inline u16 inw(u32 ptr) ...@@ -124,8 +124,8 @@ static inline u16 inw(u32 ptr)
* Is this cycle meant for the CS8900? * Is this cycle meant for the CS8900?
*/ */
if ((machine_is_ixdp2401() || machine_is_ixdp2801()) && if ((machine_is_ixdp2401() || machine_is_ixdp2801()) &&
((port >= IXDP2X01_CS8900_VIRT_BASE) && (((u32)port >= (u32)IXDP2X01_CS8900_VIRT_BASE) &&
(port <= IXDP2X01_CS8900_VIRT_END))) { ((u32)port <= (u32)IXDP2X01_CS8900_VIRT_END))) {
return (u16)(*port); return (u16)(*port);
} }
...@@ -137,8 +137,8 @@ static inline void outw(u16 value, u32 ptr) ...@@ -137,8 +137,8 @@ static inline void outw(u16 value, u32 ptr)
register volatile u32 *port = (volatile u32 *)ptr; register volatile u32 *port = (volatile u32 *)ptr;
if ((machine_is_ixdp2401() || machine_is_ixdp2801()) && if ((machine_is_ixdp2401() || machine_is_ixdp2801()) &&
((port >= IXDP2X01_CS8900_VIRT_BASE) && (((u32)port >= (u32)IXDP2X01_CS8900_VIRT_BASE) &&
(port <= IXDP2X01_CS8900_VIRT_END))) { ((u32)port <= (u32)IXDP2X01_CS8900_VIRT_END))) {
*port = value; *port = value;
return; return;
} }
......
...@@ -38,9 +38,9 @@ typedef struct user_fp elf_fpregset_t; ...@@ -38,9 +38,9 @@ typedef struct user_fp elf_fpregset_t;
*/ */
#define ELF_CLASS ELFCLASS32 #define ELF_CLASS ELFCLASS32
#ifdef __ARMEB__ #ifdef __ARMEB__
#define ELF_DATA ELFDATA2MSB; #define ELF_DATA ELFDATA2MSB
#else #else
#define ELF_DATA ELFDATA2LSB; #define ELF_DATA ELFDATA2LSB
#endif #endif
#define ELF_ARCH EM_ARM #define ELF_ARCH EM_ARM
......
...@@ -36,7 +36,7 @@ typedef struct { void *null; } elf_fpregset_t; ...@@ -36,7 +36,7 @@ typedef struct { void *null; } elf_fpregset_t;
* These are used to set parameters in the core dumps. * These are used to set parameters in the core dumps.
*/ */
#define ELF_CLASS ELFCLASS32 #define ELF_CLASS ELFCLASS32
#define ELF_DATA ELFDATA2LSB; #define ELF_DATA ELFDATA2LSB
#define ELF_ARCH EM_ARM #define ELF_ARCH EM_ARM
#define USE_ELF_CORE_DUMP #define USE_ELF_CORE_DUMP
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment