Commit 1f729e06 authored by Dave Jones's avatar Dave Jones

[CPUFREQ] Prepare powernow-k8 for future CPUs.

Forthcoming AMD products will use a different algorithm for transitioning
pstates than the current generation Opteron products do.  The attached
patch allows the powernow-k8 driver to work with those products.
Signed-off-by: default avatarMark Langsdorf <mark.langsdorf@amd.com>
Signed-off-by: default avatarDave Jones <davej@redhat.com>
parent 911cb74b
/* /*
* (c) 2003, 2004, 2005 Advanced Micro Devices, Inc. * (c) 2003-2006 Advanced Micro Devices, Inc.
* Your use of this code is subject to the terms and conditions of the * Your use of this code is subject to the terms and conditions of the
* GNU general public license version 2. See "COPYING" or * GNU general public license version 2. See "COPYING" or
* http://www.gnu.org/licenses/gpl.html * http://www.gnu.org/licenses/gpl.html
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
* Based upon datasheets & sample CPUs kindly provided by AMD. * Based upon datasheets & sample CPUs kindly provided by AMD.
* *
* Valuable input gratefully received from Dave Jones, Pavel Machek, * Valuable input gratefully received from Dave Jones, Pavel Machek,
* Dominik Brodowski, and others. * Dominik Brodowski, Jacob Shin, and others.
* Originally developed by Paul Devriendt. * Originally developed by Paul Devriendt.
* Processor information obtained from Chapter 9 (Power and Thermal Management) * Processor information obtained from Chapter 9 (Power and Thermal Management)
* of the "BIOS and Kernel Developer's Guide for the AMD Athlon 64 and AMD * of the "BIOS and Kernel Developer's Guide for the AMD Athlon 64 and AMD
...@@ -46,7 +46,7 @@ ...@@ -46,7 +46,7 @@
#define PFX "powernow-k8: " #define PFX "powernow-k8: "
#define BFX PFX "BIOS error: " #define BFX PFX "BIOS error: "
#define VERSION "version 1.60.2" #define VERSION "version 2.00.00"
#include "powernow-k8.h" #include "powernow-k8.h"
/* serialize freq changes */ /* serialize freq changes */
...@@ -54,6 +54,8 @@ static DEFINE_MUTEX(fidvid_mutex); ...@@ -54,6 +54,8 @@ static DEFINE_MUTEX(fidvid_mutex);
static struct powernow_k8_data *powernow_data[NR_CPUS]; static struct powernow_k8_data *powernow_data[NR_CPUS];
static int cpu_family = CPU_OPTERON;
#ifndef CONFIG_SMP #ifndef CONFIG_SMP
static cpumask_t cpu_core_map[1]; static cpumask_t cpu_core_map[1];
#endif #endif
...@@ -64,16 +66,36 @@ static u32 find_freq_from_fid(u32 fid) ...@@ -64,16 +66,36 @@ static u32 find_freq_from_fid(u32 fid)
return 800 + (fid * 100); return 800 + (fid * 100);
} }
/* Return a frequency in KHz, given an input fid */ /* Return a frequency in KHz, given an input fid */
static u32 find_khz_freq_from_fid(u32 fid) static u32 find_khz_freq_from_fid(u32 fid)
{ {
return 1000 * find_freq_from_fid(fid); return 1000 * find_freq_from_fid(fid);
} }
/* Return a voltage in miliVolts, given an input vid */ /* Return a frequency in MHz, given an input fid and did */
static u32 find_millivolts_from_vid(struct powernow_k8_data *data, u32 vid) static u32 find_freq_from_fiddid(u32 fid, u32 did)
{
return 100 * (fid + 0x10) >> did;
}
static u32 find_khz_freq_from_fiddid(u32 fid, u32 did)
{ {
return 1550-vid*25; return 1000 * find_freq_from_fiddid(fid, did);
}
static u32 find_fid_from_pstate(u32 pstate)
{
u32 hi, lo;
rdmsr(MSR_PSTATE_DEF_BASE + pstate, lo, hi);
return lo & HW_PSTATE_FID_MASK;
}
static u32 find_did_from_pstate(u32 pstate)
{
u32 hi, lo;
rdmsr(MSR_PSTATE_DEF_BASE + pstate, lo, hi);
return (lo & HW_PSTATE_DID_MASK) >> HW_PSTATE_DID_SHIFT;
} }
/* Return the vco fid for an input fid /* Return the vco fid for an input fid
...@@ -98,6 +120,9 @@ static int pending_bit_stuck(void) ...@@ -98,6 +120,9 @@ static int pending_bit_stuck(void)
{ {
u32 lo, hi; u32 lo, hi;
if (cpu_family)
return 0;
rdmsr(MSR_FIDVID_STATUS, lo, hi); rdmsr(MSR_FIDVID_STATUS, lo, hi);
return lo & MSR_S_LO_CHANGE_PENDING ? 1 : 0; return lo & MSR_S_LO_CHANGE_PENDING ? 1 : 0;
} }
...@@ -111,6 +136,14 @@ static int query_current_values_with_pending_wait(struct powernow_k8_data *data) ...@@ -111,6 +136,14 @@ static int query_current_values_with_pending_wait(struct powernow_k8_data *data)
u32 lo, hi; u32 lo, hi;
u32 i = 0; u32 i = 0;
if (cpu_family) {
rdmsr(MSR_PSTATE_STATUS, lo, hi);
i = lo & HW_PSTATE_MASK;
rdmsr(MSR_PSTATE_DEF_BASE + i, lo, hi);
data->currfid = lo & HW_PSTATE_FID_MASK;
data->currdid = (lo & HW_PSTATE_DID_MASK) >> HW_PSTATE_DID_SHIFT;
return 0;
}
do { do {
if (i++ > 10000) { if (i++ > 10000) {
dprintk("detected change pending stuck\n"); dprintk("detected change pending stuck\n");
...@@ -175,7 +208,7 @@ static int write_new_fid(struct powernow_k8_data *data, u32 fid) ...@@ -175,7 +208,7 @@ static int write_new_fid(struct powernow_k8_data *data, u32 fid)
do { do {
wrmsr(MSR_FIDVID_CTL, lo, data->plllock * PLL_LOCK_CONVERSION); wrmsr(MSR_FIDVID_CTL, lo, data->plllock * PLL_LOCK_CONVERSION);
if (i++ > 100) { if (i++ > 100) {
printk(KERN_ERR PFX "internal error - pending bit very stuck - no further pstate changes possible\n"); printk(KERN_ERR PFX "Hardware error - pending bit very stuck - no further pstate changes possible\n");
return 1; return 1;
} }
} while (query_current_values_with_pending_wait(data)); } while (query_current_values_with_pending_wait(data));
...@@ -255,7 +288,15 @@ static int decrease_vid_code_by_step(struct powernow_k8_data *data, u32 reqvid, ...@@ -255,7 +288,15 @@ static int decrease_vid_code_by_step(struct powernow_k8_data *data, u32 reqvid,
return 0; return 0;
} }
/* Change the fid and vid, by the 3 phases. */ /* Change hardware pstate by single MSR write */
static int transition_pstate(struct powernow_k8_data *data, u32 pstate)
{
wrmsr(MSR_PSTATE_CTRL, pstate, 0);
data->currfid = find_fid_from_pstate(pstate);
return 0;
}
/* Change Opteron/Athlon64 fid and vid, by the 3 phases. */
static int transition_fid_vid(struct powernow_k8_data *data, u32 reqfid, u32 reqvid) static int transition_fid_vid(struct powernow_k8_data *data, u32 reqfid, u32 reqvid)
{ {
if (core_voltage_pre_transition(data, reqvid)) if (core_voltage_pre_transition(data, reqvid))
...@@ -474,9 +515,11 @@ static int check_supported_cpu(unsigned int cpu) ...@@ -474,9 +515,11 @@ static int check_supported_cpu(unsigned int cpu)
goto out; goto out;
eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE); eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
if ((eax & CPUID_XFAM) != CPUID_XFAM_K8) if (((eax & CPUID_XFAM) != CPUID_XFAM_K8) &&
((eax & CPUID_XFAM) < CPUID_XFAM_10H))
goto out; goto out;
if ((eax & CPUID_XFAM) == CPUID_XFAM_K8) {
if (((eax & CPUID_USE_XFAM_XMOD) != CPUID_USE_XFAM_XMOD) || if (((eax & CPUID_USE_XFAM_XMOD) != CPUID_USE_XFAM_XMOD) ||
((eax & CPUID_XMOD) > CPUID_XMOD_REV_G)) { ((eax & CPUID_XMOD) > CPUID_XMOD_REV_G)) {
printk(KERN_INFO PFX "Processor cpuid %x not supported\n", eax); printk(KERN_INFO PFX "Processor cpuid %x not supported\n", eax);
...@@ -495,6 +538,13 @@ static int check_supported_cpu(unsigned int cpu) ...@@ -495,6 +538,13 @@ static int check_supported_cpu(unsigned int cpu)
printk(KERN_INFO PFX "Power state transitions not supported\n"); printk(KERN_INFO PFX "Power state transitions not supported\n");
goto out; goto out;
} }
} else { /* must be a HW Pstate capable processor */
cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
if ((edx & USE_HW_PSTATE) == USE_HW_PSTATE)
cpu_family = CPU_HW_PSTATE;
else
goto out;
}
rc = 1; rc = 1;
...@@ -547,12 +597,18 @@ static void print_basics(struct powernow_k8_data *data) ...@@ -547,12 +597,18 @@ static void print_basics(struct powernow_k8_data *data)
{ {
int j; int j;
for (j = 0; j < data->numps; j++) { for (j = 0; j < data->numps; j++) {
if (data->powernow_table[j].frequency != CPUFREQ_ENTRY_INVALID) if (data->powernow_table[j].frequency != CPUFREQ_ENTRY_INVALID) {
printk(KERN_INFO PFX " %d : fid 0x%x (%d MHz), vid 0x%x (%d mV)\n", j, if (cpu_family) {
printk(KERN_INFO PFX " %d : fid 0x%x gid 0x%x (%d MHz)\n", j, (data->powernow_table[j].index & 0xff00) >> 8,
(data->powernow_table[j].index & 0xff0000) >> 16,
data->powernow_table[j].frequency/1000);
} else {
printk(KERN_INFO PFX " %d : fid 0x%x (%d MHz), vid 0x%x\n", j,
data->powernow_table[j].index & 0xff, data->powernow_table[j].index & 0xff,
data->powernow_table[j].frequency/1000, data->powernow_table[j].frequency/1000,
data->powernow_table[j].index >> 8, data->powernow_table[j].index >> 8);
find_millivolts_from_vid(data, data->powernow_table[j].index >> 8)); }
}
} }
if (data->batps) if (data->batps)
printk(KERN_INFO PFX "Only %d pstates on battery\n", data->batps); printk(KERN_INFO PFX "Only %d pstates on battery\n", data->batps);
...@@ -702,7 +758,7 @@ static int find_psb_table(struct powernow_k8_data *data) ...@@ -702,7 +758,7 @@ static int find_psb_table(struct powernow_k8_data *data)
#ifdef CONFIG_X86_POWERNOW_K8_ACPI #ifdef CONFIG_X86_POWERNOW_K8_ACPI
static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data, unsigned int index) static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data, unsigned int index)
{ {
if (!data->acpi_data.state_count) if (!data->acpi_data.state_count || cpu_family)
return; return;
data->irt = (data->acpi_data.states[index].control >> IRT_SHIFT) & IRT_MASK; data->irt = (data->acpi_data.states[index].control >> IRT_SHIFT) & IRT_MASK;
...@@ -715,9 +771,8 @@ static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data, unsigned ...@@ -715,9 +771,8 @@ static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data, unsigned
static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data) static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data)
{ {
int i;
int cntlofreq = 0;
struct cpufreq_frequency_table *powernow_table; struct cpufreq_frequency_table *powernow_table;
int ret_val;
if (acpi_processor_register_performance(&data->acpi_data, data->cpu)) { if (acpi_processor_register_performance(&data->acpi_data, data->cpu)) {
dprintk("register performance failed: bad ACPI data\n"); dprintk("register performance failed: bad ACPI data\n");
...@@ -746,6 +801,85 @@ static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data) ...@@ -746,6 +801,85 @@ static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data)
goto err_out; goto err_out;
} }
if (cpu_family)
ret_val = fill_powernow_table_pstate(data, powernow_table);
else
ret_val = fill_powernow_table_fidvid(data, powernow_table);
if (ret_val)
goto err_out_mem;
powernow_table[data->acpi_data.state_count].frequency = CPUFREQ_TABLE_END;
powernow_table[data->acpi_data.state_count].index = 0;
data->powernow_table = powernow_table;
/* fill in data */
data->numps = data->acpi_data.state_count;
print_basics(data);
powernow_k8_acpi_pst_values(data, 0);
/* notify BIOS that we exist */
acpi_processor_notify_smm(THIS_MODULE);
return 0;
err_out_mem:
kfree(powernow_table);
err_out:
acpi_processor_unregister_performance(&data->acpi_data, data->cpu);
/* data->acpi_data.state_count informs us at ->exit() whether ACPI was used */
data->acpi_data.state_count = 0;
return -ENODEV;
}
static int fill_powernow_table_pstate(struct powernow_k8_data *data, struct cpufreq_frequency_table *powernow_table)
{
int i;
for (i = 0; i < data->acpi_data.state_count; i++) {
u32 index;
u32 hi = 0, lo = 0;
u32 fid;
u32 did;
index = data->acpi_data.states[i].control & HW_PSTATE_MASK;
if (index > MAX_HW_PSTATE) {
printk(KERN_ERR PFX "invalid pstate %d - bad value %d.\n", i, index);
printk(KERN_ERR PFX "Please report to BIOS manufacturer\n");
}
rdmsr(MSR_PSTATE_DEF_BASE + index, lo, hi);
if (!(hi & HW_PSTATE_VALID_MASK)) {
dprintk("invalid pstate %d, ignoring\n", index);
powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID;
continue;
}
fid = lo & HW_PSTATE_FID_MASK;
did = (lo & HW_PSTATE_DID_MASK) >> HW_PSTATE_DID_SHIFT;
dprintk(" %d : fid 0x%x, did 0x%x\n", index, fid, did);
powernow_table[i].index = index | (fid << HW_FID_INDEX_SHIFT) | (did << HW_DID_INDEX_SHIFT);
powernow_table[i].frequency = find_khz_freq_from_fiddid(fid, did);
if (powernow_table[i].frequency != (data->acpi_data.states[i].core_frequency * 1000)) {
printk(KERN_INFO PFX "invalid freq entries %u kHz vs. %u kHz\n",
powernow_table[i].frequency,
(unsigned int) (data->acpi_data.states[i].core_frequency * 1000));
powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID;
continue;
}
}
return 0;
}
static int fill_powernow_table_fidvid(struct powernow_k8_data *data, struct cpufreq_frequency_table *powernow_table)
{
int i;
int cntlofreq = 0;
for (i = 0; i < data->acpi_data.state_count; i++) { for (i = 0; i < data->acpi_data.state_count; i++) {
u32 fid; u32 fid;
u32 vid; u32 vid;
...@@ -786,7 +920,7 @@ static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data) ...@@ -786,7 +920,7 @@ static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data)
if ((powernow_table[i].frequency != powernow_table[cntlofreq].frequency) || if ((powernow_table[i].frequency != powernow_table[cntlofreq].frequency) ||
(powernow_table[i].index != powernow_table[cntlofreq].index)) { (powernow_table[i].index != powernow_table[cntlofreq].index)) {
printk(KERN_ERR PFX "Too many lo freq table entries\n"); printk(KERN_ERR PFX "Too many lo freq table entries\n");
goto err_out_mem; return 1;
} }
dprintk("double low frequency table entry, ignoring it.\n"); dprintk("double low frequency table entry, ignoring it.\n");
...@@ -804,31 +938,7 @@ static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data) ...@@ -804,31 +938,7 @@ static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data)
continue; continue;
} }
} }
powernow_table[data->acpi_data.state_count].frequency = CPUFREQ_TABLE_END;
powernow_table[data->acpi_data.state_count].index = 0;
data->powernow_table = powernow_table;
/* fill in data */
data->numps = data->acpi_data.state_count;
print_basics(data);
powernow_k8_acpi_pst_values(data, 0);
/* notify BIOS that we exist */
acpi_processor_notify_smm(THIS_MODULE);
return 0; return 0;
err_out_mem:
kfree(powernow_table);
err_out:
acpi_processor_unregister_performance(&data->acpi_data, data->cpu);
/* data->acpi_data.state_count informs us at ->exit() whether ACPI was used */
data->acpi_data.state_count = 0;
return -ENODEV;
} }
static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data) static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data)
...@@ -844,20 +954,20 @@ static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data, unsigned ...@@ -844,20 +954,20 @@ static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data, unsigned
#endif /* CONFIG_X86_POWERNOW_K8_ACPI */ #endif /* CONFIG_X86_POWERNOW_K8_ACPI */
/* Take a frequency, and issue the fid/vid transition command */ /* Take a frequency, and issue the fid/vid transition command */
static int transition_frequency(struct powernow_k8_data *data, unsigned int index) static int transition_frequency_fidvid(struct powernow_k8_data *data, unsigned int index)
{ {
u32 fid; u32 fid = 0;
u32 vid; u32 vid = 0;
int res, i; int res, i;
struct cpufreq_freqs freqs; struct cpufreq_freqs freqs;
dprintk("cpu %d transition to index %u\n", smp_processor_id(), index); dprintk("cpu %d transition to index %u\n", smp_processor_id(), index);
/* fid/vid correctness check for k8 */
/* fid are the lower 8 bits of the index we stored into /* fid are the lower 8 bits of the index we stored into
* the cpufreq frequency table in find_psb_table, vid are * the cpufreq frequency table in find_psb_table, vid
* the upper 8 bits. * are the upper 8 bits.
*/ */
fid = data->powernow_table[index].index & 0xFF; fid = data->powernow_table[index].index & 0xFF;
vid = (data->powernow_table[index].index & 0xFF00) >> 8; vid = (data->powernow_table[index].index & 0xFF00) >> 8;
...@@ -881,19 +991,55 @@ static int transition_frequency(struct powernow_k8_data *data, unsigned int inde ...@@ -881,19 +991,55 @@ static int transition_frequency(struct powernow_k8_data *data, unsigned int inde
dprintk("cpu %d, changing to fid 0x%x, vid 0x%x\n", dprintk("cpu %d, changing to fid 0x%x, vid 0x%x\n",
smp_processor_id(), fid, vid); smp_processor_id(), fid, vid);
freqs.cpu = data->cpu;
freqs.old = find_khz_freq_from_fid(data->currfid); freqs.old = find_khz_freq_from_fid(data->currfid);
freqs.new = find_khz_freq_from_fid(fid); freqs.new = find_khz_freq_from_fid(fid);
for_each_cpu_mask(i, cpu_core_map[data->cpu]) {
for_each_cpu_mask(i, *(data->available_cores)) {
freqs.cpu = i; freqs.cpu = i;
cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE); cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
} }
res = transition_fid_vid(data, fid, vid); res = transition_fid_vid(data, fid, vid);
freqs.new = find_khz_freq_from_fid(data->currfid); freqs.new = find_khz_freq_from_fid(data->currfid);
for_each_cpu_mask(i, cpu_core_map[data->cpu]) {
for_each_cpu_mask(i, *(data->available_cores)) {
freqs.cpu = i;
cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
}
return res;
}
/* Take a frequency, and issue the hardware pstate transition command */
static int transition_frequency_pstate(struct powernow_k8_data *data, unsigned int index)
{
u32 fid = 0;
u32 did = 0;
u32 pstate = 0;
int res, i;
struct cpufreq_freqs freqs;
dprintk("cpu %d transition to index %u\n", smp_processor_id(), index);
/* get fid did for hardware pstate transition */
pstate = index & HW_PSTATE_MASK;
if (pstate > MAX_HW_PSTATE)
return 0;
fid = (index & HW_FID_INDEX_MASK) >> HW_FID_INDEX_SHIFT;
did = (index & HW_DID_INDEX_MASK) >> HW_DID_INDEX_SHIFT;
freqs.old = find_khz_freq_from_fiddid(data->currfid, data->currdid);
freqs.new = find_khz_freq_from_fiddid(fid, did);
for_each_cpu_mask(i, *(data->available_cores)) {
freqs.cpu = i;
cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
}
res = transition_pstate(data, pstate);
data->currfid = find_fid_from_pstate(pstate);
data->currdid = find_did_from_pstate(pstate);
freqs.new = find_khz_freq_from_fiddid(data->currfid, data->currdid);
for_each_cpu_mask(i, *(data->available_cores)) {
freqs.cpu = i; freqs.cpu = i;
cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE); cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
} }
...@@ -936,6 +1082,10 @@ static int powernowk8_target(struct cpufreq_policy *pol, unsigned targfreq, unsi ...@@ -936,6 +1082,10 @@ static int powernowk8_target(struct cpufreq_policy *pol, unsigned targfreq, unsi
if (query_current_values_with_pending_wait(data)) if (query_current_values_with_pending_wait(data))
goto err_out; goto err_out;
if (cpu_family)
dprintk("targ: curr fid 0x%x, did 0x%x\n",
data->currfid, data->currvid);
else {
dprintk("targ: curr fid 0x%x, vid 0x%x\n", dprintk("targ: curr fid 0x%x, vid 0x%x\n",
data->currfid, data->currvid); data->currfid, data->currvid);
...@@ -944,6 +1094,7 @@ static int powernowk8_target(struct cpufreq_policy *pol, unsigned targfreq, unsi ...@@ -944,6 +1094,7 @@ static int powernowk8_target(struct cpufreq_policy *pol, unsigned targfreq, unsi
"error - out of sync, fix 0x%x 0x%x, vid 0x%x 0x%x\n", "error - out of sync, fix 0x%x 0x%x, vid 0x%x 0x%x\n",
checkfid, data->currfid, checkvid, data->currvid); checkfid, data->currfid, checkvid, data->currvid);
} }
}
if (cpufreq_frequency_table_target(pol, data->powernow_table, targfreq, relation, &newstate)) if (cpufreq_frequency_table_target(pol, data->powernow_table, targfreq, relation, &newstate))
goto err_out; goto err_out;
...@@ -952,7 +1103,11 @@ static int powernowk8_target(struct cpufreq_policy *pol, unsigned targfreq, unsi ...@@ -952,7 +1103,11 @@ static int powernowk8_target(struct cpufreq_policy *pol, unsigned targfreq, unsi
powernow_k8_acpi_pst_values(data, newstate); powernow_k8_acpi_pst_values(data, newstate);
if (transition_frequency(data, newstate)) { if (cpu_family)
ret = transition_frequency_pstate(data, newstate);
else
ret = transition_frequency_fidvid(data, newstate);
if (ret) {
printk(KERN_ERR PFX "transition frequency failed\n"); printk(KERN_ERR PFX "transition frequency failed\n");
ret = 1; ret = 1;
mutex_unlock(&fidvid_mutex); mutex_unlock(&fidvid_mutex);
...@@ -960,6 +1115,9 @@ static int powernowk8_target(struct cpufreq_policy *pol, unsigned targfreq, unsi ...@@ -960,6 +1115,9 @@ static int powernowk8_target(struct cpufreq_policy *pol, unsigned targfreq, unsi
} }
mutex_unlock(&fidvid_mutex); mutex_unlock(&fidvid_mutex);
if (cpu_family)
pol->cur = find_khz_freq_from_fiddid(data->currfid, data->currdid);
else
pol->cur = find_khz_freq_from_fid(data->currfid); pol->cur = find_khz_freq_from_fid(data->currfid);
ret = 0; ret = 0;
...@@ -1005,14 +1163,13 @@ static int __cpuinit powernowk8_cpu_init(struct cpufreq_policy *pol) ...@@ -1005,14 +1163,13 @@ static int __cpuinit powernowk8_cpu_init(struct cpufreq_policy *pol)
* Use the PSB BIOS structure. This is only availabe on * Use the PSB BIOS structure. This is only availabe on
* an UP version, and is deprecated by AMD. * an UP version, and is deprecated by AMD.
*/ */
if ((num_online_cpus() != 1) || (num_possible_cpus() != 1)) { if ((num_online_cpus() != 1) || (num_possible_cpus() != 1)) {
printk(KERN_ERR PFX "MP systems not supported by PSB BIOS structure\n"); printk(KERN_ERR PFX "MP systems not supported by PSB BIOS structure\n");
kfree(data); kfree(data);
return -ENODEV; return -ENODEV;
} }
if (pol->cpu != 0) { if (pol->cpu != 0) {
printk(KERN_ERR PFX "init not cpu 0\n"); printk(KERN_ERR PFX "No _PSS objects for CPU other than CPU0\n");
kfree(data); kfree(data);
return -ENODEV; return -ENODEV;
} }
...@@ -1040,19 +1197,27 @@ static int __cpuinit powernowk8_cpu_init(struct cpufreq_policy *pol) ...@@ -1040,19 +1197,27 @@ static int __cpuinit powernowk8_cpu_init(struct cpufreq_policy *pol)
if (query_current_values_with_pending_wait(data)) if (query_current_values_with_pending_wait(data))
goto err_out; goto err_out;
if (!cpu_family)
fidvid_msr_init(); fidvid_msr_init();
/* run on any CPU again */ /* run on any CPU again */
set_cpus_allowed(current, oldmask); set_cpus_allowed(current, oldmask);
pol->governor = CPUFREQ_DEFAULT_GOVERNOR; pol->governor = CPUFREQ_DEFAULT_GOVERNOR;
if (cpu_family)
pol->cpus = cpumask_of_cpu(pol->cpu);
else
pol->cpus = cpu_core_map[pol->cpu]; pol->cpus = cpu_core_map[pol->cpu];
data->available_cores = &(pol->cpus);
/* Take a crude guess here. /* Take a crude guess here.
* That guess was in microseconds, so multiply with 1000 */ * That guess was in microseconds, so multiply with 1000 */
pol->cpuinfo.transition_latency = (((data->rvo + 8) * data->vstable * VST_UNITS_20US) pol->cpuinfo.transition_latency = (((data->rvo + 8) * data->vstable * VST_UNITS_20US)
+ (3 * (1 << data->irt) * 10)) * 1000; + (3 * (1 << data->irt) * 10)) * 1000;
if (cpu_family)
pol->cur = find_khz_freq_from_fiddid(data->currfid, data->currdid);
else
pol->cur = find_khz_freq_from_fid(data->currfid); pol->cur = find_khz_freq_from_fid(data->currfid);
dprintk("policy current frequency %d kHz\n", pol->cur); dprintk("policy current frequency %d kHz\n", pol->cur);
...@@ -1067,7 +1232,11 @@ static int __cpuinit powernowk8_cpu_init(struct cpufreq_policy *pol) ...@@ -1067,7 +1232,11 @@ static int __cpuinit powernowk8_cpu_init(struct cpufreq_policy *pol)
cpufreq_frequency_table_get_attr(data->powernow_table, pol->cpu); cpufreq_frequency_table_get_attr(data->powernow_table, pol->cpu);
printk("cpu_init done, current fid 0x%x, vid 0x%x\n", if (cpu_family)
dprintk("cpu_init done, current fid 0x%x, did 0x%x\n",
data->currfid, data->currdid);
else
dprintk("cpu_init done, current fid 0x%x, vid 0x%x\n",
data->currfid, data->currvid); data->currfid, data->currvid);
powernow_data[pol->cpu] = data; powernow_data[pol->cpu] = data;
...@@ -1154,8 +1323,9 @@ static int __cpuinit powernowk8_init(void) ...@@ -1154,8 +1323,9 @@ static int __cpuinit powernowk8_init(void)
} }
if (supported_cpus == num_online_cpus()) { if (supported_cpus == num_online_cpus()) {
printk(KERN_INFO PFX "Found %d AMD Athlon 64 / Opteron " printk(KERN_INFO PFX "Found %d %s "
"processors (" VERSION ")\n", supported_cpus); "processors (" VERSION ")\n", supported_cpus,
boot_cpu_data.x86_model_id);
return cpufreq_register_driver(&cpufreq_amd64_driver); return cpufreq_register_driver(&cpufreq_amd64_driver);
} }
......
/* /*
* (c) 2003, 2004, 2005 Advanced Micro Devices, Inc. * (c) 2003-2006 Advanced Micro Devices, Inc.
* Your use of this code is subject to the terms and conditions of the * Your use of this code is subject to the terms and conditions of the
* GNU general public license version 2. See "COPYING" or * GNU general public license version 2. See "COPYING" or
* http://www.gnu.org/licenses/gpl.html * http://www.gnu.org/licenses/gpl.html
...@@ -21,8 +21,8 @@ struct powernow_k8_data { ...@@ -21,8 +21,8 @@ struct powernow_k8_data {
u32 plllock; /* pll lock time, units 1 us */ u32 plllock; /* pll lock time, units 1 us */
u32 exttype; /* extended interface = 1 */ u32 exttype; /* extended interface = 1 */
/* keep track of the current fid / vid */ /* keep track of the current fid / vid or did */
u32 currvid, currfid; u32 currvid, currfid, currdid;
/* the powernow_table includes all frequency and vid/fid pairings: /* the powernow_table includes all frequency and vid/fid pairings:
* fid are the lower 8 bits of the index, vid are the upper 8 bits. * fid are the lower 8 bits of the index, vid are the upper 8 bits.
...@@ -34,6 +34,10 @@ struct powernow_k8_data { ...@@ -34,6 +34,10 @@ struct powernow_k8_data {
* used to determine valid frequency/vid/fid states */ * used to determine valid frequency/vid/fid states */
struct acpi_processor_performance acpi_data; struct acpi_processor_performance acpi_data;
#endif #endif
/* we need to keep track of associated cores, but let cpufreq
* handle hotplug events - so just point at cpufreq pol->cpus
* structure */
cpumask_t *available_cores;
}; };
...@@ -43,6 +47,7 @@ struct powernow_k8_data { ...@@ -43,6 +47,7 @@ struct powernow_k8_data {
#define CPUID_XFAM_K8 0 #define CPUID_XFAM_K8 0
#define CPUID_XMOD 0x000f0000 /* extended model */ #define CPUID_XMOD 0x000f0000 /* extended model */
#define CPUID_XMOD_REV_G 0x00060000 #define CPUID_XMOD_REV_G 0x00060000
#define CPUID_XFAM_10H 0x00100000 /* family 0x10 */
#define CPUID_USE_XFAM_XMOD 0x00000f00 #define CPUID_USE_XFAM_XMOD 0x00000f00
#define CPUID_GET_MAX_CAPABILITIES 0x80000000 #define CPUID_GET_MAX_CAPABILITIES 0x80000000
#define CPUID_FREQ_VOLT_CAPABILITIES 0x80000007 #define CPUID_FREQ_VOLT_CAPABILITIES 0x80000007
...@@ -79,6 +84,32 @@ struct powernow_k8_data { ...@@ -79,6 +84,32 @@ struct powernow_k8_data {
#define MSR_S_HI_CURRENT_VID 0x0000003f #define MSR_S_HI_CURRENT_VID 0x0000003f
#define MSR_C_HI_STP_GNT_BENIGN 0x00000001 #define MSR_C_HI_STP_GNT_BENIGN 0x00000001
/* Hardware Pstate _PSS and MSR definitions */
#define USE_HW_PSTATE 0x00000080
#define HW_PSTATE_FID_MASK 0x0000003f
#define HW_PSTATE_DID_MASK 0x000001c0
#define HW_PSTATE_DID_SHIFT 6
#define HW_PSTATE_MASK 0x00000007
#define HW_PSTATE_VALID_MASK 0x80000000
#define HW_FID_INDEX_SHIFT 8
#define HW_FID_INDEX_MASK 0x0000ff00
#define HW_DID_INDEX_SHIFT 16
#define HW_DID_INDEX_MASK 0x00ff0000
#define HW_WATTS_MASK 0xff
#define HW_PWR_DVR_MASK 0x300
#define HW_PWR_DVR_SHIFT 8
#define HW_PWR_MAX_MULT 3
#define MAX_HW_PSTATE 8 /* hw pstate supports up to 8 */
#define MSR_PSTATE_DEF_BASE 0xc0010064 /* base of Pstate MSRs */
#define MSR_PSTATE_STATUS 0xc0010063 /* Pstate Status MSR */
#define MSR_PSTATE_CTRL 0xc0010062 /* Pstate control MSR */
/* define the two driver architectures */
#define CPU_OPTERON 0
#define CPU_HW_PSTATE 1
/* /*
* There are restrictions frequencies have to follow: * There are restrictions frequencies have to follow:
* - only 1 entry in the low fid table ( <=1.4GHz ) * - only 1 entry in the low fid table ( <=1.4GHz )
...@@ -182,6 +213,9 @@ static int core_frequency_transition(struct powernow_k8_data *data, u32 reqfid); ...@@ -182,6 +213,9 @@ static int core_frequency_transition(struct powernow_k8_data *data, u32 reqfid);
static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data, unsigned int index); static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data, unsigned int index);
static int fill_powernow_table_pstate(struct powernow_k8_data *data, struct cpufreq_frequency_table *powernow_table);
static int fill_powernow_table_fidvid(struct powernow_k8_data *data, struct cpufreq_frequency_table *powernow_table);
#ifdef CONFIG_SMP #ifdef CONFIG_SMP
static inline void define_siblings(int cpu, cpumask_t cpu_sharedcore_mask[]) static inline void define_siblings(int cpu, cpumask_t cpu_sharedcore_mask[])
{ {
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment