Commit 07e42948 authored by 薛德章's avatar 薛德章

USB CPPI DMA patch for davinci

This patch fixed USB unstability issue while writing
huge amount of data into usb device.
parent c907be9c
......@@ -3,35 +3,20 @@
*
* This file implements a DMA interface using TI's CPPI DMA.
* For now it's DaVinci-only, but CPPI isn't specific to DaVinci or USB.
* The TUSB6020, using VLYNQ, has CPPI that looks much like DaVinci.
*/
#include <linux/usb.h>
#include "musb_core.h"
#include "musb_host.h"
#include "cppi_dma.h"
/* CPPI DMA status 7-mar-2006:
/* CPPI DMA status 7-mar:
*
* - See musb_{host,gadget}.c for more info
*
* - Correct RX DMA generally forces the engine into irq-per-packet mode,
* which can easily saturate the CPU under non-mass-storage loads.
*
* NOTES 24-aug-2006 (2.6.18-rc4):
*
* - peripheral RXDMA wedged in a test with packets of length 512/512/1.
* evidently after the 1 byte packet was received and acked, the queue
* of BDs got garbaged so it wouldn't empty the fifo. (rxcsr 0x2003,
* and RX DMA0: 4 left, 80000000 8feff880, 8feff860 8feff860; 8f321401
* 004001ff 00000001 .. 8feff860) Host was just getting NAKed on tx
* of its next (512 byte) packet. IRQ issues?
*
* REVISIT: the "transfer DMA" glue between CPPI and USB fifos will
* evidently also directly update the RX and TX CSRs ... so audit all
* host and peripheral side DMA code to avoid CSR access after DMA has
* been started.
*/
/* REVISIT now we can avoid preallocating these descriptors; or
......@@ -76,29 +61,18 @@ cppi_bd_free(struct cppi_channel *c, struct cppi_descriptor *bd)
* Initialize the DMA controller as necessary.
*/
/* zero out entire rx state RAM entry for the channel */
static void cppi_reset_rx(struct cppi_rx_stateram __iomem *rx)
{
musb_writel(&rx->rx_skipbytes, 0, 0);
musb_writel(&rx->rx_head, 0, 0);
musb_writel(&rx->rx_sop, 0, 0);
musb_writel(&rx->rx_current, 0, 0);
musb_writel(&rx->rx_buf_current, 0, 0);
musb_writel(&rx->rx_len_len, 0, 0);
musb_writel(&rx->rx_cnt_cnt, 0, 0);
}
#define CAST (void *__force __iomem)
/* zero out entire tx state RAM entry for the channel */
static void cppi_reset_tx(struct cppi_tx_stateram __iomem *tx, u32 ptr)
/* zero out entire rx state RAM entry for the channel */
static void cppi_reset_rx(struct cppi_rx_stateram *__iomem rx)
{
musb_writel(&tx->tx_head, 0, 0);
musb_writel(&tx->tx_buf, 0, 0);
musb_writel(&tx->tx_current, 0, 0);
musb_writel(&tx->tx_buf_current, 0, 0);
musb_writel(&tx->tx_info, 0, 0);
musb_writel(&tx->tx_rem_len, 0, 0);
/* musb_writel(&tx->tx_dummy, 0, 0); */
musb_writel(&tx->tx_complete, 0, ptr);
musb_writel(CAST & rx->rx_skipbytes, 0, 0);
musb_writel(CAST & rx->rx_head, 0, 0);
musb_writel(CAST & rx->rx_sop, 0, 0);
musb_writel(CAST & rx->rx_current, 0, 0);
musb_writel(CAST & rx->rx_buf_current, 0, 0);
musb_writel(CAST & rx->rx_len_len, 0, 0);
musb_writel(CAST & rx->rx_cnt_cnt, 0, 0);
}
static void __init cppi_pool_init(struct cppi *cppi, struct cppi_channel *c)
......@@ -149,7 +123,7 @@ static void cppi_pool_free(struct cppi_channel *c)
static int __init cppi_controller_start(struct dma_controller *c)
{
struct cppi *controller;
void __iomem *tibase;
void *__iomem tibase;
int i;
controller = container_of(c, struct cppi, controller);
......@@ -170,29 +144,40 @@ static int __init cppi_controller_start(struct dma_controller *c)
for (i = 0; i < ARRAY_SIZE(controller->rx); i++)
cppi_pool_init(controller, controller->rx + i);
tibase = controller->tibase;
/* Do Necessary configuartion in H/w to get started */
tibase = controller->mregs - DAVINCI_BASE_OFFSET;
INIT_LIST_HEAD(&controller->tx_complete);
/* initialise tx/rx channel head pointers to zero */
for (i = 0; i < ARRAY_SIZE(controller->tx); i++) {
struct cppi_channel *tx_ch = controller->tx + i;
struct cppi_tx_stateram __iomem *tx;
struct cppi_tx_stateram *__iomem tx;
INIT_LIST_HEAD(&tx_ch->tx_complete);
tx = tibase + DAVINCI_TXCPPI_STATERAM_OFFSET(i);
tx_ch->state_ram = tx;
cppi_reset_tx(tx, 0);
/* zero out entire state RAM entry for the channel */
tx->tx_head = 0;
tx->tx_buf = 0;
tx->tx_current = 0;
tx->tx_buf_current = 0;
tx->tx_info = 0;
tx->tx_rem_len = 0;
/*txState->dummy = 0; */
tx->tx_complete = 0;
}
for (i = 0; i < ARRAY_SIZE(controller->rx); i++) {
struct cppi_channel *rx_ch = controller->rx + i;
struct cppi_rx_stateram __iomem *rx;
struct cppi_rx_stateram *__iomem rx;
INIT_LIST_HEAD(&rx_ch->tx_complete);
rx = tibase + DAVINCI_RXCPPI_STATERAM_OFFSET(i);
rx_ch->state_ram = rx;
cppi_reset_rx(rx);
cppi_reset_rx(rx_ch->state_ram);
}
/* enable individual cppi channels */
......@@ -205,11 +190,10 @@ static int __init cppi_controller_start(struct dma_controller *c)
musb_writel(tibase, DAVINCI_TXCPPI_CTRL_REG, DAVINCI_DMA_CTRL_ENABLE);
musb_writel(tibase, DAVINCI_RXCPPI_CTRL_REG, DAVINCI_DMA_CTRL_ENABLE);
/* disable RNDIS mode, also host rx RNDIS autorequest */
musb_writel(tibase, DAVINCI_RNDIS_REG, 0);
/* disable RNDIS mode */
musb_writel(tibase, DAVINCI_AUTOREQ_REG, 0);
return 0;
return true;
}
/*
......@@ -225,8 +209,7 @@ static int cppi_controller_stop(struct dma_controller *c)
int i;
controller = container_of(c, struct cppi, controller);
tibase = controller->tibase;
tibase = controller->mregs - DAVINCI_BASE_OFFSET;
/* DISABLE INDIVIDUAL CHANNEL Interrupts */
musb_writel(tibase, DAVINCI_TXCPPI_INTCLR_REG,
DAVINCI_DMA_ALL_CHANNELS_ENABLE);
......@@ -253,184 +236,143 @@ static int cppi_controller_stop(struct dma_controller *c)
return 0;
}
/* While dma channel is allocated, we only want the core irqs active
* for fault reports, otherwise we'd get irqs that we don't care about.
* Except for TX irqs, where dma done != fifo empty and reusable ...
*
* NOTE: docs don't say either way, but irq masking **enables** irqs.
*
* REVISIT same issue applies to pure PIO usage too, and non-cppi dma...
*/
static inline void core_rxirq_disable(void __iomem *tibase, unsigned epnum)
{
musb_writel(tibase, DAVINCI_USB_INT_MASK_CLR_REG, 1 << (epnum + 8));
}
static inline void core_rxirq_enable(void __iomem *tibase, unsigned epnum)
{
musb_writel(tibase, DAVINCI_USB_INT_MASK_SET_REG, 1 << (epnum + 8));
}
/*
* Allocate a CPPI Channel for DMA. With CPPI, channels are bound to
* each transfer direction of a non-control endpoint, so allocating
* (and deallocating) is mostly a way to notice bad housekeeping on
* the software side. We assume the irqs are always active.
*/
static struct dma_channel *
cppi_channel_allocate(struct dma_controller *c,
struct musb_hw_ep *ep, u8 transmit)
static struct dma_channel *cppi_channel_allocate(struct dma_controller *c,
struct musb_hw_ep *ep, u8 transmit)
{
struct cppi *controller;
u8 index;
struct cppi_channel *cppi_ch;
void __iomem *tibase;
struct cppi *controller;
u8 chnum;
struct cppi_channel *cppi_ch;
controller = container_of(c, struct cppi, controller);
tibase = controller->tibase;
/* remember bLocalEnd: 1..Max_EndPt, and cppi ChNum:0..Max_EndPt-1 */
chnum = ep->epnum - 1;
/* ep0 doesn't use DMA; remember cppi indices are 0..N-1 */
index = ep->epnum - 1;
/* return the corresponding CPPI Channel Handle, and
* probably disable the non-CPPI irq until we need it.
*/
/* as of now, just return the corresponding CPPI Channel Handle */
if (transmit) {
if (index >= ARRAY_SIZE(controller->tx)) {
DBG(1, "no %cX%d CPPI channel\n", 'T', index);
if (chnum > ARRAY_SIZE(controller->tx)) {
DBG(1, "no %cX DMA channel for ep%d\n", 'T', chnum);
return NULL;
}
cppi_ch = controller->tx + index;
cppi_ch = controller->tx + chnum;
} else {
if (index >= ARRAY_SIZE(controller->rx)) {
DBG(1, "no %cX%d CPPI channel\n", 'R', index);
if (chnum > ARRAY_SIZE(controller->rx)) {
DBG(1, "no %cX DMA channel for ep%d\n", 'R', chnum);
return NULL;
}
cppi_ch = controller->rx + index;
core_rxirq_disable(tibase, ep->epnum);
cppi_ch = controller->rx + chnum;
}
/* REVISIT make this an error later once the same driver code works
* with the other DMA engine too
* with the Mentor DMA engine too
*/
if (cppi_ch->hw_ep)
DBG(1, "re-allocating DMA%d %cX channel %p\n",
index, transmit ? 'T' : 'R', cppi_ch);
DBG(6, "re-allocating DMA%d %cX channel %p\n",
chnum, transmit ? 'T' : 'R', cppi_ch);
cppi_ch->hw_ep = ep;
cppi_ch->channel.status = MUSB_DMA_STATUS_FREE;
DBG(4, "Allocate CPPI%d %cX\n", index, transmit ? 'T' : 'R');
DBG(4, "Allocate CPPI%d %cX\n", chnum, transmit ? 'T' : 'R');
return &cppi_ch->channel;
}
/* Release a CPPI Channel. */
static void cppi_channel_release(struct dma_channel *channel)
{
struct cppi_channel *c;
void __iomem *tibase;
struct cppi_channel *c;
/* REVISIT: for paranoia, check state and abort if needed... */
c = container_of(channel, struct cppi_channel, channel);
tibase = c->controller->tibase;
if (!c->hw_ep)
DBG(1, "releasing idle DMA channel %p\n", c);
else if (!c->transmit)
core_rxirq_enable(tibase, c->index + 1);
/* for now, leave its cppi IRQ enabled (we won't trigger it) */
/* but for now, not its IRQ */
c->hw_ep = NULL;
channel->status = MUSB_DMA_STATUS_UNKNOWN;
}
/* Context: controller irqlocked */
static void
cppi_dump_rx(int level, struct cppi_channel *c, const char *tag)
static void cppi_dump_rx(int level, struct cppi_channel *c, const char *tag)
{
void __iomem *base = c->controller->mregs;
struct cppi_rx_stateram __iomem *rx = c->state_ram;
void *__iomem base = c->controller->mregs;
musb_ep_select(base, c->index + 1);
DBG(level, "RX DMA%d%s: %d left, csr %04x, "
"%08x H%08x S%08x C%08x, "
"B%08x L%08x %08x .. %08x"
"\n",
c->index, tag,
musb_readl(c->controller->tibase,
DAVINCI_RXCPPI_BUFCNT0_REG + 4 *c->index),
"%08x H%08x S%08x C%08x, " "B%08x L%08x %08x .. %08x"
"\n",
c->index, tag, musb_readl(base - DAVINCI_BASE_OFFSET,
DAVINCI_RXCPPI_BUFCNT0_REG + 4 * c->index),
musb_readw(c->hw_ep->regs, MUSB_RXCSR),
musb_readl(&rx->rx_skipbytes, 0),
musb_readl(&rx->rx_head, 0),
musb_readl(&rx->rx_sop, 0),
musb_readl(&rx->rx_current, 0),
musb_readl(&rx->rx_buf_current, 0),
musb_readl(&rx->rx_len_len, 0),
musb_readl(&rx->rx_cnt_cnt, 0),
musb_readl(&rx->rx_complete, 0)
);
musb_readl(c->state_ram, 0 * 4), /* buf offset */
musb_readl(c->state_ram, 1 * 4), /* head ptr */
musb_readl(c->state_ram, 2 * 4), /* sop bd */
musb_readl(c->state_ram, 3 * 4), /* current bd */
musb_readl(c->state_ram, 4 * 4), /* current buf */
musb_readl(c->state_ram, 5 * 4), /* pkt len */
musb_readl(c->state_ram, 6 * 4), /* byte cnt */
musb_readl(c->state_ram, 7 * 4) /* completion */
);
}
/* Context: controller irqlocked */
static void
cppi_dump_tx(int level, struct cppi_channel *c, const char *tag)
static void cppi_dump_tx(int level, struct cppi_channel *c, const char *tag)
{
void __iomem *base = c->controller->mregs;
struct cppi_tx_stateram __iomem *tx = c->state_ram;
void *__iomem base = c->controller->mregs;
musb_ep_select(base, c->index + 1);
DBG(level, "TX DMA%d%s: csr %04x, "
"H%08x S%08x C%08x %08x, "
"F%08x L%08x .. %08x"
"\n",
c->index, tag,
musb_readw(c->hw_ep->regs, MUSB_TXCSR),
musb_readl(&tx->tx_head, 0),
musb_readl(&tx->tx_buf, 0),
musb_readl(&tx->tx_current, 0),
musb_readl(&tx->tx_buf_current, 0),
musb_readl(&tx->tx_info, 0),
musb_readl(&tx->tx_rem_len, 0),
"H%08x S%08x C%08x %08x, "
"F%08x L%08x .. %08x" "\n",
c->index, tag, musb_readw(c->hw_ep->regs, MUSB_TXCSR),
musb_readl(c->state_ram, 0 * 4), /* head ptr */
musb_readl(c->state_ram, 1 * 4), /* sop bd */
musb_readl(c->state_ram, 2 * 4), /* current bd */
musb_readl(c->state_ram, 3 * 4), /* buf offset */
musb_readl(c->state_ram, 4 * 4), /* flags */
musb_readl(c->state_ram, 5 * 4), /* len */
/* dummy/unused word 6 */
musb_readl(&tx->tx_complete, 0)
);
musb_readl(c->state_ram, 7 * 4) /* completion */
);
}
/* Context: controller irqlocked */
static inline void
cppi_rndis_update(struct cppi_channel *c, int is_rx,
void __iomem *tibase, int is_rndis)
void *__iomem tibase, int is_rndis)
{
/* we may need to change the rndis flag for this cppi channel */
if (c->is_rndis != is_rndis) {
u32 value = musb_readl(tibase, DAVINCI_RNDIS_REG);
u32 temp = 1 << (c->index);
u32 regval = musb_readl(tibase, DAVINCI_RNDIS_REG);
u32 temp = 1 << (c->index);
if (is_rx)
temp <<= 16;
if (is_rndis)
value |= temp;
regval |= temp;
else
value &= ~temp;
musb_writel(tibase, DAVINCI_RNDIS_REG, value);
regval &= ~temp;
musb_writel(tibase, DAVINCI_RNDIS_REG, regval);
c->is_rndis = is_rndis;
}
}
#if MUSB_DEBUG > 0
static void cppi_dump_rxbd(const char *tag, struct cppi_descriptor *bd)
{
pr_debug("RXBD/%s %08x: "
"nxt %08x buf %08x off.blen %08x opt.plen %08x\n",
tag, bd->dma,
bd->hw_next, bd->hw_bufp, bd->hw_off_len,
bd->hw_options);
"nxt %08x buf %08x off.blen %08x opt.plen %08x\n",
tag, bd->dma,
bd->hw_next, bd->hw_bufp, bd->hw_off_len, bd->hw_options);
}
#endif
static void cppi_dump_rxq(int level, const char *tag, struct cppi_channel *rx)
{
......@@ -447,17 +389,13 @@ static void cppi_dump_rxq(int level, const char *tag, struct cppi_channel *rx)
#endif
}
/* NOTE: DaVinci autoreq is ignored except for host side "RNDIS" mode RX;
* so we won't ever use it (see "CPPI RX Woes" below).
*/
static inline int cppi_autoreq_update(struct cppi_channel *rx,
void __iomem *tibase, int onepacket, unsigned n_bds)
void *__iomem tibase, int shortpkt,
u8 rndis, signed n_bds, u8 startreq,
u8 endreq)
{
u32 val;
u32 tmp, val;
#ifdef RNDIS_RX_IS_USABLE
u32 tmp;
/* assert(is_host_active(musb)) */
/* start from "AutoReq never" */
......@@ -467,43 +405,28 @@ static inline int cppi_autoreq_update(struct cppi_channel *rx,
/* HCD arranged reqpkt for packet #1. we arrange int
* for all but the last one, maybe in two segments.
*/
if (!onepacket) {
#if 0
/* use two segments, autoreq "all" then the last "never" */
val |= ((0x3) << (rx->index * 2));
n_bds--;
#else
/* one segment, autoreq "all-but-last" */
val |= ((0x1) << (rx->index * 2));
#endif
if (shortpkt && rndis) {
val = (val | ((0x01) << (rx->index * 2)));
rx->autoreq = 0x01;
} else if (shortpkt && !rndis) {
rx->autoreq = 0x00;
} else if ((!shortpkt) && (n_bds > 2)) {
/* there might be shortpacket not request we might convert in to
* RNDIS mode
*/
val = (val | ((0x03) << (rx->index * 2)));
rx->autoreq = 0x03;
if (endreq)
n_bds -= 2;
} else {
rx->autoreq = 0;
}
if (val != tmp) {
int n = 100;
/* make sure that autoreq is updated before continuing */
musb_writel(tibase, DAVINCI_AUTOREQ_REG, val);
do {
tmp = musb_readl(tibase, DAVINCI_AUTOREQ_REG);
if (tmp == val)
break;
cpu_relax();
} while (n-- > 0);
}
#endif
/* REQPKT is turned off after each segment */
if (n_bds && rx->channel.actual_len) {
void __iomem *regs = rx->hw_ep->regs;
val = musb_readw(regs, MUSB_RXCSR);
if (!(val & MUSB_RXCSR_H_REQPKT)) {
val |= MUSB_RXCSR_H_REQPKT | MUSB_RXCSR_H_WZC_BITS;
musb_writew(regs, MUSB_RXCSR, val);
/* flush writebufer */
val = musb_readw(regs, MUSB_RXCSR);
}
}
return n_bds;
}
......@@ -536,88 +459,83 @@ static inline int cppi_autoreq_update(struct cppi_channel *rx,
* ========
* TX is a lot more reasonable than RX; it doesn't need to run in
* irq-per-packet mode very often. RNDIS mode seems to behave too
* (except how it handles the exactly-N-packets case). Building a
* (other how it handles the exactly-N-packets case). Building a
* txdma queue with multiple requests (urb or usb_request) looks
* like it would work ... but fault handling would need much testing.
*
* The main issue with TX mode RNDIS relates to transfer lengths that
* are an exact multiple of the packet length. It appears that there's
* a hiccup in that case (maybe the DMA completes before the ZLP gets
* written?) boiling down to not being able to rely on CPPI writing any
* terminating zero length packet before the next transfer is written.
* So that's punted to PIO; better yet, gadget drivers can avoid it.
*
* Plus, there's allegedly an undocumented constraint that rndis transfer
* length be a multiple of 64 bytes ... but the chip doesn't act that
* way, and we really don't _want_ that behavior anyway.
*
* On TX, "transparent" mode works ... although experiments have shown
* problems trying to use the SOP/EOP bits in different USB packets.
*
* REVISIT try to handle terminating zero length packets using CPPI
* instead of doing it by PIO after an IRQ. (Meanwhile, make Ethernet
* links avoid that issue by forcing them to avoid zlps.)
* like it would work ... but fault handling still needs testing.
*/
static void
cppi_next_tx_segment(struct musb *musb, struct cppi_channel *tx)
cppi_next_tx_segment(struct musb *musb, struct cppi_channel *tx, int rndis)
{
unsigned maxpacket = tx->maxpacket;
dma_addr_t addr = tx->buf_dma + tx->offset;
size_t length = tx->buf_len - tx->offset;
struct cppi_descriptor *bd;
unsigned n_bds;
unsigned i;
struct cppi_tx_stateram __iomem *tx_ram = tx->state_ram;
int rndis;
unsigned maxpacket = tx->maxpacket;
size_t length = tx->buf_len - tx->offset;
struct cppi_descriptor *bd;
unsigned n_bds;
unsigned i, iso = (tx->rxmode == 2)? 1 : 0;
int iso_desc = tx->iso_desc;
struct cppi_tx_stateram *txstate = tx->state_ram;
/* TX can use the CPPI "rndis" mode, where we can probably fit this
* transfer in one BD and one IRQ. The only time we would NOT want
* to use it is when hardware constraints prevent it, or if we'd
* trigger the "send a ZLP?" confusion.
* transfer in one BD and one IRQ; though some common cases (like
* packet length not being n*64 bytes) can't work that way.
*
* To cppi hardware (but not the RNDIS protocol!) RNDIS is mostly a
* "short packet termination" mode. So the only time we would NOT
* want to use it is to avoid sending spurious zero length packets,
* or when hardware constraints prevent it.
*/
rndis = (maxpacket & 0x3f) == 0
&& length < 0xffff
&& (length % maxpacket) != 0;
if (rndis) {
#if 0 /* Disable RNDIS on both Tx & Rx*/
if (!rndis && (length % maxpacket) != 0)
rndis = 1;
if (rndis && (length > 0xffff || (maxpacket & 0x3f) != 0
/* "undocumented" rndis mode constraint on txlen */
|| (length & 0x3f) != 0))
#endif
rndis = 0;
if (iso) {
n_bds = (tx->hw_ep->num_iso_desc - iso_desc)
>= NUM_TXCHAN_BD ? NUM_TXCHAN_BD :
tx->hw_ep->num_iso_desc - iso_desc;
tx->offset = tx->hw_ep->iso_desc[iso_desc].offset;
} else if (!length) {
rndis = 0;
n_bds = 1;
} else if (rndis) {
maxpacket = length;
n_bds = 1;
} else {
n_bds = length / maxpacket;
if (!length || (length % maxpacket))
if ((length % maxpacket) || (tx->rxmode == 1))
n_bds++;
n_bds = min(n_bds, (unsigned) NUM_TXCHAN_BD);
n_bds = min(n_bds, (unsigned)NUM_TXCHAN_BD);
length = min(n_bds * maxpacket, length);
}
DBG(4, "TX DMA%d, pktSz %d %s bds %d dma 0x%x len %u\n",
tx->index,
maxpacket,
rndis ? "rndis" : "transparent",
n_bds,
addr, length);
DBG(4, "TX DMA%d, pktsz %d %s bds %d dma 0x%x len %u\n",
tx->index,
maxpacket,
rndis ? "rndis" : "transparent",
n_bds, tx->buf_dma + tx->offset, length);
cppi_rndis_update(tx, 0, musb->ctrl_base, rndis);
/* assuming here that channel_program is called during
/* assuming here that DmaProgramChannel is called during
* transfer initiation ... current code maintains state
* for one outstanding request only (no queues, not even
* the implicit ones of an iso urb).
*/
bd = tx->freelist;
tx->head = bd;
tx->head = tx->freelist;
tx->last_processed = NULL;
/* FIXME use BD pool like RX side does, and just queue
* the minimum number for this request.
*/
/* Prepare queue of BDs first, then hand it to hardware.
* All BDs except maybe the last should be of full packet
* size; for RNDIS there _is_ only that last packet.
*/
for (i = 0; i < n_bds; ) {
for (i = 0; i < n_bds;) {
if (++i < n_bds && bd->next)
bd->hw_next = bd->next->dma;
else
......@@ -625,31 +543,42 @@ cppi_next_tx_segment(struct musb *musb, struct cppi_channel *tx)
bd->hw_bufp = tx->buf_dma + tx->offset;
/* FIXME set EOP only on the last packet,
* SOP only on the first ... avoid IRQs
*/
if ((tx->offset + maxpacket) <= tx->buf_len) {
if (iso) {
bd->hw_off_len = tx->hw_ep->iso_desc[iso_desc].length;
bd->hw_options = CPPI_SOP_SET|CPPI_EOP_SET|CPPI_OWN_SET;
if (tx->hw_ep->iso_desc[iso_desc].length == 0)
bd->hw_options |= CPPI_ZERO_SET|1;
else
bd->hw_options |= tx->hw_ep->
iso_desc[iso_desc].length;
tx->offset = tx->hw_ep->
iso_desc[++iso_desc].offset;
} else if ((tx->offset + maxpacket)
<= tx->buf_len) {
tx->offset += maxpacket;
bd->hw_off_len = maxpacket;
bd->hw_options = CPPI_SOP_SET | CPPI_EOP_SET
| CPPI_OWN_SET | maxpacket;
| CPPI_OWN_SET | maxpacket;
} else {
/* only this one may be a partial USB Packet */
u32 partial_len;
u32 buffsz;
partial_len = tx->buf_len - tx->offset;
buffsz = tx->buf_len - tx->offset;
tx->offset = tx->buf_len;
bd->hw_off_len = partial_len;
bd->hw_off_len = (buffsz) ? buffsz : 1;
bd->hw_options = CPPI_SOP_SET | CPPI_EOP_SET
| CPPI_OWN_SET | partial_len;
if (partial_len == 0)
| CPPI_OWN_SET | (buffsz ? buffsz : 1);
if (buffsz == 0) {
tx->hw_ep->zero = 1;
bd->hw_options |= CPPI_ZERO_SET;
}
}
DBG(5, "TXBD %p: nxt %08x buf %08x len %04x opt %08x\n",
bd, bd->hw_next, bd->hw_bufp,
bd->hw_off_len, bd->hw_options);
bd, bd->hw_next, bd->hw_bufp, bd->hw_off_len,
bd->hw_options);
/* update the last BD enqueued to the list */
tx->tail = bd;
......@@ -657,17 +586,17 @@ cppi_next_tx_segment(struct musb *musb, struct cppi_channel *tx)
}
/* BDs live in DMA-coherent memory, but writes might be pending */
cpu_drain_writebuffer();
/*cpu_drain_writebuffer();*/
/* Write to the HeadPtr in state RAM to trigger */
musb_writel(&tx_ram->tx_head, 0, (u32)tx->freelist->dma);
/* Write to the HeadPtr in StateRam to trigger */
txstate->tx_head = (u32) tx->freelist->dma;
cppi_dump_tx(5, tx, "/S");
}
/*
* CPPI RX Woes:
* =============
* CPPI RX:
* ========
* Consider a 1KB bulk RX buffer in two scenarios: (a) it's fed two 300 byte
* packets back-to-back, and (b) it's fed two 512 byte packets back-to-back.
* (Full speed transfers have similar scenarios.)
......@@ -676,16 +605,14 @@ cppi_next_tx_segment(struct musb *musb, struct cppi_channel *tx)
* and the next packet goes into a buffer that's queued later; while (b) fills
* the buffer with 1024 bytes. How to do that with CPPI?
*
* - RX queues in "rndis" mode -- one single BD -- handle (a) correctly, but
* (b) loses **BADLY** because nothing (!) happens when that second packet
* - CPPI RX queues in "rndis" mode -- one single BD -- handle (a) correctly,
* but (b) loses _badly_ because nothing (!) happens when that second packet
* fills the buffer, much less when a third one arrives. (Which makes this
* not a "true" RNDIS mode. In the RNDIS protocol short-packet termination
* is optional, and it's fine if peripherals -- not hosts! -- pad messages
* out to end-of-buffer. Standard PCI host controller DMA descriptors
* implement that mode by default ... which is no accident.)
* is optional, and it's fine if senders pad messages out to end-of-buffer.)
*
* - RX queues in "transparent" mode -- two BDs with 512 bytes each -- have
* converse problems: (b) is handled right, but (a) loses badly. CPPI RX
* - CPPI RX queues in "transparent" mode -- two BDs with 512 bytes each -- have
* converse problems: (b) is handled correctly, but (a) loses badly. CPPI RX
* ignores SOP/EOP markings and processes both of those BDs; so both packets
* are loaded into the buffer (with a 212 byte gap between them), and the next
* buffer queued will NOT get its 300 bytes of data. (It seems like SOP/EOP
......@@ -703,126 +630,91 @@ cppi_next_tx_segment(struct musb *musb, struct cppi_channel *tx)
* of that garbaged datastream.
*
* But there seems to be no way to identify the cases where CPPI RNDIS mode
* is appropriate -- which do NOT include RNDIS host drivers, but do include
* is appropriate -- which do NOT include the RNDIS driver, but do include
* the CDC Ethernet driver! -- and the documentation is incomplete/wrong.
* So we can't _ever_ use RX RNDIS mode ... except by using a heuristic
* that applies best on the peripheral side (and which could fail rudely).
* So we can't _ever_ use RX RNDIS mode.
*
* Leaving only "transparent" mode; we avoid multi-bd modes in almost all
* cases other than mass storage class. Otherwise we're correct but slow,
* cases other than mass storage class. Otherwise e're correct but slow,
* since CPPI penalizes our need for a "true RNDIS" default mode.
*/
/* Heuristic, intended to kick in for ethernet/rndis peripheral ONLY
*
* IFF
* (a) peripheral mode ... since rndis peripherals could pad their
* writes to hosts, causing i/o failure; or we'd have to cope with
* a largely unknowable variety of host side protocol variants
* (b) and short reads are NOT errors ... since full reads would
* cause those same i/o failures
* (c) and read length is
* - less than 64KB (max per cppi descriptor)
* - not a multiple of 4096 (g_zero default, full reads typical)
* - N (>1) packets long, ditto (full reads not EXPECTED)
* THEN
* try rx rndis mode
*
* Cost of heuristic failing: RXDMA wedges at the end of transfers that
* fill out the whole buffer. Buggy host side usb network drivers could
* trigger that, but "in the field" such bugs seem to be all but unknown.
*
* So this module parameter lets the heuristic be disabled. When using
* gadgetfs, the heuristic will probably need to be disabled.
*/
static int cppi_rx_rndis = 1;
module_param(cppi_rx_rndis, bool, 0);
MODULE_PARM_DESC(cppi_rx_rndis, "enable/disable RX RNDIS heuristic");
/**
* cppi_next_rx_segment - dma read for the next chunk of a buffer
* @musb: the controller
* @rx: dma channel
* @onepacket: true unless caller treats short reads as errors, and
* performs fault recovery above usbcore.
* performs fault recovery above usbcore.
* Context: controller irqlocked
*
* See above notes about why we can't use multi-BD RX queues except in
* rare cases (mass storage class), and can never use the hardware "rndis"
* mode (since it's not a "true" RNDIS mode) with complete safety..
* mode (since it's not a "true" RNDIS mode).
*
* It's ESSENTIAL that callers specify "onepacket" mode unless they kick in
* code to recover from corrupted datastreams after each short transfer.
*/
static void
cppi_next_rx_segment(struct musb *musb, struct cppi_channel *rx, int onepacket)
cppi_next_rx_segment(struct musb *musb, struct cppi_channel *rx, int shortpkt)
{
unsigned maxpacket = rx->maxpacket;
dma_addr_t addr = rx->buf_dma + rx->offset;
size_t length = rx->buf_len - rx->offset;
struct cppi_descriptor *bd, *tail;
unsigned n_bds;
unsigned i;
void __iomem *tibase = musb->ctrl_base;
int is_rndis = 0;
struct cppi_rx_stateram __iomem *rx_ram = rx->state_ram;
if (onepacket) {
/* almost every USB driver, host or peripheral side */
n_bds = 1;
/* maybe apply the heuristic above */
if (cppi_rx_rndis
&& is_peripheral_active(musb)
&& length > maxpacket
&& (length & ~0xffff) == 0
&& (length & 0x0fff) != 0
&& (length & (maxpacket - 1)) == 0) {
maxpacket = length;
is_rndis = 1;
}
} else {
/* virtually nothing except mass storage class */
if (length > 0xffff) {
n_bds = 0xffff / maxpacket;
length = n_bds * maxpacket;
unsigned maxpacket = rx->maxpacket;
dma_addr_t addr = rx->buf_dma + rx->offset;
size_t length = rx->buf_len - rx->offset;
struct cppi_descriptor *bd, *tail;
signed n_bds;
signed i;
void *__iomem tibase = musb->ctrl_base;
u8 rndis = 0;
int max_bd = 0;
unsigned iso = (rx->rxmode == 2)? 1 : 0;
int iso_desc = rx->iso_desc;
if (((rx->rxmode == 1) && ((maxpacket & 0x3f) == 0)
/*REVISIT MAXPACKET CHECK!!!!*/
&& ((length & 0x3f) == 0))) {
rndis = 1;
max_bd = 65536; /* MAX buffer aize per RNDIS BD is 64 K */
} else {
n_bds = length / maxpacket;
if (length % maxpacket)
n_bds++;
}
if (n_bds == 1)
onepacket = 1;
else
n_bds = min(n_bds, (unsigned) NUM_RXCHAN_BD);
rndis = 0;
max_bd = maxpacket;
}
#ifdef CONFIG_ARCH_DAVINCI
/* Do not use RNDIS dma for DaVinci */
rndis = 0;
max_bd = maxpacket;
#endif
if (iso)
max_bd = rx->hw_ep->iso_desc[iso_desc].length;
n_bds = length / max_bd;
if (length % max_bd)
n_bds++;
n_bds = min(n_bds, (signed)NUM_RXCHAN_BD);
if (n_bds == NUM_RXCHAN_BD)
length = min(length, (size_t) (n_bds * max_bd));
cppi_rndis_update(rx, 1, musb->ctrl_base, rndis);
/* In host mode, autorequest logic can generate some IN tokens; it's
* tricky since we can't leave REQPKT set in RXCSR after the transfer
* finishes. So: multipacket transfers involve two or more segments.
* And always at least two IRQs ... RNDIS mode is not an option.
* And always at least two IRQs.
*/
if (is_host_active(musb))
n_bds = cppi_autoreq_update(rx, tibase, onepacket, n_bds);
cppi_rndis_update(rx, 1, musb->ctrl_base, is_rndis);
length = min(n_bds * maxpacket, length);
DBG(4, "RX DMA%d seg, maxp %d %s bds %d (cnt %d) "
"dma 0x%x len %u %u/%u\n",
rx->index, maxpacket,
onepacket
? (is_rndis ? "rndis" : "onepacket")
: "multipacket",
n_bds,
musb_readl(tibase,
DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4))
& 0xffff,
addr, length, rx->channel.actual_len, rx->buf_len);
n_bds = cppi_autoreq_update(rx, tibase, shortpkt, rndis, n_bds,
(u8) !rx->offset,
(u8) (rx->buf_len <=
(rx->offset + length)
));
DBG(4, "RX DMA%d seg, maxp %d %spacket bds %d (cnt %d) "
"dma 0x%x len %u/%u/%u\n",
rx->index, max_bd,
shortpkt ? "one" : "multi",
n_bds,
musb_readl(tibase, DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4))
& 0xffff, addr, length, rx->actuallen, rx->buf_len);
/* only queue one segment at a time, since the hardware prevents
* correct queue shutdown after unexpected short packets
......@@ -832,7 +724,7 @@ cppi_next_rx_segment(struct musb *musb, struct cppi_channel *rx, int onepacket)
/* Build BDs for all packets in this segment */
for (i = 0, tail = NULL; bd && i < n_bds; i++, tail = bd) {
u32 bd_len;
u32 buffsz;
if (i) {
bd = cppi_bd_alloc(rx);
......@@ -844,20 +736,20 @@ cppi_next_rx_segment(struct musb *musb, struct cppi_channel *rx, int onepacket)
bd->hw_next = 0;
/* all but the last packet will be maxpacket size */
if (maxpacket < length)
bd_len = maxpacket;
if (max_bd < length)
buffsz = max_bd;
else
bd_len = length;
buffsz = length;
bd->hw_bufp = addr;
addr += bd_len;
rx->offset += bd_len;
addr += buffsz;
rx->offset += buffsz;
bd->hw_off_len = (0 /*offset*/ << 16) + bd_len;
bd->buflen = bd_len;
bd->hw_off_len = (0 /*offset */ << 16) + buffsz;
bd->buflen = buffsz;
bd->hw_options = CPPI_OWN_SET | (i == 0 ? length : 0);
length -= bd_len;
length -= buffsz;
}
/* we always expect at least one reusable BD! */
......@@ -872,65 +764,39 @@ cppi_next_rx_segment(struct musb *musb, struct cppi_channel *rx, int onepacket)
bd = rx->head;
rx->tail = tail;
#if 0
/* short reads and other faults should terminate this entire
* dma segment. we want one "dma packet" per dma segment, not
* one per USB packet, terminating the whole queue at once...
* NOTE that current hardware seems to ignore SOP and EOP.
*/
bd->hw_options |= CPPI_SOP_SET;
tail->hw_options |= CPPI_EOP_SET;
if (debug >= 5) {
struct cppi_descriptor *d;
if (MGC_DebugLevel >= 5) {
struct cppi_descriptor *d;
for (d = rx->head; d; d = d->next)
cppi_dump_rxbd("S", d);
}
/* in case the preceding transfer left some state... */
tail = rx->last_processed;
if (tail) {
tail->next = bd;
tail->hw_next = bd->dma;
}
core_rxirq_enable(tibase, rx->index + 1);
#endif
rx->last_processed = NULL;
/* BDs live in DMA-coherent memory, but writes might be pending */
cpu_drain_writebuffer();
/*cpu_drain_writebuffer();*/
/* REVISIT specs say to write this AFTER the BUFCNT register
* below ... but that loses badly.
*/
musb_writel(&rx_ram->rx_head, 0, bd->dma);
musb_writel(rx->state_ram, 4, bd->dma);
/* bufferCount must be at least 3, and zeroes on completion
* unless it underflows below zero, or stops at two, or keeps
* growing ... grr.
*/
i = musb_readl(tibase,
DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4))
& 0xffff;
i = musb_readl(tibase, DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4))
& 0xffff;
if (!i)
musb_writel(tibase,
DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4),
n_bds + 2);
else if (n_bds > (i - 3))
if (n_bds > (i - 2)) {
musb_writel(tibase,
DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4),
n_bds - (i - 3));
i = musb_readl(tibase,
DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4))
& 0xffff;
if (i < (2 + n_bds)) {
DBG(2, "bufcnt%d underrun - %d (for %d)\n",
rx->index, i, n_bds);
musb_writel(tibase,
DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4),
n_bds + 2);
DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4),
n_bds - i + 2);
}
cppi_dump_rx(4, rx, "/S");
......@@ -938,46 +804,41 @@ cppi_next_rx_segment(struct musb *musb, struct cppi_channel *rx, int onepacket)
/**
* cppi_channel_program - program channel for data transfer
* @ch: the channel
* @maxpacket: max packet size
* @pChannel: the channel
* @wPacketsz: max packet size
* @mode: For RX, 1 unless the usb protocol driver promised to treat
* all short reads as errors and kick in high level fault recovery.
* For TX, ignored because of RNDIS mode races/glitches.
* all short reads as errors and kick in high level fault recovery.
* For TX, 0 unless the protocol driver _requires_ short-packet
* termination mode.
* @dma_addr: dma address of buffer
* @len: length of buffer
* @dwLength: length of buffer
* Context: controller irqlocked
*/
static int cppi_channel_program(struct dma_channel *ch,
u16 maxpacket, u8 mode,
dma_addr_t dma_addr, u32 len)
static int cppi_channel_program(struct dma_channel *ch,
u16 maxpacket, u8 mode,
dma_addr_t dma_addr, u32 len)
{
struct cppi_channel *cppi_ch;
struct cppi *controller;
struct musb *musb;
cppi_ch = container_of(ch, struct cppi_channel, channel);
controller = cppi_ch->controller;
musb = controller->musb;
struct cppi_channel *cppi_ch = container_of(ch, struct cppi_channel,
channel);
struct cppi *controller = cppi_ch->controller;
struct musb *musb = controller->musb;
switch (ch->status) {
case MUSB_DMA_STATUS_BUS_ABORT:
case MUSB_DMA_STATUS_CORE_ABORT:
/* fault irq handler should have handled cleanup */
WARN("%cX DMA%d not cleaned up after abort!\n",
cppi_ch->transmit ? 'T' : 'R',
cppi_ch->index);
/* WARN_ON(1); */
cppi_ch->transmit ? 'T' : 'R', cppi_ch->index);
/*WARN_ON(1);*/
break;
case MUSB_DMA_STATUS_BUSY:
WARN("program active channel? %cX DMA%d\n",
cppi_ch->transmit ? 'T' : 'R',
cppi_ch->index);
/* WARN_ON(1); */
cppi_ch->transmit ? 'T' : 'R', cppi_ch->index);
/*WARN_ON(1);*/
break;
case MUSB_DMA_STATUS_UNKNOWN:
DBG(1, "%cX DMA%d not allocated!\n",
cppi_ch->transmit ? 'T' : 'R',
cppi_ch->index);
cppi_ch->transmit ? 'T' : 'R', cppi_ch->index);
/* FALLTHROUGH */
case MUSB_DMA_STATUS_FREE:
break;
......@@ -989,146 +850,118 @@ static int cppi_channel_program(struct dma_channel *ch,
cppi_ch->buf_dma = dma_addr;
cppi_ch->offset = 0;
cppi_ch->maxpacket = maxpacket;
cppi_ch->actuallen = 0;
cppi_ch->buf_len = len;
cppi_ch->rxmode = mode;
cppi_ch->reqcomplete = 0;
cppi_ch->autoreq = 0;
cppi_ch->iso_desc = 0;
/* TX channel? or RX? */
if (cppi_ch->transmit)
cppi_next_tx_segment(musb, cppi_ch);
cppi_next_tx_segment(musb, cppi_ch, mode);
else
cppi_next_rx_segment(musb, cppi_ch, mode);
cppi_next_rx_segment(musb, cppi_ch , mode);
return true;
}
static bool cppi_rx_scan(struct cppi *cppi, unsigned ch)
static int cppi_rx_scan(struct cppi *cppi, unsigned ch, u8 abort)
{
struct cppi_channel *rx = &cppi->rx[ch];
struct cppi_rx_stateram __iomem *state = rx->state_ram;
struct cppi_descriptor *bd;
struct cppi_descriptor *last = rx->last_processed;
bool completed = false;
bool acked = false;
int i;
dma_addr_t safe2ack;
void __iomem *regs = rx->hw_ep->regs;
struct cppi_channel *rx = &cppi->rx[ch];
struct cppi_rx_stateram *state = rx->state_ram;
struct cppi_descriptor *bd;
struct cppi_descriptor *last = rx->last_processed;
int completed = 0;
dma_addr_t safe2ack;
u32 csr;
cppi_dump_rx(6, rx, "/K");
bd = last ? last->next : rx->head;
if (!bd)
return false;
/* run through all completed BDs */
for (i = 0, safe2ack = musb_readl(&state->rx_complete, 0);
(safe2ack || completed) && bd && i < NUM_RXCHAN_BD;
i++, bd = bd->next) {
u16 len;
if (abort) {
safe2ack = musb_readl(CAST & state->rx_complete, 0);
rmb();
if (!completed && (bd->hw_options & CPPI_OWN_SET))
break;
DBG(5, "C/RXBD %08x: nxt %08x buf %08x "
"off.len %08x opt.len %08x (%d)\n",
bd->dma, bd->hw_next, bd->hw_bufp,
bd->hw_off_len, bd->hw_options,
rx->channel.actual_len);
/* actual packet received length */
if ((bd->hw_options & CPPI_SOP_SET) && !completed)
len = bd->hw_off_len & CPPI_RECV_PKTLEN_MASK;
else
len = 0;
if (bd->hw_options & CPPI_EOQ_MASK)
completed = true;
if (!completed && len < bd->buflen) {
/* NOTE: when we get a short packet, RXCSR_H_REQPKT
* must have been cleared, and no more DMA packets may
* active be in the queue... TI docs didn't say, but
* CPPI ignores those BDs even though OWN is still set.
*/
completed = true;
DBG(3, "rx short %d/%d (%d)\n",
len, bd->buflen,
rx->channel.actual_len);
if ((last == NULL) || (safe2ack == last->dma)) {
if (last == NULL)
last = rx->head;
goto free;
}
}
/* If we got here, we expect to ack at least one BD; meanwhile
* CPPI may completing other BDs while we scan this list...
*
* RACE: we can notice OWN cleared before CPPI raises the
* matching irq by writing that BD as the completion pointer.
* In such cases, stop scanning and wait for the irq, avoiding
* lost acks and states where BD ownership is unclear.
*/
if (bd->dma == safe2ack) {
musb_writel(&state->rx_complete, 0, safe2ack);
safe2ack = musb_readl(&state->rx_complete, 0);
acked = true;
if (bd->dma == safe2ack)
safe2ack = 0;
}
bd = last ? last->next : rx->head;
rx->channel.actual_len += len;
do {
safe2ack = musb_readl(CAST & state->rx_complete, 0);
if (completed)
break;
do {
u16 len;
/*rmb();*/
DBG(5, "C/RXBD %08x: nxt %08x buf %08x "
"off.len %08x opt.len %08x (%d)\n",
bd->dma, bd->hw_next, bd->hw_bufp,
bd->hw_off_len, bd->hw_options, rx->actuallen);
/* actual packet received length */
len = bd->hw_off_len & CPPI_RECV_PKTLEN_MASK;
if (bd->hw_options & CPPI_ZERO_SET)
len = 0;
cppi_bd_free(rx, last);
last = bd;
if (bd->hw_next == 0)
completed = 1;
/* stop scanning on end-of-segment */
if (bd->hw_next == 0)
completed = true;
}
rx->last_processed = last;
if ((len < bd->buflen) && (rx->rxmode != 2)) {
rx->reqcomplete = 1;
completed = 1;
DBG(3, "rx short %d/%d (%d)\n",
len, bd->buflen, rx->actuallen);
}
/* dma abort, lost ack, or ... */
if (!acked && last) {
int csr;
if (rx->rxmode == 2) {
rx->hw_ep->iso_desc[rx->iso_desc].length = len;
if (completed) {
rx->reqcomplete = 1;
rx->iso_desc = 0;
} else
rx->iso_desc++;
}
if (safe2ack == 0 || safe2ack == rx->last_processed->dma)
musb_writel(&state->rx_complete, 0, safe2ack);
if (safe2ack == 0) {
rx->actuallen += len;
cppi_bd_free(rx, last);
rx->last_processed = NULL;
/* if we land here on the host side, H_REQPKT will
* be clear and we need to restart the queue...
*/
WARN_ON(rx->head);
}
musb_ep_select(cppi->mregs, rx->index + 1);
csr = musb_readw(regs, MUSB_RXCSR);
if (csr & MUSB_RXCSR_DMAENAB) {
DBG(4, "list%d %p/%p, last %08x%s, csr %04x\n",
rx->index,
rx->head, rx->tail,
rx->last_processed
? rx->last_processed->dma
: 0,
completed ? ", completed" : "",
csr);
cppi_dump_rxq(4, "/what?", rx);
}
last = bd;
if (safe2ack == bd->dma) {
bd = bd->next;
break;
}
bd = bd->next;
} while (!completed);
} while (musb_readl(CAST & state->rx_complete, 0) != safe2ack);
if (is_host_active(rx->controller->musb) && (!abort) &&
(rx->autoreq == 0) &&
((!completed) || (completed && (rx->reqcomplete == 0) &&
(rx->actuallen != rx->buf_len)))) {
csr = musb_readw(rx->hw_ep->regs, MUSB_RXCSR);
csr |= MUSB_RXCSR_H_REQPKT;
musb_writew(rx->hw_ep->regs, MUSB_RXCSR, csr);
}
if (!completed) {
int csr;
rx->head = bd;
/* REVISIT seems like "autoreq all but EOP" doesn't...
* setting it here "should" be racey, but seems to work
*/
csr = musb_readw(rx->hw_ep->regs, MUSB_RXCSR);
if (is_host_active(cppi->musb)
&& bd
&& !(csr & MUSB_RXCSR_H_REQPKT)) {
csr |= MUSB_RXCSR_H_REQPKT;
musb_writew(regs, MUSB_RXCSR,
MUSB_RXCSR_H_WZC_BITS | csr);
csr = musb_readw(rx->hw_ep->regs, MUSB_RXCSR);
rx->last_processed = last;
musb_writel(CAST & state->rx_complete, 0, safe2ack);
free:
if (completed || abort) {
/* Flush BD's not consumed */
while (last != NULL) {
bd = last;
last = last->next;
cppi_bd_free(rx, bd);
}
} else {
if (abort) {
safe2ack = musb_readl(CAST & state->rx_complete, 0);
musb_writel(CAST & state->rx_complete, 0, safe2ack);
}
rx->last_processed = NULL;
rx->head = NULL;
rx->tail = NULL;
}
......@@ -1139,146 +972,158 @@ static bool cppi_rx_scan(struct cppi *cppi, unsigned ch)
void cppi_completion(struct musb *musb, u32 rx, u32 tx)
{
void __iomem *tibase;
int i, index;
struct cppi *cppi;
struct musb_hw_ep *hw_ep = NULL;
void *__iomem tibase;
int i, channum;
u8 reqcomplete;
struct cppi *cppi;
struct cppi_descriptor *bdptr;
cppi = container_of(musb->dma_controller, struct cppi, controller);
tibase = musb->ctrl_base;
tibase = cppi->mregs - DAVINCI_BASE_OFFSET;
/* process TX channels */
for (index = 0; tx; tx = tx >> 1, index++) {
struct cppi_channel *tx_ch;
struct cppi_tx_stateram __iomem *tx_ram;
bool completed = false;
struct cppi_descriptor *bd;
if (!(tx & 1))
continue;
tx_ch = cppi->tx + index;
tx_ram = tx_ch->state_ram;
/* FIXME need a cppi_tx_scan() routine, which
* can also be called from abort code
*/
cppi_dump_tx(5, tx_ch, "/E");
bd = tx_ch->head;
if (NULL == bd) {
DBG(1, "null BD\n");
continue;
}
/* run through all completed BDs */
for (i = 0; !completed && bd && i < NUM_TXCHAN_BD;
i++, bd = bd->next) {
u16 len;
rmb();
if (bd->hw_options & CPPI_OWN_SET)
break;
DBG(5, "C/TXBD %p n %x b %x off %x opt %x\n",
bd, bd->hw_next, bd->hw_bufp,
bd->hw_off_len, bd->hw_options);
for (channum = 0; tx; tx = tx >> 1, channum++) {
if (tx & 1) {
struct cppi_channel *txchannel;
struct cppi_tx_stateram *txstate;
u32 safe2ack = 0;
len = bd->hw_off_len & CPPI_BUFFER_LEN_MASK;
tx_ch->channel.actual_len += len;
txchannel = cppi->tx + channum;
txstate = txchannel->state_ram;
tx_ch->last_processed = bd;
/* write completion register to acknowledge
* processing of completed BDs, and possibly
* release the IRQ; EOQ might not be set ...
*
* REVISIT use the same ack strategy as rx
*
* REVISIT have observed bit 18 set; huh??
*/
/* if ((bd->hw_options & CPPI_EOQ_MASK)) */
musb_writel(&tx_ram->tx_complete, 0, bd->dma);
/* stop scanning on end-of-segment */
if (bd->hw_next == 0)
completed = true;
}
/* on end of segment, maybe go to next one */
if (completed) {
/* cppi_dump_tx(4, tx_ch, "/complete"); */
/* transfer more, or report completion */
if (tx_ch->offset >= tx_ch->buf_len) {
tx_ch->head = NULL;
tx_ch->tail = NULL;
tx_ch->channel.status = MUSB_DMA_STATUS_FREE;
hw_ep = tx_ch->hw_ep;
/* Peripheral role never repurposes the
* endpoint, so immediate completion is
* safe. Host role waits for the fifo
* to empty (TXPKTRDY irq) before going
* to the next queued bulk transfer.
*/
if (is_host_active(cppi->musb)) {
#if 0
/* WORKAROUND because we may
* not always get TXKPTRDY ...
/* FIXME need a cppi_tx_scan() routine, which
* can also be called from abort code
*/
int csr;
csr = musb_readw(hw_ep->regs,
MUSB_TXCSR);
if (csr & MUSB_TXCSR_TXPKTRDY)
#endif
completed = false;
}
if (completed)
musb_dma_completion(musb, index + 1, 1);
} else {
/* Bigger transfer than we could fit in
* that first batch of descriptors...
cppi_dump_tx(5, txchannel, "/E");
bdptr = txchannel->head;
i = 0;
reqcomplete = 0;
do {
safe2ack = txstate->tx_complete;
do {
/*rmb();*/
DBG(5, "C/TXBD %p n %x b %x off %x\
opt %x\n",
bdptr, bdptr->hw_next,
bdptr->hw_bufp,
bdptr->hw_off_len,
bdptr->hw_options);
txchannel->actuallen += (u16) (bdptr->
hw_off_len &
CPPI_BUFFER_LEN_MASK);
if (txchannel->rxmode == 2) {
txchannel->hw_ep->
iso_desc[txchannel->iso_desc].
status = 0;
txchannel->iso_desc++;
}
if (bdptr->dma == safe2ack) {
if (bdptr->hw_options &
CPPI_ZERO_SET)
txchannel->actuallen -=
1;
if (bdptr->hw_next == 0)
reqcomplete = 1;
txchannel->last_processed =
bdptr;
bdptr = bdptr->next;
break;
}
bdptr = bdptr->next;
} while (1);
} while (txstate->tx_complete != safe2ack);
txstate->tx_complete = txchannel->last_processed->
dma;
/* on end of segment, maybe go to next one */
if (reqcomplete) {
cppi_dump_tx(4, txchannel, "/complete");
/* transfer more, or report completion */
if ((txchannel->actuallen
>= txchannel->buf_len)) {
if ((txchannel->rxmode == 1) &&
(!(txchannel->actuallen %
txchannel->maxpacket)) &&
(!txchannel->hw_ep->zero)) {
cppi_next_tx_segment(musb,
txchannel,
txchannel->rxmode);
} else {
txchannel->hw_ep->zero = 0;
txchannel->head =
NULL;
txchannel->tail =
NULL;
txchannel->channel.status =
MUSB_DMA_STATUS_FREE;
txchannel->channel.
actual_len =
txchannel->actuallen;
musb_dma_completion(musb,
channum + 1, 1);
}
} else {
/* Bigger transfer than we could fit in
* that first batch of descriptors...
*/
cppi_next_tx_segment(musb, tx_ch);
cppi_next_tx_segment(musb,
txchannel,
txchannel->rxmode);
}
} else
tx_ch->head = bd;
} else
txchannel->head = bdptr;
}
}
/* Start processing the RX block */
for (index = 0; rx; rx = rx >> 1, index++) {
for (channum = 0; rx; rx = rx >> 1, channum++) {
if (rx & 1) {
struct cppi_channel *rx_ch;
rx_ch = cppi->rx + index;
struct cppi_channel *rxchannel;
rxchannel = cppi->rx + channum;
/* There is a race condition between abort channel and
* on going traffic. Ensure that pending interrupts
* (that were raised during clean up but was held due
* to interrupt block) are acknowledged correctly by
* adressing those interrupts as abort (from interrupt
* context, as we already handled the user initiated
* abort which actually lead to this race). This occurs
* possible due to the fact that we do not support
* clean RX teardown at this point (May not require this
* code once RX teardown is correctly supported in
* hardware).
*/
if (rxchannel->head)
reqcomplete = cppi_rx_scan(cppi, channum, 0);
else {
cppi_rx_scan(cppi, channum, 1);
continue;
}
/* let incomplete dma segments finish */
if (!cppi_rx_scan(cppi, index))
if (!reqcomplete)
continue;
/* start another dma segment if needed */
if (rx_ch->channel.actual_len != rx_ch->buf_len
&& rx_ch->channel.actual_len
== rx_ch->offset) {
cppi_next_rx_segment(musb, rx_ch, 1);
if ((rxchannel->actuallen != rxchannel->buf_len)
&& !(rxchannel->reqcomplete)) {
cppi_next_rx_segment(musb, rxchannel,
rxchannel->rxmode);
continue;
}
/* all segments completed! */
rx_ch->channel.status = MUSB_DMA_STATUS_FREE;
hw_ep = rx_ch->hw_ep;
core_rxirq_disable(tibase, index + 1);
musb_dma_completion(musb, index + 1, 0);
rxchannel->channel.status = MUSB_DMA_STATUS_FREE;
rxchannel->channel.actual_len =
rxchannel->actuallen;
musb_dma_completion(musb, channum + 1, 0);
}
}
......@@ -1287,8 +1132,8 @@ void cppi_completion(struct musb *musb, u32 rx, u32 tx)
}
/* Instantiate a software object representing a DMA controller. */
struct dma_controller *__init
dma_controller_create(struct musb *musb, void __iomem *mregs)
struct dma_controller *__init dma_controller_create(struct musb *musb,
void __iomem *mregs)
{
struct cppi *controller;
......@@ -1313,9 +1158,9 @@ dma_controller_create(struct musb *musb, void __iomem *mregs)
/* setup BufferPool */
controller->pool = dma_pool_create("cppi",
controller->musb->controller,
sizeof(struct cppi_descriptor),
CPPI_DESCRIPTOR_ALIGN, 0);
controller->musb->controller,
sizeof(struct cppi_descriptor),
CPPI_DESCRIPTOR_ALIGN, 0);
if (!controller->pool) {
kfree(controller);
return NULL;
......@@ -1329,14 +1174,13 @@ dma_controller_create(struct musb *musb, void __iomem *mregs)
*/
void dma_controller_destroy(struct dma_controller *c)
{
struct cppi *cppi;
cppi = container_of(c, struct cppi, controller);
struct cppi *cpcontroller = container_of(c, struct cppi, controller);;
/* assert: caller stopped the controller first */
dma_pool_destroy(cppi->pool);
dma_pool_destroy(cpcontroller->pool);
kfree(cpcontroller);
kfree(cppi);
}
/*
......@@ -1344,17 +1188,13 @@ void dma_controller_destroy(struct dma_controller *c)
*/
static int cppi_channel_abort(struct dma_channel *channel)
{
struct cppi_channel *cppi_ch;
struct cppi *controller;
void __iomem *mbase;
void __iomem *tibase;
void __iomem *regs;
u32 value;
struct cppi_descriptor *queue;
cppi_ch = container_of(channel, struct cppi_channel, channel);
controller = cppi_ch->controller;
struct cppi_channel *cppi_ch = container_of(channel,
struct cppi_channel, channel);
struct cppi *controller = cppi_ch->controller;
int chnum = cppi_ch->index;
void *__iomem mbase;
void *__iomem tibase;
u32 regval;
switch (channel->status) {
case MUSB_DMA_STATUS_BUS_ABORT:
......@@ -1362,41 +1202,40 @@ static int cppi_channel_abort(struct dma_channel *channel)
/* from RX or TX fault irq handler */
case MUSB_DMA_STATUS_BUSY:
/* the hardware needs shutting down */
regs = cppi_ch->hw_ep->regs;
break;
case MUSB_DMA_STATUS_UNKNOWN:
DBG(8, "%cX DMA%d not allocated\n",
cppi_ch->transmit ? 'T' : 'R', cppi_ch->index);
/* FALLTHROUGH */
case MUSB_DMA_STATUS_FREE:
return 0;
default:
return -EINVAL;
}
if (chnum & ~CPPI_CHNUM_BITS_MASK)
return -EINVAL;
if (!cppi_ch->transmit && cppi_ch->head)
cppi_dump_rxq(3, "/abort", cppi_ch);
cppi_dump_rxq(4, "/abort", cppi_ch);
mbase = controller->mregs;
tibase = controller->tibase;
queue = cppi_ch->head;
cppi_ch->head = NULL;
cppi_ch->tail = NULL;
tibase = mbase - DAVINCI_BASE_OFFSET;
/* REVISIT should rely on caller having done this,
* and caller should rely on us not changing it.
* peripheral code is safe ... check host too.
*/
musb_ep_select(mbase, cppi_ch->index + 1);
musb_ep_select(mbase, chnum + 1);
if (cppi_ch->transmit) {
struct cppi_tx_stateram __iomem *tx_ram;
int enabled;
struct cppi_tx_stateram *__iomem txstate;
int enabled;
/* mask interrupts raised to signal teardown complete. */
enabled = musb_readl(tibase, DAVINCI_TXCPPI_INTENAB_REG)
& (1 << cppi_ch->index);
& (1 << cppi_ch->index);
if (enabled)
musb_writel(tibase, DAVINCI_TXCPPI_INTCLR_REG,
(1 << cppi_ch->index));
(1 << cppi_ch->index));
/* REVISIT put timeouts on these controller handshakes */
......@@ -1404,43 +1243,55 @@ static int cppi_channel_abort(struct dma_channel *channel)
/* teardown DMA engine then usb core */
do {
value = musb_readl(tibase, DAVINCI_TXCPPI_TEAR_REG);
} while (!(value & CPPI_TEAR_READY));
musb_writel(tibase, DAVINCI_TXCPPI_TEAR_REG, cppi_ch->index);
regval = musb_readl(tibase, DAVINCI_TXCPPI_TEAR_REG);
} while (!(regval & CPPI_TEAR_READY));
musb_writel(tibase, DAVINCI_TXCPPI_TEAR_REG, chnum);
tx_ram = cppi_ch->state_ram;
txstate = cppi_ch->state_ram;
do {
value = musb_readl(&tx_ram->tx_complete, 0);
} while (0xFFFFFFFC != value);
musb_writel(&tx_ram->tx_complete, 0, 0xFFFFFFFC);
regval = txstate->tx_complete;
} while (0xFFFFFFFC != regval);
txstate->tx_complete = 0xFFFFFFFC;
musb_writel(tibase, DAVINCI_CPPI_EOI_REG, 0);
/* FIXME clean up the transfer state ... here?
* the completion routine should get called with
* an appropriate status code.
*/
value = musb_readw(regs, MUSB_TXCSR);
value &= ~MUSB_TXCSR_DMAENAB;
value |= MUSB_TXCSR_FLUSHFIFO;
musb_writew(regs, MUSB_TXCSR, value);
musb_writew(regs, MUSB_TXCSR, value);
regval = musb_readw(cppi_ch->hw_ep->regs, MUSB_TXCSR);
regval |= MUSB_TXCSR_FLUSHFIFO;
musb_writew(cppi_ch->hw_ep->regs, MUSB_TXCSR, regval);
musb_writew(cppi_ch->hw_ep->regs, MUSB_TXCSR, regval);
/* re-enable interrupt */
if (enabled)
musb_writel(tibase, DAVINCI_TXCPPI_INTENAB_REG,
(1 << cppi_ch->index));
txstate->tx_head = 0;
txstate->tx_buf = 0;
txstate->tx_buf_current = 0;
txstate->tx_current = 0;
txstate->tx_info = 0;
txstate->tx_rem_len = 0;
/* While we scrub the TX state RAM, ensure that we clean
* up any interrupt that's currently asserted:
/* Ensure that we clean up any Interrupt asserted
* 1. Write to completion Ptr value 0x1(bit 0 set)
* (write back mode)
* 2. Write to completion Ptr value 0x0(bit 0 cleared)
* (compare mode)
* Value written is compared(for bits 31:2) and when
* equal, interrupt is deasserted.
* Value written is compared(for bits 31:2) and being
* equal interrupt deasserted?
*/
/* write back mode, bit 0 set, hence completion Ptr
* must be updated
*/
cppi_reset_tx(tx_ram, 1);
musb_writel(&tx_ram->tx_complete, 0, 0);
txstate->tx_complete = 0x1;
/* compare mode, write back zero now */
txstate->tx_complete = 0;
/* re-enable interrupt */
if (enabled)
musb_writel(tibase, DAVINCI_TXCPPI_INTENAB_REG,
(1 << cppi_ch->index));
cppi_dump_tx(5, cppi_ch, " (done teardown)");
......@@ -1448,8 +1299,9 @@ static int cppi_channel_abort(struct dma_channel *channel)
* as the RX side ... this does no cleanup at all!
*/
} else /* RX */ {
u16 csr;
} else { /* RX */
u16 csr;
/* NOTE: docs don't guarantee any of this works ... we
* expect that if the usb core stops telling the cppi core
......@@ -1457,33 +1309,30 @@ static int cppi_channel_abort(struct dma_channel *channel)
* current RX DMA state iff any pending fifo transfer is done.
*/
core_rxirq_disable(tibase, cppi_ch->index + 1);
/* for host, ensure ReqPkt is never set again */
if (is_host_active(cppi_ch->controller->musb)) {
value = musb_readl(tibase, DAVINCI_AUTOREQ_REG);
value &= ~((0x3) << (cppi_ch->index * 2));
musb_writel(tibase, DAVINCI_AUTOREQ_REG, value);
regval = musb_readl(tibase, DAVINCI_AUTOREQ_REG);
regval &= ~((0x3) << (cppi_ch->index * 2));
musb_writel(tibase, DAVINCI_AUTOREQ_REG, regval);
}
csr = musb_readw(regs, MUSB_RXCSR);
csr = musb_readw(cppi_ch->hw_ep->regs, MUSB_RXCSR);
/* for host, clear (just) ReqPkt at end of current packet(s) */
if (is_host_active(cppi_ch->controller->musb)) {
csr |= MUSB_RXCSR_H_WZC_BITS;
csr &= ~MUSB_RXCSR_H_REQPKT;
} else
csr |= MUSB_RXCSR_P_WZC_BITS;
csr |= MUSB_RXCSR_H_WZC_BITS;
/* clear dma enable */
csr &= ~(MUSB_RXCSR_DMAENAB);
musb_writew(regs, MUSB_RXCSR, csr);
csr = musb_readw(regs, MUSB_RXCSR);
musb_writew(cppi_ch->hw_ep->regs, MUSB_RXCSR, csr);
/* Quiesce: wait for current dma to finish (if not cleanup).
* We can't use bit zero of stateram->rx_sop, since that
/* quiesce: wait for current dma to finish (if not cleanup)
* we can't use bit zero of stateram->sopDescPtr since that
* refers to an entire "DMA packet" not just emptying the
* current fifo. Most segments need multiple usb packets.
* current fifo, and most segements need multiple fifos.
*/
if (channel->status == MUSB_DMA_STATUS_BUSY)
udelay(50);
......@@ -1491,7 +1340,8 @@ static int cppi_channel_abort(struct dma_channel *channel)
/* scan the current list, reporting any data that was
* transferred and acking any IRQ
*/
cppi_rx_scan(controller, cppi_ch->index);
cppi_rx_scan(controller, chnum, 1);
channel->actual_len += cppi_ch->actuallen;
/* clobber the existing state once it's idle
*
......@@ -1510,17 +1360,6 @@ static int cppi_channel_abort(struct dma_channel *channel)
/* ... we don't "free" that list, only mutate it in place. */
cppi_dump_rx(5, cppi_ch, " (done abort)");
/* clean up previously pending bds */
cppi_bd_free(cppi_ch, cppi_ch->last_processed);
cppi_ch->last_processed = NULL;
while (queue) {
struct cppi_descriptor *tmp = queue->next;
cppi_bd_free(cppi_ch, queue);
queue = tmp;
}
}
channel->status = MUSB_DMA_STATUS_FREE;
......
......@@ -11,120 +11,150 @@
#include "musb_dma.h"
#include "musb_core.h"
#include "davinci.h"
/* hOptions bit masks for CPPI BDs */
#define CPPI_SOP_SET ((u32)(1 << 31))
#define CPPI_EOP_SET ((u32)(1 << 30))
#define CPPI_OWN_SET ((u32)(1 << 29)) /* owned by cppi */
#define CPPI_EOQ_MASK ((u32)(1 << 28))
#define CPPI_ZERO_SET ((u32)(1 << 23)) /* rx saw zlp; tx issues one */
#define CPPI_RXABT_MASK ((u32)(1 << 19)) /* need more rx buffers */
/* FIXME fully isolate CPPI from DaVinci ... the "CPPI generic" registers
* would seem to be shared with the TUSB6020 (over VLYNQ).
*/
#include "davinci.h"
#define CPPI_RECV_PKTLEN_MASK 0xFFFF
#define CPPI_BUFFER_LEN_MASK 0xFFFF
#define CPPI_TEAR_READY ((u32)(1 << 31))
#define CPPI_CHNUM_BITS_MASK 0x3
/* CPPI RX/TX state RAM */
struct cppi_tx_stateram {
u32 tx_head; /* "DMA packet" head descriptor */
u32 tx_head; /* "DMA packet" head descriptor */
u32 tx_buf;
u32 tx_current; /* current descriptor */
u32 tx_current; /* current descriptor */
u32 tx_buf_current;
u32 tx_info; /* flags, remaining buflen */
u32 tx_info; /* flags, remaining buflen */
u32 tx_rem_len;
u32 tx_dummy; /* unused */
u32 tx_dummy; /* unused */
u32 tx_complete;
};
struct cppi_rx_stateram {
u32 rx_skipbytes;
u32 rx_head;
u32 rx_sop; /* "DMA packet" head descriptor */
u32 rx_current; /* current descriptor */
u32 rx_sop; /* "DMA packet" head descriptor */
u32 rx_current; /* current descriptor */
u32 rx_buf_current;
u32 rx_len_len;
u32 rx_cnt_cnt;
u32 rx_complete;
};
/* hw_options bits in CPPI buffer descriptors */
#define CPPI_SOP_SET ((u32)(1 << 31))
#define CPPI_EOP_SET ((u32)(1 << 30))
#define CPPI_OWN_SET ((u32)(1 << 29)) /* owned by cppi */
#define CPPI_EOQ_MASK ((u32)(1 << 28))
#define CPPI_ZERO_SET ((u32)(1 << 23)) /* rx saw zlp; tx issues one */
#define CPPI_RXABT_MASK ((u32)(1 << 19)) /* need more rx buffers */
#define CPPI_RECV_PKTLEN_MASK 0xFFFF
#define CPPI_BUFFER_LEN_MASK 0xFFFF
#define CPPI_TEAR_READY ((u32)(1 << 31))
/* CPPI data structure definitions */
#define CPPI_DESCRIPTOR_ALIGN 16 /* bytes; 5-dec docs say 4-byte align */
/**
* CPPI Buffer Descriptor
*
* Buffer Descriptor structure for USB OTG Module CPPI.Using the same across
* Tx/Rx
*/
#define CPPI_DESCRIPTOR_ALIGN 16 /* bytes; 5-dec docs say 4-byte align*/
struct cppi_descriptor {
/* hardware overlay */
u32 hw_next; /* next buffer descriptor Pointer */
u32 hw_bufp; /* i/o buffer pointer */
u32 hw_off_len; /* buffer_offset16, buffer_length16 */
u32 hw_options; /* flags: SOP, EOP etc*/
struct cppi_descriptor *next;
dma_addr_t dma; /* address of this descriptor */
u32 buflen; /* for RX: original buffer length */
/* Hardware Overlay */
u32 hw_next; /**< Next(hardware) Buffer Descriptor Pointer */
u32 hw_bufp; /**<Buffer Pointer (dma_addr_t) */
u32 hw_off_len; /**<Buffer_offset16,buffer_length16 */
u32 hw_options; /**<Option fields for SOP,EOP etc*/
struct cppi_descriptor *next; /**<Next(software) Buffer Descriptor
*pointer
*/
dma_addr_t dma; /* address of this descriptor */
/* for Rx Desc, keep track of enqueued Buffer len to detect
* short packets
*/
u32 buflen;
} __attribute__ ((aligned(CPPI_DESCRIPTOR_ALIGN)));
/* forward declaration for CppiDmaController structure */
struct cppi;
/* CPPI Channel Control structure */
/**
* Channel Control Structure
*
* CPPI Channel Control structure. Using he same for Tx/Rx. If need be
* derive out of this later.
*/
struct cppi_channel {
struct dma_channel channel;
/* First field must be dma_channel for easy type casting
* FIXME just use container_of() and be typesafe instead!
*/
struct dma_channel channel;
/* back pointer to the DMA controller structure */
struct cppi *controller;
/* back pointer to the Dma Controller structure */
struct cppi *controller;
/* which direction of which endpoint? */
struct musb_hw_ep *hw_ep;
bool transmit;
u8 index;
struct musb_hw_ep *hw_ep;
u8 transmit;
u8 index;
/* DMA modes: RNDIS or "transparent" */
u8 is_rndis;
u8 is_rndis;
u8 autoreq; /* For now keep this remove this
* one RNDIS + length <64 segmenstation
* will done
*/
/* Rx Requested mode */
u8 rxmode;
u8 reqcomplete; /* zero packet handling*/
/* book keeping for current transfer request */
dma_addr_t buf_dma;
u32 buf_len;
u32 maxpacket;
u32 offset; /* dma requested */
dma_addr_t buf_dma;
u32 buf_len;
u32 maxpacket;
u32 offset; /* requested segments */
u32 actuallen; /* completed (Channel.actual) */
void __iomem *state_ram; /* CPPI state */
struct cppi_descriptor *freelist;
void __iomem *state_ram; /* CPPI state */
/* BD management fields */
struct cppi_descriptor *head;
struct cppi_descriptor *tail;
struct cppi_descriptor *last_processed;
struct cppi_descriptor *freelist; /* Free BD Pool head pointer */
struct cppi_descriptor *head;
struct cppi_descriptor *tail;
struct cppi_descriptor *last_processed;
/* use tx_complete in host role to track endpoints waiting for
* FIFONOTEMPTY to clear.
*/
struct list_head tx_complete;
struct list_head tx_complete;
u32 iso_desc;
};
/* CPPI DMA controller object */
/**
* CPPI Dma Controller Object
*
* CPPI Dma controller object.Encapsulates all bookeeping and Data
* structures pertaining to the CPPI Dma Controller.
*/
struct cppi {
struct dma_controller controller;
struct musb *musb;
void __iomem *mregs; /* Mentor regs */
void __iomem *tibase; /* TI/CPPI regs */
/* FIXME switchover to container_of() and remove the
* unsafe typecasts...
*/
struct dma_controller controller;
struct musb *musb;
void __iomem *mregs;
void __iomem *tibase;
struct cppi_channel tx[MUSB_C_NUM_EPT - 1];
struct cppi_channel rx[MUSB_C_NUM_EPR - 1];
struct cppi_channel tx[MUSB_C_NUM_EPT - 1];
struct cppi_channel rx[MUSB_C_NUM_EPR - 1];
struct dma_pool *pool;
struct dma_pool *pool;
struct list_head tx_complete;
struct list_head tx_complete;
};
/* irq handling hook */
......
......@@ -60,23 +60,23 @@
* includes DaVinci EVM in a common non-OTG mode.
*
* * Control and bulk use dedicated endpoints, and there's as
* yet no mechanism to either (a) reclaim the hardware when
* peripherals are NAKing, which gets complicated with bulk
* endpoints, or (b) use more than a single bulk endpoint in
* each direction.
* yet no mechanism to either (a) reclaim the hardware when
* peripherals are NAKing, which gets complicated with bulk
* endpoints, or (b) use more than a single bulk endpoint in
* each direction.
*
* RESULT: one device may be perceived as blocking another one.
* RESULT: one device may be perceived as blocking another one.
*
* * Interrupt and isochronous will dynamically allocate endpoint
* hardware, but (a) there's no record keeping for bandwidth;
* (b) in the common case that few endpoints are available, there
* is no mechanism to reuse endpoints to talk to multiple devices.
* hardware, but (a) there's no record keeping for bandwidth;
* (b) in the common case that few endpoints are available, there
* is no mechanism to reuse endpoints to talk to multiple devices.
*
* RESULT: At one extreme, bandwidth can be overcommitted in
* some hardware configurations, no faults will be reported.
* At the other extreme, the bandwidth capabilities which do
* exist tend to be severely undercommitted. You can't yet hook
* up both a keyboard and a mouse to an external USB hub.
* RESULT: At one extreme, bandwidth can be overcommitted in
* some hardware configurations, no faults will be reported.
* At the other extreme, the bandwidth capabilities which do
* exist tend to be severely undercommitted. You can't yet hook
* up both a keyboard and a mouse to an external USB hub.
*/
/*
......@@ -2028,6 +2028,11 @@ musb_init_controller(struct device *dev, int nIrq, void __iomem *ctrl)
musb->xceiv.host = &hcd->self;
hcd->power_budget = 2 * (plat->power ? : 250);
}
#ifdef CONFIG_ARCH_DAVINCI
tasklet_init (&musb->fifo_check, musb_fifo_check_tasklet,
(unsigned long)musb);
#endif
#endif /* CONFIG_USB_MUSB_HDRC_HCD */
/* For the host-only role, we can activate right away.
......
......@@ -239,6 +239,12 @@ enum musb_g_ep0_state {
(musb_readb((_x)->mregs, MUSB_DEVCTL)&MUSB_DEVCTL_HM)
#define MUSB_MODE(musb) ((musb)->is_host ? "Host" : "Peripheral")
struct musb_iso_desc {
u32 offset;
u32 length;
u32 status;
};
/******************************** TYPES *************************************/
......@@ -285,6 +291,9 @@ struct musb_hw_ep {
u8 rx_reinit;
u8 tx_reinit;
#ifdef CONFIG_ARCH_DAVINCI
u8 fifo_flush_check; /* Check FIFO empty */
#endif
#endif
#ifdef CONFIG_USB_GADGET_MUSB_HDRC
......@@ -292,6 +301,9 @@ struct musb_hw_ep {
struct musb_ep ep_in; /* TX */
struct musb_ep ep_out; /* RX */
#endif
struct musb_iso_desc *iso_desc;
u32 num_iso_desc;
u8 zero;
};
static inline struct usb_request *next_in_request(struct musb_hw_ep *hw_ep)
......@@ -343,6 +355,11 @@ struct musb {
struct list_head in_bulk; /* of musb_qh */
struct list_head out_bulk; /* of musb_qh */
struct musb_qh *periodic[32]; /* tree of interrupt+iso */
#ifdef CONFIG_ARCH_DAVINCI
struct tasklet_struct fifo_check; /* tasklet for FIFO empty
* status check
*/
#endif
#endif
/* called with IRQs blocked; ON/nonzero implies starting a session,
......
......@@ -154,7 +154,8 @@ static inline void cppi_host_txdma_start(struct musb_hw_ep *ep)
/* NOTE: no locks here; caller should lock and select EP */
txcsr = musb_readw(ep->regs, MUSB_TXCSR);
txcsr |= MUSB_TXCSR_DMAENAB | MUSB_TXCSR_H_WZC_BITS;
txcsr |= MUSB_TXCSR_DMAENAB | MUSB_TXCSR_DMAMODE |
MUSB_TXCSR_H_WZC_BITS;
musb_writew(ep->regs, MUSB_TXCSR, txcsr);
}
......@@ -1242,6 +1243,9 @@ void musb_host_tx(struct musb *musb, u8 epnum)
/* REVISIT may need to clear FLUSHFIFO ... */
musb_writew(epio, MUSB_TXCSR, tx_csr);
musb_writeb(epio, MUSB_TXINTERVAL, 0);
#ifdef CONFIG_ARCH_DAVINCI
hw_ep->fifo_flush_check = 0;
#endif
done = true;
}
......@@ -1305,8 +1309,19 @@ void musb_host_tx(struct musb *musb, u8 epnum)
/* set status */
urb->status = status;
urb->actual_length = qh->offset;
#ifdef CONFIG_ARCH_DAVINCI
/* Check for FIFO empty status. If not wait for the same
* before completing the urb. This ensures that the toggle
* status is correctly preserved and data will not be lost.
*/
if ((tx_csr & MUSB_TXCSR_FIFONOTEMPTY) ||
(tx_csr & MUSB_TXCSR_TXPKTRDY)) {
hw_ep->fifo_flush_check = 1;
tasklet_schedule(&musb->fifo_check);
goto finish;
}
#endif
musb_advance_schedule(musb, urb, hw_ep, USB_DIR_OUT);
} else if (!(tx_csr & MUSB_TXCSR_DMAENAB)) {
/* WARN_ON(!buf); */
......@@ -1358,9 +1373,9 @@ finish:
* (a) all URBs terminate with REQPKT cleared and fifo(s) empty;
* (b) termination conditions are: short RX, or buffer full;
* (c) fault modes include
* - iff URB_SHORT_NOT_OK, short RX status is -EREMOTEIO.
* (and that endpoint's dma queue stops immediately)
* - overflow (full, PLUS more bytes in the terminal packet)
* - iff URB_SHORT_NOT_OK, short RX status is -EREMOTEIO.
* (and that endpoint's dma queue stops immediately)
* - overflow (full, PLUS more bytes in the terminal packet)
*
* So for example, usb-storage sets URB_SHORT_NOT_OK, and would
* thus be a great candidate for using mode 1 ... for all but the
......@@ -1944,6 +1959,9 @@ static int musb_cleanup_urb(struct urb *urb, struct musb_qh *qh, int is_in)
musb_writew(epio, MUSB_TXCSR, csr);
/* flush cpu writebuffer */
csr = musb_readw(epio, MUSB_TXCSR);
#ifdef CONFIG_ARCH_DAVINCI
ep->fifo_flush_check = 0;
#endif
}
if (status == 0)
musb_advance_schedule(ep->musb, urb, ep, is_in);
......@@ -2139,6 +2157,46 @@ static int musb_bus_suspend(struct usb_hcd *hcd)
return 0;
}
#ifdef CONFIG_ARCH_DAVINCI
/* Tasklet routine to handle the completion request. Check for Fifo status
* before completing the request. Avoids false completions when data is still
* in the fifo
*/
void musb_fifo_check_tasklet(unsigned long data)
{
struct musb *musb = (struct musb *)data;
u8 epnum = 1, sch_tsklt = 0;
struct musb_hw_ep *hw_ep = NULL;
unsigned long flags;
u16 csr;
struct musb_qh *qh;
do {
hw_ep = &(musb->endpoints[epnum++]);
spin_lock_irqsave(&musb->lock, flags);
if (hw_ep->fifo_flush_check) {
csr = musb_readw(hw_ep->regs, MUSB_TXCSR);
if (((csr & MUSB_TXCSR_FIFONOTEMPTY) ||
(csr & MUSB_TXCSR_TXPKTRDY)))
sch_tsklt = 1;
else {
hw_ep->fifo_flush_check = 0;
qh = hw_ep->out_qh;
musb_advance_schedule(musb, next_urb(qh),
hw_ep, USB_DIR_OUT);
DBG(6, "Completed Tasklet %d\n", hw_ep->epnum);
}
}
spin_unlock_irqrestore(&musb->lock, flags);
} while (epnum < MUSB_C_NUM_EPS);
if (sch_tsklt)
tasklet_schedule(&musb->fifo_check);
}
#endif
static int musb_bus_resume(struct usb_hcd *hcd)
{
/* resuming child port does the work */
......
......@@ -88,7 +88,9 @@ extern int musb_hub_status_data(struct usb_hcd *hcd, char *buf);
extern int musb_hub_control(struct usb_hcd *hcd,
u16 typeReq, u16 wValue, u16 wIndex,
char *buf, u16 wLength);
#ifdef CONFIG_ARCH_DAVINCI
extern void musb_fifo_check_tasklet (unsigned long data);
#endif
extern const struct hc_driver musb_hc_driver;
static inline struct urb *next_urb(struct musb_qh *qh)
......@@ -108,3 +110,4 @@ static inline struct urb *next_urb(struct musb_qh *qh)
}
#endif /* _MUSB_HOST_H */
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment